第三章--静力学平衡
3静力学第三章习题答案
第三章 部分习题解答3-10 AB ,AC 和DE 三杆连接如图所示。
杆DE 上有一插销H 套在杆AC 的导槽内。
试求在水平杆DE 的一端有一铅垂力F 作用时,杆AB 所受的力。
设DE BC HE DH DB AD ===,,,杆重不计。
解:假设杆AB ,DE 长为2a 。
取整体为研究对象,受力如右图所示,列平衡方程:∑=0C M02=⋅a F By0=By F取杆DE 为研究对象,受力如图所示,列平衡方程:∑=0HM0=⋅-⋅a F a F DyF F Dy =∑=0B M 02=⋅-⋅a F a F DxF F Dx 2=取杆AB 为研究对象,受力如图所示,列平衡方程:∑=0y F0=++By Dy Ay F F FF F Ay -=(与假设方向相反)∑=0A M02=⋅+⋅a F a F Bx DxF F Bx -=(与假设方向相反) ∑=0B M02=⋅-⋅-a F a F Dx AxF F Ax -=(与假设方向相反)3-12AD AC AB ,,和BC 四杆连接如图所示。
在水平杆AB 上作用有铅垂向下的力F 。
接触面和各铰链均为光滑的,杆重不计,试求证不论力F 的位置如何,杆AC 总是受到大小等于F 的压力。
解:取整体为研究对象,受力如图所示,列平衡方程:∑=0C M0=⋅-⋅x F b F DF bx F D =F CF C yF DF CxF CyF BxF ByF DxF DyF HyF BxF ByF DyF DxF Ax F Ay取杆AB 为研究对象,受力如图所示,列平衡方程:∑=0A M0=⋅-⋅x F b F BF bx F B =杆AB 为二力杆,假设其受压。
取杆AB 和AD 构成的组合体为研究对象,受力如图所示,列平衡方程:∑=0E M02)2(2)(=⋅--⋅+⋅+bF x b F b F F AC D B解得F F AC =,命题得证。
注意:销钉A 和C 联接三个物体。
第三章流体静力学
作用在平面上总压力的计算方法有两种: 解析法
图解法
第二十六页,共八十九页。
1.平面总压力大小
o
设有一与水平面成α夹角的倾斜平面 ab,其面积为A,左侧受水压力, 水面大气压强为p0,在平板表面所 在的平面上建立坐标,原点o取在 平板表面与液面的交线上,ox轴与
hD hC yb
整理 p2p1gh
液体静力学基本方程式为 pp0 gh
第八页,共八十九页。
二.流体静力学基本方程的意义
1.A点的压强
p p 0g h p 0g (z 0 z )
整理
p
g
z
p0
g
z0
常数
意义:
Z——单位重量液体的位置势能(简称比位能);
——p 静止液体中单位质量液体的压力能(简称比压能)
g
,比位能与比压能之和称为总比能。
3.运动流体是理想流体时,不会产生切应力,所以理想流体
动压强呈静水压强分布特性,即
第七页,共八十九页。
第二节 重力场中流体的平衡
一.流体静压强的基本方程
静止液体所受的力除了液体重力外 ,还有液面上的压力和固体壁面作 用在液体上的压力,其受力情况如 图所示。
1.受力平衡方程
p 2 A p 1 A g l A co 0 s
D
sin y2dA sinyc AyD
式中 y2dA 为受压面对ox轴的惯性矩 I X
所以
yD
Ix ycA
第三十二页,共八十九页。
根据平行移轴定理:
I X IC yC2 A
∴
yD
yc
Ic ycA
ohD hC h源自αa yyb
《工程力学:第三章-力系的平衡条件和平衡方程》解析
工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
静力学第三章
静力学第三章空间力系空间力系是各力的作用线不在同一平面内的力系。
这是力系中最一般的情形。
许多工程结构和机械构件都受空间力系的作用,例如车床主轴、桅式起重机、闸门等。
对它们进行静力分析时都要应用空间力系的简化和平衡理论。
本章研究空间力系的简化和平衡问题,并介绍物体重心的概念和确定重心位置的方法。
与研究平面力系相似,空间力系的简化与平衡问题也采用力系向一点简化的方法进行研究。
