2013广东佛山二模数学试题及答案

合集下载

佛山市2013年第二学期九年级数学检测卷

佛山市2013年第二学期九年级数学检测卷

第6题图佛山市2013年第二学期九年级数学检测卷数 学 试 卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间:100分钟。

注意事项:1、不能使用计算器。

2、试卷的选择题与非选择题都在答题卷上作答,不能答在试卷上,监考教师只收答题卷。

第Ⅰ卷 (选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

) 1、sin45°的值是( )A.12B.2C.2D.12、把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值( )A .扩大为原来的3倍B .缩小为原来的13C .不能确定D .不变3、在Rt △ABC 中,∠C=900,AB=6,cosB=23,则BC 的长为( )A .4B .2 5 C.18 1313 D. 1213134、如图,AB 是⊙O 的直径,点C 在⊙O 上,若∠A =40 º,则∠B 的度数为( )A .80 ºB .60 ºC .50 ºD .40 º 5、在抛物线42-=x y 上的一个点是( )A .(4,4)B .(2,0) C. (1,-4) D.(0,4)6、已知:如图,OA,OB 是⊙O 的两条半径,且OA ⊥OB ,点C在⊙O 上则∠ACB 的度数为( )A.45°B.35°C.25°D.20° 7、抛物线y =-2x 2+1的对称轴是( )A .直线B .直线C .y 轴D .直线x =2第4题图第14题图第10题图13题图8、将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( ) A .y=(x+1)2 B .y=x 2+1 C .y=(x ﹣1)2 D .y=x 2﹣19、若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:则当x =1时,y 的值为( )A .—27B .—13C .—3D .510、小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°的角的正切值是( )A.第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分。

佛山市高三第二次质量检测理科数学

佛山市高三第二次质量检测理科数学

yxoA321B佛山市2013届高三第二次质量检测理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分. 1.设全集)},1ln(|{},0)3(|{,--==>--==x y x B x x x A R U 则 右图中阴影部分表示的集合为( ) A .}0|{>x x B .}03|{<<-x x C .}13|{-<<-x xD .}1|{-<x x2.50<<x 是不等式4|4|<-x 成立的A .充分不必要条件 B.必要不充分条件 C .充要条件 D.既不充分也不必要条件 3.若复数(a 2 - 4a +3)+(a -1)i 是纯虚数,则实数a 的值为( )A.1B.3C.1或3D.-1 4.函数()26ln f x x x =-+的零点一定位于下列哪个区间A. (1,2)B.(2,3)C.()3,4D. ()4,5 5.已知点P (sin α– cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是A .)45,()43,2(ππππ⋃ B .)45,()2,4(ππππ⋃C .)23,45()43,2(ππππ⋃D .),43()2,4(ππππ⋃6.偶函数))((R x x f ∈满足:0)1()4(==-f f ,且在区间[0,3]与),3[+∞上分别递减和递增,则不等式0)(3<x f x 的解集为A. ),4()4,(+∞⋃--∞B. )4,1()1,4(⋃--C. )0,1()4,(-⋃--∞D. )4,1()0,1()4,(⋃-⋃--∞ 7.)(x f 是定义在),0(+∞上的非负可导函数,且满足()()0xf x f x '-≤,对任意正数b a ,,若b a <,则必有( )A. )()(a bf b af ≤B. )()(b af a bf ≤C. )()(b f a af ≤D. )()(a f b bf ≤8.函数f (x )的图象是如图所示的折线段OAB,点A 坐标为(1,2),点B 坐标为(3,0).定义函数()()(1)g x f x x =⋅-.则函数g (x )最大值为( )A.0B.2C.1D.4第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.dx x ⎰-2024=10.若x 、y 满足(22)1()1,12020-+-⎪⎩⎪⎨⎧≥-≤≤≤≤y x y x y x 则的取值范围是 。

2013年广东省各市二模计算题汇总

2013年广东省各市二模计算题汇总

2013年广东省各市二模计算题汇总广州市35.(18分)如图,水平地面上,质量为4m的凹槽左端紧靠墙壁但不粘连;凹槽内质量为m 的木块压缩轻质弹簧后用细线固定,整个装置处于静止状态.现烧断细线,木块被弹簧弹出后与凹槽碰撞并粘在一起向右运动.测得凹槽在地面上移动的距离为s.设凹槽内表面光滑,凹槽与地面的动摩擦因数为μ,重力加速度为g,求:(1)木块与凹槽碰撞后瞬间的共同速度大小v;(2)弹簧对木块做的功W.36.(18分)如图,足够长平行金属导轨内有垂直纸面向里的匀强磁场,金属杆ab与导轨垂直且接触良好,导轨右端通过电阻与平行金属板AB连接.已知导轨相距为L;磁场磁感应强度为B;R1、R2和ab杆的电阻值均为r,其余电阻不计;板间距为d、板长为4d;重力加速度为g,不计空气阻力.如果ab杆以某一速度向左匀速运动时,沿两板中心线水平射入质量为m、带电量为+q的微粒恰能沿两板中心线射出;如果ab杆以同样大小的速度向右匀速运动时,该微粒将射到B板距左端为d的C处.(1)求ab杆匀速运动的速度大小v;(2)求微粒水平射入两板时的速度大小v0;(3)如果以v0沿中心线射入的上述微粒能够从两板间射出,试讨论ab杆向左匀速运动的速度范围.深圳市35.( 18分)如图甲所示,电阻不计的光滑平行金属导轨相距L = 0.5m,上端连接R=0.5Ω的电阻,下端连着电阻不计的金属卡环,导轨与水平面的夹角θ=300,导轨间虚线区域存在方向垂直导轨平面向上的磁场,其上、下边界之间的距离s = 1Om,磁感应强度B-t图如图乙所示.长为L且质量为m= 0.5kg的金属棒ab的电阻不计,垂直导轨放置于距离磁场上边界d = 2.5m处,在t= O时刻由静止释放,棒与导轨始终接触良好,滑至导轨底端被环卡住不动.g取10m/s2,求:(1)棒运动到磁场上边界的时间;(2)棒进人磁场时受到的安培力;(3)在0-5s时间内电路中产生的焦耳热.36.(18分)如图所示,竖直平面内有一半径R = 0.9m、圆心角为60°的光滑圆弧轨道PM,圆弧轨道最底端M处平滑连接一长s = 3m的粗糙平台MN,质量分别为mA=4kg,mB=2kg的物块A, B静置于M点,它们中间夹有长度不计的轻质弹簧,弹簧与A连结,与B不相连,用细线拉紧A、B使弹簧处于压缩状态.N端有一小球C,用长为L的轻绳悬吊,对N点刚好无压力.现烧断细线,A恰好能从P端滑出,B与C碰后总是交换速度.A、B、C均可视为质点,g取10m/s2,问:(1)A刚滑上圆弧时对轨道的压力为多少?(2)烧断细线前系统的弹性势能为多少?(3)若B与C只能碰撞2次,B最终仍停在平台上,整个过程中绳子始终不松弛,求B 与平台间动摩擦因数µ的范围及µ取最小值时对应的绳长L潮州市35.如图甲所示,水平面上有一个多匝圆形线圈,通过导线与倾斜导轨上端相连,线圈内存在随时间均匀增大的匀强磁场,磁场沿竖直方向,其磁感应强度B 1随时间变化图像如图乙所示。

2013年佛山中考数学试卷

2013年佛山中考数学试卷

2013年佛山市高中阶段招生考试模拟试题数学科试卷 (二)第Ⅰ卷(选择题 共30 分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.答案选项填涂在答题卡上) 1、5的相反数是( )A 、 5B 、5-C 、51D 、51- 2、下列运算中正确的是 ( )A 、532a a a =+ B 、842a a a =⋅ C 、632)(a a = D 、326a a a =÷ 33、一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“毒”字相对的字是( )A .卫B .防C .讲D .生4、.下列图形中,不是..轴对称图形的是( )A.B.C. D5、去年参加我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为( )A .0.4573×105B .4.573×104C .-4.573×104D .45.73×1046、在半径为3的圆中,弦AB=3,则 A B 的长度为( ) A 、π91B 、π32 C 、π D 、π317、 如图,在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为( )A .15B .16C .18D .20 8、下列事件是必然事件的是( ) A .明天一定会下雨B .打开电视机,任选一个频道,屏幕上正在播放篮球比赛节目C .某种彩票的中奖率为1%,买100张彩票一定中奖D .13名学生中一定有两个人在同一个月过生日 9、题数轴上点P 表示的数可能是( )(第3题图)讲 卫 生防 病 毒B. C. 3.2- D.10、如图,在ΔABC 中,D 、E 分别为AB 、AC 的中点, 连接DE ,ADE S ∆=1,则ABC S ∆=( ) A 、2 B 、3 C 、4 D 、6第Ⅱ卷(非选择题 共90二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11、若单项式m y x 22与331y x n -是同类项,则n m +的值是 。

2013年佛山市普通高中高二教学质量检测文科数学试题参考答案定稿12.17

2013年佛山市普通高中高二教学质量检测文科数学试题参考答案定稿12.17

EPAM DH第16题图PBAMDC2013年佛山市普通高中高二教学质量检测数学试题(文科)参考答案和评分标准一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共4小题,每小题5分,满分20分.11.3π 12.813.2- 14.12三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 15.(本小题满分12分)如图,已知四边形O A B C 是矩形,O 是坐标原点,O 、A 、B 、C 按逆时针排列,A 的坐标是),4AB =.(Ⅰ) 求点C 的坐标; (Ⅱ)求B C 所在直线的方程.解: (Ⅰ)因为四边形O A B C 是矩形,O A 所在直线的斜率3OA k =…2分 所以O C 的斜率为3-,O C 所在的直线方程为y =,…4分因为4OC AB ==,设(),C x ,则24O C x ===, ……………………6分所以2x =-或2x =(舍去),所以点C 的坐标为(2,-.…………………………………………8分 (Ⅱ)因为O A 与B C , 所以B C 所在直线的斜率3BC O A k k ==…………………………………10分所以B C 所在直线的方程为()23332+=-x y ,即80x -+=.…………………………12分给分说明:第 (Ⅱ)问中的直线若正确地写成一般式或斜截式均给满分.16.(本小题满分13分)如图,在四棱锥P A B C D -中,四边形A B C D 为直角梯形,//AD BC ,90BAD ∠=︒,P A ⊥ 底面A B C D ,且2PA AD ==,1A B B C ==,M 为P D 的中点.(Ⅰ) 求证://C M 平面P A B ; (Ⅱ)求证:C D ⊥平面PAC .解:(Ⅰ) 取P A 的中点E ,连结,ME BE ,…………1分因为M 为P D 的中点,所以1//2E M A D ,又1//2B C A D …………3分所以//EM BC ,所以四边形B C M E 为平行四边形, 所以//C M BE ,………………………………………5分 又B E ⊂平面P A B ,C M ⊄平面P A B ,所以//C M 平面P A B .………………………………6分 (Ⅱ)在直角梯形A B C D 中,//A D B C ,90B A D ∠=︒,1A B B C ==,2AD =,过C 作C H AD ⊥于H ,由平几知识易得A C=CD =所以222AC CD AD +=,所以A C C D ⊥……………………9分 又P A ⊥ 底面A B C D ,C D ⊂底面A B C D , 所以P A C D ⊥…………………11分又PA AC A = ,所以C D ⊥平面PAC .…………………13分17.(本小题满分13分)已知圆C 经过点(0,3)A 和(3,2)B ,且圆心C 在直线y x =上.(Ⅰ) 求圆C 的方程;(Ⅱ)若直线2y x m =+被圆C 所截得的弦长为4,求实数m 的值. 解:(Ⅰ)解法一:设圆心(,)C a a ,因为AC BC =,=解得1a =……………………………………………………………………………………………………4分 所以圆心(1,1)C ,半径r AC ==……………………………………………………………………6分所以圆C 的方程为22(1)(1)5x y -+-= ………………………………………………………………7分 解法二:设圆C 的方程为()()()2220x a y a rr -+-=>, ……………………………………………2分依题意得()()()222222332a a r a a r⎧+-=⎪⎨-+-=⎪⎩,………………………………………………………………………5分解得21,5a r ==,所以圆C 的方程为22(1)(1)5x y -+-= ………………………………………7分 解法三:依题意易得线段A B 的中垂线方程为32y x =-,……………………………………………2分 联立方程组32y x y x =⎧⎨=-⎩,解得11x y =⎧⎨=⎩,所以圆心(1,1)C ,……………5分 下同解法一.(Ⅱ)因为直线2y x m =+被圆C 所截得的弦长为4, 所以圆心(1,1)C 到直线2y x m =+的距离1d == ……………………………10分1=,解得1m =-±……………………………………………………………………13分18.(本小题满分14分)已知曲线C 上的任意一点到定点(1,0)F 的距离与到定直线1x =-的距离相等. (Ⅰ) 求曲线C 的方程;(Ⅱ)若曲线C 上有两个定点A 、B 分别在其对称轴的上、下两侧,且||2FA =,||5FB =,求原点O 到直线AB 的距离.解:(Ⅰ) 因为曲线C 上的任意一点到定点(1,0)F 的距离与到定直线1x =-的距离相等.由抛物线定义可知,C 的轨迹T 是以()1,0F 为焦点,直线1x =-为准线的抛物线,…………………4分所以动圆圆心C 的轨迹T 的方程为24y x =.……………………………………………………………6分 (Ⅱ)由已知得)0,1(F ,设A ),(11y x (其中10y >),由2=FA 得1,2111==+x x ,所以()1,2A …………………………………………………………9分 同理可得()4,4B -,所以直线AB 的方程为042=-+y x . ………………………………………12分则原点O 到直线AB的距离5d ==…………………………………………………………14分19.(本小题满分14分)如图,在底面为平行四边形的四棱柱1111ABC D A B C D -中,1D D ⊥底面ABC D ,1AD =,2C D =,60D C B ∠=︒. (Ⅰ) 求证:平面11A BCD ⊥平面11BD D B ; (Ⅱ)若1D D BD =,求四棱锥11D A BCD -的体积. 解: (Ⅰ) 在ABD ∆中,由余弦定理得BD ==所以222AD BD AB +=,所以90A D B ∠=︒,即AD BD ⊥又四边形A B C D 为平行四边形,所以BC BD ⊥…………………………………2分 又1D D ⊥底面A B C D ,B C ⊂底面A B C D ,所以1D D BC ⊥又1D D BD D = ,所以B C ⊥平面11BD D B ,………………………………5分 又B C ⊂平面11A BCD ,所以平面11A BCD ⊥平面11BD D B .……6分(Ⅱ)解法一:连结1BD,∵1DD BD ==,∴1BD =∵B C ⊥平面11BD D B ,所以1BC BD ⊥……………8分 所以四边形11A BCD的面积111122A BC D S BC BD =⨯⋅⋅=取1BD 的中点M ,连结D M ,则1D M BD ⊥,且2D M =又平面11A BCD ⊥平面1B D D ,平面11A BC D 平面1B D D 1B D =, 所以D M ⊥平面11A BCD ……………12分 所以四棱锥11D A BCD -的体积11113A BC D V S D M =⋅⋅=……14分 解法二: 四棱锥11D A BCD -的体积111D A B D D B C D V V V --=+……8分而三棱锥11D A BD -与三棱锥1D BC D -底面积和高均相等 所以11112D A BD D BC D D BC D V V V V ---=+=第19题解法一图BDC A A 1B 1C 1D 1M第19题解法二图BD CAA 1B 1C 1D 1第19题图BDC AA 1B 1C 1D 11112213D BC D BC D V S D D -==⨯⋅⋅=………………14分20.(本小题满分14分)已知椭圆C 的中心在原点,焦点在坐标轴上,短轴的一个端点为()0,4B ,离心率35e =.(Ⅰ) 求椭圆C 的方程;(Ⅱ)若()0,0O 、()2,2P ,在椭圆上求一点Q 使OPQ ∆的面积最大. 解:(Ⅰ) 设椭圆C 的方程为()222210x y a b ab+=>>,依题意得34,5c b a==,又222a b c =+,…………………………3分所以5,4,3a b c ===, 所以椭圆C 的方程为2212516xy+=.…5分(Ⅱ)依题意OP =,直线O P 的方程为y x =,………7分 设与O P 平行的直线l 的方程为y x m =+(0m ≠),当l 与椭圆相切时,切点为所求的点Q ,此时OPQ ∆的面积最大. ……………………………9分由方程组2212516y x mx y =+⎧⎪⎨+=⎪⎩消元得224150254000x mx m ++-=(*)由225004414000m ∆=+⨯⨯=得m =………………………12分将m =(*)式,解得41x =±,此时对应切点的坐标为4141⎛⎫-⎪ ⎪⎝⎭,,4141⎛⎫- ⎪⎪⎝⎭, 易知此两点到直线O P的距离相等,满足题意, 从而所求点Q 的坐标为4141⎛⎫-⎪⎪⎝⎭或,4141⎛⎫- ⎪ ⎪⎝⎭…………………………14分。

