主题:S7-200模拟量EM235编程实例

合集下载

S7-200的EM235模拟量输入

S7-200的EM235模拟量输入

6. PLC温度处理程序 温度处理程序
• 温度值0~100℃的模拟量 • 标准电信号是4—20mA • A/D转换后数值为6400—32000
100 − 0 A = ( D − 6400 )× +0 32000 − 6400
结束
• 该模块的第一个通道连接一块带4—20mA 变送输出的温度显示仪表,该仪表的量程 设置为0—100度,即0度时输出4mA,100 度时输出20mA。
3. 模拟量 模拟量DIP开关单极性输入设置 开关单极性输入设置
• S7-200模拟量模块都有一个 - 模拟量模块都有一个DIP的配置开关可选择模拟量输入范围 模拟量模块都有一个 的配置开关可选择模拟量输入范围 • 只有正确的设置DIP开关才能正确输入信号 只有正确的设置 开关才能正确输入信号
需注意的几处:
热电偶测温基本原理图
2. 将智能仪表设为温度变送模式
智能仪表AI-818参数设置: Ctrl=0 温度变送模式 Sn=0 选择输入为热电偶 dIL=0 要变送输出下限值为0℃ dIH=100 要变送输出上限值为100℃ Addr=40 变送输出最小值为4mA Baud=200 变送输出最大值为20mA
4. EM235内部电路 内部电路
将输入的4~20mA信号经过A/D电路后转变为0~32000的整 形数据,即完成了模数转化(具体内部还有模数转化集成 电路)
5. 模拟量通道
• 模拟量的数据格式为一个字长,所以地址 必须从偶数字节开始。即:AIW0,AIW2, AIW4、AIW6……AQW0,AQW2……。 • 每个模拟量扩展模块至少占两个通道
1. 热电偶采集温度信号 2. 智能仪表设置为温度变送模式 3. 模拟量DIP开关单极性输入设置 模拟量 开关单极性输入设置 4. EM235内部电路 内部电路 5. 模拟量通道 6. PLC温度信号处理程序 温度信号处理程序

EM235案例分析

EM235案例分析

对输入、输出模拟量的PLC编程的探讨及编程实例解析对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。

不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。

比如有3个温度传感变送器:(1)、测温范围为 0~200,变送器输出信号为4~20ma(2)、测温范围为 0~200,变送器输出信号为0~5V(3)、测温范围为-100~500,变送器输出信号为4~20ma(1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。

一、转换公式的推导下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导:对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号 ,20ma对应数子量=32000,4 ma对应数字量=6400;对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V 对应数字量=32000,0V对应数字量=0;这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。

编程者依据正确的转换公式进行编程,就会获得满意的效果。

二、变送器与模块的连接通常输出4~20ma电流信号的传感变送器,对外输出只有 +、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。

EM235接线与编程

EM235接线与编程

模拟量扩展模块接线图及模块设置请注意这里:这是我经过实践总结出来的东西很重要!(后面黑体是网上的帖子)4个输入1、2、3、4、每个都是一样的功能!你们看下面的图是不是不知道M 是接在哪儿的?有的帖子说是地线有的帖子是说公共-负极!我告诉你M接在模块的进电源的M上!这是必须的不然你根本就没有办法采集到变化的数字量信号(不接根本就没有)EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

输入校准模拟量输入模块使用前应进行输入校准。

其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。

其步骤如下:A、切断模块电源,选择需要的输入范围。

B、接通CPU和模块电源,使模块稳定15分钟。

C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

D、读取适当的输入通道在CPU中的测量值。

E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。

F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。

G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。

H、必要时,重复偏置和增益校准过程。

西门子S7-200模拟量编程.doc

西门子S7-200模拟量编程.doc

西门子S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

输入校准模拟量输入模块使用前应进行输入校准。

其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。

其步骤如下:A、切断模块电源,选择需要的输入范围。

B、接通CPU和模块电源,使模块稳定15分钟。

C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

D、读取适当的输入通道在CPU中的测量值。

E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。

F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。

G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。

H、必要时,重复偏置和增益校准过程。

EM235输入数据字格式下图给出了12位数据值在CPU的模拟量输入字中的位置图2可见,模拟量到数字量转换器(ADC)的12位读数是左对齐的。

s7200模拟量编程详解

s7200模拟量编程详解

S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数4输入范围电压(单极性)0~10V0~5V0~1V0~500mV0~100mV0~50mV电压(双极性)±10V±5V±2.5V±1V±500mV±250mV±100mV±50mV±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数1信号范围电压输出±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

