弹性力学空间问题
弹性力学-第7章 空间问题
zx
z
dz
zy
zy
z
dz
z 0
y
y
yx yz
xy
x
yz
yz
y
dy
fz
fy fx
xz
yx
y yx dy
y
y y
dy
zx zy
x
x
x x
dx
z
根椐平衡条件: Fx 0
xz
xzx
x
dx
x
x
x
dx dydz
xdydz
(
yx
yx
x
dy)dxdz
yxdxdz
( zx
zx
z
dz)dxdy
zxdxdy
Xdxdydz
0
§7-1平衡微分方程
x x
yx y
zx
z
fx
0
xy
y
x
y
zy
z
f y
0
xz yz
x
y
z z fz 0
(7-1)
平面应力问题:
1、平面应力问题z方向应力为零:
0
xz
yz
0
z
2、所有的应力、应变和位移分量均与z无关,仅是x,y的函数。 以上方程可以直接转化为平面应力的平衡方程。
在计算任一平面上的应力时,方向余弦l,m,n可变化,但 均为有限值,故必存在某个平面,其上正应力取得极值。
主平面:正应力取得极值的平面。 主应力:主平面上的正应力。 主方向:主应力的方向,也称应力主向。 在主平面上,正应力取极值、剪应力为零。
二、主应力的确定:
设主平面存在,其外法线为n,
弹性力学徐芝纶版第8章
移项缩写为:
2
ij
ij l j 0
2 2
考虑方向余弦关系式,有
l m n 1. 或 li li 1
求主应力
2. 求主应力 σ
将式(a)改写为:
(σ x σ )l yx m zx n 0, xy l (σ y σ )m zy n 0, xz l yz m (σ z σ )n 0。
(7 12)
⑵ 应力用应变表示,用于按位移求解方法:
E E x ( x ), yz yz 1 1 2 2(1 ) E E y ( y ), zx zx 1 1 2 2(1 ) E E z ( z ), xy xy 1 1 2 2(1 )
斜面应力
§8-2 物体内任一点的应力状态
在空间问题中,同样需要解决:由直
角坐线为 n )上的应力。
斜面应力
斜面的全应力p 可表示为两种分量形式: p沿坐标向分量:
p ( px , p y , pz ).
p沿法向和切向分量:
p (σ n , n ).
空间问题的几何方程,可以从平面问 题推广得出: 现仅考虑只有xy平面内的位移 u , v 时的 情况进行推导: 通过点P(x,y)作两正坐标向的微分线段 PA dx, PB dy,
定义
变形前位置: P, A, B,
变形后位置: P, A, B --各点的位置如图。
几何方程
u x , x
求主应力
上式是求解 l , m , n 的齐次代数方程。由于l , m , n不全为0,所以其系数行列式必须为零,得
弹性力学5PPT课件
叠加原理的适用范围
适用于线弹性范围内的小变形问题,对于非线性问题或大变形问题,叠加原理不再适用。
叠加原理的应用举例
利用叠加原理求解复杂载荷下的梁的弯曲问题,可以将复杂载荷分解为几个简单载荷, 分别求出每个简单载荷下的弯曲变形,然后叠加得到最终结果。
03
平面问题求解方法
平面应力问题与平面应变问题
平面应力问题
分析薄板在面内荷载作用 下的应力、变形和稳定性。
平面应变问题
研究长柱体或深埋在地下 的结构物,在垂直于轴线 或地面的荷载作用下,其 横截面内的应力和变形。
两者区别
平面应力问题中,垂直于 板面的应力分量可忽略不 计;而平面应变问题中, 该应力分量不可忽略。
功的互等定理与卡氏定理的应用举例
利用功的互等定理可以求解某些复杂结构的位移和应力问题;利用卡氏 定理可以求解某些特殊载荷作用下的应力问题。
虚功原理与最小势能原理
虚功原理的基本内容
在弹性力学中,外力在虚位移上所做的功等于内力在虚应变上所做的功。这里的虚位移和虚应变是指满足几何约束和平衡 条件的任意微小的位移和应变。
复变函数的引入
利用复变函数的性质,可将平面 弹性力学问题中的偏微分方程转 化为复变函数的解析函数问题。
保角变换
通过保角变换,可将复杂形状的 平面区域映射为简单形状的区域, 从而简化问题的求解。
边界条件的处理
在复变函数法中,边界条件的处 理是关键步骤之一,需要根据具 体问题选择合适的处理方法。
差分法和有限元法在平面问题中的应用
边界条件处理
阐述有限元法中边界条件的处理方法, 如固定边界、自由边界、对称边界等。
《弹性力学简明》习题提示和参考答案
题提示和答案《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设)。
2-14 见教科书。
2-15 见教科书。
2-16 见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
第七章 弹性力学空间问题解答