坐标系与参数方程 Word版(含答案)

坐标系与参数方程 Word版(含答案)

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编20:坐标系与参数方程一、选择题 二、填空题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )设M 、N 分别是曲线2sin 0ρθ+=和s ()42in πρθ+=上的动点,则M 、N 的最小距离是______12 .(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))在极坐标系中,直线sin ρθ=与圆2cos ρθ=相交的弦长为____3 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)(坐标系与参数方程选做题)已知曲线1l 的极坐标系方程为sin 4πρθ⎛⎫-= ⎪⎝⎭(0,ρ> 02)θπ≤≤,直线2l 的参数方程为{1222x t y t =-=+(为参数),若以直角坐标系的x 轴的非负半轴为极轴,则1l 与2l 的交点A 的直角坐标是____________【答案】解析:sin sin cos cos sin 1444y x πππρθρθρθ⎛⎫-=⇒-=⇒-= ⎪⎝⎭ {12322x t x y y t =-⇒+==+,由3112x y x y x y +==⎧⎧⇒⎨⎨-==⎩⎩(1,2)A ⇒ 4 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))在极坐标系中,圆3cos ρθ=上的点到直线cos()13πρθ-=的距离的最大值是______.【答案】745 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)(坐标系与参数方程)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A B 、,则线段AB 的垂直平分线的极坐标方程为________________.【答案】sin 4πρθ⎛⎫+=⎪⎝⎭(或1cos sin =+θρθρ)6 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )(坐标系与参数方程选做题)在极坐标系中,极点到曲线22)4cos(=+θπρ的距离是_____________【答案】7 .(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )(坐标系与参数方程选做题)在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程为________.【答案】cos 3ρθ=.8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)(坐标系与参数方程选做题) 在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为__________. 【答案】349 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)(坐标系与参数方程选做题)在极坐标系(),ρθ(0,02πρθ>≤<)中,曲线2sin ρθ=与2cos ρθ=的交点的极坐标为_____【答案】解析:4π⎫⎪⎭两式相除得tan 12sin 44ππθθρ=⇒=⇒==交点的极坐标为4π⎫⎪⎭10.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)已知抛物线C 的参数方程为⎩⎨⎧==t y t x 882(t为参数),若斜率为1的直线经过抛物线C 的焦点,且与圆222(4)(0)x y r r -+=>相切,则半径r =________.【答案】211.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的极坐标方程是6sin ρθ=,以极点为平面直角坐标系的原点,极轴为x 的正半轴,建立平面直角坐标系,直线l的参数方程是1(x t y ⎧=-⎪⎨=⎪⎩为参数),则直线l 与曲线C 相交所得的弦的弦长为________.【答案】412.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)(坐标系与参数方程选做题)曲线1C :1cos sin x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线2C:12112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______ 【答案】1; 13.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为__________.【答案】sin ρθ【解析】点(2,)3π的直角坐标为,∴过点平行于x轴的直线方程为y =即极坐标方程为sin ρθ=14.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知圆M:x 2+y 2-2x-4y+1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为______.【答案】215.(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)(坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x ty t=--⎧⎨=-⎩(t 为参数)截圆22cos ρρθ+-3=0的弦长为____ 【答案】 416.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知直线l 方程是22x ty t =+⎧⎨=-⎩(t 为参数),以坐标原点为极点.x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2,则圆C 上的点到直线l 的距离最小值是___【答案】222-17.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,圆ρ=2上的点到直线sin()6πρθ+=3的距离的最小值是____【答案】118.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩ (θ为参数),则曲线C 上的点到直线3x -4y +4=0的距离的最大值为______________ 【答案】3;19.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))(坐标系与参数方程选做题)已知曲线1C:ρ=和曲线2C:cos()4πρθ+=,则1C 上到2C 的距的点的个数为__________.【答案】3;将方程ρ=与cos()4πρθ+=222x y +=与20x y --=,知1C 为圆心在坐标原点,半径为的圆,2C 为直线,因圆心到直线20x y --=,故满足条件的点的个数3n =.20.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)(坐标系与参数方程)在极坐标中,圆ρ =4cos θ 的圆心C 到直线 ρ sin (θ +π4 )=2 2 的距离为_*****_.【答案】答案: 2解:在直角坐标系中,圆:x 2+y 2=4x ,圆心C (2,0),直线:x +y =4,所以,所求为2.21.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(坐标系与参数方程选做题) 已知直线l 的参数方程为1x y ⎧=⎪⎪⎨⎪=⎪⎩ (t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩ (θ为参数), 则圆心C 到直线l 的距离为__________. 【答案】 22.(广东省广州市2013届高三调研测试数学(理)试题)(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是________.分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d ==,故圆C 截直线l所得的弦长为23.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,定点32,2A π⎛⎫⎪⎝⎭,点B 在直线cos sin 0ρθθ=上运动,当线段AB 最短时,点B 的极坐标为_______.【答案】1116,π⎛⎫ ⎪⎝⎭ 答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ).24.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在直角坐标系x oy 中,曲线C 的参数方程是⎩⎨⎧=+=θθsin 2cos 22y x (θπθ],2,0[∈为参数),若以O 为极点,x 轴正半轴为极轴,则曲线C 的极坐标方程是________.【答案】4cos ρθ=25.(广东省韶关市2013届高三4月第二次调研测试数学理试题)(坐标系与参数方程选做题)在极坐标系中,过点π1,2A ⎛⎫-⎪⎝⎭引圆8sin ρθ=的一条切线,则切线长为______.【答案】3;26.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)直角坐标系xOy中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点,A B 分别在曲线12c o s:s i n x C y θθ=+⎧⎪⎨=⎪⎩(θ为参数)和曲线2:1C ρ=上,则||AB 的最大值为__________.【答案】527.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))(坐标系与参数方程)在极坐标系(,)ρθ (02)θπ≤<中,曲线(cos sin )1ρθθ+=与(cos sin )1ρθθ-=-的交点的极坐标为_________.【答案】(1,)2π28.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)(坐标系与参数方程选做题)在极坐标系中,O 为极点,直线l 过圆C:)4πρθ=-的圆心C,且与直线OC 垂直,则直线l 的极坐标方程为_________.【答案】把)4πρθ=-化为直角坐标系的方程为2222x y x y +=+,圆心C 的坐标为(1,1),与直线OC 垂直的直线方程为20,x y +-=化为极坐标系的方程为cos sin 20ρθρθ+-=或cos()4πρθ-=29.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(坐标系与参数方程选做题)若直线的极坐标方程为cos()4πρθ-=,曲线C :1ρ=上的点到直线的距离为d ,则d 的最大值为_________.【答案】【解析】直线的直角坐标方程为60x y +-=,曲线C 的方程为221x y +=,为圆;d 的最大值为圆心到直线的距离加半径,即为max 1d =+30.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在极坐标系中,已知点1,2A π⎛⎫ ⎪⎝⎭,点P 是曲线2sin 4cos ρθθ=上任意一点,设点P 到直线cos 10ρθ+=的距离为d ,则PA d +的最小值为______.31.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)(坐标系与参数方程选做题)在极坐标系) , (θρ(πθ20<≤)中,直线4πθ=被圆θρsin 2=截得的弦的长是__________.【答案】2.。

2013年佛山市普通高中高二教学质量检测

2013年佛山市普通高中高二教学质量检测

D1 A1 D B1
C1 M C
以D为坐标原点建立 如图所示坐标系。
则A(1, 0, 0), B(1,1, 0), 1 D1 (0, 0,1), M (0,1, ) 2
A
x
1 BD1 ( 1, 1,1), AM ( 1,1, ) 2 B 1 1 1 BD1 AM 3 2 cos 3 9 BD1 AM 3 2
(1)因为动圆C 过定点F (1, 0), 且与定直线x 1相切, 所以圆心C 到定点F (1, 0)的距离与到定直线x 1的距离 相等,由抛物线的定义可知, C的轨迹T 是以F (1, 0)为焦点, 直线x 1为准线的抛物线, 所以动员圆心C的轨迹方程 为y 4 x .
2
(Ⅱ)若轨迹T上有两个定点A、B分别在其对称轴的上、 下两侧,且|FA|=2,|FB|=5,在轨迹T位于A、B两点间的曲线 段上求一点P,使P到直线AB的距离最大,并求距离的最大值.
(1)取PA的中点E , 连接ME , BE ,
1 因为M 是PD的中点, 所以EM / / AD , 2 1 又BC / / AD, 所以EM / / BC , 2 所以四边形BCME为平行四边形 ,
P M
E A
所以CM / / BE , 所以四变成BCME D 为平行四边形, 所以CM / / BE , B C 又BE 平面PAB, CM 平面PAB, 所以CM //平面PAB.
(2) OA//BC , kBC kOA
所以直线BC的方程为 3 y2 3 x 2 , 3 即x 3 y 8 0
3 , 3
y C B
A O x
16.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯 形,AD//BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=2, AB=BC=1,M为PD的中点. (1)求证:CM//平面PAB;(2)求证:CD⊥平面PAC。

