数字信号处理实验3-离散系统的变换域分析

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理第2章

数字信号处理第2章

Z变换与拉氏变换的关系:
这一关系实际上是通过 到了Z平面。
若将Z平面用极坐标表示
标表示
,代入
将S平面的函数映射
,S平面用直角坐 ,得:
上述关系表明: z 的模 r 仅与 s 的实部 相对应, z 的幅角 则仅与 s 的虚部 对应。
映射关系:
Z变换与拉氏变换的关系
0 0,2 (S平面实轴映射到Z平面的正实轴)
解:
,求它的傅立叶变换。
其幅度谱和相位谱分别为:
典型例题
❖ 例2 已知序列的傅立叶变换如下,求它的反变换。
解:
显然序列 h(n)不是绝对可和的,而是平方可和 的 ,但其依然存在傅立叶变换。 Parseval定理
典型例题
❖ 例3 证明复指数序列 x(n) e j0n 的傅立叶变换为:
证:根据序列的傅立叶反变换定义,利用冲击函 数 的性质,有:
即序列绝对可和
某的有 立些序些叶既列序变不,列换满若虽依足引然然绝入不存对频满在可 域足。和的以见的冲上后条击条例件函件。也数,不但满满,足足其平平傅方方立可可叶和和变条,换件其傅
也存在。如
、某些周期序列,见后例。
序列傅立叶变换的定义
5.常用序列的傅立叶变换
序列
(n)
傅立叶变换
1
1
典型例题
❖ 例1 已知
A形k(式k=求0,X取1(…:z),N)B,(此z) A( z )

为了方bi 便z i通常利用
i0
N
1 ai z i
X(z)/z的
i 1
若序列为因果序列,且N≥M,当X(z)的N个极点都是单
极点时,可以展开成以下的部分分式的形式:
则其逆Z变换为:

数字信号处理实验离散序列的基本运算

数字信号处理实验离散序列的基本运算
subplot(1,2,2),stem(n1,x1,'filled','k');
title('x(-n)');
五、序列的尺度变换
n=0:40;tn=n./20;
x=sin(2*pi*tn);
x1=sin(2*pi*tn*2);
x2=sin(2*pi*tn/2);
subplot(3,1,1),stem(tn,x,'filled','k');
ylabel('δ(n-4)');
subplot(3,1,3);stem(n,x3,'filled','k');
axis([n1,n2,1.1*min(x3),1.1*max(x3)]);
ylabel('δ(n-2)+δ(n-4)');
2.n1=-4:6;n01=-2;
x1=[(n1-n01)>=0];
x=y1+y2;
subplot(3,1,1);
stem(n1,x1,'filled','k');
ylabel('x1(n)');
axis([min(n),max(n),1.1*min(x),1.1*max(x)]);
subplot(3,1,2);
stem(n2,x2,'filled','k');
ylabel('x2(n)');
axis([min(n),max(n),1.1*min(x),1.1*max(x)]);
subplot(3,1,3);
stem(n,x,'filled','k');

数字信号处理 实验 离散系统的Z域分析

数字信号处理 实验 离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析 学号: 姓名:评语: 成绩:一、实验目的1、掌握离散序列z 变换的计算方法。

2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。

3、掌握利用MATLAB 进行z 反变换的计算方法。

二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:∑∞-∞=-=n nzn x Z X )()(。

在MA TLAB 中可以利用符号表达式计算一个因果序列的z 变换。

其命令格式为: syms n;f=(1/2)^n+(1/3)^n; ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )*h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n nzn h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若∞<∑∞-∞=n n h |)(|,则系统稳定。

由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。

因为∑∞-∞=-=n nzn h z H )()(,若z =1时H (z )收敛,即∞<=∑∞-∞==n z n h z H |)(||)(1,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。