§7-1 空间问题的基本方程 1. 平衡微分方程方程
2. 几何方程
3. 物理方程
各种弹性常数之间的关系
4. 相容方程
5. 边界条件:
位移边界条件:对于给定的表面Su,其上沿 x,y,z方向给定位移为 ,则
应力边界条件:给定表面上的面力为
• 求解空间问题同样有位移法、应力法和应力函 数法三种方法。
§7-2柱坐标和球坐标系下的基本方程
• 一. 柱坐标系下的基本方程
直角坐标系下,空间一点M的位置由(x,y,z)表示,在柱坐 标系下,空间一点M的位置由(r, q, z)表示。两坐标间的关 系为:
在柱坐标系下的应力分量为
应变分量为 位移分量为
柱坐标表示的基本方程 • 1. 平衡方程
(7-1)
• 2. 几何方程
(7-6)
(2)几何方程:将式(7-5)代入式(7-2),得
(7-7)
(3)物理方程:将式(7-5)代入式(7-4),得
(7-8)
(4)空间轴对称问题位移求解的基本方程
空间轴对称问题共有四个应力分量,两个位移分量。 以位移求解更方便。 将几何方程(7-7)代入物理方程(7-8),得
(7-9)
• 将式(7-9)代入平衡方程(7-6),化简后得
1. 位移法:将几何方程代入物理方程,得到用位移
表示的应力分量,再将应力分量代入平衡方程和应力边 界条件,即得到空间问题的位移法控制方程。
2. 应力法:以应力作为基本未知量。将相容方程用应 力表示——应力控制方程
3. 应力函数法:先引入应力函数,满足微分平衡方
程。 由微分平衡方程得应力函数与应力分量的关系,再将 用应力函数表示的应力分量代入相容方程,得到一组 用应力函数表示的相容方程,即应力函数表示的控制 方程。
9第2章弹性力学平面问题及空间问题有限元
假定的位移函数是多项式,它是连续函数,可以肯定,在单元内部位移函数是单值连续的。由于单 元的位移函数 u 、 v 都是坐标 x 、 y 的线性函数,在单元边界上位移也是线性变化的,两个相邻单元在 公共节点上具有相同的节点位移,因而相邻单元在公共边界上位移连续,即协调条件得到满足。 由上面分析可以看出,三角形常应变单元的位移模式可以保证计算结果的收敛。
px
py
px
py ]
T
(2-1-7b)
(2 )若在 jm 边上受线性分布的水平方向的面力,它在 j 点的集度为 q ,在 m 点的集度为零 (如图 2-5) 。可预计由该面力求得的等效节点载荷只有 R xj 、
R xm ,其余节点载荷分量必为零。
将 jm 边上的分布面力写成 s 的函数,为
s { p} [ (1 ) q 0]T l 在 jm 边上的形函数也需用变量 s 表示,根据形函数的含义,
Ve
[k ii ] [k ij ] [ k im ] [k ji ] [k ij ] [k jm ] [k mi ] [ k mj ] [k mm ]
式中, t 为单元的厚度,当单元划分得足够小时,可以认为每个单元的厚度 t 为常值。子阵为
(2-1-5)
[k rs ] [ Br ]T [ D][B s ]tA
101
二、 单元刚度矩阵 1、单元几何矩阵 [ B ] 有了单元的位移模式,利用平面问题的几何方程求得应变分量
0 x x u e e 0 { } [ L][ N ]{} [B ]{} y y v xy y x
现代设计方法4-1弹性力学平面问题的基本方程
些概念和方程,作为弹性力学有限单元法
的预备知识。
弹性力学—区别与联系—材料力学
1、研究的内容:基本上没有什么区别。
弹性力学也是研究弹性体在外力作用下的平衡和运动,
以及由此产生的应力和变形。
2、研究的对象:有相同也有区别。
材料力学基本上只研究杆、梁、柱、轴等杆状构件,即 长度远大于宽度和厚度的构件。弹性力学虽然也研究杆 状构件,但还研究材料力学无法研究的板与壳及其它实 体结构,即两个尺寸远大于第三个尺寸,或三个尺寸相 当的构件。
y
x
某一个截面上的外法线方向是沿坐标轴的正方向,这个截面称 正面,面上的应力沿正向为正,负方向为负。相反如果某截 面上的外法线是沿坐标轴的负方向,截面为负面,面上的应 力以沿坐标轴负向为正,正向为负。 空间问题有九个应力分量:三个正应力&六个剪应力三个独立
剪应力:txy = tyx 线应变:ex
s De
e x e e y g xy
1 E D 2 1 0
1 0
0 0 1 2
[D]平面应力问题的弹性矩阵,对称与E,有关
(3)平面应变问题的物理方程
角应变:gxy
tyz = tzy tzx = txz
空间应力状态有6个独立应力分量,对应6个应变分量:
ey
ez
gyz gzx
完全弹性,各向同性物体应变与应力关系(胡克定律导出) 胡克定律:在单向应力 状态下,处于弹性阶段