广东省佛山市2012-2013学年高二期末教学质量检测数学理试题Word版含答案

广东省佛山市2012-2013学年高二期末教学质量检测数学理试题Word版含答案

2013年佛山市普通高中高二教学质量检测数 学 (理科) 2013.1本试卷共4页,20小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡的相应位置上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:球的表面积公式24S R π=,其中R 为球的半径. 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知点(1,2),(3,6)A B -,则过,A B 两点的直线斜率为A.1-B.12C. D. 22. 若直线1l :410ax y -+=,2l :10ax y ++=,且12l l ⊥,则实数a 的值为A.2B.2±C.4D. 4±3. 若命题p :0x ∃>,2320x x -+>,则命题p ⌝为A. 0x ∃>,2320x x -+≤B. 0x ∃≤,2320x x -+≤C. 0x ∀>,2320x x -+≤D. 0x ∀≤,2320x x -+≤4.如图所示的几何体为正方体的一部份,则它的侧视图可能是A B C D5.若空间三条直线c b a 、、满足b a ⊥,c b //,则直线a 与cA. 一定平行B. 一定垂直C. 一定是异面直线D. 一定相交 6.若集合{}0,A m =,{}1,2B =,则“1m =”是“{}0,1,2AB =”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7.过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 A. 34150x y +-= B. 34150x y --=第4题图C. 43200x y -+=D. 43200x y --=8.已知命题p :sin y x =,R x ∈是奇函数;命题q :已知,a b 为实数,若22a b =,则a b =.则下列判断正确的是A. p q ∧为真命题B. ()p q ⌝∨为真命题C. ()p q ∧⌝为真命题D. ()()p q ⌝∨⌝为假命题 9.点(1,3)P -到直线:(2)l y k x =-的距离的最大值等于A . 2 B. 3 C.D. 10. 点P 到图形E 上每一个点的距离的最小值称为点P 到图形E 的距离.已知点(1,0)A ,圆C :2220x x y ++=,那么平面内到圆C 的距离与到点A 的距离之差为的点的轨迹是A. 双曲线的一支B. 椭圆C. 抛物线D. 射线二、填空题:本大题共4小题 ,每小题5分,满分20分. 11.棱长为的正方体的外接球的表面积是 .12.若直线210x y -+=平分圆01222=+-++my x y x13.如图所示,在正方体1111ABCD A B C D -中,M 为棱1CC 的中点,则异面直线1BD 与AM 所成角的余弦值为 .14.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是60cm ,灯深40cm ,则光源到反射镜顶点的距离是____________cm .A 1第13题图三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 15.(本小题满分12分)如图,已知四边形OABC 是矩形,O 是坐标原点,OA 的坐标是),4AB =.(Ⅰ) 求点C 的坐标; (Ⅱ)求BC 所在直线的方程.16.(本小题满分13分)如图,在四棱锥P ABCD -中,四边形ABCD 为直角梯形,//AD BC ,90BAD ∠=︒, PA ⊥底面ABCD ,且2PA AD ==,1AB BC ==,M 为PD 的中点. (Ⅰ) 求证://CM 平面PAB ; (Ⅱ)求证:CD ⊥平面PAC .17.(本小题满分13分)已知圆C 经过点(0,3)A 和(3,2)B ,且圆心C 在直线y x =上. (Ⅰ) 求圆C 的方程;(Ⅱ)若直线2y x m =+被圆C 所截得的弦长为4,求实数m 的值.第16题图PBAMDC第15题图18.(本小题满分14分)已知动圆C 过定点()1,0F ,且与定直线1x =-相切. (Ⅰ) 求动圆圆心C 的轨迹T 的方程;(Ⅱ)若轨迹T 上有两个定点A 、B 分别在其对称轴的上、下两侧,且||2FA =,||5FB =,在轨迹T 位于A 、B 两点间的曲线段上求一点P ,使P 到直线AB 的距离最大,并求距离的最大值.19.(本小题满分14分)如图,在底面为平行四边形的四棱柱1111ABCD A B C D -中,1D D ⊥底面ABCD ,1AD =,2CD =,60DCB ∠=︒.(Ⅰ) 求证:平面11A BCD ⊥平面1BDD ;(Ⅱ)若二面角1D BC D --的大小为45︒, 求直线CD 与平面11A BCD 所成的角的正弦值.20.(本小题满分14分)已知椭圆C 的中心在原点,焦点在坐标轴上,短轴的一个端点为()0,4B ,离心率35e =. (Ⅰ) 求椭圆C 的方程;(Ⅱ)若()0,0O 、()2,2P ,试探究在椭圆C 内部是否存在整点Q (平面内横、纵坐标均为整数的点称为整点),使得OPQ ∆的面积4OPQ S ∆=?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).2013年佛山市普通高中高二教学质量检测数学试题(理科)参考答案和评分标准一、选择题:本大题共10小题,每小题5分,共50分.第19题图BD CAA 1B 1C 1D 1二、填空题:本大题共4小题 ,每小题5分,满分20分. 11.3π 12.2-1314.458三、解答题:本大题共6小题,满分80分,15.(本小题满分12分)如图,已知四边形OABC 是矩形,O 是坐标原点, O 、A 、B 、C 按逆时针排列,A 的坐标是),4AB =.(Ⅰ) 求点C 的坐标; (Ⅱ)求BC 所在直线的方程. 解: (Ⅰ)因为四边形OABC 是矩形,OA 所在直线的斜率OA k =…2分 所以OC 的斜率为3-,OC 所在的直线方程为y =,…4分 因为4OC AB ==,设(),C x ,则24OC x ===, ……………………6分所以2x =-或2x =(舍去),所以点C的坐标为(2,-.…………………………………………8分(Ⅱ)因为OA 与BC, 所以BC所在直线的斜率BC OA k k ==10分 所以BC所在直线的方程为()23332+=-x y ,即80x -+=.…………………………12分给分说明:第 (Ⅱ)问中的直线若正确地写成一般式或斜截式均给满分.16.(本小题满分13分)如图,在四棱锥P ABCD -中,四边形ABCD 为直角梯形,//AD BC ,90BAD ∠=︒,PA ⊥ 底面ABCD ,且2PA AD ==,1AB BC ==,M 为PD 的中点. (Ⅰ) 求证://CM 平面PAB ; (Ⅱ)求证:CD ⊥平面PAC . 解:(Ⅰ) 取PA 的中点E ,连结,ME BE ,…………1分因为M 为PD 的中点,所以1//2EM AD ,又1//2BC AD …………3分所以//EM BC ,所以四边形BCME 为平行四边形,所以//CM BE ,………………………………………5分 又BE ⊂平面PAB ,CM ⊄平面PAB ,所以//CM 平面PAB .………………………………6分 (Ⅱ)在直角梯形ABCD 中,//AD BC ,90BAD ∠=︒,1AB BC ==,2AD =,过C 作CH AD ⊥于H ,由平几知识易得AC =CD =第16题图P BA MD第16题答案图EPBA MDCH所以222AC CD AD +=,所以AC CD ⊥……………………9分 又PA ⊥ 底面ABCD ,CD ⊂底面ABCD , 所以PA CD ⊥…………………11分 又PAAC A =,所以CD ⊥平面PAC .…………………13分17.(本小题满分13分)已知圆C 经过点(0,3)A 和(3,2)B ,且圆心C 在直线y x =上. (Ⅰ) 求圆C 的方程; (Ⅱ)若直线2y x m =+被圆C 所截得的弦长为4,求实数m 的值.解:(Ⅰ)解法一:设圆心(,)C a a ,因为AC BC =,所以=解得1a =……………………………………………………………………………………………………4分 所以圆心(1,1)C ,半径r AC == ……………………………………………………………………6分所以圆C的方程为22(1)(1)5x y -+-= ………………………………………………………………7分解法二:设圆C的方程为()()()2220x a y a r r -+-=>, ……………………………………………2分依题意得()()()222222332a a r a a r⎧+-=⎪⎨-+-=⎪⎩,………………………………………………………………………5分 解得21,5a r ==,所以圆C的方程为22(1)(1)5x y -+-= ………………………………………7分解法三:依题意易得线段AB 的中垂线方程为32y x =-,……………………………………………2分联立方程组32y x y x =⎧⎨=-⎩,解得11x y =⎧⎨=⎩,所以圆心(1,1)C ,……………5分 下同解法一.(Ⅱ)因为直线2y x m =+被圆C 所截得的弦长为4, 所以圆心(1,1)C 到直线2y x m =+的距离1d == ……………………………10分∴1,解得1m =-± ……………………………………………………………………13分18.(本小题满分14分)已知动圆C 过定点()1,0F ,且与定直线1x =-相切. (Ⅰ) 求动圆圆心C 的轨迹T 的方程;(Ⅱ) 若轨迹T 上有两个定点A 、B 分别在其对称轴的上、下两侧,并且||2FA =,||5FB =,在轨迹T 位于A 、B 两点间的曲线段上求一点P ,使P 到直线AB 的距离最大,并求距离的最大值.解:(Ⅰ) 因为动圆C 过定点()1,0F ,且与定直线1x =-相切,所以圆心C 到定点()1,0F 的距离与到定直线1x =-的距离相等, …………………………………2分由抛物线定义可知,C 的轨迹T 是以()1,0F 为焦点,直线1x =-为准线的抛物线,…………………4分 所以动圆圆心C的轨迹T 的方程为24y x =.……………………………………………………………5分(Ⅱ)由已知得)0,1(F ,设A ),(11y x (其中10y >), 由2=FA 得1,2111==+x x ,所以()1,2A …………………………………………………………7分同理可得()4,4B -,所以直线AB 的方程为042=-+y x . …………………………………………9分解法一:设抛物线曲线段AOB 上任一点),(00y x P ,其中2004y x =,24,4100≤≤-≤≤y x ,则点P 到直线AB 的距离d 12分所以时点P 的坐标为1,14⎛⎫- ⎪⎝⎭. ………………………14分 解法二:设与AB平行的直线()204x y m m ++=≠-,…………………………………10分当与抛物线相切时,切点到AB 的距离最大. 由方程组2204x y m y x++=⎧⎨=⎩消元得()224440x m x m +-+=(*)由()2244160m m ∆=--=得12m =………………………12分 此时(*)式的解为14x =,切点1,14P ⎛⎫- ⎪⎝⎭,距离最大值为1059.…14分19.(本小题满分14分)如图,在底面为平行四边形的四棱柱1111ABCD A B C D -中,1D D ⊥底面ABCD ,1AD =,2CD =,60DCB ∠=︒.(Ⅰ) 求证:平面11A BCD ⊥平面1BDD ;(Ⅱ)若二面角1D BC D --的大小为45︒,求直线CD 与平面11A BCD 所成的角的正弦值.解:(Ⅰ) 在ABD ∆中,由余弦定理得BD == 所以222AD BD AB +=,所以90ADB ∠=︒,即AD BD ⊥ 又四边形ABCD 为平行四边形,所以BC BD ⊥……………2分 又1D D ⊥底面ABCD ,BC ⊂底面ABCD ,所以1D D BC ⊥…4分又1D D BD D =,所以BC ⊥平面1BDD ,…………5分 又BC ⊂平面11A BCD ,所以平面11A BCD ⊥平面1BDD .……6分 (Ⅱ)由(Ⅰ)知BC ⊥平面1BDD ,所以1,D B BC DB BC ⊥⊥ 所以1D BD ∠为二面角1D BC D --的平面角, 所以145D BD ∠=︒,所以1DD BD ==.…………8分解法一:取1BD 的中点M ,连结,DM CM ,则1DM BD ⊥ 又平面11A BCD ⊥平面1BDD ,平面11A BCD 平面1BDD 1BD =,所以DM ⊥平面11A BCD所以DCM ∠为直线CD 与平面11A BCD 所成的角, …………………………10分 在Rt CDM ∆中,112DM BD ==2CD =,所以sin DCM ∠= 所以直线CD 与平面11A BCD ………14解法二: 以D 为原点,建立空间直角坐标系D xyz -如图所示,则(1D ,()C -,()B ,所以()DC =-,()1,0,0BC =-,(11,CD =…10 设平面11A BCD 的法向量为(),,n x y z =,则100n BC n CD ⎧⋅=⎪⎨⋅=⎪⎩,即00x x -=⎧⎪⎨+=⎪⎩,令1z =,得()0,1,1n =,……12分设直线CD 与平面11A BCD 所成的角为θ,则3sin 2n DC n DCθ⋅===⋅第19题图BD CAA 1B 1C 1D 1 第19题解法一图BD C AA 1B 1C 1D 1M1所以直线CD 与平面11A BCD………………………14分 说明:第(Ⅱ)问可不写出C 点的坐标,而直接通过DC AB =,BC AD =,11CD BA =得到所需向量.20.(本小题满分14分)已知椭圆C 的中心在原点,焦点在坐标轴上,短轴的一个端点为()0,4B ,离心率35e =.(Ⅰ) 求椭圆C 的方程;(Ⅱ)若()0,0O 、()2,2P ,试探究在椭圆C 内部是否存在整点Q (平面内横、纵坐标均为整数的点称为整点),使得OPQ ∆的面积4OPQ S ∆=?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).解:(Ⅰ) 设椭圆C 的方程为()222210x y a b a b+=>>,依题意得34,5c b a ==,又222a b c =+,…………………………………………3分 所以5,4,3a b c ===, 所以椭圆C 的方程为2212516x y +=.…………………5分(Ⅱ)依题意OP =,直线OP 的方程为y x =,因为4OPQ S ∆=,所以Q 到直线OP 的距离为, 所以点Q 在与直线OP 平行且距离为, 设:l y x m =+, 解得4m =±………………9分当4m =时,由22412516y x x y =+⎧⎪⎨+<⎪⎩,消元得2412000x x +<,即200041x -<<又x Z ∈,所以4,3,2,1x =----,相应的y 也是整数,此时满足条件的点Q 有4个.…………12分当4m =-时,由对称性,同理也得满足条件的点Q 有4个.综上,存在满足条件的点Q ,这样的点有8个. …………………………………14分。

