中考专题复习方程应用题
中考数学专题实际应用题(解析版)
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)
中考专题训练——不定方程的应用题
中考专题训练——不定方程的应用题不定方程是指未知数满足一定条件的方程,其解可以是整数、有理数、实数或复数。
不定方程的应用题在数学问题中具有重要的实际意义。
下面我们来讨论一些中考中常见的不定方程应用题。
一、鸡兔同笼问题鸡兔同笼问题是一类经典的不定方程应用题。
假设鸡和兔子的总数量为n,总脚数为m。
已知鸡的脚数为2,兔子的脚数为4、问题是如何确定鸡和兔子的数量。
我们可以设鸡的数量为x,兔子的数量为n-x(因为鸡和兔子总数为n)。
根据题意可以列出方程:2x+4(n-x)=m化简方程得到:2x+4n-4x=m整理得到:2n-2x=m将n看作常数,此时方程为一元一次方程。
我们可以通过解方程来确定鸡和兔子的数量。
例题:一共有20只鸡和兔子,它们的总脚数为56、求鸡和兔子的数量分别是多少?解答:设鸡的数量为x,兔子的数量为20-x。
根据题意可得方程:2x+4(20-x)=56化简得方程:2x+80-4x=56整理得:-2x=-24解得:x=12所以鸡的数量为12,兔子的数量为20-12=8二、汉诺塔问题汉诺塔问题是另一个经典的不定方程应用题。
问题是如何将一堆盘子从起始柱子移动到目标柱子,过程中需要满足以下条件:(1)每次只能移动一个盘子;(2)大盘子不能放在小盘子上面。
假设有n个盘子,设解为f(n),可以将其分解为三个步骤:(1)将n-1个盘子从起始柱子移动到过渡柱子;(2)将第n个盘子从起始柱子移动到目标柱子;(3)将n-1个盘子从过渡柱子移动到目标柱子。
根据上述分解可得递推公式:f(n)=2f(n-1)+1其中f(1)=1为初始条件。
例题:有3个盘子,问最少需要多少步才能将它们从起始柱子移动到目标柱子?解答:根据递推公式可得:f(3)=2f(2)+1=2(2f(1)+1)+1=7所以最少需要7步才能将3个盘子从起始柱子移动到目标柱子。
三、梯子问题梯子问题是另一个常见的不定方程应用题。
问题是如何确定梯子的总长度。
中考数学总复习《方程(组)及其应用》专项提升练习题(附答案)
中考数学总复习《方程(组)及其应用》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次方程(组)的解法及解的应用 1(2022百色)方程3x=2x+7的解是( )A.x=4B.x=-4C.x=7D.x=-72(2022株洲)对于二元一次方程组{y =x -1,①x +2y =7,②将①式代入②式,消去y 可以得到( )A.x+2x-1=7B.x+2x-2=7C.x+x-1=7D.x+2x+2=73(2022随州)已知二元一次方程组{x +2y =4,2x +y =5,则x-y 的值为 .4(2022呼和浩特)解方程组{4x +y =5,x -12+y 3=2.5(2022荆州)已知方程组{x +y =3,①x -y =1②的解满足2kx-3y<5,求k 的取值范围.命题点2解分式方程6(2022北京)方程2x+5=1x 的解为 .7(2022成都)分式方程3−xx -4+14−x =1的解是 . 8(2022常德)方程 2x +1x (x -2)=52x的解为 .9(2022苏州)解方程:xx+1+3x =1.10(2022青海)解方程:x x -2-1=4x 2-4x+4.命题点3分式方程的解的应用 11(2022德阳)如果关于x 的方程2x+m x -1=1的解是正数,那么m 的取值范围是 ( )A.m>-1B.m>-1且m ≠0C.m<-1D.m<-1且m ≠-2 12(2021达州)若分式方程2x -ax -1-4=-2x+a x+1的解为整数,则整数a= .命题点4一元二次方程的解法及解的应用 13(2022天津)方程x 2+4x+3=0的两个根为 ( ) A.x 1=1,x 2=3 B.x 1=-1,x 2=3 C.x 1=1,x 2=-3 D.x 1=-1,x 2=-314(2022临沂)方程x 2-2x-24=0的根是( )A.x 1=6,x 2=4B.x 1=6,x 2=-4C.x 1=-6,x 2=4D.x 1=-6,x 2=-415(2022宜宾)已知m ,n 是一元二次方程x 2+2x-5=0的两个根,则m 2+mn+2m 的值为( )A.0B.-10C.3D.1016(2022广东)若x=1是方程x 2-2x+a=0的根,则a= .17(2022黄冈)若一元二次方程x 2-4x+3=0的两个根是x 1,x 2,则x 1·x 2的值是 .18(2022鄂州)若实数a ,b 分别满足a 2-4a+3=0, b 2-4b+3=0,且a ≠b ,则1a +1b 的值为 .19(2022无锡)解方程:x 2-2x-5=0.20(2022齐齐哈尔)解方程:(2x+3)2=(3x+2)2.命题点5一元二次方程根的判别式21(2022北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m 的值为()A.-4B.-14C.14D.422(2022抚顺)下列一元二次方程无实数根的是() A.x2+x-2=0 B.x2-2x=0 C.x2+x+5=0 D.x2-2x+1=023(2022滨州)一元二次方程2x2-5x+6=0的根的情况为()A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定24(2022随州)已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等的实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.25(2022南充)已知关于x的一元二次方程x2+3x+k-2=0有实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=-1,求k的值.命题点6方程的实际应用角度1变化率问题26(2022重庆A卷)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是() A.200(1+x)2=242 B.200(1-x)2=242C.200(1+2x)=242D.200(1-2x)=24227(2022哈尔滨)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是() A.150(1-x2)=96 B.150(1-x)=96C.150(1-x)2=96D.150(1-2x)=96角度2购买、销售问题28(2022牡丹江)某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.29(2022重庆A卷)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5∶6∶7,需香樟数量之比为4∶3∶9,并且甲、乙两山需红枫数量之比为2∶3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.30(2022广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价分别是多少.角度3分配问题31(2021北京)某企业有A,B两条加工相同原材料的生产线.在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.第一天,该企业将5吨原材料分配到A,B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A生产线的原材料的质量与分配到B生产线的原材料的质量的比为.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn 的值为 . 角度4生产、工程问题32(2022云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需的时间与原计划植树300棵所需的时间相同.设实际每天植树x 棵,则下列方程正确的是 ( )A .400x -50=300x B .300x -50=400xC .400x+50=300xD .300x+50=400x33(2022宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨. (1)求4月份再生纸的产量.(2)若4月份每吨再生纸的利润为1 000元,5月份再生纸产量比上月增加m%,5月份每吨再生纸的利润比上月增加m2%,则5月份再生纸项目月利润达到66万元,求m 的值.(3)若4月份每吨再生纸的利润为1 200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元.角度5行程问题34(2022济宁)一辆汽车开往距出发地420 km 的目的地,若这辆汽车比原计划每小时多行10 km,则提前1 h 到达目的地.设这辆汽车原计划的速度是x km/h,根据题意所列方程是 ( )A.420x =420x -10+1B.420x +1=420x+10 C.420x=420x+10+1 D.420x+1=420x -1035(2022重庆A 卷)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A 地30千米的B 地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A 地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.角度6几何问题36(2022泰州)如图,在长为50 m 、宽为38 m 的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1 260 m 2,道路的宽应为多少?角度7其他问题37(2022宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为 ( )A.30B.26C.24D.2238(2022安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020 x y5202021 1.25x1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元.