1 e x E s x (s y s z ) 1 e y s y (s x s z ) E 1 e z s z (s x s y ) E 1 1 1 g xy G t xy , g yz G t yz , g zx G t zx
《弹塑性力学》第九章空间轴对称问题
80%
物理方程
描述了材料在不同应力状态下表 现出的物理性质。
塑性力学的基本方程
流动法则
描述了塑性应变与应力之间的 关系。
屈服准则
描述了材料屈服的条件,即应 力达到屈服点时的状态。
强化准则
描述了材料在塑性变形过程中 的应力增强机制。
空间轴对称问题的边界条件和初始条件
边界条件
描述了物体在边界上的受力状态和位 移约束。
如旋转机械、航空航天器等的 设计和分析。
土木工程
如桥梁、高层建筑等大型结构 的分析。
石油工程
如油藏模拟、油气管道设计等 。
核工程
如核反应堆、核废料处理设施 等安全评估。
02
空间轴对称问题的数学模型
弹性力学的基本方程
80%
平衡方程
描述了物体内部各点的受力平衡 状态。
100%
几何方程
描述了物体在受力后产生的形变 和位移。
近原问题的解。
在处理空间轴对称问题时,有限元法能 够将复杂的空间几何形状和边界条件简 化为易于处理和计算的离散模型,从而
提高求解效率。
有限元法在空间轴对称问题中广泛应用 于弹性力学、塑性力学等领域,能够得
到高精度的数值解。
有限差分法在空间轴对称问题中的应用
有限差分法是一种将偏微分方程离散化为差分方程的方法,通过求解差分方程来逼近原问题
目
CONTENCT
录
• 空间轴对称问题的基本概念 • 空间轴对称问题的数学模型 • 空间轴对称问题的解析解法 • 空间轴对称问题的数值解法 • 空间轴对称问题的实验研究
01
空间轴对称问题的基本概念
定义与特性
定义
空间轴对称问题是指物体在空间中关于某一直线或平面对称分布 的问题。
《弹性力学》试题参考答案与弹性力学复习题
弹性力学复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
弹性力学----基本方程
ji, j Fbi 0
位移与应变几何方程 6个
ij
1 ui 2 x j
u j xi
应力与应变物理方程 6个
σ= Dε
第一节 基本方程
待解未知函数:
空间问题 应力分量 6个 应变分量 6个
未知函数15个,方程数 也为15个。位移和应力 还应该满足单值条件
位移分量 3个 边界条件 应力边界条件:在边界上给定外力,应力应满足 应力边界条件。
第四章 基本方程
弹性静力学的问题构成了偏微分方程组 的边值问题,根据应力或位移为求解的未知 函数进行简化,得到基本方程。直接求解一 般是十分困难的,还需要进一步简化为平面 问题和对称问题。基本方程还为弹性力学的 数值解法奠定了基础。
第一节 第二节
基本方程 基本方程的意义
第一节 基本方程
求解方程: 应力平衡方程 3个
2 2x
1 1
(
2
)
Fb x
x
Fb y y
Fb z z
(1 )2 y
2 2 y
1 1
(2
)
Fb y
y
Fb z z
Fb x x
(1 )2 z
2 2z
1 1
(2
)
Fb z
z
Fb x x
Fb y y
(1 )2 yz
2 yz
(1
)
Fb y
z
Fb y z
(1 )2 zx
2 zxBiblioteka (1 ) 2y
2v Fby
0
E 2(1
)
1
1
2
z
2
w
Fbz
0
其中 x y z 称为体积应变。
02《弹性力学》教案:第二章:平面问题的基本理论
二、弹性力学平面问题
弹性力学平面问题的特点有两个: ( 1) 、从几何尺寸的角度看,物体一个方向的尺寸,较之其它两个方向的尺 寸要大得多,或小得多。 ( 2) 、从受力分析的角度看,物体所受的体力分量和面力分量,以及由此产 生的应力分量、应变分量和位移分量,都与某一个坐标轴(例如 z 轴)无关。 有 两 种 典 型 情 况 , 分 别 是 平 面 应 力 问 题 ( pla ne s tre ss pr obl e m ) 和 平 面 应 变 问 题 ( pla ne stra i n pr obl e m ) 。分别讨论。 1、 平 面 应 力 问 题 几 何 尺 寸 : 物 体 是 很 薄 的 等 厚 度 平 板 , 沿 z 方 向 的 厚 度 为 t; 沿 x 方 向 和 y 方 向的尺寸,远大于厚度 t。 坐 标 系 : 以 薄 板 的 中 面 为 xoy 面 , z 轴 垂 直 于 xoy 面 。 受力特点:体力作用于板内,平行于板面且不沿厚度变化, ( X、Y) ,沿厚 度均匀分布。 面力作用于板边,平行于板面且不沿厚度变化, ( X 、Y ) ,沿厚 度均匀分布。
σ x = σ x ( x, y ) , 则 在 c d 面 上 , 由 于 长 度 增 加 了 dx , 则 c d 面 上 的 正 应 力 分 量 应 随
