直线方程说课稿
直线的方程说课稿
三、说学法
学生本身学习了直线的方程,也有 了一定的了解,在此基础上采用启发 式学习,培养分析问题的能力和结局 问题的能力,在合作、探索学习中形 成一定的数学思维
四、说过程
• • • • • 提出问题,引导思考 回顾知识 ,归纳总结 练习巩固,加深理解 课教社科标教材a版数学2第三章第二节的内容1地位和作用直线的方程是解析几何的基础知识对直线的方程的理解影响着学生理解解析几何的思想方法对后面学习圆圆锥曲线双曲线与直线的位置关系有着重要的作用
直线的方程
一、说教法
《直线的方程》是人教社科标教材A版 《数学2》第三章第二节的内容
二、说教法
根据学生刚学完直线的方程的基本知识, 通过回顾:确定一条直线的的几何要素引出本 节复习课的内容直线的方程。由于直线的点斜 式方程是推导其它直线的方程的基础, 因此 由点斜式引出斜截式、两点式、截距式和一般 方程。同时分析直线方程的局限性和优势。结 合例题,让学生经历分析问题,解决问题的数 学思想来加深对直线方程的理解。
(1)地位和作用 直线的方程是解析几何的基础知识,对直 线的方程的理解,影响着学生理解解析几 何的思想方法,对后面学习圆、圆锥曲线、 双曲线与直线的位置关系有着重要的作用。
(2)教学目标
• • 知识与技能目标:使学生学会推导直线的方 程,同时了解各种形式的优势和局限,能根 据条件求出直线的方程。 过程与方法目标:通过让学生经历直线的方 程的发现过程,以提高学生学生分析、比较、 概括、化归的数学能力,培养学生运用知识 解决问题的能力。
直线的一般式方程 教案 说课稿 教学设计
直线的一般式方程●三维目标1.知识与技能(1)掌握直线方程的两点式的形式特点及适用条件.(2)了解直线方程截距式的形式特点及适用条件.(3)明确直线方程一般式的形式特点,会把直线方程的一般式同直线方程的其他形式互化.2.过程与方法(1) 让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.(2)通过探究直线与二元一次方程的关系,让学生积极、主动地参与观察、分析、归纳,进而得出直线的一般式方程,培养学生勇于探究的精神和学会用分类讨论的数学思想方法解决问题.3.情感、态度与价值观(1)认识事物之间的普遍联系与相互转化.(2)培养学生用联系的观点看问题.●重点难点重点:直线方程的两点式、一般式.难点:两点式的适用条件及直线方程一般式的形式特征.重难点突破:以具体案例“求过两点的直线方程”为切入点,通过学生解答,发现知识之间的联系,然后通过观察、思考和互相交流,归纳出直线方程的两点式的形式.针对其适用条件,教学时可引导学生从两点式的形式给予突破;从直线方程的点斜式、斜截式、两点式、截距式的形式出发,采用由特殊到一般的方式,通过学生观察、师生交流,寻其共性,得出直线方程一般式的形式特征,最后通过典例训练,熟练掌握直线方程的各种形式,突出重点的同时化解难点.【课前自主导学】直线方程的两点式和截距式【问题导思】1.利用点斜式解答如下问题:(1)已知直线l 经过两点P 1(1,2),P 2(3,5),求直线l 的方程;(2)已知两点P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2,求通过这两点的直线方程. 【提示】 (1)y -2=32(x -1).(2)y -y 1=y 2-y 1x 2-x 1(x -x 1).2.过点(3,0)和(0,6)的直线能用x 3+y6=1表示吗? 【提示】 能.3.过点(2,3)和(2,5)的直线能用两点式表示吗?为什么?过点(2,3),(5,3)的直线呢? 【提示】 不能,因为2-2=0,而0不能做分母.也不能. 直线方程的两点式和截距式名称已知条件示意图方程使用范围两点式P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2y -y 1y 2-y 1=x -x 1x 2-x 1 斜率存在且不为0截距式在x ,y 轴上的截距分别为a ,b 且a ≠0,b ≠0x a +y b =1斜率存在且不为0,不过原点线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1)、(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22.直线的一般式方程【问题导思】我们已经学习了直线的点斜式y -y 0=k (x -x 0),直线的斜截式y =kx +b ,直线的两点式y -y 1y 2-y 1=x -x 1x 2-x 1,直线的截距式x a +yb =1,并且掌握了它们的适用条件. 1.上述方程的四种形式都能用Ax +By +C =0(A ,B 不同时为零)来表示吗? 【提示】 能.2.关于x ,y 的二元一次方程Ax +By +C =0(A ,B 不同时为0)一定表示直线吗? 【提示】 一定.3.当B ≠0时,方程Ax +By +C =0(A ,B 不同时为0)表示怎样的直线?B =0呢?【提示】 当B ≠0时,由Ax +By +C =0得,y =-A B x -C B ,所以该方程表示斜率为-AB ,在y 轴上截距为-C B 的直线;当B =0时,A ≠0,由Ax +By +C =0得x =-CA ,所以该方程表示一条垂直于x 轴的直线.直线的一般式方程(1)定义:关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.(2)斜率:直线Ax +By +C =0(A ,B 不同时为0),当B ≠0时,其斜率是-AB ,在y 轴上的截距是-CB .当B =0时,这条直线垂直于x 轴,不存在斜率.