因此因果稳定系统应满足的条件为:1,||<∞≤<ααz ,即系统函数H (z )的所有极点全部落在z 平面的单位圆之内。

3、MA TLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。

数字信号处理实验3 FFT算法应用

数字信号处理实验3 FFT算法应用
与图 6-1 有相同的结论。 (2)用以下代码可得图 6-2 >> N=64; >> k=0:N-1; >> X=1./(1-0.8*exp(-j*2*pi*k/N)); >> x=ifft(X,64); >> n=k; >> stem(n,abs(x)) >> grid
图 6-2
>> xlabel('n');ylabel('x[n]');
图 6-1
理论分析如下:
由欧拉公式得: x[n] cos(2 7n) 1 cos(2 19n)
N
2N
1
(e
j 2 7n N
e
j 2 ( N 7n) N
1
e
j 2 19n N
1
e
j 2 ( N 19n)
N
)
2
2
2
j 2 kn
对 p[n] e N ,其 2N 点的 DFT 变换为:
2N 1
j 2mn 2N 1 j 2n(2km)
X (k) 。
(2) 已知某序列 x(n) 在单位圆上的 N=64 等分样点的 Z 变换为
X (zk
)
X
(k)
1 1 0.8e j2k / N
,k
0,1,2,...,63

_
_
用 N 点 IFFT 程序计算 x(n) IDFT[ X (k)],绘出和 x(n) 。
实验要求:利用 MATLAB 编程完成计算,绘出相应图形。并与理论计算相比较,说明实验结 果的原因。 (1) 用以下代码实现可得图 6-1 所示的 DFT 图。 >> N=64; >> n=0:2*N-1; >> x=cos(2*pi*7*n/N)+1/2*cos(2*pi*19*n/N); >> X=fft(x,128); >> k=n; >> stem(k,abs(X)) >> grid >> xlabel('k');ylabel('|X[k]|');

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNN zWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N Kj k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box on title('(e) 32点频域采样');xlabel('k'); ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box on title('(f) 32点IDFT[X_3_2(k)]');xlabel('n'); ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M 时,x 16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告通信0303 汪勇 学号:实验一:信号、系统及系统响应 1、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解. (2) 熟悉时域离散系统的时域特性(3) 利用卷积方法观察分析系统的时域特性.(4) 掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号,离散信号及系统响应进行频域分析.2、实验原理简述:对一个连续信号)(t xa 进行理想采样的过程可用下式表示:^x a(t)= )(t xa p(t)其中^x a(t)为)(t xa 的理想采样,p(t)为周期冲激脉冲,即p(t)=∑∞-∞=n δ(t-nT )^x a(t)的傅立叶变换^X a(j Ω)为^X a(j Ω)=[])(1s m Tn aX Ω-Ω∑∞-∞=上式表明^X a(j Ω)为)(Ωj Xa 的周期延拓,其周期延拓为采样角频率(T s π2=Ω).采样前后信号的频谱示意图见图.只有满足采样定理时,才不会发生频率混叠失真.离散信号和系统在时域均可用序列来表示。

为了在数字计算机上观察分析各种序列的频域特性,通常对()e j X ω在[]π2,0上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n)有()()ee nj N n kj k m x Xωω--=∑=10其中,1,0,2==k k Mkπω,M-1 一个时域离散线性非移变系统的输入/输出关系为y(n)=x(n)*h(n)=()()m n h m x m -∑∞-∞=如果x(n)和h(n)的长度分别为M 和N ,则y(n)的长度为L=N+M-1。