之 变 化 。应 力 分 量 的 这 种 变 化 可 用 泰 勒 级 数 展 开 求 得 。实 际 上 ,在 c d 面 上 ,我 们 有
σ x ( x + dx, y ) = σ x ( x, y ) +
11
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
第八章弹性力学问题一般解·空间轴对称问题
所求问题的边界条件给定的是边界上的位移 ui ui,则可直接进行计算。 如果全部边界或部分边界上给出的是应力边界条件, ij l j F i 就要将应力 形式的边界条件转换成为位移形式。 其方法与将应力形式的平衡方程转化为Lame方程的方法大致相同。现推导如 下:先后将式(4-6)、式(4-2)代人式(4-13)得 E E ij ij e ij ij e 2G ij (4 6) (1 )(1 2 ) (1 )
将 2G 换成 , E 来表示,则位移解答为
显然最大位移发生在边界上,由式(8-7)可知
将式(8-7)代入几何方程(4-2)求出应变,再引用式本够方程(4-6)可得应力分量解答
x y
1
( q pz ), z ( q pz ), xy yz zx 0
采用半逆解法。由于载荷和几何形状都对称于z 轴,则各点位移只在z向有变化。试假设
于是 而
因此由Lame方程式(8-3)的前两式知,它们成为恒等式自然满足,而第三式给出
式中A、B为积分常数。 边界上
边界条件式(8-6)前两式自然满足,
lx l y 0
lz 1
u u u u v w lx ly lz ) G ( lx ly lz ) x y z x x x v v v u v w F y el y G ( lx ly lz ) G ( lx ly lz ) x y z y y y w w w u v w F z el z G ( lx ly lz ) G ( lx ly lz ) x y z z z z F x el x G (
利用式(4-5),式(1)中 简化后得
弹性力学第七章 主应力
(7-3)
p2
2 n
2 n
px2
p
2 y
pz2
2 n
px2
p
2 y
pz2
2 n
(7-4)
弹性力学简明教程
NORTHEASTERN UNIVERSITY
§7-2 物体内一点的应力状态
如果ABC是边界面,px, py , pz 成为面力分量
fx, fy, fz
弹性力学简明教程
NORTHEASTERN UNIVERSITY
§7-5 轴对称问题的基本方程
弹性力学简明教程
NORTHEASTERN UNIVERSITY
§7-5 轴对称问题的基本方程
轴对称问题: 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外
力作用,都是对称于某一轴(通过这个轴的任一平面都是对称面),则 所有的应力、变形和位移也就对称于这一轴。轴对称问题的弹性体的形 状一般为是圆柱或半空间。
( x
1)
m1 l1
yx
n1 l1
zx
0
xy
m1 l1
( y
1)
n1 l1
zy
0
可以求得 m1 , n1 的比值,再利用 l 2 m2 n2 1 求出:
l1 l1
l1
1
2
2
1
m1 l1
n1 l1
同样也可以求出其他主应力的方向余弦。
弹性力学简明教程
NORTHEASTERN UNIVERSITY
E
(7-13)
弹性力学简明教程
NORTHEASTERN UNIVERSITY
§7-4 几何方程及物理方程
弹性力学:09 空间问题的解答
4. 位移势函数的引用 (对应于无旋位移场)
为简单起见,不计体力
(
G)
x
G2u
Fx
0
(
G)
y
G2v
Fy
0
1 2u 0 1 2 x
1 2v 0 1 2 y
(
G)
z
G2w
Fz
0
1 2w 0 1 2 z
现假设位移是有势的,即:位移在某一方向
的分量可以用位移势函数ψ(x,y,z)在该方向的
问题描述: 设有半空间体,其比重为p,在水平边界面上
受均布压力q的作用,试用位移法求位移分量和应力分量。
并假设在z = h 处w =0。
q
1. 由于任意铅直平面都是对称面,假设
u 0,v 0, w w(z) (1)
x
R
y
z
e u v w d w e 0, e 0, e d2 w (2) z x y z d z x y z d z2
通过与平面问题 及极坐标中同样的分 析,可见,由径向位 移引起的形变分量为:
由于对称,各点
环向位移为零,由径
向位移产生的应变为
u
,
u
,
z
u z
1. 轴对称问题和球对称问题的基本方程
由轴向位移w产生的 应变为
z
w z
,
z
w
迭加得到几何方程
u
,
u
z
w, z
z
u z
w
1. 轴对称问题和球对称问题的基本方程