分类训练4方程(组)及其应用1.C2.B【解析】将①代入②,得x+2(x-1)=7,去括号,得x+2x-2=7.3.1【解析】{x+2y=4,①2x+y=5,②②-①,得x-y=5-4=1.4.【参考答案】{4x+y=5,①x-12+y3=2,②由②,得3x+2y=15,③①×2-③,得5x=-5解得x=-1.把x=-1代入①,得y=9故方程组的解为{x=−1, y=9.5.【参考答案】①+②,得2x=4,∴x=2.①-②,得2y=2,∴y=1.将x=2,y=1代入2kx-3y<5,得4k-3<5解得k<2.6.x=5 【解析】 方程两边同时乘x (x+5),得2x=x+5,解得x=5.检验:当x=5时,x (x+5)≠0.故x=5是原分式方程的解.7.x=3 【解析】 去分母,得3-x-1=x-4,移项、合并同类项,得-2x=-6,系数化为1,得x=3.经检验,x=3是分式方程的解.8.x=4 【解析】 方程两边同乘2x (x-2),得2×2(x-2)+2=5(x-2),解得x=4.检验:当x=4时,2x (x-2)=16≠0,∴x=4是原方程的解.9.【参考答案】 方程两边同乘以x (x+1),得x 2+3(x+1)=x (x+1). 解方程,得x=-32.经检验,x=-32是原方程的解. 10.【参考答案】 x x -2-1=4(x -2)2x (x-2)-(x-2)2=4 解得x=4检验:当x=4时,(x-2)2≠0 故x=4是原方程的解.11.D 【解析】 方程两边同时乘(x-1),得2x+m=x-1,解得x=-1-m.∵方程的解是正数,∴x>0,且x ≠1,∴-1-m>0,且-1-m ≠1,∴m<-1且m ≠-2. 12.±1 【解析】2x -a x -1-4=-2x+a x+1可变形为2x -2+2-a x -1-4=-2x -2+2+a x+1,即2+2−a x -1-4=-2+2+a x+1,∴2−a x -1=2+ax+1,∴(2-a )(x+1)=(2+a )(x-1),∴x=2a .又∵x 为整数,且x ≠±1,∴整数a=±1. 13.D 【解析】 方法一:∵x 2+4x+3=0,∴x 2+4x=-3,∴x 2+4x+4=-3+4,∴(x+2)2=1,∴x+2=±1,∴x 1=-1,x 2=-3.方法二:x 2+4x+3=0可化为(x+1)(x+3)=0,∴x 1=-1,x 2=-3. 14.B 【解析】 移项,得x 2-2x=24,配方,得x 2-2x+1=25,即(x-1)2=25,∴x-1=±5,∴x 1=6,x 2=-4.15.A 【解析】 ∵m ,n 是一元二次方程x 2+2x-5=0的两个根,∴m 2+2m-5=0,mn=-5,∴m 2+2m=5,∴m 2+mn+2m=m 2+2m+mn=5-5=0.故选A . 16.1 【解析】 将x=1代入x 2-2x+a=0,得1-2+a=0,∴a=1.17.3 【解析】 ∵x 1,x 2是一元二次方程x 2-4x+3=0的两个根,∴x 1·x 2=c a =31=3. 18.43 【解析】 由题意得a ,b 是方程x 2-4x+3=0的两个不相等的实数根,∴a+b=4,ab=3,∴1a +1b =a+b ab =43. 19.【参考答案】 移项,得x 2-2x=5 配方,得x 2-2x+1=5+1,即(x-1)2=6开方,得x-1=±√6解得x1=1+√6,x2=1-√6.20.【参考答案】等号两边同时开方,得2x+3=3x+2或2x+3=-3x-2 解得x=1或x=-1.21.C【解析】由题意可知Δ=1-4m=0,解得m=14.22.C【解析】逐项分析如下:选项分析是否符合题意A Δ=1+8=9>0,方程有两个不相等的实数根.否B Δ=4>0,方程有两个不相等的实数根.否C Δ=1-20=-19<0,方程没有实数根.是D Δ=4-4=0,方程有两个相等的实数根.否23.A【解析】∵Δ=(-5)2-4×2×6=25-48=-23<0,∴一元二次方程2x2-5x+6=0无实数根.24.【参考答案】(1)依题意可得Δ=(2k+1)2-4(k2+1)>0化简,得4k-3>0解得k>34.(2)依题意得x1x2=k2+1=5解得k1=2,k2=-2.由(1)知k>34,故k=2.25.【参考答案】(1)∵一元二次方程x2+3x+k-2=0有实数根,∴Δ≥0即32-4(k-2)=-4k+17≥0解得k≤174.(2)∵方程的两个实数根分别为x1,x2∴x1+x2=-3,x1x2=k-2.∵(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1 ∴k-2-3+1=-1,解得k=3.26.A 【解析】 根据题意,得第二天揽件200(1+x )件,第三天揽件200(1+x )(1+x )=200(1+x )2(件),故200(1+x )2=242,故选A .27.C 【解析】 第一次降价后,该种商品每件售价为150(1-x )元,第二次降价后,该种商品每件售价为150(1-x )2元,故150(1-x )2=96.28.15 【解析】 设该商品的标价为每件x 元,由题意得80%x-10=2,解得x=15. 29.3∶5 【解析】 根据题意设未知数,列表如表(1)所示.由“甲、乙两山需红枫数量之比为2∶3”,可列方程5a -4b 6a -3b =23,∴a=2b ,可得表(2).设香樟原价为每棵m 元,红枫原价为每棵n 元,则16b (1-6.25%)·m (1-20%)+20b ·n (1+25%)=16bm+20bn ,∴12bm+25bn=16bm+20bn ,∴m=54n ,∴12bm 25bn =12×54n 25n =15n 25n =35.表(1) 甲 乙 丙 香樟 4b 3b 9b 红枫 5a-4b 6a-3b合计5a6a7a表(2)甲 乙 丙 合计 香樟 4b 3b 9b 16b 红枫6b9b 5b 20b 合计 10b12b 14b30.【参考答案】 设学生人数为x 根据题意,得8x-3=7x+4 解得x=7∴7x+4=53.答:学生人数为7,该书单价为53元.31.2∶3 12 【解析】 设第一天分配到A,B 两条生产线的原材料分别为x 吨、y 吨,根据题意,得{x +y =5,4x +1=2y +3,解得{x =2,y =3,故分配到A 生产线的原材料的质量与分配到B 生产线的原材料的质量的比为2∶3.由题意得4(2+m )+1=2(3+n )+3,整理,得2m=n ,故m n =12.32.B 【解析】 由实际每天植树x 棵,可知原计划每天植树(x-50)棵,根据“实际植树400棵所需的时间与原计划植树300棵所需的时间相同”,可列方程为400x =300x -50.33.【参考答案】 (1)设3月份再生纸产量为x 吨,则4月份再生纸产量为(2x-100)吨.由题意,得x+(2x-100)=800解得x=300∴2x-100=500.答:4月份再生纸的产量为500吨.(2)由题意,得500(1+m%)·1 000(1+m 2%)=660 000解得m 1=20,m 2=-320(不合题意,舍去) ∴m=20.(3)设4至6月每吨再生纸利润的月平均增长率为y , 5月份再生纸的产量为a 吨,根据题意得1 200(1+y )2·a (1+y )=(1+25%)×1 200(1+y )·a∴1 200(1+y )2=1 500.答:6月份每吨再生纸的利润是1 500元.34.C 【解析】 这辆汽车原计划的速度是 x km/h,则实际的速度是(x+10)km/h,原计划用时420x h,实际用时420x+10 h.由实际比原计划提前1 h 到达目的地,可列方程为420x =420x+10+1.35.【参考答案】 (1)设乙骑行的速度是x 千米/时,则甲骑行的速度是1.2x 千米/时由题意,得12×1.2x=12x+2 解得x=20则1.2x=24.答:甲骑行的速度是24千米/时.(2)设乙骑行的速度是y 千米/时,则甲骑行的速度是1.2y 千米/时.由题意,得301.2y +2060=30y解得y=15.经检验,y=15是原方程的解,且符合题意.则1.2y=18.答:甲骑行的速度为18千米/时. 名师点拨由实际问题抽象出一次方程(组)的主要步骤:(1)弄清题意;(2)找准题中的等量关系;(3)设未知数;(4)根据找到的等量关系列出方程(组).36.【参考答案】 设道路的宽应为x 米由题意,得(50-2x )(38-2x )=1 260解得x 1=4,x 2=40(舍去).答:道路的宽应为4米.37.B 【解析】 设1艘大船可满载x 人,1艘小船可满载y 人,根据题意,得{x +2y =32①,2x +y =46②,由①+②,得3x+3y=78,∴x+y=26,即1艘大船与1艘小船一次共可以满载游客的人数为26.38.【参考答案】 (1)1.25x+1.3y(2)由题意得{x +y =520,1.25x +1.3y =520+140,解得{x =320,y =200,∴1.25x=400,1.3y=260.答:2021年进口额为400亿元,出口额为260亿元.。
列方程解应用题50道
列方程解应用题50道一、行程问题(10道)1. 甲、乙两地相距300千米,一辆汽车从甲地开往乙地,平均每小时行60千米,行了x小时后,距离乙地还有70千米。
求汽车行驶的时间x。
- 解析:汽车行驶的路程为速度乘以时间,即60x千米。
总路程是300千米,此时距离乙地还有70千米,那么汽车行驶的路程就是300 - 70 = 230千米。
可列方程60x=230,解得x = 23/6小时。
2. 一辆客车和一辆货车同时从相距540千米的两地相对开出,客车每小时行65千米,货车每小时行55千米。
经过x小时两车相遇,求x的值。
- 解析:两车相对而行,它们的相对速度是两车速度之和,即65 + 55 = 120千米/小时。
经过x小时相遇,根据路程=速度×时间,可列方程(65 + 55)x=540,120x = 540,解得x = 4.5小时。
3. 小明和小亮在400米的环形跑道上跑步,小明每秒跑5米,小亮每秒跑3米,他们同时从同一点出发,同向而行,经过x秒小明第一次追上小亮,求x。
- 解析:同向而行时,小明第一次追上小亮时,小明比小亮多跑了一圈,即400米。
小明每秒比小亮多跑5 - 3 = 2米。
可列方程(5 - 3)x = 400,2x = 400,解得x = 200秒。