S7-200模拟量模块的使用教程

S7-200模拟量模块的使用教程

S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数4输入范围电压(单极性)0~10V0~5V0~1V0~500mV0~100mV0~50mV电压(双极性)±10V±5V±2.5V±1V±500mV±250mV±100mV±50mV±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数1信号范围电压输出±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

EM235案例分析

EM235案例分析

对输入、输出模拟量的PLC编程的探讨及编程实例解析对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。

不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。

比如有3个温度传感变送器:(1)、测温范围为 0~200,变送器输出信号为4~20ma(2)、测温范围为 0~200,变送器输出信号为0~5V(3)、测温范围为-100~500,变送器输出信号为4~20ma(1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。

一、转换公式的推导下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导:对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号 ,20ma对应数子量=32000,4 ma对应数字量=6400;对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V 对应数字量=32000,0V对应数字量=0;这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。

编程者依据正确的转换公式进行编程,就会获得满意的效果。

二、变送器与模块的连接通常输出4~20ma电流信号的传感变送器,对外输出只有 +、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。

西门子200模拟量模块

西门子200模拟量模块

西门子S7-200模拟量编程PLC 2009-09-16 20:05 阅读77 评论0字号:大中小西门子S7-200模拟量编程韩耀旭本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)量的单/双极性、增益和衰减。

模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

输入校准模拟量输入模块使用前应进行输入校准。

其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。

其步骤如下:A、切断模块电源,选择需要的输入范围。

B、接通CPU和模块电源,使模块稳定15分钟。

C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

D、读取适当的输入通道在CPU中的测量值。

E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。

F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。

G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。

H、必要时,重复偏置和增益校准过程。

主题:S7-200模拟量EM235编程实例

主题:S7-200模拟量EM235编程实例

主题:S7-200模拟量EM235编程实例西门子S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X +和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数 4输入范围电压(单极性)0~10V0~5V0~1V0~500mV0~100mV0~50mV?电压(双极性)±10V±5V±±1V±500mV±250mV±100mV±50mV±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数 1信号范围电压输出±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。

EM235开关单/双极性选择增益选择衰减选择SW1 SW2 SW3 SW4 SW5 SW6ON 单极性?OFF 双极性?OFF OFF X1 ?OFF ON X10 ?ON OFF X100 ?ON ON 无效?ON OFF OFFOFF ON OFFOFF OFF ON由上表可知,DIP开关SW6决定模拟量输入的单双极性,当SW6为ON时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

(完整版)S7-200模拟量输入输出实例

(完整版)S7-200模拟量输入输出实例

对输入、输出模拟量的PLC编程的探讨及编程实例解析3134人阅读| 4条评论发布于:2011-12-29 9:03:42 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。

不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。

比如有3个温度传感变送器:(1)、测温范围为0~200 ,变送器输出信号为4~20ma(2)、测温范围为0~200 ,变送器输出信号为0~5V(3)、测温范围为-100 ~500 ,变送器输出信号为4~20ma(1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。

一、转换公式的推导下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导:对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号,20ma 对应数子量=32000,4 ma对应数字量=6400;对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V对应数字量=32000,0V对应数字量=0;这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。

编程者依据正确的转换公式进行编程,就会获得满意的效果。

二、变送器与模块的连接通常输出4~20ma电流信号的传感变送器,对外输出只有+、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。

em235模块手册

em235模块手册

S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数4输入范围电压(单极性)0~10V0~5V0~1V0~500mV0~100mV0~50mV电压(双极性)±10V±5V±2.5V±1V±500mV±250mV±100mV±50mV±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数1信号范围电压输出±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

S7-200模拟量输入输出实例

S7-200模拟量输入输出实例

对输入、输出模拟量的PLC编程的探讨及编程实例解析之宇文皓月创作3134人阅读 | 4条评论发布于:1229 9:03:42对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不但仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。

分歧的传感变送器,通过分歧的模拟量输入输出模块进行转换,其转换公式是纷歧样的,如果选用的转换公式分歧错误,编出的程序肯定是错误的。

比方有3个温度传感变送器:(1)、测温范围为 0~200 ,变送器输出信号为4~20ma(2)、测温范围为 0~200 ,变送器输出信号为0~5V(3)、测温范围为-100 ~500 ,变送器输出信号为4~20ma(1)和(2)二个温度传感变送器,测温范围一样,但输出信号分歧,(1)和(3)传感变送器输出信号一样,但测温范围分歧,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。