【课堂互动探究】直线的两点式方程三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程.【思路探究】 由两点式直接求出三角形三边所在的直线的方程. 【自主解答】 由两点式,直线AB 所在直线方程为: y --10--1=x -3-1-3,即x +4y +1=0. 同理,直线BC 所在直线方程为:y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为:y -30-3=x -1-1-1,即3x -2y +3=0.1.当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不垂直于坐标轴,若满足,则考虑用两点式求方程.2.由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.在题设条件不变的情况下,求AB 中点与点C 连线的方程. 【解】 设AB 边中点为D (x ,y ), 则⎩⎪⎨⎪⎧x =-1+32=1,y =0+-12=-12,C ,D 两点横坐标相同,所以直线CD 的方程为x =1.直线的截距式方程已知直线l 经过点(3,-2),且在两坐标轴上的截距相等,求直线l 的方程.【思路探究】思路一:利用直线的截距式方程求解,需分截距“为零”和“不为零”两类分别求解; 思路二:利用直线方程的点斜式求解.【自主解答】 设直线l 在两坐标轴上的截距均为a . ①若a =0,则直线l 过原点,此时l 的方程为2x +3y =0; ②若a ≠0,则l 的方程可设为x a +ya =1,因为直线l 过点(3,-2),知3a +-2a =1,即a =1, 所以直线l 的方程为x +y =1,即x +y -1=0. 综上可知,直线l 的方程为x +y -1=0或2x +3y =0.1.如果题目中出现直线在两坐标轴上的“截距相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,若采用截距式求直线方程,则一定要注意考虑“零截距”的情况.2.应用截距式方程处理截距相等问题的一般思路:已知直线l 与x 轴,y 轴分别交于A ,B 两点,且线段AB 的中点为P (4,1),求直线l 的方程. 【解】 由题意可设A (a,0),B (0,b ),由中点坐标公式可得⎩⎪⎨⎪⎧a +02=4,0+b2=1,解得⎩⎨⎧a =8,b =2,∴A (8,0),B (0,2).由直线方程的截距式得l 方程为x 8+y2=1,即x +4y -8=0.直线的一般式方程根据下列条件分别写出直线的方程,并化为一般式方程:(1)斜率是3,且经过点A (5,3); (2)过点B (-3,0),且垂直于x 轴; (3)斜率为4,在y 轴上的截距为-2; (4)在y 轴上的截距为3,且平行于x 轴; (5)经过A (-1,5),B (2,-1)两点; (6)在x ,y 轴上的截距分别是-3,-1.【思路探究】 根据条件,选择恰当的直线方程的形式,最后化成一般式方程. 【自主解答】 (1)由点斜式方程得y -3=3(x -5),整理得3x -y +3-53=0. (2)x =-3,即x +3=0. (3)y =4x -2,即4x -y -2=0. (4)y =3,即y -3=0. (5)由两点式方程得y -5-1-5=x --12--1,整理得2x +y -3=0.(6)由截距式方程得x -3+y-1=1,整理得x +3y +3=0.直线方程的五种形式的比较: 形式条件方程应用范围特 殊 形 式点斜式一般情况 过点(x 0,y 0),斜率为k y -y 0=k (x -x 0) 不含与x 轴垂直的直线 斜截式 在y 轴上的截距为b ,斜率为ky =kx +b 不含与x 轴垂直的直线 两 点式 一般情况过两点(x 1,y 1)和(x 2,y 2) y -y 1y 2-y 1=x -x 1x 2-x 1 x 1≠x 2,y 1≠y 2,即不含与x 轴或y 轴垂直的直线 截距式在x 轴、y 轴上的截距分别为a 与b (a ,b ≠0) x a +y b =1不含与x 轴或y 轴垂直的直线,不含过原点的直线一般式Ax +By +C =0(A ,B 不同时为0)任何情况特殊的直线垂直于x 轴且过点(a,0) x =a ,y 轴的方程x =0 k 不存在 垂直于y 轴且过点(0,b ) y =b ,x 轴的方程y =0 k =0求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程. 【解】 法一 直线3x +4y +1=0可化为y =-34x -14,∴斜率k ′=-34,∵直线l 与已知直线平行,∴k =k ′=-34,又直线l 过点(1,2), ∴l :y -2=-34(x -1),即:3x +4y -11=0.法二 设与直线3x +4y +1=0平行的直线l 的方程为3x +4y +m =0.∵l 经过点(1,2),∴3×1+4×2+m =0,解得m =-11.∴所求直线方程为3x +4y -11=0. 【思想方法技巧】利用坐标法解决实际问题(12分)如图3-2-1所示,某房地产公司要在荒地ABCDE 上划出一块长方形土地(不改变方向)建造一幢8层的公寓,如何设计才能使公寓占地面积最大?并求出最大面积.(精确到1 m 2)图3-2-1【思路点拨】 本题考查坐标法的应用和二次函数的最值,关键是确定长方形中在AB 上的顶点的位置,可建立坐标系,运用直线的知识求解.