非线性方程组求根的牛顿迭代法

合集下载

牛顿法及基于牛顿算法下的Steffensen加速法求解非线性方程组方法例题及答案

牛顿法及基于牛顿算法下的Steffensen加速法求解非线性方程组方法例题及答案

1. 非线性方程组求解1.分别用牛顿法,及基于牛顿算法下的Steffensen 加速法。

(1) 求ln(sin )x x +的根。

初值0x 分别取0.1,1,1.5,2,4进行计算。

(2) 求sin =0x 的根。

初值0x 分别取1,1.4,1.6,1.8,3进行计算。

分析其中遇到的现象与问题。

(1)牛顿法牛顿法实质上是一种线性化方法,其基本思想是将非线性方程()0f x =逐步归结为某种线性方程来求解。

将已知方程()0f x =在近似值k x 附近展开,有()()()()'0k k k f x f x f x f x x ≈+-=,构造迭代公式,则1k x +的计算公式为:()()1',0,1,,k k k k f x x x k f x +=-= (1-1)根据Taylor 级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解()0f x =的过程,第一次迭代()()'1000/x x f x f x =-,其中()()'00/f x f x 的几何意义很明显,就是0x 到1x 的线段长度(这可以从直角三角形的知识得到)。

第二次迭代()()'2111/x x f x f x =-,其中()()'11/f x f x 的几何意义很明显,就是1x 到2x 的线段长度。

同理可以进行第三次迭代第四次迭代,可以明显的看出x 的取值在不断逼近真实解*x 。

如图1-1所示:图1-1○1求ln(sin )=0x x +的根时,迭代公式为()1ln(sin )sin 1cos k k x x x x x x x+++=++,0示。

计算结果见附录1表F.1-1所示。

初值取1.5,2,4进行计算时结果不收敛。

表 1-1 牛顿法计算结果○2求sin =0x 的根时,迭代公式为1cos k k x x x+=+,初值0x 分别取1、1.4、1.6、1.8、3计算时结果收敛,误差小于510-时,近似解如表1-2所示。

非线性方程求根—牛顿迭代法(新)

非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。

设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。

(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。

解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。

求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。

牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。

本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。

我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。

我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。

我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。

通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。

二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。

其基本原理是利用泰勒级数的前几项来寻找方程的根。

如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。

给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。

每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。

牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。

然而,这种方法也有其局限性。

它要求函数在其迭代点处可导,且导数不为零。

牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。

因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。

非线性方程的求根方法

非线性方程的求根方法

取 x0=0,
3 xk xk 3 xk 1 xk 2 3 xk 1
(k = 0, 1, · · · · · )
y x1 x2 x3 x0 x
y=x3 – x – 3
Newton迭代法陷入死循环的另一个例子
f’<0, f”>0
f’>0, f”>0
f’>0, f”<0
f’<0, f”<0
牛顿迭代法的收敛域问题:
用牛顿迭代法求解复数方程 z3 – 1 = 0,该方程在复 平面上三个根分别是 z1 = 1
1 3 z2 i 2 2
1 3 z3 i 2 2
选择中心位于坐标原点,边长 为2的正方形内的任意点作初始 值,进行迭代,把收敛到三个 根的初值分为三类,并分别标 上不同颜色(例如红、黄、 蓝)。对充分多的初始点进行 实验,绘出牛顿迭代法对该方 程的收敛域彩色图。
牛顿法的计算步骤: 1)给出初始近似值x0,及精度 2)计算:按迭代公式
f ( x0 ) x0 x1 f ( x 0 )
计算出x1 3)若 x1 x0 ,则转向4);否则 x1 x0 转向2) 4)输出满足精度的根x1,结束
例2.5 用牛顿法解方程 x=e–x
在 x0=0.5 附近的根。
由定理2.5知牛顿迭代公式具有局部收敛性。
由定理2.6知 Newton迭代法至少平方收敛。因此用 Newton法求单根的收敛速度是较快的。
[ f ( x )]2 f ( x ) f ( x ) f ( x ) f ( x ) 2[ f ( x )]2 f ( x ) ( x ) [ f ( x )]3
x1 x*
f ( x1 ) x2 x1 ( x1 x0 ) f ( x1 ) f ( x0 ) xk 1 f ( xk ) xk ( x k x k 1 ) f ( x k ) f ( x k 1 ) ( k =1,2,· · · · · · ·)