一、转换公式的推导下面选用S7200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导:对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号 ,20ma对应数子量=32000,4 ma对应数字量=6400;对于(2)传感变送器用的模块,其模拟量输入设置为0~5V 电压信号,5V对应数字量=32000,0V对应数字量=0;这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮忙,请见下图:上面推导出的(21)、(22)、(23)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被丈量的转换公式。

编程者依据正确的转换公式进行编程,就会获得满意的效果。

二、变送器与模块的连接通常输出4~20ma电流信号的传感变送器,对外输出只有+、二根连线,它需要外接24V电源电压才干工作,如将它的+、二根连线分别与24V电源的正负极相连,在被丈量正常变更范围内,此回路将发生4~20ma电流,见下左图。

S7-200模拟量输入输出实例

S7-200模拟量输入输出实例

对输入、输出模拟量的PLC编程的探讨及编程实例解析之迟辟智美创作3134人阅读 | 4条评论发布于:1229 9:03:42对初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的法式控制难的多,因为它不单仅是法式编程,而且还涉及到模拟量的转换公式推导与使用的问题.分歧的传感变送器,通过分歧的模拟量输入输出模块进行转换,其转换公式是纷歧样的,如果选用的转换公式分歧毛病,编出的法式肯定是毛病的.比如有3个温度传感变送器:(1)、测温范围为 0~200 ,变送器输出信号为4~20ma (2)、测温范围为 0~200 ,变送器输出信号为0~5V(3)、测温范围为-100 ~500 ,变送器输出信号为4~20ma(1)和(2)二个温度传感变送器,测温范围一样,但输出信号分歧,(1)和(3)传感变送器输出信号一样,但测温范围分歧,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同.一、转换公式的推导下面选用S7200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导:对(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号 ,20ma对应数子量=32000,4 ma对应数字量=6400;对(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V对应数字量=32000,0V对应数字量=0;这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮手,请见下图:上面推导出的(21)、(22)、(23)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被丈量的转换公式.编程者依据正确的转换公式进行编程,就会获得满意的效果.二、变送器与模块的连接通常输出4~20ma电流信号的传感变送器,对外输出只有 +、二根连线,它需要外接24V电源电压才华工作,如将它的+、二根连线分别与24V电源的正负极相连,在被丈量正常变动范围内,此回路将发生4~20ma电流,见下左图.下右图粉色虚线框内为EM235 模块第一路模拟输入的框图,它有3个输入端,其A+与A为A/D转换器的+ 输入端,RA与A之间并接250Ω标准电阻.A/D转换器是正逻辑电路,它的输入是0~5V电压信号,A为公共端,与PLC的24V电源的负极相连.那么24V电源、传感变送器、模块的输入口三者应如何连接才是正确的?正确的连线是这样的:将左图电源负极与传感器输出的负极连线断开,将电源的负极接模块的A 端,将传感器输出负极接RA端,RA端与A+端并接一起,这样由传感器负极输出的4~20ma电流由RA流入250Ω标准电阻发生0~5V 电压并加在A+与A输入端.切记:不成从左图的24V正极处断开,去接模块的信号输入端,如这样连接,模块是不会正常工作的.对第(2)种电压输出的传感変送器,模块的输入应设置为0~5V电压模式,连线时,变送器输出负极只连A+,RA 端空悬即可.三、按转换公式编程:根据转换后变量的精度要求,对转换公式编程有二种形式:1、整数运算,2、实数运算.请见下面梯形图:(A)、整数运算的梯形图:该梯形图是第(1)种温度传感变送器(测温:0~200 ,输出:4~20ma)按公式(21)以整数运算编写的转换法式,它可作为一个子法式进行调用.(B)实数运算的梯形图:该梯形图是对一个真空压力变送器(量程:0~0.1Mpa,输出:4~20ma)按公式(21)以实数运算编写的转换法式,可作为一个子法式进行调用.