4. 甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,经过x小时两人还相距10千米,A、B两地相距100千米,求x。
- 解析:甲、乙两人x小时一共走了(8 + 6)x千米,此时两人还相距10千米,而A、B两地相距100千米,可列方程(8+6)x+10 = 100,14x+10 = 100,14x = 90,解得x = 45/7小时。
5. 一辆汽车以每小时45千米的速度从A地开往B地,另一辆汽车以每小时55千米的速度从B地开往A地,两车同时出发,经过x小时相遇,A、B两地相距400千米,求x。
用方程解决问题应用题50道
用方程解决问题应用题用方程解决问题是数学的一种重要应用。
方程是描述数学关系的一种方式,它可以帮助我们理解和解决各种实际问题。
在本文中,我们将探讨一些常见的用方程解决问题的案例,并详细解释如何建立和求解这些方程。
第一部分:代数方程的应用问题1:购买水果假设你去市场购买了苹果和橙子,其中每个苹果的价格为x元,每个橙子的价格为y元。
你购买了5个苹果和3个橙子,总花费为20元。
现在,我们需要建立一个方程来计算每个水果的价格。
解答:令方程为5x + 3y = 20,其中x表示苹果的价格,y表示橙子的价格。
通过观察这个方程,我们可以发现,当x = 2和y = 4时,方程成立。
因此,每个苹果的价格为2元,每个橙子的价格为4元。
问题2:年龄之谜现在我们来考虑一个更复杂的问题。
假设有一个父子年龄之和为36岁的问题,父亲的年龄是儿子年龄的三倍。
我们需要建立一个方程,找到父亲和儿子的实际年龄。
解答:设父亲的年龄为x岁,儿子的年龄为y岁。
根据问题的描述,我们可以得到两个方程:x + y = 36 (年龄之和为36岁)x = 3y (父亲的年龄是儿子年龄的三倍)将第二个方程代入第一个方程,得到:3y + y = 364y = 36y = 9将y = 9代入第二个方程,可以求得:x = 3 * 9x = 27因此,父亲的年龄是27岁,儿子的年龄是9岁。
第二部分:几何方程的应用问题3:等腰三角形的高度假设我们有一个等腰三角形,其中底边的长度为x,斜边的长度为y。
我们需要建立一个方程,计算这个等腰三角形的高度。
解答:根据等腰三角形的性质,高度将从中点垂直于底边画出,并且它将把底边划分为两个相等的部分。
因此,我们可以将等腰三角形的高度表示为x / 2。
根据勾股定理,我们可以得到另一个方程:y = √((x / 2)^2 + h^2),其中h表示等腰三角形的高度。
解方程组:将x / 2代入y的方程,得到:y = √((x / 2)^2 + (x / 2)^2)y = √(x^2 / 4 + x^2 / 4)y = √(x^2 / 2)y = x / √2因此,等腰三角形的高度可以表示为x / 2或x / √2,具体取决于问题的要求和条件。
2022年中考复习《列方程解应用题(分式方程)》专项练习附答案
列方程解应用题〔分式方程〕1、〔2021泰安〕某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也参加该电子元件的生产,假设乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:首先设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程.解答:解:设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,根据题意可得:+=33,应选:B.点评:题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.2、〔2021•铁岭〕某工厂生产一种零件,方案在20天内完成,假设每天多生产4个,那么15天完成且还多生产10个.设原方案每天生产x个,根据题意可列分式方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意可得等量关系:〔原方案20天生产的零件个数+10个〕÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.解答:解:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意得:=15,应选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3、〔2021•钦州〕甲、乙两个工程队共同承包某一城市美化工程,甲队单独完成这项工程需要30天,假设由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?假设设乙队单独完成这项工程需要x天.那么可列方程为〔〕A.+=1 B.10+8+x=30 C.+8〔+〕=1D.〔1﹣〕+x=8考点:由实际问题抽象出分式方程.分析:设乙工程队单独完成这项工程需要x 天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10×+〔+〕×8=1即可. 解答:解:设乙工程队单独完成这项工程需要x 天,由题意得: 10×+〔+〕×8=1.应选:C .点评:此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,找出题目中的等量关系,再列出方程,此题用到的公式是:工作效率×工作时间=工作量.4、(2021年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
中考应用题复习讲义
初中应用题复习讲义一、二元一次方程例1、(2011•株洲)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?例2、某采摘农场计划种植A B 、两种草莓共6亩,根据表格信息,解答下列问题:(1)若该农场每年草莓全部被采摘的总收入为460000元,那么A B 、两种草莓各种多少亩?(2)若要求种植A 种草莓的亩数不少于种植B 种草莓的一半,那么种植A 种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?过关训练1、某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得O 分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有( )A 、15种B 、11种C 、5种D 、3种2、一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是( )A 、26 B 、28 C 、36 D 、383、某种产品是由A 种原料x 千克、B 种原料y 千克混合而成,其中A 种原料每千克50元,B 种原料每千克40元,后来调价,A 种原料价格上涨10%,B 种原料价格减少15%,经核算产品价格可保持不变,则x :y 的值是( ) A 、23 B 、56 C 、65 D 、55344、在2004年印度洋海啸中,小红打开自己的储蓄盒,把积赞的零花钱拿出来数了数,发现1元、2元的共有15张,共20元钱,那么小红1元、2元的各有( )A 、5张、10张B 、10张、5张C 、8张、7张D 、7张、8张5、(2某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每天生产冰箱、彩电共310台。
已知生产这些家电产品每台所需工时和每台产值如达到830千元?所用工时是多少?项目 品种 A B 年亩产(单位:千克) 1200 2000 采摘价格(单位:元/千克) 60 405、(2011•烟台)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?7、(2011•鞍山)某工厂第一次购买甲种原料60盒和乙种原料120盒共用21 600元,第二次购买甲种原料20盒和乙种原料100盒共用16 800元.(1)求甲、乙两种原料每盒价钱各为多少元;(2)该工厂第三次购买时,要求甲种原料比乙种原料的2倍少200盒,且购买两种原料的总量不少于1 010盒,总金额不超过89 200元,请你通过计算写出本次购买甲、乙两种原料的所有方案.8、(2008•岳阳)学生游览君山公园的门票价如下表所示,本市某中学初二年级甲、乙两个班共105人去君山公园游玩,其中甲班人数不足50人但不少于40人,若两个班都以班为单位分别购票,则一共应付2349元,如果两个班联合起来购票,则可以省不少钱.请问:(1)两班各有多少名学生?(2)若联合购票,甲、乙两班各节约了多少元?9、(2010年杭州月考)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使二、不等式例1、某同学要在4小时内,从甲地赶到相距15公里的乙地,他从甲地出发后,以每小时3公里的速度走了1小时,以后至少平均每小时要走多少公里,才能按计划到达乙地?例2、如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?例3、某工厂要招聘A、B两种工人150人,A、B两个工种的工人的月工资分别为600元和1000元,现要求B种工人的人数不少于A中工人人数的2倍,那么招聘A种工种工人多少人时,可使每月所付的工资最少?过关训练1、(2011•雅安)某部门为了给员工普及电脑知识,决定购买A、B两种电脑,A型电脑单价为4800元,B型电脑单价为3200元,若用不超过160000元去购买A、B型电脑共36台,要求购买A型电脑多于25台,有哪几种购买方案?2、(2011•桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?3、(2010•青岛)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?4、(2010•内江)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间。
广东省深圳市数学中考专题复习专题6 方程不等式的实际应用(中考20题或21题)
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
解:设乙单独完成此项工程需要x天,则甲单独完成需要2x 天,
答:学校购进甲种口罩400盒,购进乙种口罩600盒.