佛山市普通高中高三教学质量检测(二)文科数学试题答案

佛山市普通高中高三教学质量检测(二)文科数学试题答案

2013年佛山二模数学试题(文科)参考答案和评分标准11.4π 12.()()22115x y -+-= 13. 20 14.sin()42πρθ+= 15.13三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分) (1)解法1、 由题可知:(1,3)A -, (cos ,sin )B αα即(1,3)OA =-,(cos ,sin )OB αα= …………2分OA OB ⊥,得0OAOB ⋅= …………3分∴ cos 3sin 0αα-+= 则1tan 3α= …………4分解法2、由题可知:(1,3)A -, (cos ,sin )B αα …………1分3OA k=-, tan OBk α= …………2分∵OA OB ⊥,∴1OA OB K K ⋅=- …………3分3tan 1α-=-,得1tan 3α=…………4分 (2)解法1、由(1)OA == 记AOx β∠=, (,)2πβπ∈∴sinβ==,cos β==…………6分 ∵1OB = 4cos 5α=,得3sin 5α== …………8分43sin sin()10510510AOB βα∠=-=+⨯=…………10分 ∴11sin 12210AOB S AO BO AOB ∆=∠=⨯32= …………12分解法2、由题意得:AO 的直线方程为30x y +=, …………6分则3sin 5α== 即43(,)55B …………8分则点B 到直线AO 的距离为d ==…………10分 又OA ==∴113222AOB S AO d ∆=⨯== …………12分解法3、3sin 5α==即43(,)55B …………6分 即:(1,3)OA =-,43(,)55OB = , …………7分OA == 1OB =4313cos OA OB AOB OA OB-⨯+⨯⋅∠===…………9分 ∴ sin AOB ∠==…………10分则113sin 1222AOBS AO BO AOB ∆=∠== …………12分 17.(本题满分12分)解:(1)李生可能走的所有路线分别是: DDA ,DDB ,DDC ,DEA ,DEB ,DEC , EEA ,EEB ,EEC ,EDA ,EDB ,EDC ;共12种情况; …………6分 (2)从出发到回到上班地没有遇到过拥堵的走法有:DEA , DEC ,EEA , EEC 共四种情况, …………8分 所以从出发到回到上班地没有遇到过拥堵的概率41123P ==. …………12分 18.(本题满分14分)如图,在四棱柱1111ABCD A B C D -中, 已知底面ABCD 是边长 侧棱1D D 垂直于底面ABCD ,且13D D =. (1)点P 在侧棱1C C 上,若1CP =, 求证:1A P ⊥平面PBD ;(2)求三棱锥11A BDC -的体积V . 解:(1)依题意,1CP =,12C P =, 在Rt BCP ∆中,PB =……………………1分同理可知,1A P ==1A B == ………………………3分所以22211A P PB A B +=, …………………………4分则1A P PB ⊥, …………………………5分 同理可证,1A P PD ⊥, …………………………6分 由于PB PD P =,PB ⊂平面PBD ,PD ⊂平面PBD , …………………………7分 所以,1A P ⊥平面PBD . …………………………8分 (2)解法1、如图1,易知三棱锥11A BDC -的体积等于四棱柱的体积减去四个体积相等的三棱锥的体积,即11111114A BDC ABCD A B C D A ABD V V V ---=- ………………………………11分()1111432AB AD A A AB AD A A ⎛⎫=-⨯⨯ ⎪⎝⎭………………………………13分1323== ……………………………………14分PABCD 1A1B 1C 1D 第18题图解法2、依题意知,三棱锥11A BDC -的各棱长分别是112AC BD ==,1111A B A D C B C D ====10分如图2,设BD 的中点为M ,连接 11A M C M ,,则1A M BD ⊥,1C M BD ⊥,且11AM C M = 于是BD ⊥平面11AC M , …………12分 设11AC 的中点为N ,连接MN ,则11MN AC ⊥,且3MN ===,则三角形11AC M 的面积为11111123322A C M S AC MN ∆==⨯⨯=, …………………13分 所以,三棱锥11A BDC -的体积111132233A C M V S BD ∆==⨯⨯=. …………………14分19.(本题满分14分)解:(1)由题意,抛物线2C 的焦点()1,0F ,则1,22pp ==,所以方程为:24y x =. …………3分(2)解法1、设(,)P m n ,则OP 中点为(,)22m n, …………4分因为O P 、两点关于直线(4)y k x =-对称,所以(4)221nm k n k m ⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k kn k ⎧=⎪⎪+⎨⎪=-⎪+⎩, …………………………………7分 将其代入抛物线方程,得:222288()411k k k k -=⋅++,所以21k =. ………………9分联立 2222(4)1y k x x y a b =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-=.由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, 分 注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥ ………………13分 因此,椭圆1C . ………………14分解法2、设2,4m P m ⎛⎫⎪⎝⎭,因为O P 、两点关于直线l 对称,则=4OM MP =, …………………………………5分 4=,解之得4m =± …………………………………6分 即(4,4)P ±,根据对称性,不妨设点P 在第四象限,且直线与抛物线交于A B CD 1A 1B 1C 1D (第18题图1) BD1A M1C (第18题图2) N,A B如图.则11ABOPkk=-=,于是直线l方程为4y x=-联立222241y xx ya b=-⎧⎪⎨+=⎪⎩,消去y,得:2222222()8160b a x a x a a b+-+-=.由2222222(8)4()(16)0a b a a a b∆=--+-≥,得2216a b+≥,注意到221b a=-,即2217a≥,所以a≥,即2a≥因此,椭圆1C. ………………14分20.(本题满分14分)解:(1)设第n年新城区的住房建设面积为nλ2m,则当14n≤≤时,12nnaλ-=;………………1分当5n≥时,(4)nn aλ=+. ………………2分所以, 当14n≤≤时,(21)nna a=-;………………3分当5n≥时,2489(4)na a a a a a n a=+++++++…29222n na+-=. ………………5分故2(21)(14),922(5).2nna na n na n⎧-≤≤⎪=⎨+-≥⎪⎩………………6分.(2)13n≤≤时,11(21)nna a++=-,(21)644nnb a a na=-+-,显然有1n na b+<. ………………7分4n=时,1524na a a+==,463nb b a==,此时1n na b+<. ………………8分516n≤≤时,2111122nn na a++-=,29226442nn nb a a na+-=+-,………………10分1(559)n na b n a+-=-. ………………11分所以,511n≤≤时,1n na b+<;1216n≤≤时,1n na b+>.17n≥时,显然1n na b+>. ………………13分故当111n≤≤时,1n na b+<;当12n≥时,1n na b+>. ………………14分21.(本题满分14分)解:(1)222211(21)()()()x a x af xx x a x x a-++'=-=--设22()(21)h x x a x a=-++,其判别式22(21)441a a a∆=+-=+…………2分①当14a≤-时,0,∆≤2()0,()0h x x x a≥->,()0f x'∴≥,)(xf在定义域()0,+∞上是增函数;…………3分当0∆>时,由22()(21)0h x x a x a=-++=解得:12x x==…………5分②当104a -<<时,0∆>, 210a +>;又22(21)(41)40a a a +-+=>,210a ∴+,故210x x >>即()h x 在定义域()0,+∞上有两个零点12212122a a x x ++==在区间()10,x 上,()0h x >,2()0x x a ->,()0f x '∴>, )(x f 为()10,x 上的增函数在区间()12,x x 上,()0h x <,2()0x x a ->,()0f x '∴<,)(x f 为()12,x x 上的增函数在区间()2,x +∞上,()0h x >,2()0x x a ->,()0f x '∴>,)(x f 为()2,x +∞上的增函数. ………6分 ③当0a =时,120,1x x ==,在区间()0,1上,()0h x <,2()0x x a ->,()0f x '∴<,在区间()1,+∞上,()0h x >,2()0x x a ->,()0f x '∴>, …………7分 ④当0a >时,函数)(x f 的定义域是()()0,,a a +∞,()0h a a =-<,()h x 在()0,a 上有零点1212a x +=,在(),a +∞上有零点221,2a x +=,在区间()10,x 和()2,x +∞上,()0f x '>,)(x f 在()10,x 和()2,x +∞上为增函数;在区间()1,x a 和()2,a x 上,()0f x '<,)(x f 在()1,x a 和()2,a x 上位减函数. …………8分 综上: 当14a ≤-时,函数)(x f 的递增区间是()0,+∞. 当104a -<<时, )(x f 的递增区间是()10,x 和()2,x +∞,递减区间是()12,x x ; 当0a =时,)(x f 的递减区间是()0,1;递增区间是()1,+∞.当0a >时,)(x f 的递减区间()1,x a 和()2,a x ,递增区间是()10,x 和()2,x +∞. …………9分 (2)当0a ≤时,()g x 的定义域是()0,+∞, 当0a >时,()g x 的定义域是()()0,,a a +∞,2(1ln )()()x x ag x x x a --'=-,令()(1ln )t x x x =-,则()ln t x x '=-, …………11分 在区间()0,1上,()ln 0t x x '=->,()(1ln )t x x x =-是增函数且0()1t x <<;在区间()1,+∞上,()ln 0t x x '=-<,()(1ln )t x x x =-是减函数且()1t x <;当1x =时,(1)1t =. …………12分 故当1a ≥时,()0g x '≤,()g x 无极大值;当01a <<时,()0t a a -≠,方程()t x a =在区间()0,1和()1,+∞上分别有一解,x x ''',此时函数()g x 在x x ''=处取得极大值; …………13分 当0a ≤时,方程()t x a =在区间[),e +∞上有一解x ''', 此时函数()g x 在x x '''=处取得极大值.综上所述,若()g x 有极大值,则a 的取值范围是(),1-∞. …………14分。

广东省佛山市石门中学第二次检测数学(理)试卷(含答案)

广东省佛山市石门中学第二次检测数学(理)试卷(含答案)

2013—2014学年度第一学期高三年级月考理科数学内容:集合逻辑、函数导数、三角、向量复数、数列、不等式、立体几何、直线与圆 一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、tan(600)-︒的值等于( )A .3-B . 33-C .3D .33 2、函数()412x xf x +=的图象( ) A. 关于原点对称 B. 关于直线y x =对称 C. 关于x 轴对称 D. 关于y 轴对称3、给定下列四个命题: ①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是 ( ) A.①和② B.②和③ C.③和④ D.②和④4、设x 、y 满足⎪⎩⎪⎨⎧≤+≥≥100y x y x ,则2-+x y x 的取值范围是( )A .]1 , 0[B .]0 , 1[-C .) , (∞-∞D .]2 , 2[-5、设⎪⎩⎪⎨⎧∈-∈=]2,1[2]1,0[)(2x x x x x f ,则2()f x dx ⎰的值为( )A .43 B .54 C .65 D .676、已知132:>-x p ,()05log :221<-+x x q ,则p ⌝是q ⌝的 ( )A .充分不必要条件B . 必要不充分条件C .充分必要条件D . 既不充分也不必要条件7、函数2()sin 5f x x x π=-的零点个数是( ) A .4 B.6 C.7 D. 88、数列{}n a 前n 项和为n S ,已知113a =,且对任意正整数,m n ,都有m n m n a a a +=⋅,若n S a <恒成立则实数a 的最小值为( )A .21 B .23 C .32D .2 二、填空题:(本大题共7小题,第14、15小题任选一题作答,多选的按第14小题给分,共30分) 9、设复数z 满足zi21+=i ,则z =____________ 10、若关于x 的不等式2|1||2|1()x x a a x R ---≥++∈的解集为空集,则实数a 的取值范围是 .11、在直角ABC ∆中, 90=∠C , 30=∠A , 1=BC ,D 为斜边AB 的中点,则⋅= .12、下面为某一几何体的三视图,则该几何体的体积为13、数列{}n a 满足:11121(234)n n a a n a -==-=⋅⋅⋅,,,,,若数列{}n a 有一个形如21)sin(3++=ϕωn a n 的通项公式,其中ϕω、均为实数,且2||0πϕω<>、,则ω=_________,ϕ=_______(二选一,第14、15小题任选一题作答)正视图: 半径为1的半圆以及高为1的矩形俯视图: 半径为1的圆14.(坐标系与参数方程选做题)在极坐标系(),ρθ中,过点4π⎛⎫⎪⎝⎭作圆θρsin 4=的切线,则切线的极坐标方程为_______________.15.(几何证明选讲选做题) 如图所示,AB ,CD 是半径为2的圆O 的两条弦,它们相交于P ,且P 是AB 的中点,PD =43,∠OAP =30°,则CP =____.三、解答题:本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤。

2013广州二模文科数学答案

2013广州二模文科数学答案

2013年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题5分,满分50分.题号 1 23 4 56 7 8 9 10答案 C D D A C B B C A B二、填空题:本大题查基本知识和基本运算,体现选择性.共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.第13题第一个空2分,第二个空3分.11.14π-12.210 13.36;3981 14.1415.2三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题主要考查随机抽样、平均数、古典概型等基础知识,考查数据处理能力,本小题满分12分) 解:(1)高三文科(1)班抽取的8名学生视力的平均值为4.42 4.62 4.82 4.95.14.78⨯+⨯+⨯++=.据此估计高三文科(1)班学生视力的平均值约为4.7.………………………………………………3分 (2)因为高三文科六个班学生视力的平均值分别为4.3、4.4、4.5、4.6、4.7、4.8,所以任意抽取两个文科班学生视力的平均值数对有()4.34.4,,()4.34.5,,()4.34.6,,()4.34.7,,()4.34.8,,()4.44.5,,()4.44.6,,()4.44.7,,()4.44.8,,()4.54.6,,()4.54.7,,()4.54.8,, ()4.64.7,,()4.64.8,,()4.74.8,,共15种情形.…………………………………………………7分 其中抽取的两个班学生视力的平均值之差的绝对值不小于0.2的有()4.34.5,,()4.34.6,,()4.34.7,,()4.34.8,,()4.44.6,,()4.44.7,,()4.44.8,,()4.54.7,,()4.54.8,,()4.64.8,,共10种. ……………………10分 所以抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率为102=153. ………………12分 17.(本小题主要考查解三角形等基础知识,考查正弦定理与余弦定理的应用,本小题满分12分) 解:(1)在△ABC 中,因为80AB =m ,70BC =m ,50CA =m ,由余弦定理得222cos 2AB AC BC BAC AB AC+-∠=⨯⨯ ………………………………………………………2分2228050701280502+-==⨯⨯. ……………………………………………………3分因为BAC ∠为△ABC 的内角,所以3BAC π∠=.……………………………………………………4分 (2)方法1:因为发射点O 到A 、B 、C 三个工作点的距离相等,所以点O 为△ABC 外接圆的圆心.……………………………………………………………………5分 设外接圆的半径为R ,在△ABC 中,由正弦定理得2sin BCR A=, ……………………………………………………………7分 因为70BC =,由(1)知3A π=,所以3sin 2A =. 所以7014032332R ==,即7033R =.…………………8分 过点O 作边BC 的垂线,垂足为D ,…………………………9分在△OBD 中,7033OB R ==,703522BC BD ===, 所以2222703353OD OB BD ⎛⎫=-=- ⎪ ⎪⎝⎭………………………………………………………11分 3533=. 所以点O 到直线BC 的距离为3533m .……………………………………………………………12分 方法2:因为发射点O 到A 、B 、C 三个工作点的距离相等, 所以点O 为△ABC 外接圆的圆心.……………………5分 连结OB ,OC ,过点O 作边BC 的垂线,垂足为D , …………………6分 由(1)知3BAC π∠=, 所以3BOC 2π∠=. 所以3BOD π∠=.…………………………………………………………………………………………9分在Rt △BOD 中,703522BC BD ===, ABCODABCOD所以35353tan tan 603BD OD BOD ===∠.…………………………………………………………11分 所以点O 到直线BC 的距离为3533m .……………………………………………………………12分18.(本小题主要考查空间直线与平面的位置关系和几何体的体积计算等基础知识,考查空间想象能力等,本小题满分14分)(1)证明:因为90PAB PAC ∠=∠=,所以PA AB ⊥,PA AC ⊥.………………………………1分因为ABAC A =,所以PA ⊥平面ABC .…………………………………………………………2分因为BC ⊂平面ABC ,所以BC PA ⊥.………………………………………………………………3分因为90ACB ∠=,所以BC CA ⊥.……………………………………………………………………4分 因为PACA A =,所以BC ⊥平面PAC .…………………………………………………………5分因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAC .………………………………………………6分 (2)方法1:由已知及(1)所证可知,PA ⊥平面ABC ,BC CA ⊥, 所以PA 是三棱锥P ABC -的高.……………………………7分 因为1PA =,=2AB ,设BC x =()02x <<,……………8分 所以2222224AC AB BC x x =-=-=-.…………9分因为13P ABC ABC V S PA -=⨯△ 2146x x =-………………………………………………………………………………10分()22146x x =- ()224162x x +-≤⨯…………………………………………………………………………11分 13=.…………………………………………………………………………………………12分 当且仅当224x x =-,即2x =时等号成立.………………………………………………………13分所以当三棱锥P ABC -的体积最大时,2=BC .…………………………………………………14分方法2:由已知及(1)所证可知,PA ⊥平面ABC ,所以PA 是三棱锥P ABC -的高.………………………………………………………………………7分 因为90ACB ∠=,设ABC θ∠=02πθ⎛⎫<<⎪⎝⎭,……………………………………………………8分 PABC则cos 2cos BC AB θθ==,sin 2sin AC AB θθ==.……………………………………………9分所以112cos 2sin sin 222ABC S BC AC θθθ=⨯⨯=⨯⨯=△.………………………………………10分 所以13P ABC ABC V S PA -=⨯△1sin 23θ=. ………………………………………………………………………………11分因为02πθ<<,所以当4πθ=,P ABC V -有最大值13. …………………………………………………………………12分 此时2cos24BC π==.………………………………………………………………………………13分所以当三棱锥P ABC -的体积最大时,2=BC .…………………………………………………14分19.(本小题主要考查等差数列、裂项法求和等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)解:(1)设等差数列{}n a 的公差为d ,因为1235,7.a a a +=⎧⎨=⎩即1125,27.a d a d +=⎧⎨+=⎩………………………………………………………………………2分 解得11,3.a d =⎧⎨=⎩………………………………………………………………………………………………3分所以()()1113132n a a n d n n =+-=+-=-.所以数列{}n a 的通项公式为32n a n =-*()n ∈N . …………………………………………………4分(2)因为()()111111323133231n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, ……………………………………………5分 所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和1223341111111n n n n n S a a a a a a a a a a -+=+++++ 1111111111111113434737103353233231n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11133131nn n ⎛⎫=-= ⎪++⎝⎭.……………………………………………………………………………7分假设存在正整数m 、n ,且1m n <<,使得1S 、m S 、n S 成等比数列,则21m n S S S =.……………………………………………………………………………………………8分即2131431m n m n ⎛⎫=⨯ ⎪++⎝⎭.………………………………………………………………………………9分 所以224361m n m m =-++. 因为0n >,所以23610m m -++>. 即23610m m --<. 因为1m >,所以231133m <<+<. 因为*m ∈N ,所以2m =.……………………………………………………………………………12分此时22416361m n m m ==-++.…………………………………………………………………………13分 所以存在满足题意的正整数m 、n ,且只有一组解,即2m =,16n =. ………………………14分 20.(本小题主要考查函数的单调性和最值等基础知识,考查数形结合思想、分类讨论思想和运算求解能力等,本小题满分14分)解:(1)因为函数2()2ln f x x a x =-,所以函数()f x 的定义域为(0,)+∞.……………………………………………………………………1分 且2()2af x x x'=-.………………………………………………………………………………………2分 若()f x 在定义域上是增函数, 则2()20af x x x'=-≥在(0,)+∞上恒成立.…………………………………………………………3分 即2a x ≤在(0,)+∞上恒成立,所以0a ≤. …………………………………………………………4分 由已知0a ≠,所以实数a 的取值范围为(),0-∞.……………………………………………………………………5分 (2)①若0a <,由(1)知,函数2()2ln f x x a x =-在区间[1,2]上为增函数.所以函数()f x 在区间[1,2]上的最小值为(1)1f =.…………………………………………………6分②若0a >,由于()()2222()x a x ax a f x x x+--'==, 所以函数()f x 在区间()0,a 上为减函数,在区间(),a +∞上为增函数.………………………7分(ⅰ)若1a ≤,即01a <≤时,()[1,2],a ⊂+∞,函数2()2ln f x x a x =-在区间[1,2]上为增函数,所以函数()f x 在[1,2]的最小值为(1)1f =.…………………………………………………………9分 (ⅱ)若12a <≤,即14a <≤时,函数2()2ln f x x a x =-在区间()1,a 为减函数,在(),2a 上为增函数,所以函数()f x 在区间[1,2]上的最小值为()ln f a a a a =-.……………………………………11分(ⅲ)若2a >,即4a >时,()[1,2]0,a ⊂,函数()f x 在区间[1,2]上为减函数,所以函数()f x 在[1,2]的最小值为(2)42ln 2f a =-. ……………………………………………13分 综上所述,当1a ≤且0a ≠时,函数()f x 在区间[1,2]上的最小值为(1)1f =. 当14a <≤时,函数()f x 在区间[1,2]的最小值为()ln fa a a a =-.当4a >时,函数()f x 在区间[1,2]上的最小值为(2)42ln 2f a =-.………………14分21.(本小题主要考查动点的轨迹和直线与圆锥曲线的位置关系、导数的几何意义等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)解:(1)方法1:设动圆圆心为(),x y ,依题意得,()2211x y y +-=+.…………………………1分整理,得24x y =.所以轨迹M 的方程为24x y =.…………………………………………………2分 方法2:设动圆圆心为P ,依题意得点P 到定点()0,1F 的距离和点P 到定直线1y =-的距离相等, 根据抛物线的定义可知,动点P 的轨迹是抛物线.……………………………………………………1分 且其中定点()0,1F 为焦点,定直线1y =-为准线.所以动圆圆心P 的轨迹M 的方程为24x y =.………………………………………………………2分(2)由(1)得24x y =,即214y x =,则12y x '=. 设点2001,4D x x ⎛⎫⎪⎝⎭,由导数的几何意义知,直线l 的斜率为012BC k x =.…………………………3分由题意知点2001,4A x x ⎛⎫- ⎪⎝⎭.设点2111,4C x x ⎛⎫ ⎪⎝⎭,2221,4B x x ⎛⎫⎪⎝⎭,则2212120121114442BCx x x x k x x x -+===-,即1202x x x +=.………………………………………………4分因为2210101011444ACx x x x k x x --==+,2220202011444AB x x x x k x x --==+.……………………………5分 由于()120102020444AC AB x x x x x x x k k +---+=+==,即AC AB k k =-.………………………6分 所以BAD CAD ∠=∠.…………………………………………………………………………………7分 (3)方法1:由点D 到AB 的距离等于22AD ,可知BAD ∠45=.………………………………8分 不妨设点C 在AD 上方(如图),即21x x <,直线AB 的方程为:()20014y x x x -=-+. 由()20021,44.y x x x x y ⎧-=-+⎪⎨⎪=⎩解得点B 的坐标为()20014,44x x ⎛⎫-- ⎪⎝⎭.……………………………………………………………10分 所以()()00024222AB x x x =---=-.由(2)知CAD BAD ∠=∠45=,同理可得0222AC x =+.………………………………11分 所以△ABC 的面积2000122222244202S x x x =⨯-⨯+=-=, 解得03x =±.……………………………………………………………………………………………12分 当03x =时,点B 的坐标为11,4⎛⎫- ⎪⎝⎭,32BC k =, A B CDOxylE直线BC 的方程为()13142y x -=+,即6470x y -+=.…………………………………………13分 当03x =-时,点B 的坐标为497,4⎛⎫- ⎪⎝⎭,32BC k =-, 直线BC 的方程为()493742y x -=-+,即6470x y +-=. ……………………………………14分 方法2:由点D 到AB 的距离等于22AD ,可知BAD ∠45=.…………………………………8分 由(2)知CAD BAD ∠=∠45=,所以CAB ∠90=,即AC AB ⊥. 由(2)知104AC x x k -=,204AB x x k -=. 所以1020144AC ABx x x xk k --=⨯=-.即()()102016x x x x --=-. ① 由(2)知1202x x x +=. ②不妨设点C 在AD 上方(如图),即21x x <,由①、②解得10204,4.x x x x =+⎧⎨=-⎩…………………………10分因为()2222202001122244AB x x x x x ⎛⎫=++-=- ⎪⎝⎭,同理0222AC x =+. ………………………………………………………………………………11分 以下同方法1.。