最优化理论方法——牛顿法

最优化理论方法——牛顿法

牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。

结合着matlab 可以对其进行应用,求解方程。

牛顿迭代法(Newton ’s method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。

牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。

牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。

牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。

如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点 的横坐标1k x +作为*x 的新的近似值。

鉴于这种几何背景,牛顿法亦称为切线法。

2 牛顿迭代公式:(1)最速下降法:以负梯度方向作为极小化算法的下降方向,也称为梯度法。

设函数()f x 在k x 附近连续可微,且()0k k g f x =∇≠。

由泰勒展开式: ()()()()()Tk k k k fx f x x x f x x x ο=+-∇+- (*)可知,若记为k k x x d α-=,则满足0Tk k d g <的方向k d 是下降方向。

当α取定后,Tk k d g 的值越小,即T kk d g -的值越大,函数下降的越快。

由Cauchy-Schwartz 不等式:T k k kk d g d g ≤,故当且仅当k k d g =-时,Tk k d g 最小,从而称k g -是最速下降方向。

最速下降法的迭代格式为: 1k k k k x x g α+=-。

非线性方程组的求解方法及其应用

非线性方程组的求解方法及其应用

非线性方程组的求解方法及其应用非线性方程组是数学中一类非常重要的问题,其中每个方程都不是线性的。

与线性方程组不同,非线性方程组的求解通常需要借助于数值方法。

本文将讨论一些常见的非线性方程组求解方法,并介绍它们在实际应用中的一些应用。

1. 牛顿法牛顿法是一种非常常见的非线性方程组求解方法。

该方法基于牛顿迭代法原理,将非线性方程组转化为一系列的线性问题。

牛顿法的基本思想是:通过不断地使用一阶导数和二阶导数的信息来逼近方程组的解。

具体地说,在每一轮迭代中,求解一个方程组:$$F(x^{k})+J(x^{k})\Delta x^{k} =0$$其中$F(x)$表示非线性方程组,$x^k$表示第$k$轮迭代的解,$J(x^k)$表示$F(x)$在$x^k$处的雅可比矩阵,$\Delta x^k$表示下降方向,满足$\|\Delta x^k\|\rightarrow 0$。

值得注意的是,牛顿法在每轮迭代中都需要求解一次雅可比矩阵,这需要大量的计算资源。

因此,在实际应用中,牛顿法通常只适用于相对较小的方程组。

2. 信赖域方法相比于牛顿法,信赖域方法更具有通用性。

信赖域方法的基本思想是:在每轮迭代中,通过构造二次模型来逼近目标函数,并在一个信赖域内搜索下降方向。

具体地说,我们在每轮迭代中将非线性方程组$F(x)$在$x^k$处转化为二次模型:$$m_k(\Delta x)=F(x^k)+\nabla F(x^k)^\top \Deltax+\frac{1}{2}\Delta x^\top B_k\Delta x$$其中,$\nabla F(x^k)$是$F(x)$在$x^k$处的梯度,$B_k$是二阶导数信息。