(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒, 按照教育局要求,学校必须储备足够使用十天的口罩,该校师生 共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教 育局的要求?
解:购买的口罩总数为: 400×20+600×25=23 000(个), 全校师生两周需要的用量为: 800×2×10=16 000(个). ∵23 000>16 000, ∴购买的口罩数量能满足教育局的要求.
根据题意可得:2x0+220x=1,解得:x=30, 经检验x=30是原方程的解. 故x+30=60,
答:甲、乙两工程队单独完成此项工程各需要60天,30天;
(2)若此项工程由甲工程队单独施工,再由甲、乙两工程队合 作施工完成剩下的工程,已知甲工程队每天需付施工费1万元, 乙工程队施工每天需付施工费2.5万元,要使施工费用不超过64 万元,则甲工程队至少要单独施工多少天?
训练 1.(2020秋·福田区校级期中)疫情期间,为保护学生和教师 的健康,某学校用33 000元购进甲、乙两种医用口罩共计1 000 盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒. (1)求甲、乙两种口罩各购进了多少盒?
解:设学校购进甲种口罩x盒,购进乙种口罩y盒, 依题意,得:3x0+x+y=315y0=0033 000,解得:xy==640000.
解方程式练习题初三
解方程式练习题初三解方程是初中数学中的重要内容之一。
通过解方程,我们可以找出未知数的值,从而解决实际问题。
本文将为初三学生提供一些解方程的练习题,帮助他们巩固解方程的基本方法和技巧。
1. 一元一次方程(1)求解:3x + 5 = 20解答:首先移项得:3x = 20 - 5 = 15然后除以系数得:x = 15 ÷ 3 = 5答案:x = 5(2)求解:2(x - 4) = 10解答:首先展开括号得:2x - 8 = 10然后移项得:2x = 10 + 8 = 18最后除以系数得:x = 18 ÷ 2 = 9答案:x = 92. 一元二次方程求解:x^2 + 5x + 6 = 0解答:首先观察发现方程可以因式分解成:(x + 3)(x + 2) = 0然后根据零乘法,得到两个解:x + 3 = 0 或 x + 2 = 0解得:x = -3 或 x = -2答案:x = -3 或 x = -23. 一元一次方程组求解方程组:{ 2x + y = 5{ 3x - 2y = 4解答:首先可以通过消元法消去y的系数,得到2x + y = 5 和 2x - 4y = 8然后两式相减消去x的项,得到5y = -3最后解得:y = -3 ÷ 5将y的值代入其中一方程中,解得:2x - 3 = 5最终求得:x = 4 和 y = -3/5答案:x = 4,y = -3/54. 一元二次方程组求解方程组:{ x^2 + y^2 = 25{ x - y = 1解答:首先将第二个方程两边平方,得到 (x-y)^2 = 1^2,即 x^2 - 2xy + y^2 = 1然后将第一个方程减去刚刚得到的式子,消去y的项,得到 x^2 -2xy = 24接着,将这个方程带入第二个方程中,得到 24 = 1显然,此方程无解。
答案:方程组无解通过以上几个例题,我们可以看出解方程的方法会因方程的形式而有所不同。
超经典一元一次方程中考应用题专练(含答案)
第六章一元一次方程(应用题)专练1.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.2.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米解:3.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场4.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元(2)如不使用分时电价结算,5月份小明家将多支付电费多少元6.一件商品按成本价提高20%后标价,又以9折销售,售价为270元,则这件商品的成本价是多少7. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m,则应收水费______元;(2)若该户居民3、4月份共用水315m(4月份用水量超过3月份),共交水费8. 2007年5月19日起,中国人民银行上调存款利率.人民币存款利率调整表储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.(1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率%计息,本金与实得利息收益的和为元,问他这笔存款的本金是多少元(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存请说明理由.约定:①存款天数按整数天计算,一年按360天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).9.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元10. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元11. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元12. 列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次13. 目前我省小学和初中在校生共136万人,其中小学在校生人数比初中在校生人数的2倍少2万人,问目前我省小学和初中在校生各有多少万人16. 为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶17. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天(2)甲队施工一天,需付工程款万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱19. 某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1-分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.参考答案1、解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1)(15)114x+-=+%%.5分解得:1205x==%.答:这个月的石油价格相对上个月的增长率为20%.8分2.解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(40)x+千米.1分依题意,得3061(40)602x x+=+.3分解得200x=.4分答:这次试车时,由北京到天津的平均速度是每小时200千米.5分3、解:设这个队胜了x场,依题意得:3(145)19x x+--=(4分)解得:5x=(6分)答:这个队胜了5场.(7分)4、(1)设原销售电价为每千瓦时x元,根据题意得: ……………………………1分40(0.03)60(0.25)42.73x x⨯++⨯-=………………………………3分40 1.2601542.73x x ++-= 10042.7313.8x =+0.5653x =. ………………………………4分∴当0.5653x =时,0.030.5953x +=;0.250.3153x -=.答:小明家该月支付平段电价为每千瓦时元、谷段电价每千瓦时元.……6分 (2) 1000.565342.7313.8⨯-=(元)答:如不使用分时电价结算,小明家5月份将多支付元. ……………………8分 5、解:(1)1533(h)45604⨯==(分钟),4542>Q , ∴不能在限定时间内到达考场. 4分(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场. 5分先将4人用车送到考场所需时间为150.25(h)1560==(分钟). 小时另外4人步行了1.25km ,此时他们与考场的距离为15 1.2513.75-=(km )7分设汽车返回(h)t 后先步行的4人相遇,56013.75t t +=,解得 2.7513t =.汽车由相遇点再去考场所需时间也是2.75h 13.9分所以用这一方案送这8人到考场共需 2.751526040.44213+⨯⨯≈<.所以这8个个能在截止进考场的时刻前赶到. 10分方案2:8人同时出发,4人步行,先将4人用车送到离出发点km x 的A 处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场. 6分由A 处步行前考场需15(h)5x -,汽车从出发点到A 处需(h)60x 先步行的4人走了5(km)60x⨯,设汽车返回t (h )后与先步行的4人相遇,则有605560x t t x +=-⨯,解得11780xt =,8分所以相遇点与考场的距离为112156015(km)78013x xx -+⨯=-. 由相遇点坐车到考场需1(h)4390x ⎛⎫-⎪⎝⎭. 所以先步行的4人到考场的总时间为111(h)607804390x x x ⎛⎫++-⎪⎝⎭, 先坐车的4人到考场的总时间为15(h)605x x -⎛⎫+ ⎪⎝⎭,他们同时到达,则有11115607804390605x x x x x-++-=+,解得13x =. 将13x =代入上式,可得他们赶到考场所需时间为1326037605⎛⎫+⨯= ⎪⎝⎭(分钟). 3742<Q .∴他们能在截止进考场的时刻前到达考场. 10分其他方案没有计算说明可行性的不给分.6、解:设这种商品的成本价为x 元,依题意得,270%90%)201(=⨯+x , (4分)解以上方程,得250=x . (5分) 答:这种商品的成本价是250元. (6分)7、(1)应收水费264(106)8(12.510)48⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则226448(1510)44x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则264(6)26448(1510)44x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .8、解:(1)3500×%×80%=(元),∴到期时他实得利息收益是85.68元. 2分 (2)设他这笔存款的本金是x 元, 则x (1+%×80%)=, 4分 解得x =2500,∴这笔存款的本金是2500元.6分(3)设小明爸爸的这笔存款转存前已存了x 天,由题意得l0000×360x ×%+10000×360360x -×%>10000×%, 8分 解得x <41713,9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存. 10分 9、(1)设2007职业中专的在校生为x 万 人根据题意得:1500× -1500x =600 ………………………………………3分解得:2x = ………………………………5分所以.