2013年佛山市普通高中高三教学质量检测(二)理科数学试题答案

2013年佛山市普通高中高三教学质量检测(二)理科数学试题答案

2013年佛山二模数学试题(理科)参考答案和评分标准9.∀x ∈R ,xe >0 10.4π 11.8 12.()()22115x y -+-= 13.80 14.sin 42πρθ⎛⎫+= ⎪⎝⎭ 15.13 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)(1)解法1、 由题可知:(1,3)A -, (cos ,sin )B αα即(1,3)OA =- ,(cos ,sin )OB αα=…………2分OA OB ⊥,得0OA OB ⋅=…………3分∴ cos 3sin0αα-+=则1tan 3α= …………4分解法2、由题可知:(1,3)A -, (cos ,sin )B αα …………1分3OA k =-,tan OB k α= …………2分 ∵OA OB ⊥,∴1OA OB K K ⋅=- …………3分3tan 1α-=-, 得1tan 3α= …………4分(2)解法1、由(1)OA == 记AOx β∠=, (,)2πβπ∈∴sin β==,cosβ==…………6分 ∵1OB = 4cos 5α=,得3sin 5α== …………8分43sin sin()55AOB βα∠=-=+=…………10分∴11sin 12210AOB S AO BO AOB ∆=∠=⨯32= …………12分 解法2、由题意得:AO 的直线方程为30x y +=, …………6分则3sin 5α== 即43(,)55B …………8分则点B 到直线AO 的距离为d ==…………10分 又OA ==∴11322102AOB S AO d ∆=⨯== …………12分解法3、3sin5α==即43(,)55B…………6分即:(1,3)OA=-,43(,)55OB=,…………7分OA==1OB=4313cosOA OBAOBOA OB-⨯+⨯⋅∠===…………9分∴sin AOB∠==…………10分则113sin1222AOBS AO BO AOB∆=∠==…………12分17.(本题满分12分)解:(1) 因为道路D、E上班时间往返出现拥堵的概率分别是110和15,因此从甲到丙遇到拥堵的概率是111130.152102520⋅+⋅==,…………2分所以李生小孩能够按时到校的概率是10.1585%-=;…………3分(2)甲到丙没有遇到拥堵的概率是1720,…………4分丙到甲没有遇到拥堵的概率也是17 20,甲到乙遇到拥堵的概率也是11111123103103515⋅+⋅+⋅=,…………6分甲到乙没有遇到拥堵的概率也是21311515 -=,李生上班途中均没有遇到拥堵的概率是17171337570.7 2020156000⋅⋅=<,所以李生没有七成把握能够按时上班;…………8分(3)依题意ξ可以取0,1,2.(0) Pξ==13172211520300⋅=, (1)Pξ==21713373152********⋅+⋅=,(2) Pξ==2361520300⋅=, …………11分85170+1+2=30030030030060Eξ=⨯⨯⨯=. …………12分A B E C D F 图甲 1A E F C 1D 图乙 G MH H 18.(本题满分14分)(Ⅰ)证明:在图甲中,易知//AE DF ,从而在图乙中有11//A E D F ,………………………………1分 注意到1A E ⊄平面1CD F ,1D F ⊂平面1CD F ,所以1//A E 平面1CD F ; ………………………………4分 (Ⅱ)解法1、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1AG ⊥平面EBCF ,则1AG EF ⊥, ………………………………5分 所以EF ⊥平面1AGH ,则1EF A H ⊥, ………………………………6分 所以1A HG ∠平面BEFC 与平面11A EFD 所成二面角的平面角, ………………………………8分 图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线,………………………………9分设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以,1BG MF ==,则AG =………………………………11分 又由ABG AHE ∆∆,得1AB AE A H AH AG === , ………………………………12分 于是,HG AG AH =-=………………………………13分 在1Rt AGH ∆中,112cos 3HG AGH A H ∠==,即所求二面角的余弦值为23. ……………14分 解法2、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1AG ⊥平面EBCF ,则1AG EF ⊥, ………………………………5分 所以EF ⊥平面1AGH ,则1EF A H ⊥, 图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线, …………………………6分 设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以1BG MF ==,则AG =又由ABG AHE ∆∆ ,得1AB AE A H AH AG ===………………………………7分于是,HG AG AH =-= 在1Rt AGH ∆中, 1AG === ………………………………8分作//GT BE 交EF 于点T ,则TG GC ⊥,以点G 为原点,分别以1GC GT GA 、、所在直线为x y z 、、轴,建立如图丙所示的空间直角坐标系,则(0,0,0)G 、(1,1,0)E -、(2,2,0)F 、1A ,则1(1,3,0)(1,1EF EA ==- ,. 11分显然,1GA =是平面BEFC 的 一个法向量, ………………………………12设(,,)n x y z =是平面11A EFD 的一个法向量,则130,0n EF x y n EA x y ⎧=+=⎪⎨=-++=⎪⎩ ,即3,x y z =-⎧⎪⎨=-⎪⎩不妨取1y =-,则(3,1n =-, ……………………………13分 设平面BEFC 与平面11A EFD 所成二面角为θ,可以看出,θ为锐角,所以,112cos 3||||GA n GA n θ=== ,所以,平面BEFC 与平面11A EFD 所成二面角的余弦值为23. …………………………14分 19.(本题满分14分)解:(1)由题可知,圆心C 到定点()1,0F 的距离与到定直线1x =-的距离相等, ………………2分 由抛物线定义可知,C 的轨迹2C 是以()1,0F 为焦点,直线1x =-为准线的抛物线,………………4分 所以动圆圆心C 的轨迹2C 的方程为24y x =. …………………………………5分(2)方法一、设(,)P m n ,则OP 中点为(,)22m n , 因为O P 、两点关于直线(4)y k x =-对称,所以(4)221nm k n k m ⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k k n k ⎧=⎪⎪+⎨⎪=-⎪+⎩,…………………………………8分 将其代入抛物线方程,得:222288()411k k k k -=⋅++,所以21k =. ………………9分联立 2222(4)1y k x x y a b =-⎧⎪⎨+=⎪⎩,消去y ,得: 2222222()8160b a x a x a a b +-+-=.由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ………………12分 注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥ ………………13分 因此,椭圆1C .此时椭圆的方程为22+1171522x y =. ………………14分 方法二、设2,4m P m ⎛⎫⎪⎝⎭,因为O P 、两点关于直线l 则=4OM MP =, 5分E 图丙4=,解之得4m =± …………………………………6分即(4,4)P ±,根据对称性,不妨设点P 在第四象限,且直线与抛物线交于,A B 如图.则11AB OPk k =-=,于是直线l 方程为4y x =- …………………………………9分联立 222241y x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-=.由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ………………12分 注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥ ………………13分 因此,椭圆1C.此时椭圆的方程为22+1171522x y =. ………………14分 20.(本题满分14分)解:(1)由题意知03612 633x x x ≤<⎧⎪⎨--≥⎪+⎩或 3611 63x x ≤≤⎧⎪⎨-≥⎪⎩ ………………1分解得13x ≤<或34x ≤≤,即14x ≤≤ ………………3分 能够维持有效的抑制作用的时间:413-=小时. ………………4分 (2)由(1)知,4x =时第二次投入1单位固体碱,显然()g x 的定义域为410x ≤≤, 当46x ≤≤时,第一次投放1单位固体碱还有残留,故()g x =1 6x ⎛⎫- ⎪⎝⎭+(4)626(4)3x x ⎡⎤---⎢⎥-+⎣⎦=116331x x ---; ………………6分 当610x <≤时,第一次投放1单位固体碱已无残留,故当67x <≤时, (4)6()26(4)3x g x x -=---+ =86361x x ---; ………………7分 当710x <≤时, 45()1636x xg x -=-=- ; ………………8分 所以1164633186()67361571036xx x xg x x x xx ⎧--≤≤⎪-⎪⎪=--<≤⎨-⎪⎪-<≤⎪⎩………………9分 当46x ≤≤时,116()331x g x x =---=101610()3313x x --+≤--103-当且仅当1631x x -=-时取“=”,即1[4,6]x =+ ………………11分 当610x <≤时,第一次投放1单位固体碱已无残留,当67x <≤时, 2261(5)(7)()0(1)66(1)x x g x x x +-'=-=>--,所以()g x 为增函数;当710x <≤时,()g x 为减函数;故 max ()g x =1(7)2g =, ………………12分又10117(0326---=>,所以当1x =+103-………………13分 答: (1)第一次投放1单位固体碱能够维持有效的抑制作用的时间为3小时; (2)第一次投放1+小时后,水中碱浓度的达到最大值为103-……………14分 21.(本题满分14分)解:(1)易得,()1221122xf x x x e -⎛⎫=-+ ⎪⎝⎭, ………………1分()12221224xf x x x e -⎛⎫=-+ ⎪⎝⎭………………2分()122313382xf x x x e -⎛⎫=-+- ⎪⎝⎭,所以3(0)3f =- ………………3分 (2)不失一般性,设函数()21111()xn n n n f x a x b x c e λ----=++⋅的导函数为()2()x n n n n f x a x b x c e λ=++⋅,其中1,2,n = ,常数0λ≠,0001,0a b c ===.对1()n f x -求导得:2111111()[(2)()]x n n n n n n f x a x a b x b c e λλλλ------'=⋅++⋅++⋅⋅ ………………4分 故由1()()n n f x f x -'=得:1nn a a λ-=⋅ ①, 112n n n b a b λ--=+⋅ ②, 11n n n c b c λ--=+⋅ ③ 由①得:,n n a n N λ=∈ , ………………6分代入②得:112n n n b b λλ--=⋅+⋅,即112n n nn b b λλλ--=+,其中1,2,n = 故得:12,n n b n n N λ-=⋅∈. ………………7分 代入③得:212n n n c n c λλ--=⋅+⋅,即1212nn nn c c nλλλ--=+,其中1,2,n = .故得:2(1),n n c n n n N λ-=-⋅∈, ………………8分因此(0)n f =2(1),n n c n n n N λ-=-⋅∈.将12λ=-代入得:21(0)(1)()2n n f n n -=--,其中n N ∈. ………………9分 (3)由(2)知111(0)(1)()2n n f n n -+=+-,当2(1,2,)n k k == 时,21221211(0)2(21)()02k k k k S S f k k --+-==+⋅-<,2212210,k k k k S S S S --∴-<<,故当n S 最大时,n 为奇数. ………………10分⎧⎪⎨⎪⎩当21(2)n k k =+≥时,21212221(0)(0)k k k k S S f f +-++-=+又2221(0)(21)(22)()2kk f k k +=++-,21211(0)2(21)()2k k f k k -+=+- 221222111(0)(0)(21)(22)()2(21)()22k k k k f f k k k k -++∴+=++-++-211(21)(1)()02k k k -=+--<,2121k k S S +-∴<,因此数列{}21(1,2,)k S k += 是递减数列.又12(0)2S f ==,3234(0)(0)(0)2S f f f =++=, ………………13分 故当1n =或3n =时,n S 取最大值132S S ==. ………………14分。