在这里我们假设$B_k$为正定矩阵。

显然,我们希望在$m_k(\Delta x)$的取值范围内找到一个适当的$\Delta x$,使得$m_k(\Delta x)$最小。

因此,我们需要设定一个信赖域半径$\Delta_k$,并在$B_k$所定义的椭圆范围内查找最优的$\Delta x$。

迭代法(iterative method

迭代法(iterative method

迭代法(iterative method
迭代法是一种数学方法,通过不断地迭代逼近来求解数学问题。

这种方法通常用于求解方程、优化问题、积分问题等。

迭代法的基本思想是:给定一个初始值或初始解,然后根据一定的规则进行迭代,每次迭代都得到一个新的解,直到满足某个终止条件为止。

这个终止条件可以是精度要求、迭代次数限制等。

常见的迭代法包括:
1.牛顿迭代法:用于求解非线性方程的根,通过不断地逼近方程的根来求解。

2.梯度下降法:用于求解最优化问题,通过不断地沿着负梯度的方向搜索来找到最优
解。

3.牛顿-拉夫森方法:结合了牛顿法和二分法的优点,用于求解非线性方程的根。

4.雅可比迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

5.高斯-赛德尔迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

使用迭代法时需要注意初始值的选择、迭代规则的合理性、终止条件的设定等问题,以确保迭代过程的收敛性和有效性。

同时,迭代法也有一定的局限性,对于一些非线性问题或复杂问题,可能需要进行多次迭代或者采用其他方法进行求解。

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。

假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。

我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。

为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。

雅可比矩阵是由方程组的偏导数组成的矩阵。

对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。

在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。

以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。

下一步是实现牛顿迭代法。

牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。

在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。

解非线性方程组的牛顿迭代法

解非线性方程组的牛顿迭代法

为克服这两个缺点,通常可用下述方法.
(1) 简化牛顿法,也称平行弦法.
xk 1 xk Cf ( xk )
其迭代公式为 (4.7)
C 0,1 ,.
迭代函数 ( x) x Cf ( x).
若在根 x * 附近成立 ( x) 1 Cf ( x) 1 ,即取 0 Cf ( x) 2,则迭代法(4.7)局部收敛.
8
xk
C 2 C
q2
k
1 q
2k
.
对任意 x0 0,总有 q 1,故由上式推知,当 k 时 xk C ,即迭代过程恒收敛. 例8 解 求 115 .
表7 6 计算结果 k 0 1 2 3 4 xk 10 10.750000 10.723837 10.723805 10.723805
f ( x) , f ( x)
由于
( x)
f ( x) f ( x) . 2 [ f ( x)]
假定 x *是 f ( x) 的一个单根,即 f ( x*) 0, f ( x*) 0 , 则由上式知 ( x*) 0 ,于是依据定理4可以断定,牛顿法 在根 x *的邻近是平方收敛的.
准备 迭代
x0 ,计算 f 0 f ( x0 ), 选定初始近似值
步骤2
按公式
x1 x0 f 0 / f 0
迭代一次,得新的近似值 x1,计算 f1 f ( x1 ), f1 f ( x1 ). 步骤3 控制
x1 满足 1 如果
f1 2 ,则终 或
5
止迭代,以 x1作为所求的根;否则转步骤4. 允许误差,而
3
又因
( x*)
f ( x*) , f ( x*)

最优化理论与方法——牛顿法

最优化理论与方法——牛顿法

牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。

结合着matlab 可以对其进行应用,求解方程。

牛顿迭代法(Newton Newton’’s s method method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。

牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。

牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。

收敛。

牛顿法的几何解释:牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。

如下图:轴的焦点的横坐标。

如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点轴的交点 的横坐标1k x +作为*x 的新的近似值。

鉴于这种几何背景,牛顿法亦称为切线法。

牛顿法亦称为切线法。

2 牛顿迭代公式:(1)最速下降法:x-d gk k×Gg sks×GGd 101x x x -(1)令k k G v I k G -=+,其中:,其中:0k v =,如果k G 正定;0,k v >否则。

否则。

(2)计算_k G 的Cholesky 分解,_T k k k k G L D L =。

(3)解_k k G d g =-得k d 。

(4)令1k k k x x d +=+牛顿法的优点是收敛快,缺点一是每步迭代要计算()()'k k f x f x 及,计算量较大且有时()'k fx 计算较困难,二是初始近似值0x 只在根*x附近才能保证收敛,如0x 给的不合适可能不收敛。

牛顿法解非线性方程组

牛顿法解非线性方程组

一、求根方法原理把非线性函数f(x)=0在x0处展开成泰勒级数取其线性部分,作为非线性方程的近似方程,则有 , 设,则其解为,再把f(x)在x1处展开为泰勒级数,取其线性部分为的近似方程,若,则得,如此继续下去,得到牛顿法的迭代公式:,通过迭代,这个式子必然在的时候收敛。

整个过程如下图:牛顿法收敛很快,而且可求复根,缺点是对重根收敛较慢,要求函数的一阶导数存在。

二、求解步骤1. 选取一个接近函数零点的自变量 x 值作为起始点。

2. 使用如下的迭代公式更新近似解。

3. 如果得出的解满足误差要求,终止迭代,所得的值即视为方根根的近似解。

三、自定的非线性方程使用牛顿迭代法近似求解如下方程在[-1, 1]之间的根:四、源程序代码clear, close allclcf = @(x) cos(x) -x.^3;f_prime = @(x) -sin(x) -3*x.^2;error = 1; %初始化误差变量iter = 0; %初始化迭代次数变量max_iter = 5000; %定义最大允许迭代次数tol = 1e-8; %定义循环终止误差x0 = 0.5; %初始值while error > tol && iter <= max_iterx = x0 - f(x0)/f_prime(x0); %更新x的值error = abs((x-x0)/x0); %计算相对误差iter = iter +1; %更新迭代次数x0 = x; %计算出的x赋值给x0,继续迭代,直到达到误差条件。