四、编程实例及解析某设备装有4种传感器:1、真空压力传感器,量程为:0~0.1Mpa;输出给PLC的信号为4~20ma.2、蒸汽压力传感器,量程为:0~1.0Mpa;输出给PLC的信号为4~20ma.3、温度传感器,量程为:0~200 度;输出给PLC的信号为4~20ma.4、机电转速,量程为:0~50转/秒;输出给PLC的信号为4~20ma.该设备用蒸汽对其罐体加热,并对温度要求按设定的温度值进行温度控制.控制方式采纳自动调整电动阀开门角度的年夜小来改变加热管道的蒸汽的流量.电动阀的控制信号为4~20ma,即输入4ma时,电动阀关门,输入20ma时,电动阀门全开.为此选用了含有4路模拟输入和一路模拟输出的模块EM235.其4路模拟量输入信号皆设定为0~20ma电流输入模式,一路模拟量输出信号设定为4~20ma电流输出模式.要求用触摸屏显示这4种信号的时时状态值,并在触摸屏上设置控制的温度参数,传给PLC使PLC按此值进行温度控制.由于本文重点是讲述有关模拟量的输入与输出的编程设计,对触摸屏的编程设计不予讲述,只提供触摸屏与PLC 的通讯变量:VD0:为真空压力显示区,由PLC传送给触摸屏.VD4:为蒸汽压力值显示区,由PLC传送给触摸屏.VW8:为蒸汽温度值显示区,由PLC传送给触摸屏.VW10:为机电转速值显示区,由PLC传送给触摸屏.VW12:设定温度值区,由触摸屏传送给PLC.一、硬件电路的配置:(一)、硬件设置除上述4种传感器外,选用:1、S7200PLC一台,型号为:CPU222 CN .2、选用EM235模拟量输入模块一块(输入设置:0~20 ma 工作模式;输出设置:4~20ma).3、变频器一台,型号为PI8100,由PLC控制启停,手动调速.4、西门子触摸屏一块.型号:Smart 700硬件电路图(二)、对传感器输出的4~20ma转换为显示量程的公式推导:EM235模拟量输入输出模块,当输入信号为20ma时,对应的数字=32000,故:输入=4ma时,对应的数字量=6400,对应显示量程值=0. 输入20ma时,对应的数字量=32000,对应显示量程值最年夜值=Hm,其输出量与模块的数字量的变动关系曲线如图一所示:这4个转换公式,前二种为实数运算,后二种为整数运算,为简化法式,自界说二个功能块分别用于实数与整数运算,而每个功能块在法式运行中又都调用二次,分别计算分歧的物理量.为此功能块设有二个数字输入与一个计算结果输出三个口,以适用于屡次调用去计算分歧物理量的值.请见下面编程:(三)、实数运算功能块(SBR_0):(四)、整数运算功能快(SBR_1):(五)、将模块的数字量,按对应公式转换为量程显示值的编程分析以上梯形图可知,该法式编写的特点:1、选用自界说功能块编写转换公式的子法式,2、对多个转换变量的调用采纳每个扫描周期对MB0加1的依次循环调用的方式,这样的编程处置会使编写的法式,简短易读易懂.(六)、对模拟量输出的编程处置对罐体温度控制是采纳渐近比力的控制方式进行编程.设计思路是这样的:当罐体的温度低于设定温度10度时,控制加热蒸汽的电动阀门全翻开,当罐体的温度低于设定温度7度时,电动阀门翻开3/4,当罐体的温度低于设定温度4度时,电动阀门翻开1/2,当罐体的温度低于设定温度2度时,电动阀门翻开1/4,当罐体的温度低于设定温度1度时,电动阀门翻开1/8,当罐体的温度=设定温度时,电动阀门关闭.(21a)式为温度与数字量的关系式,用它可将设定温度值转换为对应的数字量.如设定温度Tz=120度,带入(21a),可得对应数字量AIW=21760(35)式为数字量与电动阀门翻开度α的关系式,可用它输送给模块分歧的数字量,来改变模块的模拟量输出值,进而到达改变电动阀门的翻开角度.如:α=1代入(35)可得:AIWx=32000 将32000送入给模块的AQW0, 模块的模拟量输出将发生20ma电流输入给电动阀的信号输入端,使阀门全翻开.α=1/2代入(35)式可得:AIWx=19200 将19200送入给模块的AQW0, 模块的模拟量输出将发生12ma电流输入给电动阀的信号输入端,使阀门翻开1/2.下面是利用渐近比力法进行温度控制的梯形图:法式解释见网络上的说明法式中的Q0.0为蒸汽电磁阀的输出信号.Q0.0=1即蒸汽电磁阀翻开,注入蒸汽加热,法式将对罐体内的温度进行控制.Q0.1 为冷水电磁阀的输出信号.Q0.1=1即冷水发翻开,注入冷水进行降温,此时电动阀门全开,加速降温,法式对降温不做控制处置.(七)、PLC输入输出的控制编程输入有3个按钮:分别控制变频器、蒸汽电磁阀、水冷电磁阀的通电与关断:1、启动按钮接PLC的I0.0,控制变频器的启动与停止,输出口为Q0.3.控制方式选用一个按钮控制启停,用RS触发器指令编程.Q0.0与Q0.1 互锁,即只容许一个电磁阀翻开,如蒸汽阀翻开时,按水阀控制按钮,水阀不能翻开,只有先关气绝阀后再按水阀,水阀才华翻开.见下面梯形图:本文到此结束,望年夜家分析探讨,有分歧毛病之处请给于指正.谢谢年夜家!。