在球对称问题中,应力、应变、位移等分 量都只是径向坐标ρ的函数。
球对称问题
1. 轴对称问题和球对称问题的基本方程
弹性力学变分原理
fiuikdv
tiuik ds
s ij
ikj
dv
V
S
V
证明:
因为
s是静力容许的
ij
fiuik dv
s ij
,
juik
dv
V
V
s ij
n
juik
ds
us k
ij i ,
j
dv
S
V
移项后
tiuik ds
s
ij
k ij
dv
S
V
fiuikdv tiuikds isjikj dv
又 I ( b f ( x, y, y )dx) a
与上式比较,可得:
b
b
( f (x, y, y' )dx) f (x, y, y' )dx
a
a
结论:变分运算和积分运算可以交换次序
四、泛函的驻值与极值
1、函数的驻值和极值
如果函数y(x)在x=x0的邻近任一点上的值都 不大于或都不小于y(x0),即
三、泛函的变分
一般情况下,泛函可写为:
b
I a f (x, y, y)dx
1、按照泰勒级数展开法则,被积函数 f 的增 量可以写成
f f ( x, y y, y y ) f ( x, y, y )
f y f y ...
y y
上式中,右边的前两项是 f 的增量的主部, 定义为 f 的一阶变分,表示为
dv
V
S
V
并取
s ij
ij
fi (ui ui )dv ti (ui ui )ds
V
S
ij (ij ij )dv
V
第2章 平面问题的基本理论汇总
t= 1
平面应力:z方向应力为零。 平面应变:z方向应力自成平衡。
应用的基本假定: 连续性假定─应力用连续函数来表示。 小变形假定─用变形前的尺寸代替
变形后的尺寸。
二、平衡微分方程(平面任意力系)
合力 = 应力×面积,体力×体积; 以正向物理量来表示。
平面问题中可列出三个平衡条件:
例2(习题2-4) 按平面应变问题特征来分析, 本题中
ox z
y
只有
x x x, y , y y x, y , xy xy x, y
思考题 设有厚度很大(即 z 向很长)的基础梁放置在地基上,如果
想把它近似地简化为平面问题处理,问应如何考虑?
2-2 平面问题的平衡微分方程
将(px,py)向法向、切向投影,得
2-3 平面问题中一点的应力状态
一、斜截面上的应力
2-3 平面问题中一点的应力状态
一、斜截面上的应力
2-4 几何方程 刚体位移
一、几何方程:表示应变与位移之间的关系
x x x, y , y y x, y , xy xy x, y u u x, y,v v x, y
罗建辉
第二章
平面问题的 基本理论
2-1 平面应力问题和平面应变问题
一、弹性力学空间问题的简化
(在特定的条件下)
空间问题
平面问题
二、弹性力学平面问题
1、平面应力问题 (1) 几何特征:
等厚度的薄板,厚度<<长、宽; (2) 受力特征: ∥xy面,沿板厚不变;
体力fx、fy作用于体内; 面力fx、fy作用于板边; 约束u、v 作用于板边。
思考题
1.试检查,同一方程中的各项,其量纲必然相同(可用来 检验方程的正确性)。
结构有限元分析-第3章-轴对称
3 轴对称问题弹性力学空间问题中的轴对称问题是指,物体的几何形状、约束情况及所受的外力都对称于空间的某一根轴,因此在物体中通过该轴的任何平面都是对称面,所有应力、应变和位移也对称于该轴,这类问题称为轴对称问题。
研究轴对称问题时通常采用圆柱坐标系(r,θ,z),以z轴为对称轴。
轴对称问题实例如图3.1所示的受均布内压作用的长圆筒,通过Z轴的一个纵截面就是对称面图3.1受均布内压作用的长圆筒3.1 三角形截面环单元三结点单元位移函数图4-2 三结点单元轴对称问题分析中所使用的三结点单元,在对称面上是三角形,在整个弹性体中是三棱圆环,各单元中圆环形铰相联接。
三角形截面环单元的结点位移在轴对称问题中,弹性体内任意一点上,不存在切向位移,只存在径向位移u 和轴向位移w ,两个位移分量表示为,⎭⎬⎫⎩⎨⎧=w u f }{[][]Tmm j j i iT mT jT iew u w u w u==δδδδ}{单元结点位移轴对称问题的三结点三角形单元位移函数取为,⎭⎬⎫++=++=z r z r u 654321w αααααα⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m j i u u u c c c b b b a a a 21321ααα根据结点位移,可得:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m j i w w w c c c b b b a a a 21654ααα单元形函数jm m j i r z z r a -=mmj ji iz r z r z r 11121=∆mj