()2 1.2 2.4⨯=万人()2.415003600⨯=万元 ……………………………7分答:略. …………………………………8分10、解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000.解得x =88.∴31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部. ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.11、解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000.解得x =88.∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部. ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.12、解法一:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为(469)x -万人次.依题意,得(469)1696x x +-=. 解得353x =.4694353691343x -=⨯-=.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.解法二:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次. 依题意,得1696469.x y y x +=⎧⎨=-⎩,解得3531343.x y =⎧⎨=⎩,答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.13、解:设初中在校生为x 万人,依题意得(22)136x x +-=解得46x =于是22246290x -=⨯-=(万人).答:目前我省小学在校生为90万人,初中在校生为46万人.14、解:设该公司今年到台湾采购苹果的成本价格为x 元/公斤根据题意列方程得100000100000200002x x += 解得 2.5x =经检验 2.5x =是原方程的根. 当 2.5x =时,25x =答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.15、解:设每个中国结的原价为x 元,根据题意得16016020.8x x-= 解得 20x =.经检验,20x =是原方程的根.答:每个中国结的原价为20元.16、(1)解法一:设甲种消毒液购买x 瓶,则乙种消毒液购买(100)x -瓶.依题意,得69(100)780x x +-=.解得:40x =.∴1001004060x -=-=(瓶).答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.解法二:设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶.依题意,得10069780x y x y +=⎧⎨+=⎩,.解得:4060x y =⎧⎨=⎩,.答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.(2)设再次购买甲种消毒液y 瓶,刚购买乙种消毒液2y 瓶. 依题意,得6921200y y +⨯≤. 解得:50y ≤.答:甲种消毒液最多再购买50瓶.17、解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯= 解这个方程,得x =90经检验,x =90是原方程的解∴乙队单独完成需90天(2)设甲、乙合作完成需y 天,则有11()16090y += 解得36y =(天)甲单独完成需付工程款为60×=210(万元)乙单独完成超过计划天数不符题意(若不写此行不扣分). 甲、乙合作完成需付工程款为36(+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.18、解:(1)设试销时这种苹果的进货价是每千克x 元,依题意,得)11000500020.5x x =⨯+解之,得 x =5经检验,x =5是原方程的解. (2)试销时进苹果的数量为:500010005= 第二次进苹果的数量为:2×=(千克)盈利为: 2600×7+400×7×-5000-=0(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.19、解: (1)设该班胜x 场,则该班负)10(x -场.依题意得: 14)10(3=--x x解之得: 6=x所以该班胜6场,负4场.(2)设甲班胜了x 场,乙班胜了y 场,依题意有: )]10(3[3)10(3y y x x --=--化简得:53+=x y 即35+=x y 由于y x , 是非负整数,且05x ≤≤,y x > ∴4=x ,3=y .所以甲班胜4场,乙班胜3场. 答:(1)该班胜6场,负4场.(2)甲班胜4场,乙班胜3场.。
初三解方程100道及答案
初三数学解方程练习题及答案解方程是初中数学中重要的内容之一,也是提高学生运用数学知识解决实际问题的能力的关键。
在初三阶段,学生需要掌握解一元一次方程和解一元二次方程的方法。
本文将为大家提供100道初三解方程练习题及答案,帮助大家巩固解方程的知识点。
一、解一元一次方程1.解方程2x + 5 = 15。
解:首先将方程化简为2x = 15 - 5,得到2x = 10。
然后再将2x除以2得到x = 5。
所以方程的解为x = 5。
2.解方程3(x - 4) = 15。
解:首先将方程化简为3x - 12 = 15。
然后将方程两边的常数项移动到一边,得到3x = 15 + 12,即3x = 27。
最后将方程两边除以3,得到x = 9。
所以方程的解为x = 9。
3.解方程4x + 7 = 23。
解:首先将方程化简为4x = 23 - 7,得到4x = 16。
然后将方程两边除以4,得到x = 4。
所以方程的解为x = 4。
4.解方程5(x + 2) = 35。
解:首先将方程化简为5x + 10 = 35。
然后将方程两边的常数项移动到一边,得到5x = 35 - 10,即5x = 25。
最后将方程两边除以5,得到x = 5。
所以方程的解为x = 5。
5.解方程6x - 8 = 10。
解:首先将方程化简为6x = 10 + 8,得到6x = 18。
然后将方程两边除以6,得到x = 3。
所以方程的解为x = 3。
二、解一元二次方程1.解方程x^2 + 5x + 6 = 0。
解:首先我们可以尝试因式分解。
将方程因式分解为(x + 2)(x + 3) = 0,然后分别令x + 2 = 0和x + 3 = 0,得到x = -2和x = -3。
所以方程的解为x = -2和x = -3。
2.解方程2x^2 + 3x - 2 = 0。
解:我们可以使用求根公式来解这个方程。
根据求根公式,方程的解可以表示为x = (-b ± √(b^2 - 4ac)) / (2a)。
中考列方程解应用题及答案
中考列方程解应用题及答案
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
解:(1)设每千克核桃应降价x元。
根据题意得(60-x-40)(100+÷×20)=2240.化简得x'-10x+24=0,解得x1=4,×2=6.答:每千克核桃应降价4元或6元(2)由(1)可知每千克核桃可降价4元或6元。
因为要尽可能让利于顾客,所以每千克核桃应降价6元。
此时,售价为:60-6=54(元),0*100%=90%
答:该店应按原售价的九折出售。
解方程30道练习题初三
解方程30道练习题初三一、一元一次方程1. 解方程:2x + 3 = 72. 解方程:5(x - 2) = 153. 解方程:4x + 8 = 12 + 2x4. 解方程:2(3x - 5) = 4 + x5. 解方程:2(x + 1) - 3(x - 4) = 7二、一元二次方程6. 解方程:x^2 + 4x + 3 = 07. 解方程:2x^2 - 7x + 3 = 08. 解方程:3x^2 + 5x = 2x^2 - 79. 解方程:4(x - 2)^2 = 910. 解方程:x^2 - 9 = 0三、一元三次方程11. 解方程:2x^3 - 9x^2 + 12x = 012. 解方程:x^3 - 8 = 013. 解方程:3(x - 1)(x + 2)(x - 3) = 014. 解方程:(x - 1)(x^2 + 2x + 2) = 015. 解方程:x^3 + 4x^2 - 4x - 16 = 0四、二元一次方程16. 解方程组:2x + y = 53x - y = 117. 解方程组:4x + 2y = 123x - y = 118. 解方程组:x + y = 102x - 3y = -519. 解方程组:3x - y = 5x + 2y = -220. 解方程组:2x + y = 73x - 2y = 4五、二元二次方程21. 解方程组:x^2 + y^2 = 10 x + y = 422. 解方程组:x^2 + y^2 = 25 2x - y = 123. 解方程组:x^2 + 2y^2 = 32 x - y = 224. 解方程组:x^2 - 2y^2 = 0 x + y = 525. 解方程组:x^2 + y^2 = 18 x - 2y = 1六、多元一次方程26. 解方程组:2x + 3y - z = 7 x + 2y + z = 4 3x - y + 2z = 1 27. 解方程组: x + y + z = 62x - y + 3z = 12 3x + y - 2z = 2 28. 解方程组: x + 2y - z = 5 2x + y + 3z = 9 x - 3y + 2z = 1 29. 解方程组: x - y + 2z = 1 2x + y + 3z = 9 3x - 2y + z = 4 30. 解方程组: x + 2y + 3z = 6 2x - y + z = 4 x + y - z = 2这是30道解方程的练习题,包括了一元一次方程、一元二次方程、一元三次方程、二元一次方程、二元二次方程以及多元一次方程。
二元一次方程 解应用题中考经典题型
1.某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,
2.已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度。
3.为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米?
4.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?