导数与积分(2) Word版(含答案)

导数与积分(2) Word版(含答案)

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编17:导数与积分(2)一、选择题1 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图1中的阴影部分)的面积是( )A .1B .4πC .3D .2【答案】D2 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)如图所示,图中曲线方程为21y x =-,用定积分表达围成封闭图形(阴影部分)的面积是【答案】C3 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))曲线f(x)=xlnx在点x=1处的切线方程为( )A .y=2x+2B .y=2x-2C .y=x-1C .y=x+1【答案】C4 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)将边长为2的等边三角形PAB 沿x 轴滚动,某时刻P 与坐标原点重合(如图),设顶点(,)P x y 的轨迹方程是()y f x =,关于函数()y f x =的有下列说法:①()f x 的值域为[0,2];②()f x 是周期函数;③( 1.9)()(2013)f f f π-<<;④69()2f x dx π=⎰.其中正确的说法个数为: ( )A .0B .C .2D .3【答案】C5 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))已知函数()yf x =的图象如图1所示,则其导函数()y f x '=的图象可能是【答案】A二、填空题6 .(广东省茂名市2013届高三第一次模拟考试数学(理)试题)计算________.【答案】2e ;7 .(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy中,直线a y =(0>a )与抛物线2x y =所围成的封闭图形的面积为328,则=a _______. 【答案】28 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)不等式211x -<的解集为(),a b ,计算定积分)2b ax dx -=⎰_______.【答案】139.(广东省广州市2013届高三调研测试数学(理)试题)若直线2y x m =+是曲线ln y x x=图1A .B .C .D .O x P A 第8题图的切线,则实数m 的值为_________.【答案】e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x x x x''==+=+ 得0ln 1k x =+, 故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-, 与2y x m =+比较得00ln 12x x m+=⎧⎨-=⎩,解得0e x =,故e m =-10.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)10x cos ⎰d x =______________.【答案】1sin11.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)20(3sin )x x dx π+=⎰________________.【答案】2318π+解析:22220033(3sin )(cos )|128x x dx x x πππ+=-=+⎰.12.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))曲线y= x 3-x + 3在点(1,3)处的切线方程为_______【答案】21x y -+13.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))若直线y kx =与曲线ln y x =相切,则k =__________________.【答案】1e14.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)计算= ________.【答案】2e .三、解答题15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知函数()ln f x x =,2()()g x f x ax bx =++,函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴.(1)确定a 与b 的关系;(2)试讨论函数()g x 的单调性; (3)证明:对任意*n N ∈,都有()211ln 1ni i n i=-+>∑成立.【答案】解:(1)依题意得2()ln g x x axbx =++,则1'()2g x ax b x=++ 由函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴得:'(1)120g a b =++= ∴21b a =--(2)由(1)得22(21)1'()ax a x g x x -++=(21)(1)ax x x--=∵函数()g x 的定义域为(0,)+∞∴当0a ≤时,210ax -<在(0,)+∞上恒成立, 由'()0g x >得01x <<,由'()0g x <得1x >, 即函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当0a >时,令'()0g x =得1x =或12x a=, 若112a <,即12a >时,由'()0g x >得1x >或102x a <<,由'()0g x <得112x a<<,即函数()g x 在1(0,)2a ,(1,)+∞上单调递增,在1(,1)2a单调递减;若112a >,即102a <<时,由'()0g x >得12x a>或01x <<,由'()0g x <得112x a<<, 即函数()g x 在(0,1),1(,)2a +∞上单调递增,在1(1,)2a单调递减;若112a =,即12a =时,在(0,)+∞上恒有'()0g x ≥, 即函数()g x 在(0,)+∞上单调递增,综上得:当0a ≤时,函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当102a <<时,函数()g x 在(0,1)单调递增,在1(1,)2a 单调递减;在1(,)2a+∞上单调递增;当12a =时,函数()g x 在(0,)+∞上单调递增, 当12a >时,函数()g x 在1(0,)2a 上单调递增,在1(,1)2a单调递减;在(1,)+∞上单调递增.(3)证法一:由(2)知当1a =时,函数2()ln 3g x x x x =+-在(1,)+∞单调递增,2ln 3(1)2x x x g ∴+-≥=-,即2ln 32(1)(2)x x x x x ≥-+-=---,令*11,x n N n =+∈,则2111ln(1)n n n+>-, 2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++-2222111111111111ln[(1)(1)(1)...(1)]...123112233n n n∴++++++>-+-+-++-即()211ln 1ni i n i=-+>∑ 【证法二:构造数列{}n a ,使其前n 项和ln(1)n T n =+, 则当2n ≥时,111ln()ln(1)n n n n a T T n n-+=-==+, 显然1ln 2a =也满足该式, 故只需证221111ln(1)n n n n n-+>=- 令1x n=,即证2ln(1)0x x x +-+>,记2()ln(1)h x x x x =+-+,0x > 则11(21)'()12120111x x h x x x x x x +=-+=-+=>+++,()h x 在(0,)+∞上单调递增,故()(0)0h x h >=,∴221111ln(1)n n n n n -+>=-成立,2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++-即()211ln 1ni i n i =-+>∑ 】 【证法三:令211()ln(1)i ni i n n i ϕ==-=+-∑,则2(1)()ln(2)ln(1)(1)n n n n n n ϕϕ+-=+--++2111ln(1)11(1)n n n =+-++++ 令11,1x n =++则(1,2]x ∈,*11,,1x n N n =-∈+ 记22()ln (1)(1)ln 32h x x x x x x x =--+-=+-+∵1(21)(1)()230x x h x x x x--'=+-=>∴函数()h x 在(1,2]单调递增, 又(1)0,(1,2],()0,h x h x =∴∈>当时即(1)()0n n ϕϕ+->, ∴数列()n ϕ单调递增,又(1)ln 20ϕ=>,∴()211ln 1ni i n i =-+>∑ 】 16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知x a a x a x x f ln )()12(21)(22+++-=(0>x ,a 是常数),若对曲线)(x f y =上任意一点) , (00y x P 处的切线)(x g y =,)()(x g x f ≥恒成立,求a 的取值范围.江门市2013年高考模拟考【答案】解:依题意,xaa a x x f +++-=2/)12()()(00x f y =,曲线)(x f y =在点) , (00y x P 处的切线为))((00/0x x x f y y -=- ,即))((00/0x x x f y y -+=,所以))(()(00/0x x x f y x g -+= 直接计算得)1)(ln ()12(21)(002200-++++--=x x x a a x a x x x x g , 直接计算得)()(x g x f ≥等价于0)1)(ln ()(2100220≥+-++-x xx x a a x x 记)1)(ln ()(21)(00220+-++-=x xx x a a x x x h ,则 )1)(()11)(()()(020020/xx aa x x x x a a x x x h +--=-++-=若02≤+a a ,则由0)(/=x h ,得0x x = ,且当00x x <<时,0)(/<x h ,当0x x >时,0)(/>x h ,所以)(x h 在0x x =处取得极小值,从而也是最小值,即0)()(0=≥x h x h ,从而)()(x g x f ≥恒成立 .若02>+a a ,取a a x +=20,则0)1)(()(020/≥+--=xx aa x x x h 且当01x x ≠时0)(/>x h ,)(x h 单调递增 ,所以当00x x <<时,0)()(0=<x h x h ,与)()(x g x f ≥恒成立矛盾,所以02≤+a a ,从而a 的取值范围为01≤≤-a17.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值;(2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+ 都成立. 【答案】(本小题主要考查导数、函数的单调性、不等式、最值、方程的根等知识,考查化归转化、分类讨论、数形结和的数学思想方法,以及抽象概括能力、运算求解能力、创新能力和综合应用能力) 解:(1)()'121,f x x x a=--+ 0x = 时,()f x 取得极值, ()'00,f ∴=故12010,0a-⨯-=+解得 1.a =经检验1a =符合题意 (2)由1a =知()()2ln 1,f x x x x =+--由()52f x x b =-+,得()23ln 10,2x x x b +-+-= 令()()23ln 1,2x x x x b ϕ=+-+-则()52f x x b =-+在区间[]0,2上恰有两个不同的实数根等价于()0x ϕ=在区间[]0,2上恰有两个不同的实数根()()()()'451132,1221x x x x x x ϕ-+-=-+=++当[]0,1x ∈时,()'0x ϕ>,于是()x ϕ在[)0,1上单调递增; 当(]1,2x ∈时,()'0x ϕ<,于是()x ϕ在(]1,2上单调递减依题意有()()()()()0031ln 111022ln 12430b b b ϕϕϕ=-≤⎧⎪⎪=+-+->⎨⎪⎪=+-+-≤⎩,解得,1ln 31ln 2.2b -≤<+(3) ()()2ln 1f x x x x =+--的定义域为{}1x x >-,由(1)知()()()'231x x f x x -+=+,令()'0fx =得,0x =或32x =-(舍去), ∴当10x -<<时, ()'0f x >,()f x 单调递增;当0x >时, ()'0fx <,()f x 单调递减.()0f ∴为()f x 在()1,-+∞上的最大值. ()()0f x f ∴≤,故()2ln 10x x x +--≤(当且仅当0x =时,等号成立)对任意正整数n ,取10x n=> 得,2111ln 1,n n n⎛⎫+<+⎪⎝⎭ 211ln n n n n++⎛⎫∴< ⎪⎝⎭.故()23413412ln 2ln ln ln ln 14923n n n n n++++++>++++=+ . 18.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知二次函数()21fx x a x m =+++,关于x的不等式()()2211f x m x m <-+-的解集为()1m m ,+,其中m 为非零常数.设()()1f xg x x =-.(1)求a 的值;(2)k k (∈R )如何取值时,函数()x ϕ()g x =-()1k x ln -存在极值点,并求出极值点;(3)若1m =,且x 0>,求证:()()1122nn ng x g x n (⎡⎤+-+≥-∈⎣⎦N *). 【答案】(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+,∴()2212x a m x m m ++-++=()()1x mx m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++.∴()1221a m m +-=-+. ∴2a =-(2)解法1:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=- 方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<21x ,=>则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x②当0m <时,由0Δ>,得k <-k >若k <-,则11x ,=<21x ,=<故x ∈()1,+∞时,()0x ϕ'>∴函数()x ϕ在()1,+∞上单调递增. ∴函数()x ϕ没有极值点若k >时,1212k x ,+-=>2212k x ,++=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ; 当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x (其中122k x +-=, 222k x ++=解法2:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=- 若函数()()x g x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δkk m k m =+--+=+>,(**)方程(*)的两个实根为1x =2x =设()h x=()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立.则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k >则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ; 当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x (其中122k x +-=, 222k x ++=(2)证法1:∵1m =, ∴()g x=()111x x -+-.∴()()1111nnn n n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭ 112212111111n n n n n n n n n n n n n x C x C x C x C x x x x x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭ 122412n n n n n n n C x C x C x ----=+++令T 122412n n n nn n n C xC x C x ----=+++ , 则T 122412n nn n n n n n C xC x C x -----=+++122412n n n n n n n C x C x C x ----=+++ .∵x 0>, ∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++≥121n nn n C C C -⋅+⋅++⋅ ()1212n n n n C C C -=+++()012102n n n n n n n n n n C C C C C C C -=+++++--()222n =-∴22n T ≥-,即()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n ≥-.① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭()22k ≥⋅-+122k +=-也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立19.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)二次函数()f x 满足(0)(1)0f f ==,且最小值是14-.(1)求()f x 的解析式; (2)设常数1(0,)2t ∈,求直线l :2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥【答案】解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-;(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t - t) 由定积分的几何意义知3232222002()[()()]()|3232ttx x t t S t x x t t dx t x tx =---=--+=-+⎰(3)∵()f x 的最小值为14-,故14m -,14n -∴12m n +-≥-,故12m n ++≥∵1()02m n +,102m n ++, ∴11()()22m n m n +++=∴211()()24m n m n +++≥20.