【规范解答】 建立如图所示的坐标系,则B (30,0),A (0,20),∴由直线的截距式方程得到线段AB 的方程为:x 30+y20=1(0≤x ≤30).3分设长方形中在AB 上的顶点为P ,点P 的坐标为(x ,y ),则有y =20-23x (0≤x ≤30).4分 ∴公寓的占地面积为:S =(100-x )·(80-y )=(100-x )·⎝⎛⎭⎪⎫80-20+23x =-23x 2+203x +6 000(0≤x ≤30).8分∴当x =5,y =503时,S 取最大值,最大值为S =-23×52+203×5+6 000≈6 017(m 2).10分 即当点P 的坐标为⎝ ⎛⎭⎪⎫5,503时,公寓占地面积最大,最大面积约为6 017 m 2.12分【思维启迪】本题是用坐标法解决生活问题,点P 的位置由两个条件确定,一是A ,P ,B 三点共线,二是矩形的面积最大.借助三点共线寻求x 与y 的关系,然后利用二次函数知识探求最大值是处理这类问题常用的方法.【课堂小结】1.当直线没有斜率(x 1=x 2)或斜率为0(y 1=y 2)时,不能用两点式y -y 1y 2-y 1=x -x 1x 2-x 1求它的方程,此时直线的方程分别是x =x 1和y =y 1,而它们都适合(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1),即两点式的整式形式,因此过任意两点的直线的方程都可以写成(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)的形式.2.直线的截距式是两点式的一个特殊情形,用它来画直线以及判断直线经过的象限或求直线与坐标轴围成的三角形的面积比较方便.注意直线过原点或与坐标轴平行时,没有截距式方程,但直线过原点时两截距存在且同时等于零.3.直线方程的一般式同二元一次方程Ax +By +C =0(A ,B 不同时为零)之间是一一对应关系,因此研究直线的几何性质完全可以应用方程的观点来研究,这实际上也是解析几何的思想所在——用方程的思想来研究几何问题.。
《直线与方程》说课稿1
《直线与方程》说课稿一、高中数学总课标1 、掌握数学基础知识、基本技能、基本方法、基本实践活动2 、培养空间想象、抽象概括、推理论证、运算求解、数据处理的能力;培养应用意识、创新意识3、提高兴趣、树立信心、培养理性认识、辩证唯物主义世界观二、《直线与方程》的课程目标1、理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式和一般式,并能根据条件求出直线方程;掌握交点的求法和点到直线距离公式的推导。
2、培养全面、系统、周密地分析、讨论问题的能力。
3、激发学生的学习兴趣,拓展学生的视野,培养良好的学习习惯三、新教材编写特点1.更换教学顺序,更加重视学生的认知规律①.两直线的夹角、曲线与方程的关系没有在此出现.②.两条直线平行与垂直的判定放在了直线方程之前 (学斜率之后的趁热打铁).旧《大纲》课时安排大约10课时,新《课程标准》课时安排大约9课时,如果增加1课时以复习初中的相关知识,两者基本相当。
2.选用素材更贴近生活,更加凸显了新课程教学内容要密切联系学生生活实际的特点3.使用“思考”、“探究”等行为动词,更加注重学生的学习过程的培养4.注重数学文化教学四、教学建议1.注意把握课标教学教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
但是也不能仅仅停留在书本的教学上,教参在P59、P71、P77、P82-84、P93-96都配备了大量不同类型的例题,从这里也可以看出编者对本章的重视程度,因此,我觉得可以在大纲规定的10课时的基础上增加2节习题课,也为后面圆的方程的学习打好基础。
2.关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《普通高中数学课程标准(实验)》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对“翻译”“翻译”“代数运算” 结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,只强调“形”到“数”的方面而忽视“数”到“形”的方面。
直线的一般式方程 说课稿 教案 教学设计
直线方程2x+3y+1=0化为斜截式为________;化为截距式为________.
▶例2若直线Ax+By+C=0(不经过原点)不经过第三象限,则AB________0,BC________0.
▶课堂练习
在下列各种情况下,直线Ax+By+C=0(A,B不同时为零)的系数A,B,C之间各有什么关系:
(2)直线l的斜率为1.
▶课堂练习
设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若直线l不经过第二象限,求实数a的取值范围.
【课堂小结】
直线方程的一般式同二元一次方程Ax+By+C=0(A,B不同时为零)之间是一一对应关系,因此研究直线的几何性质完全可以应用方程的观点来研究,这实际上也是解析几何的思想所在——用方程的思想来研究几何问题.
▶例1根据下列条件分别写出直线的方程,并化为一般式方程:
(1)斜率是 ,且经过点A(5,3);
(2)过点B(-3,0),且垂直于x轴;
(3)斜率为4,在y轴上的截距为-2;
(4)在y轴上的截距为3,且平行于x轴;
(5)经过A(-1,5),B(2,-1)两点;
(6)在x,y轴上的截距分别是-3,-1.
启发引导与多媒体相结合
教学过程:步骤、内容、教学活动
二次备课
【问题导思】
我们已经学习了直线的点斜式y-y0=k(x-x0),直线的斜截式y=kx+b,直线的两点式 = ,直线的截距式 + =1,并且掌握了它们的适用条件.
1.上述方程的四种形式都能用Ax+By+C=0(A,B不同时为零)来表示吗?
2.关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)一定表示直线吗?