i z z b -=jm i r r c -=(i ,j ,m ))(21z c r b a N i i i i ++∆=单元内任一点的位移{}[]{}em jim m j j i i m jim j iN N N w u w u w u N N N N N N w u f δ=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧=00003.2 应变矩阵(几何矩阵)根据几何方程及单元内位移的表达式,可得:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∂∂+∂∂∂∂∂∂=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧r w z u z w ru r u zr z r γεεεθ应变矩阵)(21m m j j i i u b u b u b r u ++∆=∂∂)(21m m j j i i u f u f u f r u ++∆=rcz b r a f i i i ++=(下标轮换))(21m m j j i i w c w c w c z w ++∆=∂∂)(21m m j j i i u c u c u c z u ++∆=∂∂)(21m m j j i i w b w b w b r w ++∆=∂∂应变矩阵[]{}em ji m m mm m jj jj j ii ii i zr z r B B B b c c f b b c c f b b c c f b δγεεεθ=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∆=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧00000000021),,(00021][m j i b c c f b A B i i i iii ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=3.3 应力矩阵由轴对称问题的物理方程,得到弹性矩阵,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------+-=)1(22100011101110111)21)(1()1(][μμμμμμμμμμμμμμμμμE D应力矩阵11A =-μμ2)1(221A =--μμ3)21)(1(4)1(A E=-+-μμμ令:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-=21111110010101)21)(1()1(][A A A A AA A E D μμμ则弹性矩阵为:]][[][B D S =][][m j iS S S S =),,()(2]][[][2211113m j i b A c A c f b A c A f b A c A f b A B D S i ii i i i ii i i i i i ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++∆==由弹性矩阵[D ]和几何矩阵[B ]可以得到应力矩阵[S ],由应力矩阵可知,除剪应力为常量,其它三个正应力分量都是r 、z 的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学空间问题知识点空间柱坐标系空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解分布载荷作用区域外的沉陷弹性球体变形分析热应力的弹性力学分析方法坝体热应力质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程球坐标的基本方程位移表示的平衡微分方程乐普位移函数载荷作用区域内的沉陷球体接触压力分析受热厚壁管道弹性应力波及波动方程应力波的相向运动一、内容介绍对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。
本章的主要任务是介绍弹性力学的一些专题问题。
通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。
另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。
本章首先介绍空间极坐标和球坐标问题的基本方程。
然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。