上述卷积运算也可在频域实现()()()e e e j j j H X Yωωω=3、实验内容及步骤首先认真复习采样理论.离散信号与系统.线性卷积.序列的傅立叶变换及性质等有关内容,了解本实验原理与方法.1>编制实验用主程序及相应子程序.①信号产生子程序,用于产生实验中要用的下列信号序列: a) 采样信号序列:对下面连续信号:()()()t u t A t ex ataΩ-=0sin进行采样,可得到采样序列()()()()500,sin 0<≤==Ω=n n u nT A nT n e x x anTa a其中A 为幅度因子,a 为衰减因子,是模拟角频率,T 为采样间隔.这些参数都要在实验过程中由键盘输入,产生不同的x(t)和x(n)b) 单位脉冲序列:()[]n n x bδ=c) 矩形序列:()()10,==N n n R x Nc②系统单位脉冲响应序列产生子程序.本实验要用到两种FIR 系统.()()()()()()()325.215.210-+-+-+==n n n n n n n hR h baδδδδ ③有限长序列线性卷积子程序,用于完成两个给定长度的序列的卷积.可以直接调用MATLAB 语言中的卷积函数conv 。

数字信号处理--实验三

数字信号处理--实验三

一、实验目的1.了解工程上两种最常用的变换方法:脉冲响应不变法和双线性变换法。

2.掌握双线性变换法设计IIR 滤波器的原理及具体设计方法,熟悉用双线性设计法设计低通、带通和高通IIR 数字滤波器的计算机程序.3.观察用双线性变换法设计的滤波器的频域特性,并与脉冲响应不变法相比较,了解双线性变换法的特点。

4.熟悉用双线性变换法设计数字Butterworth 和Chebyshev 滤波器的全过程。

5.了解多项式乘积和多项式乘方运算的计算机编程方法。

二、实验原理与方法从模拟滤波器设计IIR 数字滤波器具有四种方法:微分-差分变换法、脉冲响应不变法、双线性变换法、z 平面变换法。

工程上常用的是其中的两种:脉冲响应不变法、双线性变换法。

脉冲响应不变法需要经历如下基本步骤:由已知系统传输函数H(S)计算系统冲激响应h(t);对h(t)等间隔采样得到h (n )=h (n T);由h (n )获得数字滤波器的系统响应H (Z)。

这种方法非常直观,其算法宗旨是保证所设计的IIR 滤波器的脉冲响应和模拟滤波器的脉冲响应在采样点上完全一致。

而双线性变换法的设计准则是使数字滤波器的频率响应与参考模拟滤波器的频率响应相似。

脉冲响应不变法一个重要的特点是频率坐标的变换是线性的(),其确定是有频谱的周期延拓效应,存在频谱混叠的现象。

为了克服脉冲响应不变法可能产生的频谱混叠,提出了双线性变换法,它依靠双线性变换式:, , 其中 ,建立其S 平面和Z 平面的单值映射关系,数字域频率和模拟域频率的关系是: , (3-1) 由上面的关系式可知,当时,终止在折叠频率处,整个轴单值的对应于单位圆的一周。

因此双线性变换法不同于脉冲响应不变法,不存在频谱混叠的问题。

从式(3-1)还可以看出,两者的频率不是线性关系。

这种非线性关系使得通带截至频率、过渡带的边缘频率的相对位置都发生了非线性畸变。

这种频率的畸变可以通过预畸变来校正。

用双线性变换法设计数字滤波器时,一般总是先将数字滤波器的个临界频率经过式(3-1)的频率预畸变,求得相应参考模拟滤波器的个临界频率,然后设计参考模拟滤波器的传递函数,最后通过双T Ω=ω1111--+-=z z s s s z -+=11Ω+=j s σωj re z =)2/(ωtg =Ω)(2Ω=arctg ω∞→Ωωπω=Ωj线性变换式求得数字滤波器的传递函数。

数字信号处理--实验三 时域及频域采样定理

数字信号处理--实验三 时域及频域采样定理

学生实验报告开课学院及实验室:电子楼317 2013 年 4 月 8 日N为周期进行周期延拓后的主值区序列,(一) 时域采样定理实验1. 给定模拟信号如下:0()sin()()at a x t Ae t u t -=Ω假设式中A=444.128,250π=a , 2500π=Ωrad/s ,将这些参数代入上式中,对()a x t 进行傅立叶变换,得到()a X j Ω,画出它的幅频特性()~a X jf f,如图3.1所示。