《直线的方程》说课稿
设计理念
7
教学背景
教法学法
教学过程
2.学法分析 本节课所面对的是高二年级的 学生,这个年龄段的学生思维活 跃,求知欲强,但思维习惯还有 待教师引导。本节课从学生原有 的知识和能力出发,教师将带领 学生创设疑问,通过合作交流, 共同探索,寻求解决问题的方法。
板书设计
设计理念
8
教学背景
(一)温故知新,启迪思维 教法学法
教法学法
教学过程
板书设计
3.教学目标分析 根据上述教材结构与内容分析,考虑到学生已有 的认知结构和心理特征 ,制定了如下教学目标: (1) 知识目标: ①理解直线点斜式、斜截式方程的推导; ②会利用点斜式、斜截式求直线的方程. (2) 能力目标: ①培养用代数方法研究几何问题的能力; ②培养从特殊到一般的思维能力. (3) 情感目标: ①培养严谨的思维习惯; ②培养主动探究、合作交流的意识; ③养成数与形结合的习惯.
通过小结,使学生 梳理了本节课的主 要内容和思想方法, 对本节课的知识有 一个整体地把握.
16
作业布置
自主提升
必做题:习题7.2 :1(1)、 (2)、(3)、2、3.
选做题:已知三角形的顶点是 A(-5,0),B(3,-3),C(0,2),试求这 个三角形的三条边所在直线的 方程.
通过分层作业,做到 因材施教,使不同的 学生得到不同的发展, 让每一个学生都得到 符合自身实践的感悟, 使不同层次的学生都 可以获得成功的喜悦, 看到自己的潜能,从 而激发学生饱满的学 习兴趣,促进学生自 主发展.
教学背景 2.学情分析 直线的方程是学生在初中学习了一 次函数的概念和图象及直线的斜率 教法学法 后进行研究的,这为本节课的学习 奠定了主要的知识基础,但由于学 生刚开始学习解析几何、第一次接 教学过程 触曲线的方程,在学习过程中,会 出现“数”与“形”相互转化的困 难. 板书设计
直线的一般方程说课稿
直线的一般方程说课稿一、教学目标通过本节课的学习,学生将能够: - 熟练掌握直线的一般方程的概念和基本性质; - 理解直线的一般方程和点斜式方程之间的转化关系; - 掌握求解直线与坐标轴的交点的方法; - 运用直线的一般方程解决实际问题。
二、教学重点•直线的一般方程的概念和性质;•直线与坐标轴的交点的求解方法;•直线的一般方程在实际问题中的应用。
三、教学内容1. 直线的一般方程直线是初中数学中的一个基础概念,直线的一般方程是直线的表达形式之一。
直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C是常数。
2. 直线的一般方程与点斜式方程的转化关系直线的一般方程和点斜式方程是两种常见的表达形式,它们之间存在一定的转化关系。
点斜式方程可以表示为y - y₁ = k(x - x₁),其中k是直线的斜率,(x₁, y₁)是直线上的一点。
通过对比直线的一般方程和点斜式方程的形式,可以得出它们之间的关系。
3. 直线与坐标轴的交点的求解直线与x轴的交点可以通过直线的一般方程解得。
当y = 0时,直线与x轴交点的横坐标x可以通过直线的一般方程求解得到。
同样地,直线与y轴的交点可以通过直线的一般方程解得。
当x = 0时,直线与y轴交点的纵坐标y可以通过直线的一般方程求解得到。
4. 直线的一般方程的应用直线的一般方程在实际问题中有着广泛的应用,例如地图上的道路、建筑物的设计等。
通过将实际问题转化为数学问题,可以利用直线的一般方程解决实际问题。
四、教学过程1. 导入与引导•利用教学课件或黑板,引导学生回顾直线的概念和斜率的概念。
•引导学生思考直线的方程有哪些不同的表达形式,以及它们之间的关系。
2. 讲解直线的一般方程•通过教师讲解,介绍直线的一般方程的定义和形式。
•举例说明直线的一般方程的应用场景,激发学生的学习兴趣。
3. 比较直线的一般方程和点斜式方程•通过教师的引导,让学生观察直线的一般方程和点斜式方程的形式。
直线方程说课稿
《直线与方程》说课稿今天我说课的题目是《直线与方程》,下面我将从教材分析,教法与学法分析,教学手段,教学过程,板书设计五个方面来阐述我对本节课的理解和设计。
一教材分析1、地位和作用直线作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.直线的方程是解析几何的基础知识,对直线的方程的理解,直接影响学生能否培养起解析几何的思想方法,对后续研究的线性规划、圆、直线与圆的位置关系、圆锥曲线及直线与圆锥曲线的位置关系等内容有着很重要的作用。
本章首先在平面直角坐标系中,介绍直线的倾斜角、斜率等概念;然后建立直线的方程:点斜式、斜截式、两点式、截距式等;通过直线的方程,研究直线间的位置关系:平行和垂直,以及两条直线的交点坐标、点到直线的距离公式等.2、教学目标(1)对本章的知识进行梳理总结,使学生熟练掌握倾斜角与斜率,直线方程,直线位置关系的判定以及距离公式这四个方面的知识(2)通过复习本章知识点,帮助学生对本章的知识有一个系统的了解,使学生从题海中脱离出来,形成知识网络,增强知识的系统性与连贯性,从而使学生能够抓住问题的本质(3)通过几何问题与代数问题的相互转化培养学生数形结合的思想方法,使学生学会将“数”与“形”有机的结合起来。
【设计依据】根据教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定了如上教学目标。
教学重难点:重点:对本章知识进行系统的总结与复习,归纳本章涉及到的重要数学思想。
难点:本节课是通过知识点与已经做过的重点题型进行联系,所以学生对做过的重点题型记忆不深是本节课的一个教学难点。
【设计依据】根据以上对教材,目标的分析以及我对本节课教学过程的设计我确定了以上的教学重点和教学难点。
二教法,学法分析1、教法(说教法)根据本节课的教学内容特点,为了更有效的突出重点突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,在教师的指导下,分析、启发、诱导学生,创设数学学习情境,让学生自主回忆直线方程的不同形式、局限性以及本章中所涉及到的公式,使他们能积极主动地参与到数学学习活动中来。
直线方程的说课稿
Page 3
where ?