通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。
另一方面,本章将介绍弹性波、热应力等问题的基本概念。
二、重点1、空间极坐标和球坐标问题;2、布希涅斯克问题;3、半无限空间作用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。
§10.1 柱坐标表示的弹性力学基本方程学习思路:对于弹性力学问题,坐标系的选择本身与问题的求解无关。
但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。
某些坐标系可以使得一些特殊问题的边界条件描述简化。
因此,坐标系的选取直接影响问题求解的难易程度。
例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。
本节讨论有关空间柱坐标形式的基本方程。
特别是关于空间轴对称问题的基本方程。
学习要点:1、空间柱坐标系;2、柱坐标基本方程;3、空间轴对称问题的基本方程。
1、空间柱坐标系在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,ϕ,z)表示。
直角坐标与柱坐标的关系为:x =ρ cos ϕ,y =ρ sin ϕ , z = z柱坐标下的位移分量为:uρ,uϕ,w柱坐标下的应力分量为:σρ,σϕ,σz,τρϕ,τϕ z,τzρ柱坐标下的应变分量为:ερ,εϕ,εz,γρϕ,γϕ z,γzρ以下讨论柱坐标系的弹性力学基本方程。
2、柱坐标基本方程1、平衡微分方程2、几何方程3、物理方程其中3、空间轴对称问题的基本方程对于轴对称问题,即物体的几何形状,边界条件和约束条件等外界因素均对称于某一坐标轴,例如z轴时,则根据变形的对称性,有根据几何方程,则,而根据本构方程,则。
其余应变分量和应力分量仅是坐标ρ,z的函数,而与坐标ϕ无关。
因此,基本方程可以简化为1、平衡微分方程2、几何方程3、本构方程§10.2 球坐标表示的弹性力学基本方程学习思路:对于弹性力学问题,坐标系的选择本身与问题的求解无关,但是坐标系的选择与问题的基本方程、特别是边界条件的描述关系密切。
因此,坐标系的选取直接影响问题求解的难易程度。
对于球体、特别是球对称问题,采用球坐标求解将更为方便。
这些问题如果应用直角坐标问题可能得不到解答。
本节讨论空间球坐标系的基本方程表达形式。
对于空间球对称问题的基本方程表达形式作专门的探讨。
学习要点:1、球坐标的基本方程;2、空间球对称问题的基本方程1、球坐标的基本方程在球坐标系下,空间一点M的位置是用3个坐标(R,θ,ϕ)表示。
直角坐标与球坐标的关系为如果分别采用表示柱坐标下的位移分量;采用和分别表示柱坐标下的应力和应变分量。
则它们应该满足下列方程,有1、平衡微分方程2、几何方程3、物理方程2、空间球对称问题的基本方程对于球对称问题,也就是说物体的几何形状,约束条件,外力和其他外界因素都对称于某一点(例如坐标原点)。
由于变形的对称性,则。
根据几何方程和本构方程,则和,其余的应变分量和应力分量也仅是坐标R的函数,而与坐标θ,ϕ无关。
而且。
因此基本方程可以简化为如果将球对称位移代入平衡微分方程,则球对称条件下的位移表示的平衡微分方程为§10.3 半无限平面受法向力的作用学习思路:1885年,布西内斯科(Boussinesq.J.V)首先求解了半无限平面受法向集中力作用的问题,因此该问题称为布西内斯科问题。
这一问题的求解是弹性力学最有理论价值的结论之一。
布西内斯科问题的求解对于地基应力、基础沉陷和弹性力学接触等领域的研究工作具有重要的应用价值,为相关学科的理论研究奠定了基础。
根据结构分析,问题是空间轴对称问题,因此采用柱坐标求解。
求解方法采用位移法,求解步骤为:1、建立位移表示的平衡微分方程。
2、引入乐甫(love)位移函数简化问题分析。
这一方面简化问题分析,使得基本方程成为双调和方程;另一方面,乐甫函数作为基本未知量可以表达弹性体的位移和应力分量,因此减少了面力边界条件在位移解法中应用的困难。
3、根据问题的性质假设乐甫位移函数,并且通过边界条件确定函数的待定系数。
4、回代可以确定问题的位移,特别是半无限平面的沉陷等。
学习要点:1、位移表示的平衡微分方程;2、乐甫位移函数与基本方程;3、乐甫位移函数的选择与基本未知量;4、边界条件与布西内斯科解。
1、位移表示的平衡微分方程设半无限体的表面受法向集中力F的作用,选取坐标系如图所示在不计重力的条件下,求半无限体内的应力和位移分布情况。
对于半无限平面受法向集中力F的作用问题。
根据结构的受力分析,显然这是一个空间轴对称问题,因此采用柱坐标求解。
问题的求解有多种方法,下面讨论位移法求解。
将轴对称问题的本构方程代入平衡微分方程则可以得到位移表示的平衡微分方程其中,空间轴对称问题的拉普拉斯算符为。