根据该曲线可以选择采样频率。

图3.1()a x t 的幅频特性曲线2. 按照选定的采样频率对模拟信号进行采样,得到时域离散信号()x n :0()()sin()()anT a x n x nT Ae nT u nT ==Ω这里给定采样频率如下:1s f kHz =,300Hz ,200Hz 。

分别用这些采样频率形成时域离散信号,按顺序分别用1()x n 、2()x n 、3()x n 表示。

选择观测时间50p T ms=。

3. 计算()x n 的傅立叶变换()jwX e :100()[()]sin()i i n anT jw j ni n X e FT x n Ae nT e ω--===Ω∑ (3.6)式中,1,2,3i =,分别对应三种采样频率的情况123111(,,)1000300200T s T s T s ===。

采样点数用下式计算:pi i T n T =(3.7)(3.6)式中,ω是连续变量。

为用计算机进行数值计算,改用下式计算:100()[()]sin()i k i k n jw anT jw n M i n X e DFT x n Ae nT e --===Ω∑ (3.8)式中,2k kM πω=,0,1,2,3...k =,1M -;64M =。

可以调用MATLAB 函数fft 计算3.8式。

4. 打印三种采样频率的幅度曲线()~k jw kX e w ,0,1,2,3...k =,1M -;64M =。

数字信号处理实验三

数字信号处理实验三

实验报告课程名称: 数字信号处理院系部:电气与电子工程学院专业班级:信息1002学生姓名:王萌学号: 1101200219同组人:实验台号:指导教师:范杰清成绩:华北电力大学(北京)实验二 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。

掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。

加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。

二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率fsam 大于等于2倍的信号最高频率fm ,即 fsam 2fm 。

时域抽样是把连续信号x(t)变成适于数字系统处理的离散信号x[k] ;信号重建是将离散信号x[k]转换为连续时间信号x(t)。

非周期离散信号的频谱是连续的周期谱。

计算机在分析离散信号的频谱时,必须将其连续频谱离散化。

频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。

三、实验内容:1、利用MATLAB 实现对 的抽样)20π2cos()(t t x ⨯=程序代码:自己设计:w0=2*pi*20;t=0:0.0001:0.1;x=cos(w0*t);plot(t,x);hold on;t=0:0.01:0.1;x=cos(w0*t);stem(t,x);hold off;所给代码:t0 = 0:0.001:0.1;x0 =cos(2*pi*20*t0);plot(t0,x0,'r')hold on%信号最高频率fm为20 Hz,%按100 Hz抽样得到序列。

Fs = 100;00.010.020.030.040.050.060.070.080.090.1-1-0.8-0.6-0.4-0.20.20.40.60.81连续信号及其抽样信号t=0:1/Fs:0.1;x=cos(2*pi*20*t);stem(t,x);hold offtitle('连续信号及其抽样信号')自己设计的程序结果截图:实际截图:2、已知序列}2,1,0;1,1,1{][==kkx对其频谱X(ejW)进行抽样。

数字信号处理实验MATLAB上机DOC

数字信号处理实验MATLAB上机DOC

班级: 学号: 姓名: 日期: 实验一:离散时间信号的分析一、实验目的利用DFT 卷积实现系统的时域分析二、实验原理在离散时间、连续频率的傅里叶变换中,由于卷积性质知道,对系统输出的计算可以通过求x[n]和h[n]的DTFT ,将得到的X(e jw )和H(e jw )相乘就可以得到Y(e jw ),进而再通过反变换得到y[n]。