2、教材地位及内容分析:
(2)从本章内容来看,直线方程是解析 几何中最基本而且内涵丰富,应用广泛的内 容之一,同时也是应用解析法解决平面几何 问题的基础,它涉及距离的计算和平行垂直 的判断,不但是重要的知识点,更是进一步 学习圆以及圆锥曲线的基本工具。
where ?
Page 16
第三课时:直线方程的一般式
2、在学生对直线方程的同一种形式有了感 性认识后,让学生思考课本P97页的思考, 让学生体会直线方程与二元一次方程的对 应关系,了解直线方程的一般形式是对直 线特殊形式的抽象和概括,理解直线的一 般形式与特殊形式在一定条件下可以相互 转化。 3、探究:P98页
在教学中如何实现上述目标
how &why
2、课时安排:
根据课程标准和教材安排,本节教学应该分配三个课时:
第一课时:直线的点斜式方程和斜截式方程
第二课时:直线的两点式方程
第三课时:直线的一般式方程
第一课时:直线点斜式的教学分析
直线是点的集合,求直线的方程实际上就 是求直线上点的坐标之间所满足的一个等 量关系,因此在教学过程中: 1、应将研究的过程变成一个个问题来进 行,如:已知直线过一定点且斜率为K,那 么这条直线上不同定点的任意一点坐标满 足什么关系?点在直线上运动时有什么是 不变的,在求直线方程的过程中,既要说 明直线上点的坐标满足方程,也要说明方 程的解与坐标的点都在直线上,教学中, 让学生感觉到这一点就可以了。
第一课时:直线点斜式的教学分析
•
2、直线的斜截式方程是直线的点 斜式的一种特殊方程,可以与一次函 数进行比较,并注意分析方程中k与b 的几何意义。在给出直线的斜截式方 程后,可利用直线的斜截式方程来判 断两条直线平行与垂直的条件,让学 生明确与前面所学的应用斜率判定两 条直线平行于垂直是一致的。
直线方程说课稿.doc2
我本节课说课的内容是人教B版高中数学必修2第二章第二节第一课时——直线的点斜式方程。
一、教材地位和内容分析从整体来看,直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。
从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。
从本节来看,直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:知识目标1、会由斜率公式推导出直线的点斜式方程,明确其适用范围,能正确利用点斜式公式求直线方程。
2. 知道直线方程的斜截式是点斜式的特例,能正确利用斜截式公式求直线方程,体会直线的斜截式方程与一次函数的关系。
能力目标通过探究一、二的学习体会数形结合、由特殊到一般、分类讨论的数学方法及思想。
情感目标(1) 通过“数”与“形”的结合,让学生认识到事物之间是普遍联系的,相互转化的.(2) 让学生自己解决问题,感受成功的喜悦,体会自身的价值.根据以上对教材、教学目标的分析,我确定如下的教学重点和难点:重点:(1)直线方程点斜式、斜截式方程的推导(2)由已知条件求直线方程。
难点: 本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构。
四、教法与学法分析1、教法分析遵循“教师的主导作用和学生的主体地位相 统一的教学规律”,本节课我采用“四步八环节”教学法。
通过教师的设问点拨,启发学生自主探究来达到对知识的发现和接受。
2、学法分析本节课所面对的是高一年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。
本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流,共同探索,寻求解决问题的方法。
五、教学过程分析根据“四步八环节”教学法本节课主要设计了自主学习、合作探究、课堂小结、当堂检测四大步骤(一)自主学习首先出示本节课的学习目标,1分钟指出目标中的关键词。
苏教版必修2《直线的方程》说课稿
苏教版必修2《直线的方程》说课稿概述本文档是关于苏教版必修2《直线的方程》的说课稿。
本单元是高中数学必修2的一部分,主要介绍了直线的方程和相关的概念、性质以及解题方法。
本说课稿将从教材的结构分析、教学目标、教学内容、教学方法与步骤、教学重点与难点等方面进行详细阐述。
教材结构分析本单元一共分为四个板块,分别是: 1. 直线的方程与直线的性质 2. 一般线性方程组 3. 解直线方程与解线性方程组的联立方法 4. 直线与方程的应用每个板块都围绕直线的方程和相关的应用展开,从基本概念到解题方法逐步展开,层层深入。
教学目标在本单元学习过程中,学生应该能够达到以下几个方面的目标: 1. 掌握直线的一般方程和特殊方程的表示方法; 2. 理解直线的斜率和截距的概念,能够计算直线的斜率和截距;3. 理解线性方程组的概念,能够理解一般线性方程组的解的条件;4. 能够运用直线的方程解决实际问题,如求直线的交点、直线与圆的关系等;5. 能够解线性方程组及使用消元法和代入法求解实际问题。