如果不计体力,则平衡微分方程可以简化为2、乐甫位移函数与基本方程对于无体力的半无限平面受法向集中力作用问题,基本方程为在给定边界条件下求解位移表示的平衡微分方程。
对于空间轴对称弹性体分析,可以引入乐甫(love)位移函数简化问题分析。
设位移分量为将上述位移分量代入平衡微分方程,可以得到关于ψ (ρ,z)的双调和方程。
ψ (ρ,z)称为乐甫函数。
因此,问题就归结于在给定的边界条件下求解双调和函数ψ (ρ,z)。
引入乐甫位移函数一方面可以简化问题,使得基本方程成为双调和方程;另一方面由于乐甫函数作为基本未知量可以表达弹性体的位移和应力分量,因此减少了面力边界条件在位移解法中应用的困难。
将乐甫函数表达的位移分量代入几何方程和本构方程,则问题求解的关键是建立双调和函数ψ (ρ,z)。
3、乐甫位移函数的选择与基本未知量根据量纲分析,应力分量表达式应为F乘以ρ,z,R等长度坐标的负二次幂,位移分量应为长度坐标的负一次幂函数。
如果注意到应变分量和位移分量之间的关系,以及应变分量和应力分量之间的关系,可以知道,乐甫函数ψ(ρ,z) 为ρ,z,R的正一次幂的双调和函数。
所以设乐甫位移函数为其中,而A和B为任意常数。
将乐甫函数代入位移和应力分量表达式,则可以得到位移分量应力分量4、边界条件与布西内斯科解根据面力边界条件,有。
根据上述边界条件第二式,可得考虑距离表面为z的水平面上的正应力的合力由平衡条件,有求解可以得到联立求解上述方程,可得。
回代可得位移分量为应力分量为根据位移表达式,对于任何一条常数的直线上,位移与距坐标原点的距离成反比。
在无穷远点,位移趋于零。
在z = 0的平面上,即半无限体表面上任一点的法向位移(即沉陷)为上式对于任意的z =0,而ρ ≠0均成立。
公式表明,半无限体表面的沉陷与该点到力的作用点的距离成反比。
上述公式称为布西内斯科解。
§10.4 半无限平面作用法向分布载荷学习思路:通过布西内斯科问题解答的叠加,可以得到表面区域作用分布载荷问题的解答。
本节讨论半无限体,表面半径为a到圆形区域,作用均匀法向分布力问题。
分析半无限弹性体的应力和位移分布等,特别是表面沉陷问题。
问题分为三个部分讨论。
一是载荷作用区域中心点下方的位移;二是载荷作用区域外的沉陷;三是载荷作用区域内的沉陷。
由于分布载荷是连续的,因此问题的迭加工作可以通过积分完成。
这里应该特别注意的是布西内斯科解的坐标在积分中的变换问题。
由于坐标的变换,因此对于每一个问题都要建立积分的局部坐标。
积分坐标变换是本节学习的难点。
学习要点:1、载荷作用区域中心点下方的位移;2、载荷作用区域外的沉陷;3、载荷作用区域内的沉陷。
1、载荷作用区域中心点下方的位移在半无限体的表面半径为a到圆形区域作用法向分布力,其应力分量和位移分布情况可以通过半无限体受法向集中力的结果迭加得到。
设圆形区域的半径为a,单位面积的压力为q,如图所示首先分析载荷作用圆形区域中心下面(即z轴上)任意一点的位移表达式。
对于圆形区域中心下面任意一点M,由于对称性,有z方向的位移分量可以根据公式的第二式得到。
引进变量β, 并且注意到则环形面积上的分布载荷q引起圆形区域中心下面任意一点M 的位移为所以令上式中z=0,则可得载荷圆域中心点的沉陷为2、载荷作用区域外的沉陷下面讨论半无限体表面的沉陷。
对于半无限体表面上的点M,则必须首先区分它在载荷圆形区域之外,还是在圆形区域之内。
如果点M位于载荷圆形区域之外,则由图可见变量s和ψ作为描述圆形区域的局部坐标,则根据公式可得图中阴影部分的合力在M点产生的沉陷为因此,M点的总沉陷为对上式进行积分,注意到弦mn的长度,即并且在积分时考虑对称性,可得积分上限ψ1是ψ的最大值,即圆的切线与OM之间的夹角,对于确定的点M,它是确定的值。
为了简化运算,我们引进变量ϕ,由图可见,它与ψ 之间的关系为a sinϕ = ρ sinψ由此可得将上式代入积分公式,并且注意到当ψ从0变化到ψ1时,ϕ由0变化到π/2,于是上式右边的两个积分为椭圆积分,他们可以按照a/ρ 的数值从函数表中查出。
当ρ =a时,则3、载荷作用区域内的沉陷如果点M位于载荷圆域内部,考虑图中的阴影部分(其面积为d A=s dψd s)在点M 引起的沉陷,然后经积分,得到总沉陷为由于弦mn的长度,即,而ψ是由0变化到π/2的,所以利用关系式a sinϕ =ρsinψ,则上式成为上式右边的椭圆积分,可以通过查表而得到。
若令ρ =0,则可以得到公式的结果,它是半无限体表面的最大沉陷。
将公式和公式相比较,可见最大沉陷是载荷圆边界沉陷的π/2倍。
由公式可以看到,最大沉陷不仅与载荷集度q成正比,而且还与载荷圆的半径成正比。
半无限体表面作用分布载荷的应力分量同样可以使用叠加法求解。