这就避免了在时域进行繁琐的卷积求解。

三、实验步骤(包括代码和波形)1-2(2)x[k]=g[k]=k+1,0<=k<=3;x[k]=g[k]=0,其他 编码如下:ak=1:4 gk=1:4Z=conv(ak,gk) stem(Z)波形如下:12345675101520251-3(1)已知序列x[k]={1,2,3,4;k=0,1,2,3},y[k]={-1,1,2,3;k=0,1,2,3},试计算x[k]的自相关函数以及序列x[k]与y[k]的互相关函数。

编码如下:x=[1,2,3,4];kx=0:3; y=[-1,1,-2,3];ky=0:3; xf=fliplr(x); s1=conv(x,xf); s2=conv(xf,y); yf=fliplr(y); s3=conv(yf,x);k1=kx(1)+ky(1):kx(end)+ky(end); kxf=-fliplr(kx);k2=kxf(1)+ky(1):kxf(end)+ky(end); kyf=-fliplr(ky);k3=kyf(1)+kx(1):kyf(end)+kx(end); subplot(2,2,1); stem(k1,s1);xlabel('k1');ylabel('s1'); subplot(2,2,2); stem(k2,s2);xlabel('k2');ylabel('s2'); subplot(2,2,3) stem(k3,s3);xlabel('k3');ylabel('s3');波形如下:0246102030k1s 1-4-2024-10-50510k2s 2-4-2024-10-50510k3s 3M-1已知g1[t]=cos(6*pi*t),g2=cos(14*pi*t),g3=cos(26*pi*t),以抽样频率f(max)=10HZ对上述三个信号进行抽样。

数字信号处理实验三:离散时间信号的频域分析

数字信号处理实验三:离散时间信号的频域分析

实验三:离散时间信号的频域分析一.实验目的1.在学习了离散时间信号的时域分析的基础上,对这些信号在频域上进行分析,从而进一步研究它们的性质。

2.熟悉离散时间序列的3种表示方法:离散时间傅立叶变换(DTFT),离散傅立叶变换(DFT)和Z变换。

二.实验相关知识准备1.用到的MATLAB命令运算符和特殊字符:< > .* ^ .^语言构造与调试:error function pause基本函数:angle conj rem数据分析和傅立叶变换函数:fft ifft max min工具箱:freqz impz residuez zplane三.实验内容1.离散傅立叶变换在MATLAB中,使用fft可以很容易地计算有限长序列x[n]的离散傅立叶变换。

此函数有两种形式:y=fft(x)y=fft(x,n) 求出时域信号x的离散傅立叶变换n为规定的点数,n的默认值为所给x的长度。

当n取2的整数幂时变换的速度最快。

通常取大于又最靠近x的幂次。

(即一般在使用fft函数前用n=2^nextpow2(length(x))得到最合适的n)。

当x的长度小于n时,fft函数在x的尾部补0,以构成长为n点数据。

当x的长度大于n时,fft函数将序列x截断,取前n点。

一般情况下,fft求出的函数多为复数,可用abs及angle分别求其幅度和相位。

注意:栅栏效应,截断效应(频谱泄露和谱间干扰),混叠失真例3-1:fft函数最通常的应用是计算信号的频谱。

考虑一个由100hz和200hz正弦信号构成的信号,受零均值随机信号的干扰,数据采样频率为1000hz。

通过fft函数来分析其信号频率成分。

t=0:0.001:1;%采样周期为0.001s,即采样频率为1000hzx=sin(2*pi*100*t)+sin(2*pi*200*t)+1.5*rand(1,length(t));%产生受噪声污染的正弦波信号subplot(2,1,1);plot(x(1:50));%画出时域内的信号y=fft(x,512);%对x进行512点的fftf=1000*(0:256)/512;%设置频率轴(横轴)坐标,1000为采样频率subplot(2,1,2);plot(f,y(1:257));%画出频域内的信号实验内容3-2:频谱泄漏和谱间干扰假设现有含有三种频率成分的信号x(t)=cos(200πt)+sin(100πt)+cos(50πt)用DFT分析x(t)的频谱结构。