5.已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?。
苏科版数学中考复习专题练习—方程及其应用(含答案)
方程及其应用一、学习目标1.能够识别一次方程(组)、分式方程、一元二次方程,并熟练掌握各类方程(组)的解法;2.理解方程(组)的解的意义,探究含字母参数的方程的解的问题;3.会列方程(组)求解实际问题、数学问题.二、典型例题题型一、方程(组)有关的概念及解法例题1.关于x 的方程(m +1)x |m |+1+(m -3)x -1=0.(1)m 取何值时,方程是一元二次方程,并求出此方程的解;(2)m 取何值时,方程是一元一次方程.例题2.解方程:x x -1=4 x 2-1 +1借题发挥:1.用加减消元法解二元一次方程组 ⎩⎨⎧ x +3y =4 ①, 2x -y =1 ②,时,下列方法中无法消元....的是( ) A . ①×2-② B .②×(-3) -① C . ①×(-2)+② D .①-②×32.用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( )A .(x - 3 4 )2= 17 16B .(x - 3 4 )2= 1 2C .(x - 3 2 )2= 13 4D .(x - 3 2 )2= 11 4题型二、方程的解的意义例题3.已知关于x 、y 的方程组⎩⎨⎧ a x +23y =-103 x +y =4与⎩⎨⎧ x -y =2 x +b y =15 的解相同.求a 、b 的值.例题4.已知关x 的一元一次方程 1 2021 x +3=2x +m 的解为x =2, 那么关于y 的一元一次方程 1 2021(y +1)+3=2 (y +1)+m 的解为 . 借题发挥:1.学校计划用200元钱购买A 、B 两种奖品,A 种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( )A .2种B .3种C .4种D .5种2.甲、乙二人同时解方程组⎩⎨⎧ a x +y =3 2x -b y =1 ,甲看错了a ,解得⎩⎨⎧ x =1 y =-1 ;乙看错了b ,解得⎩⎨⎧ x =-1 y =3.求a 、b 的值.题型三、含字母参数的方程的解的问题例题5.若关于x 的分式方程3x x -2=m 2-x+5的解为正数,则m 的取值范围为( ) A .m <-10 B .m ≤-10C .m ≥-10且m ≠-6D .m >-10且m ≠-6例题6.等腰三角形的一边长是3,另两边的长是关于x 的方程x 2-4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .7借题发挥:关于x 的方程kx 2﹣6x +9=0有实数根,k 的取值范围是( )A .k <1且k ≠0B .k <1C .k ≤1且k ≠0D .k ≤1题型四、用方程思想解决问题例题7.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?。
中考数学三轮复习专题训练:方程应用题含解析)
中考数学三轮复习专题训练:方程应用题(含解析) 中考数学三轮复习专题训练:方程应用题(含解析)中考数学三轮复习专题训练:方程应用题1.某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?解:(1)设B口罩的单价为x元/个,则A口罩单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,答:A口罩单价为3元/个,B口罩单价为2.5元/个.(2)设购进A口罩m个,则购进B口罩(2600﹣m)个,依题意,得:3m+2.5(2600﹣m)≤7000,解得:m≤1000.答:A种口罩最多能购进1000个.2.为美化校园,某校需补栽甲、乙两种花苗.经咨询,每株甲种花苗比每株乙种花苗贵5元.已知购买相同数量的甲、乙两种花苗,所用费用分别是100元、50元.求甲、乙两种花苗的单价.解:设乙种花苗的单价为x元,则甲种花苗的单价为(x+5)元.由题意可列方程,解得x=5.经检验,x=5是原分式方程的解,答:甲种花苗的单价为10元、乙种花苗的单价为5元.3.某手机店老板到电子批发市场选购A、B两种型号的手机,A型手机比B型手机每套进价高200元,同样用6000元采购A型、B型手机时,B型手机比A型手机多1台.(1)求A、B两种手机进价分别为多少元?(2)该A型手机每台售价为1800元,B型手机每台售价为1500元,手机店老板决定,购进B型手机的数量比购进A型手机的数量的2倍少3台,两种手机全部售完后,总获利超过12800元,问最少购进A型手机多少台?解:(1)设A型手机进价为x元,则B型手机进价为(x﹣200)元,由题意得:解得:x1=1200,x2=﹣1000(不合题意,舍去),经检验:x=1200是原分式方程的解,x﹣200=1200﹣200=1000,答:A、B两种手机进价分别为1200元、1000元;(2)设购进A型手机a台,则购进B型手机(2a﹣3)台,由题意得:(1800﹣1200)a+(1500﹣1000)(2a﹣3)>12800,解得:a>10,答:至少购进A型手机的数量是11台.4.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?解:(1)按原计划完成总任务的时,已抢修道路为1800×=600(米),答:按原计划完成总任务的时,已修建道路600米;(2)设原计划每小时抢修道路x米,根据题意得:+=10,解得:x=140,经检验:x=140是原方程的解.答:原计划每小时抢修道路140米.5.随着云南旅游业的飞速发展,西双版纳原生态的村寨生活、节日活动、民俗仪式深深吸引了很多游客前来观赏.小明和小张假期从昆明去西双版纳游玩,昆明到西双版纳的乘车距离约为540km,小明开小轿车自驾游,小张乘坐大巴车,小明比小张晚出发3小时,最后两车同时到达西双版纳.已知小轿车的速度是大巴车速度的1.5倍.那么小轿车和大巴车的速度各是多少?解:设大巴车的速度为x千米/小时,则小轿车的速度为1.5x千米/小时,依题意,得:﹣=3,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1.5x=90.答:小轿车的速度为90千米/小时,大巴车的速度为60千米/小时.6.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.解:设买鹅的人数有x人,则这头鹅价格为(9x﹣11)文,根据题意得:9x﹣11=6x+16,解得:x=9,价格为:9×9﹣11=70(文),答:买鹅的人数有9人,鹅的价格为70文.7.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里加收0.8元.小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y 分钟.(1)则小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的少2分钟,问他俩谁先出发?先出发多少分钟?解:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x﹣y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:=﹣2,解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为=3(分钟),∴小明比小亮先出发,先出发的时间=15﹣6﹣3=6(分钟),答:明比小亮先出发,先出发6分钟.品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,由题意得:10(x+1)×0.85=10x﹣17.解得:x=17;答:小明原计划购买文具袋17个;(2)设小明可购买钢笔y支,则购买签字笔(50﹣y)支,由题意得:[8y+6(50﹣y)]×80%=272,解得:y=20,答:小明购买了钢笔20支,签字笔30支.10.某工地有72m2的墙面需要粉刷.若安排4名一级技工粉刷若干天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完.已知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.(1)每名二级技工一天粉刷墙面(x﹣3)m2(用含x的式子表示);(2)求每名一级技工、二级技工一天分别能粉刷多少m2墙面?(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少需要 5 名二级技工(直接写出结果).解:(1)由题意得,每名二级技工一天粉刷墙面(x﹣3)m2;故答案为:(x﹣3)(2)依题意列方程:=;解得x=15,经检验x=15是原方程的解,即每名一级技工和二级技工一天分别能粉刷15m2、12m2墙面;(3)设需要m名一级技工,需要n名二级技工,根据题意得,,解得:n≥5,答:至少需要5名二级技工,故答案为:5.11.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.12.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.13.进人冬季,空调再次迎来销售旺季,某商场用75000元购进一批空调,该空调供不应求,商家又用135000元购进第二批这种空调,所购数量比第一批购进数量多15台,但单价是第一批的1.2倍.(1)该商场购进第一批空调的单价多少元?(2)若两批空调按相同的标价出售,春节将近,还剩下15台空调未出售,为减少库存回笼资金,商家决定最后的15台空调按九折出售,如果两批空调全部售完利润解:(1)设商场购进第一批空调的单价是x元,根据题意得:1.2x(+15)=135000,解得:x=2500,经检验,x=2500是原方程的解,答:商场购进第一批空调的单价是2500元,(2)设每件空调的标价y元,第一批空调的数量为:=30(台),第二批空调的数量为:30+15=45(台),这两批空调的数量为:30+45=75(台),根据题意得:解得:y≥4000,答:每件空调的标价至少4000元.14.为支援困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共1000件,且总费用不超过28000元,则最多购买B型学习用品多少件?解:(1)设A型学习用品的单价为x元,则B型学习用品的单价为(x+10)元,由题意得:解得:x=20,经检验x=20是原分式方程的根,且符合实际,则x+10=30.答:A型学习用品的单价为20元,B型学习用品的单价为30元.由题意得:20(1000﹣y)+30y≤28000,解得:y≤800.答:最多购买B型学习用品800件.15.为准备趣味跳绳比赛,王老师花100元买了若干条跳绳,已知商店里的跳绳规格与价格如下表:(1)若购买了三种跳绳,其中B型跳绳和C型跳绳的条数同样多,且所有跳绳的总长度为120米,求购买A型跳绳的条数;(2)若购买的A型跳绳有13条,则购买的所有跳绳的总长度为多少米?解:(1)设购买的A型跳绳x条,B型跳绳和C型跳绳的条数为y条,可得:,可得:,答:购买A型跳绳的条数为10条;(2)当购买的A型跳绳有13条,设B型跳绳和C型跳绳的条数为a条,可得:,解得:a≤3.2,∵a>0,且为整数,∴a=3最大,所以购买的所有跳绳的总长度为13×4+8×3+12×3=112.答:购买的所有跳绳的总长度为112米.16.一个两位自然数,其个位数字大于十位数字.现将其个位数字与十位数字调换位置,得到一个新数,且原数与新数的平均数为33.(1)求原数的最小值;(2)若原数的平方与新数的差为534,求原数与新数之积.解:(1)设原两位数的个位数字为x,十位数字为y,(x>y),则原两位数是(10y+x),新两位数为(10x+y),根据题意得,(10y+x)+(10x+y)=33×2,∴x+y=6,∵x、y均为正整数,x>y,∴x=5,y=1或x=4,y=2,∴原数的最小值15;(2)由(1)知,原数与新数可能为15与51,或24与42,∵242﹣42=534,∴24×42=1008.17.