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)设()x g x e =,()[(1)]()f x g x a g x =λ+-λ-λ,其中,a λ是常数,且01λ<<.(1)求函数()f x 的极值;(2)证明:对任意正数a ,存在正数x ,使不等式11x e a x--<成立; (3)设12,λλ∈+R ,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ.【答案】解析:(1)∵()[(1)]()f x g x a g x λλλλ'''=+--,由()0f x '>得,[(1)]()g x a g x λλ''+->,∴(1)x a x λλ+->,即(1)()0x a λ--<,解得x a <, 故当x a <时,()0f x '>;当x a >时,()0f x '<; ∴当x a =时,()f x 取极大值,但()f x 没有极小值(2)∵111x x e e x x x----=, 又当0x >时,令()1xh x e x =--,则()10xh x e '=->, 故()(0)0h x h >=,因此原不等式化为1x e x a x--<,即(1)10x e a x -+-<, 令()(1)1x g x e a x =-+-,则()(1)xg x e a '=-+, 由()0g x '=得:1xe a =+,解得ln(1)x a =+,当0ln(1)x a <<+时,()0g x '<;当ln(1)x a >+时,()0g x '>. 故当ln(1)x a =+时,()g x 取最小值[ln(1)](1)ln(1)g a a a a +=-++,令()ln(1),01a s a a a a =-+>+,则2211()0(1)1(1)a s a a a a '=-=-<+++. 故()(0)0s a s <=,即[ln(1)](1)ln(1)0g a a a a +=-++<.因此,存在正数ln(1)x a =+,使原不等式成立(3)对任意正数12,a a ,存在实数12,x x 使11x a e =,22x a e =, 则121122112212xx x x a a e ee λλλλλλ+=⋅=,12112212x x a a e e λλλλ+=+,原不等式12121122a a a a λλλλ≤+11221212x x x x e e e λλλλ+⇔≤+,11221122()()()g x x g x g x λλλλ⇔+≤+由(1)()(1)()f x g a λ≤-恒成立,故[(1)]()(1)()g x a g x g a λλλλ+-≤+-, 取1212,,,1x x a x λλλλ===-=, 即得11221122()()()g x x g x g x λλλλ+≤+, 即11221212x x x x e e e λλλλ+≤+,故所证不等式成立21.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)已知函数321,(1)()(1),(1)x x ax bx x f x c e x -⎧-++<⎪=⎨-≥⎪⎩在32,0==x x 处存在极值. (1)求实数b a ,的值;(2)函数)(x f y =的图像上存在两点B A ,使得AOB ∆是以坐标原点O 为直角顶点的直角三角形,且斜边AB 的中点在y 轴上,求实数c 的取值范围; (3)当e c =时,讨论关于x 的方程()f x kx =()k R ∈的实根的个数.【答案】解(1)当1x <时,2()32f x x ax b '=-++.因为函数f(x)在20,3x x ==处存在极值,所以(0)0,2()0,3f f '=⎧⎪⎨'=⎪⎩解得1,0a b ==. (2) 由(1)得321,(1),()(1),(1),x x x x f x c e x -⎧-+<⎪=⎨-≥⎪⎩根据条件知A,B 的横坐标互为相反数,不妨设32(,),(,()),(0)A t t t B t f t t -+>.若1t <,则32()f t t t =-+,由AOB ∠是直角得,0OA OB ⋅= ,即23232()()0t t t t t -++-+=,即4210t t -+=.此时无解;若1t ≥,则1()(1)t f t c e -=-. 由于AB 的中点在y 轴上,且AOB ∠是直角,所以B 点不可能在x 轴上,即1t ≠. 由0OA OB ⋅= ,即2321()(1)t t t t c e --++⋅-=0,即()11(1)1t c t e -=+-..因为函数()1(1)1t y t e -=+-在1t >上的值域是(0,)+∞,所以实数c 的取值范围是(0,)+∞.(3)由方程()f x kx =,知32,(1),(1)x x x x kx e e x ⎧-+<⎪=⎨-≥⎪⎩,可知0一定是方程的根,所以仅就0x ≠时进行研究:方程等价于2,(10),,(1).x x x x x k e e x x ⎧-+<≠⎪=⎨-≥⎪⎩且构造函数2,(10),(),(1),x x x x x g x e e x x⎧-+<≠⎪=⎨-≥⎪⎩且对于10x x <≠且部分,函数2()g x x x =-+的图像是开口向下的抛物线的一部分, 当12x =时取得最大值14,其值域是1(,0)(0,]4-∞ ; 对于1x ≥部分,函数()x e e g x x -=,由2(1)()0x e x e g x x-+'=>,知函数()g x 在()1,+∞上单调递增.所以,①当14k >或0k ≤时,方程()f x kx =有两个实根; ②当14k =时,方程()f x kx =有三个实根; ③当104k <<时,方程()f x kx =有四个实根.22.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))已知a <2,(1) 求f(x)的单调区间; (2)若存在x 1∈[e,e2],使得对任意的x 2∈[—2,0],f (x 1)<g(x 2)恒成立,求实数a 的取值范围.【答案】23.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))定义(,)|||ln |x x y e y y x y ρ=---,其中,x R y R +∈∈.(1)设0a >,函数()(,)f x x a ρ=,试判断()f x 的定义域内零点的个数; (2)设0a b <<,函数()(,)(,)F x x a x b ρρ=-,求()F x 的最小值; (3)记(2)中最小值为(,)T a b ,若{}n a 是各项均为正数的单调递增数列,证明:1111(,)()ln 2nii n i T a aa a ++=<-∑.【答案】24.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈(1)若1()3f '=0,求()f x 的单调区间;(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x ≤1时,|()f x '|≤M .【答案】设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈(1)若1()3f '=0,求()f x 的单调区间(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x ≤1时,|()f x '|≤M . 解:(1)由1()3f '=0,得a =b .当0a =时,则0b =,()f x c =不具备单调性 故f (x )= ax 3-2ax 2+ax +c .由()f x '=a (3x 2-4x +1)=0,得x 1=13,x 2=1列表:由表可得,函数f (x )的单调增区间是(-∞,13)及(1,+∞) .单调减区间是1[,1]3(2)当0a =时,()f x '=2bx b -+ 若0b = ()0f x '=,若0b >,或0b <,()f x '在[0,1]是单调函数,'(0)(1)f f '-=≤()f x '≤(0)f ',或'(1)f -=(0)f '≤()f x '≤(1)f '所以,()f x '≤M当0a >时,()f x '=3ax 2-2(a +b )x +b =3222()33a b a b aba x a a++---. ①当1,033a b a b a a++≥或≤时,则()f x '在[0,1]上是单调函数,所以(1)f '≤()f x '≤(0)f ',或(0)f '≤()f x '≤(1)f ',且(0)f '+(1)f '=a >0.所以M -()f x '<≤M②当013a ba +<<,即-a <b <2a ,则223a b ab a +--≤()f x '≤M . (i) 当-a <b ≤2a 时,则0<a +b ≤32a. 所以 (1)f '223a b ab a +--=22223a b ab a --=223()3a a b a -+≥214a >0.所以 M -()f x '<≤M (ii) 当2a <b <2a 时,则()(2)2a b b a --<0,即a 2+b 2-52ab <0. 所以223a b ab b a +--=2243ab a b a -->22523ab a b a-->0,即(0)f '>223a b ab a +-.所以 M -()f x '<≤M综上所述:当0≤x ≤1时,|()f x '|≤M25.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)已知函数2(),()ln f x x ax g x x =-=.(1)若()()f x g x ≥对于定义域内的任意x 恒成立,求实数a 的取值范围; (2)设()()()h x f x g x =+有两个极值点12,x x ,且11(0,)2x ∈,证明:123()()ln 24h x h x ->-; (3)设1()()()2ax r x f x g +=+对于任意的(1,2)a ∈,总存在01[,1]2x ∈,使不等式2()(1)r x k a >- 成立,求实数k 的取值范围.【答案】解析:(Ⅰ)由题意:)()(x g x f ≥⇔≥-ax x 2x ln ,)0(>x分离参数a 可得:)0(ln >-≤x xx x a设x x x x ln )(-=φ,则22/1ln )(x x x x -+=φ由于函数2x y =,x y ln =在区间),0(+∞上都是增函数,所以函数1ln 2-+=x x y 在区间),0(+∞上也是增函数,显然1=x 时,该函数值为0 所以当)1,0(∈x 时,0)(/<x ϕ,当),1(+∞∈x 时,0)(/>x ϕ所以函数)(x φ在)1,0(∈x 上是减函数,在),1(+∞∈x 上是增函数 所以1)1()(min ==φφx ,所以1)(min =≤x a φ即]1,(-∞∈a(Ⅱ)由题意知道:x ax x x h ln )(2+-=,且)0(,12)(2|>+-=x x ax x x h所以方程)0(0122>=+-x ax x 有两个不相等的实数根21,x x ,且)21,0(1∈x , 又因为,2121=x x 所以),1(2112+∞∈=x x ,且)2,1(,122=+=i x ax i i而)ln ()()(112121x ax x x h x h +-=-)ln (2222x ax x +--]ln )12([12121x x x ++-=]ln )12([22222x x x ++--212122lnx x x x +-=22222221ln )21(x x x x +-=2222222ln 41x x x --=,)1(2>x设)1(,2ln 41)(222≥--=x x x x x u ,则02)12()(322/≥-=x x x u所以2ln 43)1()(-=>u x u ,即2ln 43)()(21->-x h x h(Ⅲ))21()()(ax g x f x r ++=21ln2++-=ax ax x 所以12)(|++-=ax a a x x r 12222++-=ax x x a ax 1)22(22+--=ax a a x ax 因为(1,2)a ∈,所以21212212222=-≤-=-a a a a 所以当),21(+∞∈x 时,)(x r 是增函数,所以当01[,1]2x ∈时, 21ln1)1()(max 0++-==a a r x r ,(1,2)a ∈所以,要满足题意就需要满足下面的条件:)1(21ln12a k a a ->++-,令)1(21ln 1)(2a k a a a --++-=ϕ,(1,2)a ∈即对任意(1,2)a ∈,)1(21ln1)(2a k a a a --++-=ϕ0>恒成立 因为)122(11222111)(2/-++=+-+=+++-=k ka a aa a ka ka ka a a ϕ分类讨论如下:(1)若0=k ,则1)(/+-=a aa ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意(2)若0<k ,则)121(12)(/+-+=k a a ka a ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意.(3)若0>k ,则)121(12)(/+-+=k a a ka a ϕ,那么当1121>-k 时,假设t 为2与121-k中较小的一个数,即}121,2min{-=k t ,则)(a ϕ在区间})121,2min{,1(-k 上递减,此时0)1()(=<ϕϕa 不符合题意.综上可得⎪⎩⎪⎨⎧≤->11210k k 解得41≥k ,即实数k 的取值范围为),41[+∞26.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))已知函数32(),()ln ,(0)f x x x bx g x a x a =-++=>.(1)若()f x 存在极值点,求实数b 的取值范围;(3)当b=0时,令(),1()(),1f x x F xg x x <⎧=⎨≥⎩.P(11,()x F x ),Q(22,()x F x )为曲线y=()F x 上的两动点,O 为坐标原点,请完成下面两个问题:①能否使得POQ 是以O 为直角顶点的直角三角形,且斜边中点在y 轴上?请说明理由. ②当1<12x x <时,若存在012(,)x x x ∈,使得曲线y=F(x)在x=x 0处的切线l ∥PQ, 求证:1202x x x +<【答案】27.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)设函数2()(1)n n f x x x =-在1[,1]2上的最大值为n a (1,2,n = ).(1)求12,a a 的值;(2)求数列{}n a 的通项公式;(3)证明:对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立.【答案】解:(1)解法1:∵121'()(1)2(1)(1)[(1)2]n n n n f x nx x x x x x n x x --=---=---当1n =时,1'()(1)(13)f x x x =--当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减, ∴1111()28a f ==, 当2n =时,2'()f x 2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减, ∴2211()216a f ==【解法2:当1n =时,21()(1)f x x x =-,则21'()(1)2(1)(1)(13)f x x x x x x =---=-- 当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减,∴1111()28a f ==, 当2n =时,222()(1)f x x x =-,则222'()2(1)2(1)f x x x x x =---2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减,∴2211()216a f ==】 (2)令'()0n f x =得1x =或2n x n =+,∵当3n ≥时,1[,1]22n n ∈+且当1[,)22nx n ∈+时'()0n f x >,当(,1]2nx n ∈+时'()0n f x <, 故()n f x 在2nx n =+处取得最大值,即当3n ≥时,22()()()222n n n n n a f n n n ==+++24(2)nn n n +=+,------(*) 当2n =时(*)仍然成立,综上得21,184.2(2)n nn n a n n n +⎧=⎪⎪=⎨⎪≥⎪+⎩(3)当2n ≥时,要证2241(2)(2)n n n n n +≤++,只需证明2(1)4n n +≥∵01222(1)()()n nnn n n C C C nnn+=+++ 2(1)41212142n n n-≥++⋅≥++=∴对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立 28.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知函数2()1f x a bx x =++在3x =处的切线方程为58y x =-. (1)求函数()f x 的解析式;(2)若关于x 的方程()x f x k e =恰有两个不同的实根,求实数k 的值; (3)数列{}n a 满足12(2)a f =,1(),n n a f a n N *+=∈, 求12320131111S a a a a =+++⋅⋅⋅⋅+的整数部分.惠州市2013届高三第一次模拟考【答案】解: (1) f'(x)=2ax+b ,依题设,有`(3)5(3)7f f =⎧⎨=⎩,即659317a b a b +=⎧⎨++=⎩,解得11a b =⎧⎨=-⎩2()=1f x x x ∴-+(2)方程()=k x f x e ∴,即21k xx x e -+=,得2k (1)xx x e -=-+, 记2F(x)(1)xx x e -=-+,则22F'(x)=(21)(1)(32)(1)(2)x x x x x e x x e x x e x x e -------+=--+=---令F'(x)=0,得121,2x x ==当x 变化时,F'(x)、F(x)的变化情况如下表:∴当1x =时,F(x)取极小值1e ;当2x =时,F(x)取极大值23e作出直线y x =和函数2F(x)(1)xx x e -=-+的大致图象,可知当1k e =或23k e =时,它们有两个不同的交点,因此方程()x f x k e =恰有两个不同的实根,(3) 12(2)3a f ==,得1312a >>,又21()1n n n n a f a a a +==-+.22121(1)0n n n n n a a a a a +∴-=-+=->,11n n a a +∴>>由211n n n a a a +=-+,得11=(1)n n n a a a +--,111111(1)1n nnnnaa a a a+∴==----,即111111nnn aa a+=---122013122320132014111111111()()()111111S a aaa aaaaa∴=+++=-+-++-------12014201411111122a aa=-=-<---又1211242637211S a a>++==>即12S <<,故S 的整数部分为. l4分。