end五、上机运行结果截图六、结论1.迭代法是求解非线性方程组的一种很好的方法,它可以反复校验根的近似值,直到得出符合精度的解。

从几何角度上来解释可以解释为两个函数的无限逼近2.我们为了加快迭代的速度,引入了牛顿法,牛顿法的收敛速度很快,但是其收敛性取决于牛顿法的取值。

3.。

牛顿迭代法在求解非线性方程重根问题中的研究

牛顿迭代法在求解非线性方程重根问题中的研究

牛顿迭代法在求解非线性方程重根问题中的研究摘要:牛顿迭代法是求解非线性方程的根的常用方法。

在实际计算中往往会遇到重根情况,针对这种情况,我们在牛顿迭代法的理论基础上,探讨了三种不同的迭代格式。

为了对比这三种方法,本文进行了两个实验,分别是含有重根的非线性方程求解问题实例和牛顿迭代法在求解购房按揭利率的应用实例。

在分析运算结果后,得出了三种算法优势和劣势。

关键词:牛顿迭代法;MA TLAB;重根Abstract:Newton iteration method is a common method to solve the roots of nonlinear equations. In order to solve this problem, we discuss three different iteration schemes based on Newton iteration method. In order to compare the three methods, two experiments are carried out in this paper, one is the solving of nonlinear equations with heavy roots, and the other is the application of Newton iteration method in solving house mortgage interest rate. The advantages and disadvantages of three algorithms are obtained after analyzing the results.Key words:Newton iterative method;MA TLAB;Root weight目录摘要 (Ⅰ)Abstract (Ⅰ)目录 (Ⅱ)1 相关概念 (1)1.1 非线性方程 (1)1.2 重根问题 (1)1.3 不动点和不动点迭代法 (1)1.4 迭代法的收敛性 (2)2 牛顿迭代法 (2)2.1 牛顿迭代算法 (2)2.2 重根情形 (3)3 牛顿迭代法的数值实验 (5)3.1 实验一 (5)3.2 实验二 (7)4 结论 (8)参考文献: (9)附录 (10)附录A 算法1 (10)附录B 算法2 (10)附录C 算法3 (11)附录D 实验一程序 (11)附录E 算法1 (12)附录F 算法2 (12)附录G 算法3 (13)附录H 实验二程序 (13)1 相关概念1.1 非线性方程在科学和工程计算中存在大量的方程()0f x =求根的问题,比如代数方程10110n n n n a x a x a x a --++++=,其中00a ≠,当1,2n =时其解是熟知的,当3,4n =时解的公式可以在数学手册上查到,但是当5n ≥时,方程的跟是不能用四则运算和根式运算的公式表示出来的。

二元非线性方程组求根的牛顿迭代法

二元非线性方程组求根的牛顿迭代法

2 二元函数的牛顿迭代法
设 z = f ( x, y ) 在点 ( x0 , y0 ) 的某一邻域内连续且 有直到 2 阶的连续偏导数 , ( x0 + h, y0 + k ) 为此邻域 内任一点 , 则有
f ( x0 + h, y0 + k ) ≈ f ( x0 , y0 ) +
记符号
gfx - fgx | ( x k, y k) = g ( xk , yk ) fx ( xk , yk ) - f ( xk , yk ) gx ( xk , yk ) fgy - gfy | ( x k, y k) = f ( xk , yk ) gy ( xk , yk ) - g ( xk , yk ) fy ( xk , yk ) gx fy - fx gy | ( x k, y k) = gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) ( 1 ) 式可改写为 x = xk + y = yk + fgy - gfy | ( x k, y k) gx fy - fx gy | ( x k, y k) gfx - fgx | ( x k, y k) gx fy - fx gy | ( x k, y k) fgy - gfy | ( x k, y k) gx fy - fx gy | ( x k, y k) gfx - fgx | ( x k, y k) gx fy - fx gy | ( x k, y k) ( 3) ( 2)
f ( xk ) = xk ( k = 0, 1, …) ( xk ) f′
从而 :
x = xk + y = yk + f ( xk , yk ) gy ( xk , yk ) - g ( xk , yk ) fy ( xk , yk ) gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) g ( xk , yk ) fx ( xk , yk ) - f ( xk , yk ) gx ( xk , yk ) gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) ( 1)

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。

然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。

本文将介绍几种非线性方程的求解方法。

一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。

该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。

牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。

牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。

二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。

与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。

割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。

三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。

该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。

二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。

二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。

四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。

它和二分法类似,都是通过缩小根所在的区间来逼近根。

不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。

改进的牛顿迭代法求解非线性方程

改进的牛顿迭代法求解非线性方程

改进的牛顿迭代法求解非线性方程史思总 西南科技大学摘要:将非线性方程线性化,以线性方程的解逐步逼近非线性方程的解,是牛顿迭代法的基本思想。

牛顿法具有收敛快、稳定性好、精度高等优点,是目前求解非线性方程的有效方法之一。

牛顿法每次迭代时都需要计算函数值和导数值,计算量较大,当导数值提供有困难时,牛顿法将不再适用于求解非线性方程组。

针对这种情况,提出了一种改进牛顿法——弦截法。

为避免求导,弦截法采用差商近似导数,以差商方式解决求导问题。

实践证明,弦切法优于大部分迭代法,仅次于牛顿法。

关键词:牛顿法、弦截法、非线性方程、差商一、牛顿法的迭代公式设)(x f 在其零点*x 附近一阶连续可微,且0)(≠'x f ,当0x 充分接近*x 时,由Taylor 公式有:))(()()(000x x x f x f x f -'+≈ (1)以方程0))(()(000=-'+x x x f x f (2)近似方程0)(=x f ,其解)()(0001x f x f x x '-= (3) 可作为方程的近似解,重复上述过程,得迭代公式),1,0(,)()(1 ='-=+n x f x f x x n n n n (4) 该方法称为牛顿迭代法。