第一节空间力的分解与投影一、空间力的分解如图3-1所示,设力F 沿直角坐标轴的分力分别为F x、F y、F z,则(3-1)图3-1力F的三个分力可以用它在三个相应轴上的投影来表示:(3-2)则(3-3)其中i、j、k分别是x、y、z轴的正向单位矢量。
二、空间力的投影1.直接投影法如图3-2所示,若已知力F与空间直角坐标轴x、y、z正向之间夹角分别为α、β、γ,以F x、F y、Fz表示力F在x、y、z三轴上的投影,则(3-4)力在坐标轴上的投影为代数量。
在式(3-4)中,当α、β、γ为锐角时,投影为正,反之为负。
图3-22.二次投影法若力F在空间的方位用图3-3所示的形式来表示,其中γ为力F与z轴的夹角,φ为力F所在铅垂平面与x轴的夹角,则可用二次投影法计算力F在三个坐标轴上的投影。
先将力F向z轴和xy平面投影,得注意:力在平面上的投影F xy为矢量。
再将F xy向x、y轴投影,得因此(3-5)图3-3反之,若已知力在直角坐标轴上的投影,则可以确定该力的大小和方向。
(3-6)其中α、β、γ为力F分别与x、y、z轴正向的夹角。
静力学第三章空间力系第二节力对点之矩与力对轴之矩一、力对点之矩在平面问题中,力F与矩心O 在同一平面内,用代数量M O(F)就足以概括力对O 点之矩的全部要素。
但在空间问题中,由于各力与矩心O所决定的平面可能不同,这就导致各力使刚体绕同一点转动的方位也可能不同。
为了反映转动效应的方位,力对点之矩必须用矢量表示。
流体静力学
作用在左侧abcd面的静压力为:
1 p Fm p dx dydz 2 x
作用在右侧efgh面的静压力为:
1 p Fn p dx dydz 2 x
因此,x方向上的力平衡方程为: 1 p 1 p (p dx)dzdy ( p dx)dzdy f x dxdydz 0 2 x 2 x
f x 是单位质量力在x方向的分量。 式中,
因坐标长度都不为0,由上式可得: f x 同理可得:
1 p fy y
fz
1 p x
1 p z
写成单位质量的合力形式:
f f xi f y j f zk 1 p p p p ( i j k) x y z
P26. 例题3-1
§3.6
压强的测量
§3.6.1 压强的单位与换算
1mmH2O=9.807Pa 1atm=101325Pa 1bar=105Pa 1mmHg=1乇=133.3Pa 1at=1kgf/cm2=98065Pa 1psi=1磅力/英寸2=6887Pa
§3.6.2 压强的表示方法
用开口管测压强,液柱高度为
p1=p0+ρ g(Δh+x)
p2=p0+ ρ g x
p1-p2=ρ gΔh
•
(3)倾斜微压计
P1-P2=ρ’ g (Δh+l sinθ) ∵A0 l =AΔh ∴P1-P2=ρ’g (sinθ+A0 / A)l 定义:倾斜系数 K= ρ’ (sinθ+A0 / A) 则 P1-P2=Kgl
形管 • (4) 用于测量液体的压差,在测量管流有沿程阻损失的可使用这 种压差计根据伯努利方程:
第三章-静力学的基本知识(二)
第三章-静力学的基本知识(二)第一节静力学的基本知识8.力偶和力偶矩力偶——大小相等的二个反向平行力称之为一个力偶。
力偶的作用效果是引起物体的转动,和力矩一样,产生转动效应。
力偶的转动效应用力偶矩表示,它等于力偶中任何一个力的大小与力偶臂d 的乘积,加上适当的正负号,即式中:F 是力的大小:d 是力偶臂,是力偶中两个力的作用线之间的距离。
逆时针为正,顺时针为负。
常用单位为KN·m 。
力偶特性一:力偶的转动效应与转动中心的位置无关,所以力偶在作用平面内可任意移动。
力偶特性二:力偶的合力为零,所以力偶的效应只能与转动效应平衡,即只能与力偶或力矩平衡,而不能与一个力平衡。
9.约束和约束反力(1)柔索:由柔软的绳索、链条或皮带构成的约束绳索类只能受拉,约束反力作用在接触点,方向沿绳索背离物体。
约束力方向与所能限制的物体运动方向相反。
(2)光滑支承面约束约束反力作用在接触点处,方向沿公法线,指向受力物体。
(3)光滑圆柱铰链约束①固定铰支座:物体与固定在地基或机架上的支座有相同直径的孔,用一圆柱形销钉联结起来,这种构造称为固定铰支座。
中间铰:如果两个有孔物体用销钉连接2个约束,1个自由度。
固定铰支座②可动铰支座在固定铰链支座的底部安装一排滚轮,可使支座沿固定支承面滚动。