2013年佛山市普通高中高二教学质量检测

2013年佛山市普通高中高二教学质量检测

2013年佛山市普通高中教学质量检测2013.1.22高二数学(理科)一. 选择题(本大题共10小题,每小题5分,满分50分) 1.已知点)2,1(A ,)6,3(-B ,则过A 、B 两点的直线斜率为( ) A .1- B .21C .1D .2 2.若直线1l :014=+-y ax ,2l :01=++y ax ,且21l l ⊥,则实数a 的值为( )A .2B .2±C .4D .4± 3.若命题p :023,02>+->∃x x x ,则命题p ⌝是( ) A .023,02≤+->∃x x x B .023,02≤+-≤∃x x x C .023,02≤+->∀x x x D .023,02≤+-≤∀x x x 4.如图所示的几何体为正方体的一部分,则它的侧视图可能是( )A. B. C .D .5.若空间三条直线a 、b 、c 满足b a ⊥,c b //,则直线a 与c ( ) A .一定平行 B .一定垂直 C .一定是异面直线 D .一定相交 6.若集合},0{m A =,}2,1{=B ,则“1=m ”是“}2,1,0{=⋃B A ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件第4题图7.过双曲线116922=-y x 的右焦点,且平行于经过一、三象限的渐近线的直线方程是( )A .01543=-+y xB .01543=--y xC .02034=+-y xD .02034=--y x 8.已知命题p :x y sin =,R x ∈是奇函数;命题q :已知b a ,为实数,若22b a =,则b a =,则下列判断正确的是( )A .q p ∧为真命题B .q p ∨⌝)(为真命题C .)(q p ⌝∧为真命题D .)()(q p ⌝∨⌝为真命题 9.点)3,1(-P 到直线l :)2(-=x k y 的距离的最大值等于( ) A .2 B .3 C .23D .3210.点P 到图形E 上每一个点的距离的最小值称为点P 到图形E 的距离.已知点)0,1(A ,圆C :0222=++y x x ,那么平面内到圆C的距离与到点A 的距离之差为1的点的轨迹是( )A .双曲线的一支B .椭圆C .抛物线D .射线二.填空题(本大题共4小题,每小题5分,满分30分) 11.棱长为1的正方体的外接球的表面积为 . 12.若直线012=+-y x 平分圆01222=+-++my x y x 的面积,则=m .13.正方体1111D C B A ABCD -中,M 为棱1CC 的中点,则异面直线1BD 与AM 所成角的余弦值为 .14.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是cm 60,灯深cm 40,则光源到反射镜顶点的距离是 cm .三.解答题(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤) 15.(本小题满分12分)如图,已知四边形OABCC 按逆时针排列,点A )1,3(,4||=AB .(1)求点C 的坐标; (2)求BC16.(本小题满分13分)如图,在四棱锥ABCD P -中,四边形ABCD 为直角梯形,BC AD //,︒=∠90BAD ,⊥PA 底面ABCD,2==AD PA ,1==BC AB ,M 为PD 的中点.(1)求证://CM 面PAB ; (2)求证:⊥CD 面PAC .17.(本小题满分13分)第15题图ABCPM第16题图已知圆C 经过点)3,0(A 和)2,3(B ,且圆心C 在直线x y =上. (1)求圆C 的方程;(2)若直线m x y +=2被圆C 所截得的弦长为4,求实数m 的值.18.(本小题满分14分)已知动圆C 过定点)0,1(F ,且与定直线1-=x 相切.(1)求动圆圆心C 的轨迹T 的方程;(2)若轨迹T 上有两个定点A 、B 分别在其对称轴的上下两侧,且2||=FA ,5||=FB ,在轨迹T 位于A 、B 两点间的曲线段上求一点P ,使得P 到直线AB 的距离最大,并求距离的最大值.19.(本小题满分14分)如图,在底面为平行四边形的四棱柱1111D C B A ABCD -中,⊥D D 1底面ABCD ,1=AD ,2=CD ,︒=∠60DCB .(1)求证:平面⊥11BCD A 平面1BDD ; (2)若二面角D BC D --1 的大小为︒45,求直线CD 与平面11BCD A 所成角的正弦值.ABCD1A1D1C1B第19题图20.(本小题满分14分)已知椭圆C 的中心在原点,焦点在坐标轴上,短轴的一个端点为)4,0(B ,离心率53=e .(1)求椭圆C 的方程;(2)若)0,0(O 、)2,2(P ,试探究在椭圆C 内部是否存在整点Q (平面内横、纵坐标均为整数的点称为整点),使得OPQ ∆的面积4=∆OPQ S ?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).2013年佛山市普通高中教学质量检测高二理科数学答案 一.选择题(50分)ADCCD ABCDB二.填空题(20分)11.π3 12.2- 13.9314.845 三.解答题(80分) 15.(1))32,2(-;(2)083=+-y x16.略17.(1)5)1()1(22=-+-y x ;(2)51±-=m .18.(1)由抛物线定义可得动圆圆心的轨迹方程为x y 42=;(2)利用抛物线定义得)2,1(A 、)4,4(-B ,直线AB 方程为042=-+y x ,或利用数形结合,或利用点到直线的距离公式得距离的最大值为1059,点)1,41(-P .19.(1)略; (2)正弦值为46.20.(1)1162522=+y x ;(2)根据面积公式得Q 到直线OP 的距离为22,易知点Q 在与OP平行且距离为22的直线4±=x y 上,当4=m 时,由⎪⎩⎪⎨⎧<++=11625422y xx y ,消去y ,得200412<+x x ,即041200<<-x ,因为Z x ∈,所以1,2,3,4----=x ,相应的3,2,1,0=y ,此时满足条件的点Q 有4个,当4-=m ,满足条件的点Q 有4个,综上,存在满足条件的点Q ,这样的点有8个.。

分类坐标系与参数方程

分类坐标系与参数方程

分类汇编20:坐标系与参数方程一、选择题 二、填空题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )设M 、N 分别是曲线2sin 0ρθ+=和s ()42in πρθ+=上的动点,则M 、N 的最小距离是______【答案】1 [来源:]2 .(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))在极坐标系中,直线sin ρθ=与圆2cos ρθ=相交的弦长为____[来源:]【答案】3 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)(坐标系与参数方程选做题)已知曲线1l 的极坐标系方程为sin 4πρθ⎛⎫-= ⎪⎝⎭(0,ρ> 02)θπ≤≤,直线2l 的参数方程为{1222x ty t =-=+(为参数),若以直角坐标系的x 轴的非负半轴为极轴,则1l 与2l 的交点A 的直角坐标是____________【答案】解析:sin sin cos cos sin 1444y x πππρθρθρθ⎛⎫-=⇒-=⇒-= ⎪⎝⎭{12322x tx y y t =-⇒+==+,由3112x y x y x y +==⎧⎧⇒⎨⎨-==⎩⎩(1,2)A ⇒4 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))在极坐标系中,圆3cos ρθ=上的点到直线co s()13πρθ-=的距离的最大值是______.【答案】745 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)(坐标系与参数方程)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A B 、,则线段AB 的垂直平分线的极坐标方程为________________.【答案】sin 4πρθ⎛⎫+= ⎪⎝⎭(或1cos sin =+θρθρ)6 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )(坐标系与参数方程选做题)在极坐标系中,极点到曲线22)4cos(=+θπρ的距离是_____________[来源:]【答案】7 .(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )(坐标系与参数方程选做题)在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程为________.【答案】cos 3ρθ=.8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)(坐标系与参数方程选做题) 在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为__________.【答案】349 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)(坐标系与参数方程选做题)在极坐标系(),ρθ(0,02πρθ>≤<)中,曲线2sin ρθ=与2cos ρθ=的交点的极坐标为_____【答案】解析:4π⎛⎫⎪⎝⎭两式相除得tan 12sin44ππθθρ=⇒=⇒==,交点的极坐标为4π⎛⎫⎪⎝⎭10.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)已知抛物线C 的参数方程为⎩⎨⎧==ty t x 882(t 为参数),若斜率为1的直线经过抛物线C 的焦点,且与圆222(4)(0)x y r r -+=>相切,则半径r =________.[来源: 数理化网]【答案】211.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的极坐标方程是6sin ρθ=,以极点为平面直角坐标系的原点,极轴为x 的正半轴,建立平面直角坐标系,直线l的参数方程是1(2x t y ⎧=-⎪⎨=⎪⎩为参数),则直线l 与曲线C 相交所得的弦的弦长为________. 【答案】412.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)(坐标系与参数方程选做题)曲线1C :1co s sin x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线2C:12112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______【答案】1;13.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为__________.[来源:]【答案】sin ρθ=【解析】点(2,)3π的直角坐标为,∴过点平行于x 轴的直线方程为y =即极坐标方程为sin ρθ=14.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知圆M:x 2+y 2-2x-4y+1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为______.[来源:]【答案】215.(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)(坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x t y t=--⎧⎨=-⎩(t 为参数)截圆22co s ρρθ+-3=0的弦长为____ 【答案】 416.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知直线l 方程是22x t y t =+⎧⎨=-⎩(t 为参数),以坐标原点为极点.x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2,则圆C 上的点到直线l 的距离最小值是___【答案】222- [来源:]17.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,圆ρ=2上的点到直线sin()6πρθ+=3的距离的最小值是____【答案】118.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩(θ为参数),则曲线C 上的点到直线3x -4y +4=0的距离的最大值为______________[来源:数理化网]【答案】3;19.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))(坐标系与参数方程选做题)已知曲线1C :ρ=和曲线2C :cos()4πρθ+=,则1C 上到2C 的距离等于的点的个数为__________.【答案】3;将方程ρ=与cos()4πρθ+=化为直角坐标方程得222x y +=与20x y --=,知1C 为圆心在坐标原点,半径为,2C 为直线,因圆心到直线20x y --=,故满足条件的点的个数3n =.20.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)(坐标系与参数方程)在极坐标中,圆ρ =4cos θ 的圆心C 到直线 ρ sin (θ +π4)=2 2 的距离为 _*****_.【答案】答案: 2解:在直角坐标系中,圆:x 2+y 2=4x ,圆心C (2,0),直线:x +y =4,所以,所求为2.21.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(坐标系与参数方程选做题) 已知直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩ (θ为参数), 则圆心C到直线l的距离为__________.【答案】22.(广东省广州市2013届高三调研测试数学(理)试题)(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y c o s ,s i n ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C所得的弦长是________.【答案】分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d ==,故圆C 截直线l 所得的弦长为=[来源:]23.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,定点32,2A π⎛⎫⎪⎝⎭,点B 在直线cos sin 0ρθθ+=上运动,当线段A B 最短时,点B 的极坐标为_______.【答案】1116,π⎛⎫⎪⎝⎭ 答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ).24.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在直角坐标系x oy 中,曲线C 的参数方程是⎩⎨⎧=+=θθsin 2cos 22y x (θπθ],2,0[∈为参数),若以O 为极点,x轴正半轴为极轴,则曲线C 的极坐标方程是________.【答案】4cos ρθ= [来源:]25.(广东省韶关市2013届高三4月第二次调研测试数学理试题)(坐标系与参数方程选做题)在极坐标系中,过点π1,2A ⎛⎫-⎪⎝⎭引圆8sin ρθ=的一条切线,则切线长为______.【答案】3;26.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)直角坐标系xO y 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点,A B 分别在曲线12co s :sin x C y θθ=+⎧⎪⎨=⎪⎩(θ为参数)和曲线2:1C ρ=上,则||A B 的最大值为__________.【答案】527.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))(坐标系与参数方程)在极坐标系(,)ρθ (02)θπ≤<中,曲线(cos sin )1ρθθ+=与(cos sin )1ρθθ-=-的交点的极坐标为_________.【答案】(1,)2π28.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)(坐标系与参数方程选做题)在极坐标系中,O 为极点,直线l 过圆C:s()4πρθ=-的圆心C,且与直线OC 垂直,则直线l 的极坐标方程为_________.【答案】把s()4πρθ=-化为直角坐标系的方程为2222x y x y +=+,圆心C 的坐标为(1,1),与直线OC 垂直的直线方程为20,x y +-=化为极坐标系的方程为cos sin 20ρθρθ+-=或co s()4πρθ-=29.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(坐标系与参数方程选做题)若直线的极坐标方程为cos()4πρθ-=,曲线C :1ρ=上的点到直线的距离为d ,则d 的最大值为_________.【答案】【解析】直线的直角坐标方程为60x y +-=,曲线C 的方程为221x y +=,为圆;d 的最大值为圆心到直线的距离加半径,即为max 11d =30.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在极坐标系中,已知点1,2A π⎛⎫⎪⎝⎭,点P 是曲线2sin 4cos ρθθ=上任意一点,设点P 到直线cos 10ρθ+=的距离为d ,则PA d +的最小值为______.【答案】31.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)(坐标系与参数方程选做题)在极坐标系) , (θρ(πθ20<≤)中,直线4πθ=被圆θρsin 2=截得的弦的长是__________.【答案】2.。

2013年佛山市普通高中高三教学质量检测(二)文科数学试题答案-推荐下载

2013年佛山市普通高中高三教学质量检测(二)文科数学试题答案-推荐下载
在 RtBCP 中, PB 12 12 2 ,

同理可知, A1P 22 22 2 2 , A1B 32 12 10 ,

所以 A1P2 PB2 A1B2 ,

则 A1P PB ,

同理可证, A1P PD ,

由于 PB PD P , PB 平面 PBD , PD 平面 PBD ,
10 10
∵ OB 1 cos 4 ,得 sin 1 cos2 3
5
sin AOB sin( ) 3 10 4 10 3 3 10 10 5 10 5 10
∴ SAOB
1 2
AO
解法 2、由题意得: AO 的直线方程为 3x y 0 ,
A1
解:(1)由题意,抛物线 C2
的面积为 SA1C1M

BDC1 的体积V
(2)解法 1、设 P(m, n) ,则 OP 中点为 ( m , n) , 22
因为 O、P 两点关于直线 y k(x 4) 对称,
所以

n 2
m
n
k(m 2
k
将其代入抛物线方程,得:
C1M BD ,且 A1M C1M 10 ,
于是 BD 平面 A1C1M , …………12 分
设 A1C1 的中点为 N ,连接 MN ,
则 MN A1C1 ,且 MN A1M 2 A1N 2 10 1 3 , D
则三角形 A1C1M
所以,三棱锥
19.(本题满分 14 分)
18.(本题满分 14 分) 如图,在四棱柱 ABCD A1B1C1D1 中, 已知底面 ABCD 是边长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013广东佛山二模数学试题及答案
一、选择题(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.的算术平方根为( )
A.B.C.D.
2.据济宁市旅游局统计,2012年春节约有359525人来济旅游,将这个旅游人数(保留三个有效数字)用科学计数法表示为( )
A.3.59×B.3.60×C.3.5 ×D.3.6 ×
3.下列运算正确的是( )
A.B.
C.D.
4.如图,由几个小正方体组成的立体图形的左视图是( )
5.下列事件中确定事件是( )
A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖
C.把4个球放入三个抽屉中,其中一个抽屉中至少有个球
D.掷一枚六个面分别标有,,,,,的均匀正方体骰子,骰子停止转动后奇数点朝上
6.若式子有意义,则x的取值范围为()
A.x≥2
B.x≠3
C.x≥2或x≠3
D.x≥2且x≠3
7.已知且,则的取值范围为( )
A.B.C.D.
8.二次函数的图像与图像的形状、开口方向相同,只是位置不同,则二次函数的顶点坐标是()
A.( )
B.( )
C.( )
D.( )
9. 如图,P1是反比例函数在第一象限图像上的一点,点A1 的坐标为
(2,0).若△P1O A1与△P2 A1 A2均为等边三角形,则A2点的坐标为()
A.2 B.2 -1
C.2 D.2 -1
10.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,
第2012个正方形的面积为()
A. B.
注意事项:
1.第Ⅱ卷共6页.用0.5mm黑色墨水签字笔答在答题卡上.
2.答卷前将密封线内的项目填写清楚.考试期间,一律不得使用计算器.
第II卷(非选择题共70分)
得分评卷人
二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上)
11.分解因式:2 2+4 +2=.
12.当宽为3cm的刻度尺的一边与圆相切时,
另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为cm.
13. 化简的结果是_______________.
14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于
15. 将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是cm
三、解答题(本大题共8个小题.共55分.解答应写出文字说明、证明过程或演算步骤)得分评卷人
18. (本题满分6分)
(1) (3分)一个人由山底爬到山顶,需先爬的山坡,再爬的山坡,求山的高度(结果可保留根号).
BC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.
你添加的条件是: .
证明:。

相关文档
最新文档