牛顿法是一种不动点迭代法,其迭代函数为()()()f x x x f x ϕ=-' (5) 从几何上看,牛顿法是以曲线的切线与x 轴的交点作为曲线与x 轴的交点的近似。

故牛顿法也是一种切线法。

二、牛顿法的改进——弦截法为了避免牛顿法中计算导数,弦截法中采用差商代替导数。

避免了某些情况下由于不能求取导数值而迭代失效。

2.1差商的定义设有函数012(),,,,...f x x x x 为一系列互不相等的点,称()()()i j i j f x f x i j x x -≠-为()f x 关于,i j x x 的一阶差商(也称均差),记为[,]i j f x x ,即()()[,]i j i j i j f x f x f x x x x -=- (6)2.2弦截法在牛顿迭代公式(3)中,用差商()()i j i j f x f x x x --代替导数'()n f x 得到迭代公式111()()()(1,2,...)n n n n n n n f x f x x x x x n x x -+--=--=- (7) 按式(7)计算方程的近似解称为弦截法。

第二章 非线性方程(组)的迭代解法.

第二章 非线性方程(组)的迭代解法.

输入,,计算fa f (a), fb f (b);
注: 其中 , 为 精度控制参数!
若f f a 0, 则a x, f a f ; ab 为所求根,结束! (4) 若 b a , 则x
否则,转(2);
2
例1
计算f ( x) x3 4x2 10 0在[1 , 2]内的实根。 可得 x* 1.36523, 共计算21次! 取 109, 106,
则 0, 使得 x0 [ x * , x * ]但x0 x*,
由迭代
xn1 (xn )
证明:由泰勒公式和收敛阶定义可证! 注: 1、给出了由迭代函数判断收敛速度的方法;
2、给出了提高收敛速度的方法!
School of Math. & Phys.
15
North China Elec. P.U.
Numerical Analysis
2018/10/11
J. G. Liu
例3 1 a 3 a2 1、证明xk 1 ( xk )和xk 1 xk 3 分别是求 2 xk 4 4 xk
a的平方收敛的迭代格式。
解: 迭代函数为
同理对xk 1 2 ( xk )证明!
School of Math. & Phys. 16
不妨设(x*) 0, 由(x)的连续性,则 δ 0, 当x x * δ 时,(x) 0。
当n充分大以后,[ an ,bn ] ( x * δ,x* δ ),于是当m为偶数时, x [an ,bn ], f ( x) 0,不变号了!(??)
(2) 二分法线性收敛; (3) 二分法可用来细化有根区间,这是它的一大优点! 故二分法可以用来确定迭代法的迭代初值!

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法如何构造合适的迭代法求解非线性方程是数值计算中的一个基本问题。

本文对解非线性方程的迭代法进行分析与拓展,以经典的牛顿迭代法和弦截法为基础,构造了三种新的迭代法。

通过数值例子表明,这三种迭代法在一定程度上加快了收敛速度。

标签:非线性方程;迭代法;数值模拟众所周知,现实生活中的许多问题都可以转化为非线性方程解的问题。

但是,由于方程求解问题的复杂性以及直接求解问题的多变性,使得非线性方程的求解绝非易事,一般不能直接对其求解。

因此,迭代法[1-3]是非线性方程求根中最基本、最常用的方法,其思想是寻找一个精确度较高的近似解来代替无法得到的精确解,而不同的迭代格式具有不同的逼近速度与准确度。

近年来,很多学者在牛顿迭代方法的基础上提出了许多改进的迭代法。

张旭[4]构造了一种三阶含牛顿迭代法;单吉宁等[5]对解非线性方程的牛顿法进行了改进;张辉等[6]基于四点牛顿-柯特斯求积公式提出了六阶迭代方法;黄娜等[7]提出一种新的三阶迭代法;王小瑞等[8]构造了条件最优两步迭代法;高建强等[9]探究了牛顿迭代对收敛速度的影响;王尧等[10]提出求解非线性方程的三步六阶迭代法。