小叶爸爸开了一家茶叶专卖店,包装设计专业华业的小叶为他爸设计了一款用长方形厚纸片(厚度不计)做长方体茶叶包装盒(如图),阴影部分是栽剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小叶用长40cm,宽34cm的长方形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小叶的包装后,马上售完了余下的茶叶,但成不增如了每盒5元,售价仍不变,已知在整个买卖过程中共盈利1500元,求这批茶叶共进了多少盒?解:(1)设“接口”宽度为xcm,盒底边长为ycm,由题意得:,∴8×2.5=20cm,20×8×8=1280cm3答:该茶叶盒的容积是1280cm3.(2)设第一个月销售了m盒茶叶,第二个月销售了n盒茶叶,由题意得:150×20%×m+(150×20%﹣5)n=1500,化简得:6m+5n=300.∵m、n为正整数,由上式知m为5的倍数,且m<n<2m,∴m+n=56或55盒.答:这批茶叶共进了56或55盒.18.美术小组共有30名同学,准备到文具店购买铅笔和橡皮.如果全组每人各买2枝铅笔和1块橡皮,那么需按零售价购买,共支付60元;如果全组每人各买3枝铅笔和2块橡皮,那么可按批发价购买,共支付81元.已知1枝铅笔的批发价比零价各是多少?解:设铅笔批发价是x元,橡皮的批发价是y元,则铅笔零售价是(x+0.1)元,橡皮的零售价是(y+0.2)元,由题意可得:答:铅笔批发价是0.5元,橡皮的批发价是0.6元.19.期中考试即将结束,为了表彰优秀,李老师用W元钱购买奖品,若以3支钢笔和4本笔记本为一份奖品,则可买60份奖品;若以4支钢笔和7本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x;(2)若用这W元钱全部购买笔记本,总共可以买几本?(3)若李老师用这钱恰好买75份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a,b的值.解:(1)依题意,得:60×(3x+4y)=40×(4x+7y),∴x=2y.(2)60×(3x+4y)÷y=60×(3×2y+4y)÷y=600.答:总共可以买600本.(3)依题意,得:75×(ax+by)=60×(3x+4y),∴b=8﹣2a.∵a,b均为正整数,∴,,.20.为了“迎国庆,向祖国母亲献礼”,某建筑公司承建了修筑一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费126000元;如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.(1)甲、乙两队单独完成此项工程,各需多少天?(2)为了尽快完成这项工程任务,甲、乙两队通过技术革新提高了速度,同时,甲队每天的施工费提高了a%,乙队每天的施工费提高了2a%,已知两队合作12天后,由甲队再单独做2天就完成了这项工程任务,且所需施工费比计划少了21200元.①分别求出甲、乙两队每天的施工费用;②求a的值.解:(1)设甲公司单独完成此项工程需x天,根据题意可得:,解得:x=30,检验,知x=30符合题意,∴1.5x=45,答:甲公司单独完成此项工程需30天,乙公司单独完成此项工程需45天;(2)①设甲公司技术革新前每天的施工费用是y元,那么乙公司技术革新前每天的施工费用是(y﹣1000)元,则由题意可得:(y+y﹣1000)×18=126000,解得:y=4000,∴y﹣1000=3000,答:技术革新前,甲公司每天的施工费用是4000元,乙公司每天的施工费用是3000元;②4000×14×(1+a%)+3000×12×(1+2a%)=126000﹣21200,解得:a=10.答:a的值是10.。
方程应用题大全及答案
方程应用题大全及答案1. 某工厂计划生产一批零件,原计划每天生产100个,实际每天生产120个,结果提前2天完成。
求原计划需要多少天完成。
解:设原计划需要x天完成,则实际需要x-2天完成。
根据题意得: 100x = 120(x-2)解得:x = 12答:原计划需要12天完成。
2. 一个水池有甲、乙两个进水管,甲管单独开放需要20小时注满水池,乙管单独开放需要30小时注满水池。
现在两管同时开放,需要多少小时才能注满水池?解:设需要x小时才能注满水池,则有:(1/20 + 1/30)x = 1解得:x = 12答:需要12小时才能注满水池。
3. 某商店购进一批商品,进价为每件100元,标价为每件150元。
为了促销,商店决定打折销售,若打8折,每件商品的利润是标价的10%,求打几折?解:设打x折,则有:150 * (x/10) - 100 = 150 * 10%解得:x = 8答:打8折。
4. 甲、乙两人分别从A、B两地同时出发,相向而行。
甲的速度是每小时40千米,乙的速度是每小时60千米。
两人相遇后,乙再行2小时到达A地,求A、B两地的距离。
解:设A、B两地的距离为x千米,则有:(x/(40+60)) * 40 + 2 * 60 = x解得:x = 480答:A、B两地的距离为480千米。
5. 某工厂生产一批零件,计划每天生产300个,实际每天生产了320个。
结果提前5天完成任务。
求原计划需要多少天完成任务。
解:设原计划需要x天完成任务,则有:300x = 320(x-5)解得:x = 40答:原计划需要40天完成任务。
6. 甲、乙两人分别从A、B两地同时出发,相向而行。
甲的速度是每小时20千米,乙的速度是每小时30千米。
两人相遇后,甲再行3小时到达B地,求A、B两地的距离。
解:设A、B两地的距离为x千米,则有:(x/(20+30)) * 20 + 3 * 30 = x解得:x = 300答:A、B两地的距离为300千米。
初三解方程练习题大全
初三解方程练习题大全解方程是初三数学中的重要知识点之一,也是一项需要坚实基础和长期积累的技能。
本文将为大家提供初三解方程的练习题大全,帮助学生巩固和提高解方程的能力。
一、一元一次方程1. 解方程:2x - 4 = 10解析:将方程中的常数项移到等号右边,得2x = 10 + 4,再将系数约去,可得x = 7。
2. 解方程:3(x + 2) = 27解析:先利用分配律化简方程,得3x + 6 = 27,再将常数项移到等号右边,可得3x = 27 - 6,最后将系数约去,可得x = 7。
3. 解方程:5 - 3x = 1解析:将方程中的常数项移到等号右边,得-3x = 1 - 5,再将系数约去,可得x = -2。
4. 解方程:-2(x - 3) = 4解析:先利用分配律化简方程,得-2x + 6 = 4,再将常数项移到等号右边,可得-2x = 4 - 6,最后将系数约去,可得x = -1。
二、一元二次方程1. 解方程:x^2 + 3x + 2 = 0解析:可以使用因式分解或配方法解这个一元二次方程。
通过因式分解,我们可以得到(x + 1)(x + 2) = 0,进而得到x = -1 或 x = -2。
2. 解方程:2x^2 - 5x + 2 = 0解析:可以使用因式分解或配方法解这个一元二次方程。
通过因式分解,我们可以得到(2x - 1)(x - 2) = 0,进而得到x = 1/2 或 x = 2。
3. 解方程:3x^2 + 5x - 2 = 0解析:可以使用因式分解或配方法解这个一元二次方程。
通过因式分解,我们可以得到(3x + 2)(x - 1) = 0,进而得到x = -2/3 或 x = 1。
4. 解方程:x^2 + 4x + 4 = 0解析:可以使用因式分解或配方法解这个一元二次方程。
通过因式分解,我们可以得到(x + 2)^2 = 0,进而得到x = -2。
三、应用题1. 小明今年的年龄是小红去年年龄的2倍,若小红去年的年龄是x 岁,求小明今年的年龄。
2023中考复习——应用题(学生版)
应用题一、二元一次方程组1.(2014遂宁中考·19)(9分)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比打折前少花多少钱?2.(2020遂宁中考·20)(9分)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?二、分式方程1.(2011遂宁中考·20)(9分)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?2.(2012遂宁中考·20)(9分)经过建设者三年多艰苦努力地施工,贯通我市的又一条高速公路“遂内高速公路”于2012年5月9日全线通车.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和现在走高速公路的平均速度分别是多少?3.(2013遂宁中考·20)(9分)2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?4.(2014遂宁中考·20)(9分)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?5.(2019遂宁中考·21)(9分)仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3750元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于2460元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)三、一元二次方程的应用1.(2016遂宁中考·20)(9分)红旗连锁超市花2000购进一批糖果,按80%的利润定价无人购买,决定降价出售,但仍无人购买.结果又一次降价后才售完,但仍盈利45.8%,两次降价的百分率相同,问每次降价的百分率是多少?2.(2021遂宁中考·21)(9分)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?四、一次函数+不等式1.(2012遂宁中考·23)(10分)我市新都生活超市准备一次性购进A、B两种品牌的饮料100箱,此两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.品牌A B进价(元/箱)6549售价(元/箱)8062(1)求y关于x的函数关系式;(2)由于资金周转原因,用于超市购进A、B两种饮料的总费用不超过5600元,并要求获得利润不低于1380元,则从两种饮料箱数上考虑,共有哪几种进货方案?(利润=售价﹣进价)2.(2013遂宁中考·23)(10分)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.五、综合1.(2017遂宁中考·21)(9分)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?2.(2022遂宁中考·19)(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程应用题解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答” .1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设” 是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).3 、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4、“解”就是解方程,求出未知数的值.5、“验”就是验解,即检验方程的解能否保证实际问题有意义.6 、“答”就是写出答案(包括单位名称).应用题类型:1、行程问题:基本量之间的关系:路程=速度X时间,即:s vt • 常见等量关系:(1)相遇问题:甲走的路程+乙走的路程= 原来甲、乙相距的路程.(2)追及问题(设甲速度快):①同时不同地:甲用的时间=乙用的时间;甲走的路程一乙走的路程=原来甲、乙相距的路程.②同地不同时:甲用的时间=乙用的时间一时间差;甲走的路程=乙走的路程.2 、工程问题:基本量之间的关系:工作量=工作效率X工作时间.常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.3 、增长率问题:基本量之间的关系:现产量=原产量X (1+增长率).4 、百分比浓度问题:基本量之间的关系:溶质=溶液X浓度.5 、水中航行问题:基本量之间的关系:顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度.6 、市场经济问题:基本量之间的关系:商品利润=售价一进价;商品利润率=利润十进价;利息=本金X利率X期数;本息和=本金+本金X利率X期数.一元一次方程方程1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2 )多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例 1. 根据2001 年 3 月28 日新华社公布的第五次人口普查统计数据,截止到2000 年11 月 1 日0 时,全国每10 万人中具有小学文化程度的人口为35701 人,比1990 年7 月1 日减少了3.66% ,1990 年6 月底每10 万人中约有多少人具有小学文化程度?分析:等量关系为:2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