EM235模块手册,s7-200

EM235模块手册,s7-200

S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数4输入范围电压(单极性)0~10V0~5V0~1V0~500mV0~100mV0~50mV电压(双极性)±10V±5V±2.5V±1V±500mV±250mV±100mV±50mV±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数1信号范围电压输出±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

EM235接线图

EM235接线图

技术交流最新业绩S7-200模拟量EM235编程实例经验作者:东日电子文章来源:东日电子更新时间:2008-10-9 15:00:34西门子S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X -;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数4输入范围电压(单极性)0~10V 0~5V 0~1V0~500mV 0~100mV 0~50mV图2可见,模拟量到数字量转换器(ADC)的12位读数是左对齐的。

最高有效位是符号位,0表示正值。

在单极性格式中,3个连续的0使得模拟量到数字量转换器(ADC)每变化1个单位,数据字则以8个单位变化。

在双极性格式中,4个连续的0使得模拟量到数字量转换器每变化1个单位,数据字则以16为单位变化。

EM235输出数据字格式图3给出了12位数据值在CPU的模拟量输出字中的位置:图3数字量到模拟量转换器(DAC)的12位读数在其输出格式中是左端对齐的,最高有效位是符号位,0表示正值。

模拟量扩展模块的寻址每个模拟量扩展模块,按扩展模块的先后顺序进行排序,其中,模拟量根据输入、输出不同分别排序。

模拟量的数据格式为一个字长,所以地址必须从偶数字节开始。

例如:AIW0,AIW2,AIW4……、AQW0,AQW2……。

EM235接线与编程

EM235接线与编程

模拟量扩展模块接线图及模块设置请注意这里:这是我经过实践总结出来的东西很重要!(后面黑体是网上的帖子)4个输入1、2、3、4、每个都是一样的功能!你们看下面的图是不是不知道M 是接在哪儿的?有的帖子说是地线有的帖子是说公共-负极!我告诉你M接在模块的进电源的M上!这是必须的不然你根本就没有办法采集到变化的数字量信号(不接根本就没有)EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

输入校准模拟量输入模块使用前应进行输入校准。

其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。

其步骤如下:A、切断模块电源,选择需要的输入范围。

B、接通CPU和模块电源,使模块稳定15分钟。

C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

D、读取适当的输入通道在CPU中的测量值。

E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。

F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。

G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。

H、必要时,重复偏置和增益校准过程。

EM235接线与编程

EM235接线与编程

模拟量扩展模块接线图及模块设置请注意这里:这是我经过实践总结出来的东西很重要!(后面黑体是网上的帖子)4个输入1、2、3、4、每个都是一样的功能!你们看下面的图是不是不知道M 是接在哪儿的?有的帖子说是地线有的帖子是说公共-负极!我告诉你M接在模块的进电源的M上!这是必须的不然你根本就没有办法采集到变化的数字量信号(不接根本就没有)EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

输入校准模拟量输入模块使用前应进行输入校准。

其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。

其步骤如下:A、切断模块电源,选择需要的输入范围。

B、接通CPU和模块电源,使模块稳定15分钟。

C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

D、读取适当的输入通道在CPU中的测量值。

E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。

F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。

G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。

H、必要时,重复偏置和增益校准过程。

EM235接线与编程

EM235接线与编程

模拟量扩展模块接线图及模块设置请注意这里:这是我经过实践总结出来的东西很重要!(后面黑体是网上的帖子)4个输入1、2、3、4、每个都是一样的功能!你们看下面的图是不是不知道M 是接在哪儿的?有的帖子说是地线有的帖子是说公共-负极!我告诉你M接在模块的进电源的M上!这是必须的不然你根本就没有办法采集到变化的数字量信号(不接根本就没有)EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