为此,本文在上述工作基础上提出了一些新的迭代格式用于求解非线性方程,通过数值例子来检验迭代法的有效性与实用性。

1 三种新的迭代格式1.1 迭代格式一设非线性方程,在方程的解区间之内有一个近似解为,将在近似解点处依泰勒公式对其作展开处理:在牛顿迭代格式中取前两项近似的表示原方程,即:类似地,取前三项近似表示原方程,可以得到:设方程的解为且则有如下:经处理得到新的迭代格式如下:迭代格式(1)式中的右边存在了这一项,将其记作加以区分,将迭代格式更改为:同时对于这一项的计算利用牛顿迭代格式来计算,即,则可得新的迭代格式一:设可控制误差为,则在进行次迭代之后的近似值为。

那么只需时,迭代终止。

1.2 迭代格式二牛顿迭代格式中用差商替换得到了割线法的迭代格式。

牛顿-拉夫逊方法-概述说明以及解释

牛顿-拉夫逊方法-概述说明以及解释

牛顿-拉夫逊方法-概述说明以及解释1.引言1.1 概述牛顿-拉弗逊方法是一种用于求解非线性方程组的数值方法,由数学家牛顿和拉夫逊在17世纪提出。

该方法通过迭代的方式逼近非线性方程组的解,从而实现求解方程组的根的目的。

牛顿-拉夫逊方法是一种经典且广泛应用的数值计算方法,被广泛应用于科学、工程、金融等领域。

本文将对牛顿-拉夫逊方法的定义与原理、应用领域以及优缺点进行深入探讨,旨在帮助读者更好地理解并应用该方法解决实际问题。

通过学习和掌握牛顿-拉夫逊方法,读者可以更高效地解决复杂的非线性方程组,提高问题求解的准确性和精度。

1.2 文章结构:本文将首先介绍牛顿-拉夫逊方法的定义与原理,包括其数学模型和求解过程。

随后将讨论该方法在实际应用中的一些典型领域,比如优化问题、方程求解等。

接着将分析牛顿-拉夫逊方法的优缺点,探讨其在解决实际问题中的局限性和优势。

最后,将对牛顿-拉夫逊方法进行总结,并展望其在未来的应用前景,最终得出结论。

通过这些内容,读者将能够全面了解牛顿-拉夫逊方法的特点及其在科学研究和工程实践中的价值和重要性。

1.3 目的本文旨在深入探讨牛顿-拉夫逊方法,介绍其定义、原理、应用领域以及优缺点。

通过对该方法的全面分析,希望读者能够更清晰地了解牛顿-拉夫逊方法在数值计算中的重要性和实用性,进而为相关领域的研究和实践提供参考和指导。

同时,对牛顿-拉夫逊方法的展望也是本文的一个重要内容,希望能够带给读者新的启发和思考,促进该方法在未来的进一步发展和应用。

最终,通过对牛顿-拉夫逊方法的详细介绍和分析,期望能够为读者打开一扇通往数值计算领域的新视角,激发对该方法以及数值计算理论的兴趣和探索欲望。

2.正文2.1 牛顿-拉夫逊方法的定义与原理牛顿-拉夫逊方法,又称为牛顿迭代法,是一种用于求解方程的数值方法。

它是由著名的物理学家和数学家牛顿发现的一种迭代求根方法,并由拉夫逊进一步完善和推广。

在数学上,牛顿-拉夫逊方法用于求解非线性方程组的根。

非线性方程组的求解

非线性方程组的求解

非线性方程组的求解摘要:非线性方程组求解是数学教学中,数值分析课程的一个重要组成部分,作为一门学科,其研究对象是非线性方程组。

求解非线性方程组主要有两种方法:一种是传统的数学方法,如牛顿法、梯度法、共轭方向法、混沌法、BFGS 法、单纯形法等。

传统数值方法的优点是计算精度高,缺点是对初始迭代值具有敏感性,同时传统数值方法还会遇到计算函数的导数和矩阵求逆的问题,对于某些导数不存在或是导数难求的方程,传统数值方法具有一定局限性。

另一种方法是进化算法,如遗传算法、粒子群算法、人工鱼群算法、差分进化算法等。

进化算法的优点是对函数本身没有要求,不需求导,计算速度快,但是精度不高。

关键字:非线性方程组、牛顿法、BFGS 法、记忆梯度法、Memetic 算法1: 三种牛顿法:Newton 法、简化Newton 法、修改的Newton 法【1-3】 求解非线性方程组的Newton 法是一个最基本而且十分重要的方法, 目前使用的很多有效的迭代法都是以Newton 法为基础, 或由它派生而来。

n 个变量n 个方程的非线性方程组, 其一般形式如下:⎪⎪⎩⎪⎪⎨⎧===0),...,(...0),...,(0),...,(21212211n n n n x x x f x x x f x x x f (1)式(1)中,),...,(21n i x x x f ( i=1, ⋯, n) 是定义在n 维Euclid 空间Rn 中开域 D 上 的实值函数。