2例 2. 用直径为90mm 的圆柱形玻璃杯(已装满水)向一个由底面积为125 125mm 内高为81mm 的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm ?(结果保留整数3.14 )3. 劳力调配问题:例 3. 机械厂加工车间有85 名工人,平均每人每天加工大齿轮16 个或小齿轮10 个,已知 2 个大齿轮与3 个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?4. 比例分配问题:这类问题的一般思路为:设其中一份为X,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
例 4. 三个正整数的比为1:2: 4 ,它们的和是84,那么这三个数中最大的数是几?5. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c (其中a、b、c均为整数,且1 <a W9, 0 w b <9, 0 <c <9 )则这个三位数表示为:100a+10b+c 。
( 2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N 表示,连续的偶数用2n+2 或2n—2 表示;奇数用2n+1 或2n—1 表示。
例 5. 一个两位数,个位上的数是十位上的数的 2 倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36 ,求原来的两位数6. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率x工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例 6. 一件工程,甲独做需15 天完成,乙独做需12 天完成,现先由甲、乙合作 3 天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?7. 行程问题:(1 )行程问题中的三个基本量及其关系:路程=速度X时间。
( 2 )基本类型有① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
( 3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例7. 甲、乙两站相距480 公里, 一列慢车从甲站开出, 每小时行90 公里, 一列快车从乙站开出, 每小时行140 公里。
( 1 )慢车先开出1 小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?( 2)两车同时开出,相背而行多少小时后两车相距600 公里?( 3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600 公里?( 4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?5 )慢车开出1 小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?8. 利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价一商品进价=商品标价x折扣率一商品进价商品利润率=商品利润/商品进价商品售价=商品标价X折扣率例8. 一家商店将某种服装按进价提高40% 后标价,又以8 折优惠卖出,结果每件仍获利种服装每件的进价是多少?9. 储蓄问题⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20% 付利息税⑵利息=本金X利率X期数本息和= 本金+利息利息税=利息X税率(20% )例9. 某同学把250 元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7 元,年期的年利率是多少?(不计利息税)二元一次方程组1 .“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何” .题目大意:在现有鸡、兔在15 元,这求银行半同一个笼子里,上边数有35 个头,下边数有94 只脚,求鸡、兔各有多少只.2 .《希腊文集》中有一些用童话形式写成的数学题.比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了.骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假若你的货物给我一口袋,我驮上的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多.”那么驴和骡子各驮几口袋货物?你能用方程组来解这个问题吗?♦规律方法应用3 •戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说:“我看到船上红、白两种帽子一样多.” 一男生说:“我看到的红帽子是白帽子的2倍” •请问:该船上男、女生各几人?钱,则两班各有多少名学生? ♦中考真题实战6 •(吉林)随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某地区2003年和2004年小学入学儿童人数之比为8 : 7,且2003?年入学人数的2倍比2004年入学人数的3倍少1 500?人,?某人估计2005?年入学儿童人数将超过 2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.班人数较少,不有50多人.经估 别购票,则一共起来,作为一个到50人,(2 )班人数较多,算,如果两班都以班为单位分应付1 240元;如果两班联合团体购票,?则可以节省不少5 •某公司的门票价格规定如下表所列,某校七年级( 1 ), (2)两个班共104人去游公园,其中(1 )一元一次不等式组及其应用1 •如图所示,一筐橘子分给若干个儿童,如果每人分4个,?则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,2 • 七 (2)班有50名学生,老师安排每人制作一件A型或B型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg,制作A , B两种型号的陶艺品用料情况如下表:(1) 设制作B型陶艺品x件,求x的取值范围;(2) 请你根据学校现有材料,分别写出七( 2 )班制作A型和B型陶艺品的件数.3 . 2008年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,?观看帆船比赛的船票分为两种:A种船票600/张,B种船票120/张.?某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买 A , B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半,若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?4 . “五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60?座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),?而且要比单独租用一种车辆节省租金•请你帮助学校选择一种最节省的租车方案.5 •某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,押,乙两工程队再合作20天完成.(1 )求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中的一部分用了x天,乙做另一部分用了y天,其中x, y均为正整数,且x<15 , y<70,求x, y .分式方程1 . (2009年桂林市、百色市)(本题满分8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标•经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.1)乙队单独完成这项工程需要多少天?2 )甲队施工一天,需付工程款3.5 万元,乙队施工一天需付工程款2 万元.若该工程计划在70 天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?2.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000 元,如果卖出相同数量的电脑,去年销售额为10 万元,今年销售额只有8 万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500 元,乙种电脑每台进价为3000 元,公司预计用不多于 5 万元且不少于 4.8 万元的资金购进这两种电脑共15 台,有几种进货方案?3. 某工厂准备加工600 个零件,在加工了100 个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?4 .(2009年山东青岛市)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?5 . (2009年哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售•若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1 )求每个甲种零件、每个乙种零件的进价分别为多少元?6 •在达成铁路复线工程中,某路段需要铺轨•先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?7.去年5月12日四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?8.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是 3 : 2 ,两队合做6天可以完成.(1 )求两队单独完成此项工程各需多少天?方程应用题练习1. 某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,元,且随身听的单价比书包单价的 4 倍少8 元.(1)求该同学看中的随身听和书包单价各是多少元?2. 某车间要生产220 件产品,做完100 件后改进了操作方法,每天多加工任务.求改进操作方法后,每天生产多少件产品?随身听和书包单价之和是452 10 件,最后总共用4 天完成了3. 某花木园 ,计划在园中栽 96 棵桂花树 ,开工后每天比原计划多栽 2棵,?结果提前 4 天完成任务 ,问原计划每天 栽多少棵桂花树 .型号,体积一共是 20 m 3 ,质量一共是 10.5 吨,求 A 、B 两种型号商品各有几件?4.(2010 年河南中考模拟题5)宏远商贸公司有 A 、B 两种型号的商品需运出, 这两种商品的体积和质量分别如 表所示 A 型商品B 型商品 ( 1 )已知一批商体积( m 3/件)0.82质量(吨/件) 0.5 1品有 A 、 B 两种5. 为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000 元,第二次捐款总额为12000 元,两次人均捐款额相等,但第二次捐款人数比第一次多50 人.求该校第二次捐款的人数.。