输入校准模拟量输入模块使用前应进行输入校准。

其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。

其步骤如下:A、切断模块电源,选择需要的输入范围。

B、接通CPU和模块电源,使模块稳定15分钟。

C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

D、读取适当的输入通道在CPU中的测量值。

E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。

F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。

G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。

H、必要时,重复偏置和增益校准过程。

EM235接线与编程

EM235接线与编程

模拟量扩展模块接线图及模块设置请注意这里:这是我经过实践总结出来的东西很重要!(后面黑体是网上的帖子)4个输入1、2、3、4、每个都是一样的功能!你们看下面的图是不是不知道M 是接在哪儿的?有的帖子说是地线有的帖子是说公共-负极!我告诉你M接在模块的进电源的M上!这是必须的不然你根本就没有办法采集到变化的数字量信号(不接根本就没有)EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)量的单/双极性、增益和衰减。

时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

输入校准模拟量输入模块使用前应进行输入校准。

其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。

其步骤如下:A、切断模块电源,选择需要的输入范围。

B、接通CPU和模块电源,使模块稳定15分钟。

C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

D、读取适当的输入通道在CPU中的测量值。

E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。

F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。

G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。

H、必要时,重复偏置和增益校准过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主题:S7-200模拟量EM235编程实例
西门子S7-200模拟量编程
本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:
1、模拟量扩展模块接线图及模块设置
2、模拟量扩展模块的寻址
3、模拟量值和A/D转换值的转换
4、编程实例
模拟量扩展模块接线图及模块设置
EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。

下面以EM235为例讲解模拟量扩展模块接线图,如图1。

图1
图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X +和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。

对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。

(后面将详细介绍)
EM235的常用技术参数:
模拟量输入特性
模拟量输入点数4
输入范围电压(单极性)0~10V 0~5V 0~1V 0~500mV 0~100mV 0~50mV
电压(双极性)
±10V ±5V ±2.5V ±1V ±500mV ±250mV ±100mV ±50mV ±25mV
电流0~20mA
数据字格式双极性全量程范围-32000~+32000
单极性全量程范围0~32000
分辨率12位A/D转换器
模拟量输出特性
模拟量输出点数1
信号范围电压输出 ±10V
电流输出0~20mA
数据字格式电压-32000~+32000
电流0~32000
分辨率电流电压12位
电流11位
下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。

EM235开关单/双极性选择增益选择衰减选择
SW1 SW2 SW3 SW4 SW5 SW6
ON 单极性
OFF 双极性
OFF OFF X1
OFF ON X10
ON OFF X100
ON ON 无效
ON OFF OFF 0.8
OFF ON OFF 0.4
OFF OFF ON 0.2
由上表可知,DIP开关SW6决定模拟量输入的单双极性,当SW6为ON时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。

SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

根据上表6个DIP开关的功能进行排列组合,所有的输入设置如下表:
单极性满量程输入分辨率
SW1 SW2 SW3 SW4 SW5 SW6
ON OFF OFF ON OFF ON 0到50mV 12.5μV
OFF ON OFF ON OFF ON 0到100mV 25μV
ON OFF OFF OFF ON ON 0到500mV 125uA
OFF ON OFF OFF ON ON 0到1V 250μV
ON OFF OFF OFF OFF ON 0到5V 1.25mV
ON OFF OFF OFF OFF ON 0到20mA 5μA
OFF ON OFF OFF OFF ON 0到10V 2.5mV
双极性满量程输入分辨率
SW1 SW2 SW3 SW4 SW5 SW6
ON OFF OFF ON OFF OFF ±25mV 12.5μV
OFF ON OFF ON OFF OFF ±50mV 25μV
OFF OFF ON ON OFF OFF ±100mV 50μV
ON OFF OFF OFF ON OFF ±250mV 125μV
OFF ON OFF OFF ON OFF ±500 250μV
OFF OFF ON OFF ON OFF ±1V 500μV
ON OFF OFF OFF OFF OFF ±2.5V 1.25mV
OFF ON OFF OFF OFF OFF ±5V 2.5mV
OFF OFF ON OFF OFF OFF ±10V 5mV
6个DIP开关决定了所有的输入设置。