若用向量记号,令:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x ...X 21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡====)(...)()(0),...,(...0),..,(0)...,()(2121212,211X f X f X f x x x f x x x f x x x f X F nn n n n则方程组(1)也可表示为:0)(=X F(2) 其中:X ∈R n ,F ∶R n →R 0, F(X) ∈R n , R n 为赋值空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元非线性方程组求根的牛顿迭代法摘要:本文根据一元函数的Taybr 公式和求解一元非线性方程的牛顿迭代法之间的关系,利用多元函数的Taybr 公式推导出了二元非线性方程组的牛顿迭代法;在此基础上,通过MA TLAB 仿真计算一个方程组的根来说明该方法是可行的。

关键词:牛顿迭代法;一元函数;二元函数; Taybr 公式; Matlab 0 引言非线性方程()0f x =的数值解法有逐步搜索法、区间二分法、迭代法、牛顿迭代法等, 那么, 对于对于非线性方程组(,)0(,)0f x y g x y =⎧⎨=⎩,其牛顿迭代法的迭代方程是什么? 本文根据一元函数的Taybr 公式和一元非线性方程牛顿迭代法之间的关系,利用多元函数的Taybr 公式推导出了二元非线性方程组的牛顿迭代法,在此基础上利用推导出的二元非线性方程组求根的牛顿迭代法通过matlab 仿真计算出一个方程组的根,检验了所得方法的有效性。

1 基本定理、结论定理1 (一元函数的Taybr 公式)如果函数()f x 在含有0x 的某个开区间(,)a b 内具有直(1)n +阶的导数,则对任一(,)x a b ∈ ,有()20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中()n R x = ()(1)10()()1!n n f x x n ξ++-+,这里ξ是0x 与x 之间的某个值。

定理2 (二元函数的Taybr 公式)设(,)z f x y =在点00(,)x y 的某一邻域内连续且有直到(1)n +阶的连续偏导数,00(,)x k y k ++为此邻域内任一点,则有2000000001(,)(,)(,)(,)...2!f x k y k f x y h k f x y h k f x y x y x y αααααααα⎛⎫⎛⎫++=++++++ ⎪ ⎪⎝⎭⎝⎭1000011(,)(,)!(1)!n n h k f x y h k f x k y k n x y n x y ααααθθαααα+⎛⎫⎛⎫++++++ ⎪ ⎪+⎝⎭⎝⎭,(01)θ<<. 其中00(,)mh k f x y x y αααα⎛⎫+ ⎪⎝⎭表示00(,)0m mp p m pm x y p m p p f C h k x y --=∂∂∂∑定理3:一元非线性方程求根的牛顿牛顿法设已知方程f ( x) = 0有近似根k x (假定f ′(k x ) ≠0,将函数f ( x)在点kx 处展开,有f ( x)≈ f (k x ) + f ′(k x ) ( x -k x ) ,于是方程f ( x) = 0可近似的表示为f (k x ) + f ′(k x ) ( x -k x ) = 0这是个线性方程,记其根为k x + 1 ,则k x + 1的计算 公式为1()()k k k k f x x x f x +=-'( k = 0, 1, …) 2 二元函数的牛顿迭代法设z = f ( x, y)在点00(,)x y 的某一邻域内连续且有直到2阶的连续偏导数,00(,)x h y k ++为此邻域内任一点,则有000000(,)(,)(,)(,)x x y y f x h y k f x y h f x y kf x y xy==⎛⎫∂∂++≈++ ⎪∂∂⎝⎭于是方程f ( x, y) = 0可近似的表示为(,)(,)(,)0k kk k x x y y f x y h f x y kf x y x y==⎛⎫∂∂++= ⎪∂∂⎝⎭即(,)()(,)()(,)0k k k k k k k k k k f x y x x f x y y y f x y +-+-=同理设z = g ( x, y )在点00(,)x y 的某一邻域内连续且有直到2阶的连续偏导数, 00(,)x h y k ++为此邻域内任一点,则同样有000000(,)(,)(,)(,)x x y y g x h y k g x y h g x y kg x y xy==⎛⎫∂∂++≈++ ⎪∂∂⎝⎭其中00,h x x k y y =-=-于是方程g ( x, y) = 0可近似的表示为,()(,)(,)0k kk k x x y y g x y h g x y kg x y xx==⎛∂∂⎫++= ⎪∂∂⎝⎭即()(,)(),()(,)0k k k x k k k y k k g x y x x g x y y y g x y +-+-=于是得到方程组,,,,,,()()()()()0()()()()()0k k k y k k k y k k k kk y k k k y k k f x y x x f x y y y f x y g x y x x g x y y y g x y +-+-=⎧⎪⎨+-+-=⎪⎩ 求解这个方程组:当,,,,()()()()0x k k y k k x k k x k k g x y f x y f x y g x y +-≠时 x =,,,,,,,,()()()()+()()()()k k y k k k k y k k k x k k y k k x k k y k k f x y g x y g x y f x y x g x y f x y f x y g x y +-+-y =,,,,,,,,()()()()+()()()()k k x k k k k x k k k x k k y k k x k k y k k g x y f x y f x y g x y y g x y f x y f x y g x y +-+-从而:,,,,,,,,,,,,,,,,()()()()+()()()()()()()()+()()()()k k y k k k k y k k k x k k y k k x k k y k k k k x k k k k x k k kx k k y k k x k k y k k f x y g x y g x y f x y x x g x y f x y f x y g x y g x y f x y f x y g x y y y g x y f x y f x y g x y +-⎧=⎪+-⎪⎨+-⎪=⎪+-⎩记符号,(),,,,()()()()k k x x x y k k x k k k k x k k gf fg g x y f x y f x y g x y -=- ,(),,,,()()()()k k y y x y k k y k k k k y k k fg gf f x y g x y g x y f x y -=- ,(),,,,()()()()k k x y x yx y x k k y k k x k k y k k g f f g g x y f x y f x y g x y -=-又可改写为,,,,()()()()k k k k k k k k y y x y k x y x y x y x x x y k x y x y x y fg gf x x g f f g fg gf y y g f f g ⎧-⎪=+⎪-⎪⎨-⎪=+⎪-⎪⎩迭代公式为:,,,,()1()()1()k k k k k k k k y y x y k k x y x y x y x x x y k k x y x y x y fg gf x x g f f g fg gf y y g f f g ++⎧-⎪=+⎪-⎪⎨-⎪=+⎪-⎪⎩通过迭代公式可迭代出当k = 1, 2, …时,,()k k x y 的值,当1,1()(0k k x y δδ++≤>为给定的误差控制项)时, 原方程组的根即为,()k k x y 。