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

数字信号处理实验指导书

数字信号处理实验指导书

《数字信号处理》实验指导书编写:刘梦亭审核:司玉娟阎维和适用专业:电子信息工程电子信息科学与技术通信工程等电子信息与工程系2009年9月目录实验一:离散时间信号分析 (1)实验二:离散时间系统分析 (3)实验三:离散系统的Z域分析 (6)实验四:FFT频谱分析及应用 (9)实验五:IIR数字滤波器的设计 (12)实验六:FIR数字滤波器的设计 (16)附录: MATLAB基本操作及常用命令 (20)实验一:离散时间信号分析实验学时:2学时 实验类型:验证 实验要求:必修 一、实验目的1) 掌握离散卷积计算方法; 2) 学会差分方程的迭代解法;3) 了解全响应、零输入响应、零状态响应和初始状态的物理意义和具体求法; 二、实验内容 1、信号的加数学描述 )()()(21n x n x n x += MATLAB 实现 21X X X +=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]2、信号的乘数学描述 )()()(21n x n x n x *= MATLAB 实现 2.1X X X *=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]3、计算卷积用MATLAB 计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。

首先用手工计算,然后用MATLAB 编程验证。

三、实验组织运行要求1、学生在进行实验前必须进行充分的预习,熟悉实验内容;2、学生根据实验要求,读懂并理解相应的程序;3、学生严格遵守实验室的各项规章制度,注意人身和设备安全,配合和服从实验室人员管理;4、教师在学生实验过程中予以必要的辅导,独立完成实验;5、采用集中授课形式。

四、实验条件1、具有WINDOWS 98/2000/NT/XP 操作系统的计算机一台; 2.、MATLAB 编程软件。

数字信号处理实验指导书

数字信号处理实验指导书

实验-离散系统时域分析一、实验目的1.了解时域离散信号的表示方法;2.掌握线性时不变系统输入输出之间的关系;3.掌握线性卷积运算;4.掌握用线性差分方程描述时域离散系统的输入输出;5.熟悉Matlab编程。

二、实验内容1. 编制nonrec.m函数文件,实现y(n)=h(n)*x(n).这里给定h(n)=R8(n), x(n)=nR16(n), 求y(n).nonrec.m函数文件:function y=nonrec(x,h)x=[x,zeros(1,length(h)-1)];w=zeros(1,length(h));for i=1:length(x)for j=length(h):-1:2w(j)=w(j-1);endw(1)=x(i);y(i)=w*h’;end主程序文件:x=0:15;h=ones(1,8);y=nonrec(x,h);n=0:22;stem(n,y);分析:线性卷积y(n)=x(n)*h(n)的长度为16+8-1=23,可利用y(n)=∑h(m)x(n-m)直接计算得n(n+1)/2, n≤7y(n)= 4(2n-7), 8≤n≤15(n+8)(23-n)/2, 16≤n≤22即 y=[ 0 1 3 6 10 15 21 28 36 44 52 60 68 76 84 92 8 4 75 65 54 42 29 15] ,与曲线相符。

2. 编制rec.m函数文件,实现y(n)=x(n)+∑aky(n-k). 这里给定a1=2rcosw0,a2=-0.952, r=0.95, w0=π/8, 求单位抽样响应h(n).rec.m函数文件:function y=rec(x,a,n)x=[x,zeros(1,n-length(x))]; %补零到所需长度sum=0;w=zeros(1,length(a));for i=1:ny(i)=sum+x(i);for j=length(a):-1:2w(j)=w(j-1);endw(1)=y(i);sum=w*a';end主程序文件:x=[1];a=[2*0.95*cos(pi/8),-0.95^2];h=rec(x,a,75); %取h(n)的长度为75点n=0:74;stem(n,h);分析计算:由题意, a1=2*0.95*cos(π/8), a2=-0.952, 所以,得到系统函数 H(z)=1/[1-1.9cos(π/8)z-1+0.952z-2],做逆Z变换得 h(n)=0.95ncos(πn/8)+ctg(π/8)*0.95nsin(πn/8),利用MATLAB直接画h(n), 即使用下列语句n=0:74;h=0.95.^n.*cos(pi.*n./8)+cot(pi/8).*(0.95.^n).*sin(pi.*n./8);stem(n,h);比较这两个结果。