教学内容本单元的主要内容包括以下几个方面: ### 1. 直线的方程与性质 - 直线的一般方程的表示方法; - 直线的斜率和截距的概念; - 直线的特殊方程(斜率截距式、两点式等);- 直线与坐标轴的交点。
2. 一般线性方程组•线性方程组的概念;•一般线性方程组的解的条件;•二元线性方程组的解法。
3. 解直线方程与解线性方程组的联立方法•直线方程与线性方程组的联立;•通过直线与线性方程组的联立求解实际问题。
4. 直线与方程的应用•直线与圆的关系;•直线与曲线的交点;•直线与三角形的关系;•使用方程解决实际问题。
教学方法与步骤本课程采用多种教学方法,包括讲解、练习、讨论、互动等方式,争取培养学生的动手能力和问题解决能力。
教学步骤如下: 1. 导入:通过引入一个相关的实际问题,引发学生对直线方程的兴趣。
2. 知识讲解:依次讲解直线的方程和性质、线性方程组的概念、直线方程与线性方程组的联立方法等内容。
直线的方程说课稿
直线的方程说课稿导入大家好,今天我们来讲解一下数学中的一个基本概念——直线的方程。
直线是我们日常生活中无处不在的,在数学中也是重要的研究对象,同学们是否能够回想起学习中关于直线的知识呢?学习目标通过本节课学习,同学们应该能够达到以下目标:1.理解直线的基本概念和性质;2.掌握几种求取直线方程的方法;3.能够利用直线方程解决实际问题。
直线的基本概念和性质那么,什么是直线呢?我们从初中就开始学习了。
直线是在一个平面内,在两点之间最短的路径。
这个定义大家应该都很清楚了吧。
除此之外,直线还有一些重要的性质,例如:1.直线上的任意两点可以唯一确定一条直线;2.两条不重合且不平行的直线交于一点;3.两条平行的直线永远不会相交等。
直线的方程的表示和意义接下来,我们来讲一下直线的方程。
在数学中,直线的方程表示为ax+by+c=0。
这里的a、b、c为常数,x和y分别为直线上的一点的横、纵坐标。
我们可以将这个方程看作是直线在平面直角坐标系上的一种表示方式。
从这个方程,我们可以读出直线在坐标系上的位置、方向、斜率等信息。
直线方程的求解那么,如何求取直线的方程呢?接下来我们将介绍几种常用的求解方法。
截距式先来看截距式。
截距式是在直线方程中a=0时的形式。
截距式的形式为y=kx+b,其中k为斜率,b为y轴截距。
求解截距式的方法为:1.暂时将直线方程写成$y=-\\frac{a}{b}x-\\frac{c}{b}$的形式;2.比较得到$k=-\\frac{a}{b}$,$b=-\\frac{c}{b}$,即可得到截距式。
点斜式接下来是点斜式。
点斜式的形式为y−y0=k(x−x0),其中(x0,y0)为直线上已知的一点,k为斜率。
求解点斜式的方法为:1.已知点(x0,y0)和直线斜率k;2.将斜率代入得到y−y0=k(x−x0),即可得到点斜式。
斜截式最后,我们来看一下斜截式。
斜截式是直线的一般式,形式为y=kx+b,其中k为斜率,b为y轴截距。
直线的方程一复习课的说课稿(五篇范例)
直线的方程一复习课的说课稿(五篇范例)第一篇:直线的方程一复习课的说课稿作为一名教学工作者,就难以避免地要准备说课稿,说课稿有助于顺利而有效地开展教学活动。
那要怎么写好说课稿呢?下面是小编帮大家整理的直线的方程一复习课的说课稿,欢迎大家分享。
1、教学目标:(1)知识目标:通过师生互动教学,培养学生自编自练自查能力,提高学生应用数学的意识,使学生掌握求直线方程的方法,进行综合能力训练;使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
(2)能力目标:培养学生在分析问题和解决问题中运用数形结思想的能力;培学生在分析问题和解决问题中运用转化思想的能力;(3)德育目标:引导、激发学生积极参与教学,使学生在获得成功的同时,培养学生爱学、乐学情感。
通过对数学客观规律的揭示,培养学生透过现象看本质的能力;培养学生辩证唯物主义世界观和方法论。
2、重点:求直线方程的基本方法。
3、难点:使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
4、教具:多媒体辅助教学设备。
5、教学方法:问题情境教学法;启发式教学法;反思式教学法。
6、教学步骤:(一)课前展示课题与相关知识(二)由三点坐标联想、发散自编习题并解答。
已知:点a、b、c的坐标分别为(3,4)、(6,0)、(-5,-2)。
可联想到:(1)三角形三边所在直线的方程、三个内角(2)三角形三边中线、高所在直线的方程(3)三角形三个内角的角平分线所在方程。