这就是二元函数牛顿(Newton)法。

3 方法应用例 给定方程组40sin()0x y y xy e e xe xy ⎧-+-=⎪⎨-=⎪⎩初始条件取为x = 1, y = 1, 用二元函数牛顿迭代法求此方程组的根。

解:令4sin()x yyf xy e eg xe xy ⎧=-+-⎪⎨=-⎪⎩,计算其偏导数如下 ,cos()x y x x f y e g e y xy =-=-,cos()y y y x f x e g xe x xy =+=- 其代入迭代公式,,,,()1()()1()k k k k k k k k y y x y k k x y x y x y x x x y k k x y x y x y fg gf x x g f f g fg gf y y g f f g ++⎧-⎪=+⎪-⎪⎨-⎪=+⎪-⎪⎩可得:(),()(4)cos()sin()k k x y y y yx xx y fg gf xy e e xe x xy xe xy x e ⎡⎤⎡⎤-=-+----+⎣⎦⎣⎦(),()(sin())()cos()k k y y x yx y x y x y g f f g e x xy x e y e xe x xy ⎡⎤-=-+---⎣⎦,()()sin()cos()(4)k k x y y x yx xx y gf fg y e xe xy e y xy xy e e ⎡⎤⎡⎤-=-----+-⎣⎦⎣⎦运用matlab 程序解得此方程组的根为: x = 1. 1572e - 005 y = 1. 6094 f = 8. 1770e - 006 g = 3. 9235e - 005 i = 5分析:初始条件取为x = 1, y = 1,可以换其他数值检验。

说明误差在允许范围内! 其迭代次数为5,迭代速度比较快。

参考文献:[ 1 ] 马东升, 雷永军. 数值计算方法[M ]. 北京: 机械工业出版 社, 2001.[ 2 ] 陈传璋,金福临,朱学炎,等. 数学分析(上册) [M ]. 北京:高等 教育出版社, 1983.[ 3 ] 陈传璋,金福临,朱学炎,等. 数学分析(下册) [M ]. 北京:高等 教育出版社, 1983.[ 4 ] 李海涛,邓樱. MATLAB 程序设计教程[M ]. 北京:高等教育出 版社, 2004.[ 5 ] 刘为国. MATLAB 程序设计教程[M ]. 北京: 水利水电出版 社, 2005.。

相关文档
最新文档