数字信号处理实验指导书(wcx)

数字信号处理实验指导书(wcx)
三பைடு நூலகம்实验内容
1.线性和非线性系统
例2-1设系统为
y[n]-0.4y[n-1]+0.75y[n-2]=2.2403x[n]+2.4908x[n-1]+2.2403x[n-2]
要求用MATLAB程序仿真系统,输入三个不同的输入序列x1(n),x2(n)和
x(n)=a.x1(n)+b.x2(n),计算并求出相应的输出响应y1[n],y2[n]和y[n]。
数字信号处理应用的一个常见例子是从被加性噪声污染的信号中移除噪声。假定信号s[n]被噪声d[n]所污染,得到一个含有噪声的信号x[n]=s[n]+d[n]。我们需要对x[n]进行运算,产生一个合理的逼近s[n],对时刻n的样本求平均,产生输出信号是一种简单有效的方法。如:三点滑动平均的信号。
程序1-3实现三点滑动平均的信号运算:
(2)程序1-2:正弦序列的产生和绘制
% Program P1_2
% Generation of a sinusoidal sequence
n = 0:40;
f = 0.1;
phase = 0;
A = 1.5;
arg = 2*pi*f*n - phase;
x = A*cos(arg);
clf;% Clear old graph
由固冇频率wn把模拟低通滤波器原型转换为低通高通带通带阻滤运用脉冲响应不变法或双线性变换法把模拟滤波器转换成数字滤波器matlab信号处理工具箱提供了儿个用于直接设计iir数字滤波器的函数这一直接设计iir数字滤波器1butterworth模拟和数字滤波器设计数字域
数字信号处理
实验指导书
王创新文卉
长沙理工大学电气与信息工程学院电子信息工程教研室
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3 离散系统的变换域分析
一、实验目的:
加深对离散系统的频率响应分析和零、极点分布的概念理解。

二、实验原理:
离散系统的时域方程为
∑∑==-=-M
m m N k n m n x b k n y a
00)()( 其变换域分析方法如下:
X(z)H(z)Y(z) )()()()()(=⇔-=
*=∑∞-∞=m m n h m x n h n x n y
系统函数为 N
N M
M z a z a a z b z b b z X z Y z H ----++++++==......)()()(110110 分解因式 ∏∏∑∑=-=-=-=---==k k
M m m k k k M m m m z d z c K z a z b z H 111100)1()
1()( , 其中 m c 和 k d 称为零、极点。

在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统函数的零、极点分布图。

使h=freqz(num,den,w)函数可求系统的频率响应,w 是频率的计算点,如w=0:pi/255:pi, h 是复数,abs(h)为幅度响应,angle(h)为相位响应。

另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的串联。

(在实验报告中对这几种函数的使用方法及参数含义做出说明,这一部分手写)
三、实验内容
例1 求下列直接型系统函数的零、极点,并将它转换成二阶节形式
解 用MATLAB 计算程序如下:
num=[1 -0.1 -0.3 -0.3 -0.2];
den=[1 0.1 0.2 0.2 0.5];
[z,p,k]=tf2zp(num,den);
disp('零点');disp(z);
disp('极点');disp(p);
disp('增益系数');disp(k); sos=zp2sos(z,p,k);
disp('二阶节');disp(real(sos));
zplane(num,den)
输入到“num”和“den”的分别为分子和分母多项式的系数。