(4)变题1:已知三角形的两个顶点坐标、一条角平分线的方程,求:第三个顶点的坐标与相关直线方程(5)变题2:已知三角形一个顶点及两条角平分线所在直线方程,求相关量(6)变题3:已知三角形一个顶点及两条中线所在直线方程,求相关量(7)变题4:已知三角形两个顶点及一条中线方程,求相关量(8)变题5:已知三角形一个顶点及两条高所在直线方程(9)变题6:已知三角形两个顶点及一条高所在直线方程,(10)变题7:已知三角形两个顶点坐标及垂心坐标,(11)变题8:已知三角形两个顶点坐标及重心坐标,(12)变题9:已知三角形两个顶点坐标及内心坐标························课堂小结、作业布置7、直线方程教法设计的几点说明:本节是“直线综合复习”第一节课,重点是与学生共同研究求解直线方程的一般方法,在师生的双向交流中,让学生自己考查自己,从而了解学生对知识的理解与掌握程度,灵活调整教学进度,以期达到最佳教学效果。
直线的一般式方程 教案 说课稿 教学设计
直线的一般式方程教学目标1.知识与技能:(1)通过推导,了解直线都可以表示成一般式方程; (2)理解直线一般式方程系数的意义; (3)会判断一般式方程的平行垂直问题.2.过程与方法:通过实例初步了解概念,通过探究深入理解概念的实质,关键是要培养学生分析问题、解决问题和转化问题的能力.3.情感态度价值观:(1)本节核心问题是让学生学会转化思想,灵活应用所学知识,加强与实际生活的联系,以科学的态度评价身边的一些现象;(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想 重点难点1.教学重点:了解直线都可以表示成一般式方程,会判断一般式方程的平行垂直问题2.教学难点:理解直线一般式方程系数的意义. 教学过程(一)复习引入:1、直线方程的点斜式、斜截式、两点式、截距式的互相转化: 练习1:由下列条件,写出直线的方程: (1)经过点A (8,– 2),斜率是21-;()8(212--=+x y ) (2)经过点B (4,2),平行于x 轴;(y – 2 = 0) (3)经过点P 1(3,– 2),P 2(5,– 4);(353)2(4)2(--=-----x y )(4)在x 轴,y 轴上的截距分别为23,– 3。
(1323=-+y x )2、直线方程的几种形式:思考:以上方程有什么共同的特点? (二)讲授新课:1、直线与二元一次方程的关系:问题1:平面直角坐标系中的每一条直线都可以用一个关于x 、y 吗?对直线的倾斜角α进行讨论: ① 当︒≠90α时,直线斜率为αtan =k ,其方程可写成:b kx y +=,可变形为:0=++C By Ax ,其中:A = k ,B = – 1,C = b ;A 、B 不同时为零。
(如图) ② 当︒=90α时,直线斜率不存在,其方程可写成1x x =的形式, 也可以变形为:0=++C By Ax ,其中:A = 1,B = 0,1x C =。
数学教案-直线的方程3篇
数学教案-直线的方程3篇数学教案-直线的方程1教案名称:直线的方程教学目标:1. 理解什么是直线;2. 掌握画出直线的方法,及直线的性质;3. 学习如何求直线的方程;4. 能够运用直线的方程进行问题拓展。
教学重点:直线的方程的求法,及其应用教学难点:运用直线方程解决实际问题教学资源:白板、彩笔、教材和课本教学过程:一、导入(5分钟)教师向学生提问:怎样画出一条直线?告诉我一下直线的定义。
二、讲解(20分钟)1. 直线的定义:直线是由许多个点无限延伸构成的图形,两个方向相反。
2. 直线的性质:(1) 任意两点在直线上,任意三点不在同一直线上。
(2) 直线上的任意两个点可以确定一条直线,相交于一点的两条直线称为相交直线。
(3) 相对的两个角互为补角,两个补角相加等于180度。
3. 如何求直线的方程:(1) 一般式方程:Ax+By+C=0(A、B、C 为常量)直线的一般式方程就是 Ax+By+C=0,其中 A、B 不全为0,A、B、C均为常数;(2)斜截式方程:y=kx+b其中 b 表示截距,k 表示斜率。
(3)点斜式方程:y-y1=k(x-x1)其中(x1,y1)为直线上的一点,k 为直线的斜率。
(4)两点式方程:y-y1/y2-y1=x-x1/x2-x1(x1,y1)和(x2,y2)两个点在同一直线上,其中 k=(y2-y1)/(x2-x1) 为直线的斜率。
三、练习(25分钟)1. 求直线的方程:(1)过点 A(-1,3) 和 B(1,-1) 的直线;(2)过点(-2,6) 且垂直于直线 y=2x+1 的直线;(3)过(2,-3)且与直线 y=x+1 垂直的直线。
2. 解答题:(1)求如图所示的平面图形 ABC 所示三角形中 AC 的中垂线的方程;(2)如图,$∠B=105°$,BC=2,AB=5×√3,以 BC 为底边的三角形ABC 的垂直平分线的方程是 $x-2y+1=0$,求 AC 和 AB 的长。
高中数学必修二《直线与方程》说课稿
高中数学必修二《直线与方程》说课稿一、教学目标1.知识目标:o理解和掌握直线的点斜式、两点式、一般式方程及其相互转化。
o能够根据给定条件求出直线的方程,并能利用直线方程解决简单的几何问题。
2.能力目标:o培养学生的逻辑思维能力和抽象思维能力,通过直线方程的学习,提升学生的数学建模能力。
o提高学生分析问题和解决问题的能力,特别是在处理直线与坐标轴交点、两直线位置关系等问题时。
3.情感态度价值观目标:o激发学生对数学的兴趣,培养学生严谨的学习态度和科学精神。