也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。

输入校准
模拟量输入模块使用前应进行输入校准。

其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。

其步骤如下:
A、切断模块电源,选择需要的输入范围。

B、接通CPU和模块电源,使模块稳定15分钟。

C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。

D、读取适当的输入通道在CPU中的测量值。

E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。

F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。

G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。

H、必要时,重复偏置和增益校准过程。

EM235输入数据字格式
下图给出了12位数据值在CPU的模拟量输入字中的位置
图2
可见,模拟量到数字量转换器(ADC)的12位读数是左对齐的。

最高有效位是符号位,0表示正值。

在单极性格式中,3个连续的0使得模拟量到数字量转换器(ADC)每变化1个单位,数据字则以8个单位变化。

在双极性格式中,4
个连续的0使得模拟量到数字量转换器每变化1个单位,数据字则以16为单位变化。

EM235输出数据字格式
图3给出了12位数据值在CPU的模拟量输出字中的位置:
图3
数字量到模拟量转换器(DAC)的12位读数在其输出格式中是左端对齐的,最高有效位是符号位,0表示正值。

模拟量扩展模块的寻址
每个模拟量扩展模块,按扩展模块的先后顺序进行排序,其中,模拟量根据输入、输出不同分别排序。

模拟量的数据格式为一个字长,所以地址必须从偶数字节开始。

例如:AIW0,AIW2,AIW4……、AQW0,AQW2……。

每个模拟量扩展模块至少占两个通道,即使第一个模块只有一个输出AQW0,第二个模块模拟量输出地址也应从AQW4开始寻址,以此类推。

图4演示了CPU224后面依次排列一个4输入/4输出数字量模块,一个8输入数字量模块,一个4模拟输入/1模拟输出模块,一个8输出数字量模块,一个4模拟输入/1模拟输出模块的寻址情况,其中,灰色通道不能使用。

图4
模拟量值和A/D转换值的转换
假设模拟量的标准电信号是A0—Am(如:4—20mA),A/D转换后数值为
D0—Dm(如:6400—32000),设模拟量的标准电信号是A,A/D转换后的相应数值为D,由于是线性关系,函数关系A=f(D)可以表示为数学方程:
A=(D-D0)×(Am-A0)/(Dm-D0)+A0。

根据该方程式,可以方便地根据D值计算出A值。

将该方程式逆变换,得出函数关系D=f(A)可以表示为数学方程:
D=(A-A0)×(Dm-D0)/(Am-A0)+D0。

具体举一个实例,以S7-200和4—20mA为例,经A/D转换后,我们得到的数值是6400—32000,即A0=4,Am=20,D0=6400,Dm=32000,代入公式,得出:
A=(D-6400)×(20-4)/(32000-6400)+4
假设该模拟量与AIW0对应,则当AIW0的值为12800时,相应的模拟电信号是6400×16/25600+4=8mA。

又如,某温度传感器,-10—60℃与4—20mA相对应,以T表示温度值,AIW0为PLC模拟量采样值,则根据上式直接代入得出:
T=70×(AIW0-6400)/25600-10
可以用T 直接显示温度值。

模拟量值和A/D转换值的转换理解起来比较困难,该段多读几遍,结合所举例子,就会理解。

为了让您方便地理解,我们再举一个例子:
某压力变送器,当压力达到满量程5MPa时,压力变送器的输出电流是20mA,AIW0的数值是32000。

可见,每毫安对应的A/D值为32000/20,测得当压力
为0.1MPa时,压力变送器的电流应为4mA,A/D值为(32000/20)×4=6400。

由此得出,AIW0的数值转换为实际压力值(单位为KPa)的计算公式为:
VW0的值=(AIW0的值-6400)(5000-100)/(32000-6400)+100(单位:KPa)编程实例
您可以组建一个小的实例系统演示模拟量编程。

本实例的的CPU是CPU222,仅带一个模拟量扩展模块EM235,该模块的第一个通道连接一块带4—20mA
变送输出的温度显示仪表,该仪表的量程设置为0—100度,即0度时输出4mA,100度时输出20mA。

温度显示仪表的铂电阻输入端接入一个220欧姆可调电位器,简单编程如下:
温度显示值=(AIW0-6400)/256
编译并运行程序,观察程序状态,VW30即为显示的温度值,对照仪表显示值是否一致。

相关文档
最新文档