计算求得零、极点增益系数和二阶节的系数:
零点
0.9615
-0.5730
-0.1443 + 0.5850i
-0.1443 - 0.5850i
极点
0.5276 + 0.6997i
0.5276 - 0.6997i
-0.5776 + 0.5635i
-0.5776 - 0.5635i
增益系数
1
二阶节
1.0000 -0.3885 -0.5509 1.0000 1.1552 0.6511
1.0000 0.2885 0.3630 1.0000 -1.0552 0.7679
系统函数的二阶节形式为:
极点图如右图。

例2 差分方程
)
3(02.0)2(36.0)1(44.0)(8.0 )
3(6.0)2(45.0)1(7.0)(-+-+--=-----+n x n x n x n x n y n y n y n y 所对应的系统的频率响应。

解:差分方程所对应的系统函数为
3213
216.045.07.0102.036.044.08.0)(--------+++-=z
z z z z z z H 用MATLAB 计算的程序如下:
k=256;
num=[0.8 -0.44 0.36 0.02];
den=[1 0.7 -0.45 -0.6];
w=0:pi/k:pi;
h=freqz(num,den,w);
subplot(2,2,1);
plot(w/pi,real(h));grid
title('实部')
xlabel('\omega/\pi');ylabel('幅度')
subplot(2,2,2);
plot(w/pi,imag(h));grid
title('虚部')
xlabel('\omega/\pi');ylabel('Amplitude')
subplot(2,2,3);
plot(w/pi,abs(h));grid
title('幅度谱')
xlabel('\omega/\pi');ylabel('幅值')
subplot(2,2,4);
plot(w/pi,angle(h));grid
title('相位谱') xlabel('\omega/\pi');ylabel('弧度')
练习1.求系统
54321543212336.09537.08801.14947.28107.110528.0797.01295.01295.00797.00528.0)(-----------+-+-+++++=z z z z z z z z z z z H 的零、极点和幅度频率响应和相位响应。

要求:绘出零、极点分布图,幅度频率响应和相位响应曲线。

代码如下:
clear;
num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528]; den=[1 -1.8107 2.4947 -1.8801 0.9537 0.2336];
[z,p,k]=tf2zp(num,den);
disp('零点');disp(z);
disp('极点');disp(p);
disp('增益系数');disp(k);
subplot(2,2,1);
zplane(num,den);
title('零极点分布图');
k=256;
w=0:pi/k:pi;
h=freqz(num,den,w);
subplot(2,2,2);
plot(w/pi,abs(h));grid
title('幅度谱')
xlabel('\omega/\pi');ylabel('幅值')
subplot(2,2,3);
plot(w/pi,angle(h));grid
title('相位谱')
xlabel('\omega/\pi');ylabel('弧度')
输出结果:
练习2.求一因果线性移不变系统()0.81(2)()(2)
y n y n x n x n =-+--的单位抽样响应()h n ,单位阶跃响应()g n ,并绘出()jw H e
的幅频和相频特性。

代码:
clear;
w=[0:1:500]*pi/500;
a=[1,0,-0.81];
b=[1,0,-1];
x=[1 zeros(1,25)];
h=filter(b,a,x);
n=0:1:25;
subplot(2,2,1);
stem(n,h,'filled');
title('单位抽样相应');
step=ones(1,25);
subplot(2,2,2);
g=conv(h,step);
N1=0:49;
stem(n1,g,'filled');
title('单位阶跃响应');
[r,p,k]=residuez(b,a);
h=freqz(b,a,w);
magH=abs(h);
phah=angle(h);
subplot(2,2,3);
plot(w/pi,magH,'b'); grid
title('幅度特性曲线');
subplot(2,2,4);
plot(w/pi,phah/pi,'b'); grid
title('相位特性曲线')
输出结果:
练习3.利用MATLAB 计算12318()1834F z z z z
---=
+-- 的部分分式展开式。

代码:
clear;
a=[18 3 -4 -1];
b=[18];
[r,p,k]=residuez(b,a);
实验心得:。

相关文档
最新文档