o通过合作学习,增强学生的团队合作意识,培养学生的沟通能力和责任感。
二、教学内容-重点:直线的三种基本方程(点斜式、两点式、一般式)及其相互转换。
-难点:根据实际问题选择合适的直线方程形式,以及利用直线方程解决实际问题。
三、教学方法-讲授法:用于介绍直线方程的基本概念和理论。
-讨论法:分组讨论直线方程的应用场景,促进学生之间的交流与合作。
-案例分析法:通过具体案例分析,加深学生对直线方程的理解和掌握。
-多媒体教学法:利用PPT、动画等多媒体资源,直观展示直线方程的图形变化,增强教学效果。
四、教学资源-教材:高中数学必修二《直线与方程》章节。
-教具:黑板、粉笔、直尺、圆规。
-多媒体资源:PPT课件、直线方程的动态演示软件、在线教学平台。
-实验器材:无需特定实验器材,但可准备几何画板软件用于辅助作图。
五、教学过程六、课堂管理-小组讨论:每组分配明确的任务,确保每位学生都参与讨论,轮流发言。
-课堂纪律:设定明确的课堂规则,如举手发言、保持安静等,确保课堂秩序。
-激励机制:对积极参与讨论、提出创新见解的学生给予表扬,激发学习动力。
七、评价与反馈-课堂小测验:每节课结束前进行小测验,检查学生对新知识的掌握情况。
-课后作业:布置适量作业,包括基础题和拓展题,以巩固课堂所学。
-期末考试:通过期末考试全面评估学生的学习效果,包括理论知识和应用能力。
-学生反馈:定期收集学生对教学内容、方法的反馈,及时调整教学策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各位领导各位老师
大家好!
我叫陈媛媛,是新疆师范大学数学与应用数学专业的应届毕业生,很高兴今天在这里说课。
我要说课的内容是是人教版高中数学必修2第七章《直线和圆的方程》中第二节《直线的方程》。
我将从四个方面来阐述我对这节课的设计.首先,我对本节课的教学背景进行分析:在这里我分三小点进行说明.
一教材背景分析
1地位和作用
直线作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用. 直线的方程是解析几何的基础知识,对直线的方程的理解,直接影响学生能否培养起解析几何的思想方法,对后续研究的线性规划、圆、直线与圆的位置关系、圆锥曲线及直线与圆锥曲线的位置关系等内容有着很重要的作用,而从本节来看,直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
2教学目标
知识目标
使学生会推导直线的方程。
并掌握方程表示的基本量,以及各种表达形式的优势和局限性。
能力目标
通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距
式方程的过渡,培养学生树立由一般到特殊的处理问题能力;通过直线方程的特征观察直线位置的特征,培养学生数形结合的能力.情感目标
(1) 通过“数”与“形”的结合,让学生认识到事物之间是普遍联系的,相互转化的.
(2) 让学生自己解决问题,感受成功的喜悦,体会自身的价值.
根据以上对教材、教学目标的分析,我确定如下的教学重点和难点:
3学重点、难点
(1)本节的重点是直线方程的点斜式,两点式,一般式,以及根据具体条件求出直线方程。
(2)本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程关系的证明。
为使学生能够达到本节课教学目标,我再从教法和学法上进行分析:二教法,学法分析
1教法(说教法)
根据本节课的教学内容特点,为了更有效的突出重点突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,在教师的指导下,分析、启发、诱导学生,创设数学学习情境,让学生自主探究直线方程的不同形式及局限性,使他们能积极主动地参与到数学学习活动中来。
2学法(说学法)
学生刚刚学习完直线的倾斜角与斜率的概念,对此知识的理解还不够深刻和严谨。
也没有完整的形成用代数去研究几何问题这一新的思想方法。
但知识之间内部联系非常大,在学习过程中难点比较容易突破,因此,采用自学加点拨的方式,培养学习横分析问题,解决问题的能力,在合作学习中培养学生的探究意识和数学思维。
下面我对本节课的教学过程和设计加以说明:
三教学过程,教学设计说明
(一)教学过程
1提出问题串,创设学习情景。
2 引导思考,自主探究。
3 反思结论,归纳总结。
4引入例题组练习。
5补充练习。
6课堂小结。
7布置作业。
(二)教学设计的说明
高中数学新课程理念之一是倡导积极主动,勇于探索的学习方式,这些方式有助于发挥学生学习的主动性,使学生学习过程成为教师引导下的再创造过程。
本节课设计的基本理念正是如此。
通过整理,一方面让学生理清本节课的知识结构,另一方面感受探究过程的乐趣,体验克服困难的勇气树立自信心。
通过复习,完成作业,进一步巩固提高
四,板书设计
总之:板书设计时要体现出程序性、概括性、指导性、艺术性。