1个约束,2个自由度。
③固定端支座3个约束,0个自由度。
10.物体的受力分析和受力图画受力图的方法与步骤:(1)取隔离体(研究对象)(2)画出研究对象所受的全部主动力(使物体产生运动或运动趋势的力)(3)在存在约束的地方,按约束类型逐一画出约束反力(4)取隔离体时的抛弃部分对分离体的力不能丢。
【例】画出重物和AB杆的受力图【例-2017年真题】二力平衡公理中,作用于刚体的两个力,使刚体维持平衡的充分与必要条件应满足()。
A.大小相等、方向相同B.大小相等、方向相反C.大小不等、方向相同D.大小不等、方向相反答案:B【例-2017年真题】平面一般力系向其作用面内一点简化时,一般可得作用于该点的()。
第三章流体静力学(流体的平衡)
1.流体的平衡:绝对平衡、相对平衡 2.流体平衡时的压强 3.流体平衡的条件 3.1.平衡的微分方程 ∂ p dx ∂ p dx −∂ p dydz − p dydz = dxdydz ∂x 2 ∂x 2 ∂x 表面力: −∇ p dxdydz d 体积力: f b =∇ p 绝对平衡方程: f x 方向表面力: p −
∫ gy sin dA= g sin ∫ y dA= g y c sin A= P c A
A A
设压力中心坐标为
x D , y D = x C f , y C e ,其中 f 和 e 称为纵向和横向偏心矩。
则总合力对形心坐标轴的力矩:
F e =∫ dF = g sin ∫ y dA F f =∫ dF = g sin ∫ y dA∇ p d r =0
d 考虑到绝对平衡方程,得出等压面的微分方程: f b r = 0 ,即在等压面上体力处处与等压面 垂直。
3.3.流体平衡的必要条件
b =∇× 由绝对平衡方程得 ∇× f 1 −1 ∇ p = 2 ∇ ×∇ p
−1 ∇ p⋅∇ ×∇ p =0 3 ⋅∇ × f =0 流体平衡的必要条件 f b b b⋅∇ × f b = 于是 f
均质流体 =constant
≡0 ∇× f b
−∇ =
1 ∇p
=
−p
非均质流体:正压流体 = p ,如等温或绝热气体 定义压力函数 P p : ∇ P =
=∇ P 由绝对平衡方程得, f b 4.流体静力学基本方程(静力学规律)
由 P =− gz C 得
∇p p ≡0 ,故 f 有势,势函数 =− P p ∇× f b b
平衡方程应用
第三章平衡方程的应用第一节静定问题及刚体系统平衡一、静定与静不定问题在刚体静力学中,当研究单个刚体或刚体系统的平衡问题时,由于对应于每一种力系的独立平衡方程的数目是一定的(见表3-1),所以,当研究的问题其未知量的数目等于或少于表3-1 各种力系的独立方程数独立平衡方程的数目时,则所有未知量都能由平衡方程求出,这样的问题称为静定问题。
若未知量的数目多于独立平衡方程的数目,则未知量不能全部由平衡方程求出,这样的问题称为静不定问题(或称超静定问题),而总的未知量数与独立的平衡方程数两者之差称为静不定次数,图3-1所示的平衡问题中,已知作用力F,当求二个杆的内力(见图a、b)或二个支座的约束反力(见图c)时,这些问题都属于静定问题;但是工程中为了提高可靠度,有时采用图3-2所示系统,即图a、b中增加1根杆,图c增加1个滚轴支座,这样未知力数目均增加了1个,而系统独立的方程数不变,这样这些问题就变成了一次静不定问题。
图3-1 静定问题图3-2 静不定问题静不定问题仅用刚体静力平衡方程是不能完全解决的,需要把物体作为变形体,考虑作用于物体上的力与变形的关系(见本书第二篇),再列出补充方程来解决。
在关于静不定问题的求解,已超出了本章所研究的范围。
二、刚体系统的平衡问题由若干个物体通过约束联系所组成的系统称为物体系统,简称为物系。
本篇讨论刚体静力学,将物体视为刚体,所以物体系统也称为刚体系统。
当整个系统平衡时,则组成该系统的每一个刚体也都平衡,因此研究这类问题时,既可取系统中的某一个物体为分离体,也可以取几个物体的组合或取整个系统为分离体。
一旦取出分离体后,该分离体以外物体对于这个分离体作用的力称为外力,分离体系统内各物体间相互作用的力称为内力。
在研究刚体系统的平衡问题时,不仅要分析外界物体对于这个系统作用的力(外力),有时还需要分析系统内各物体间相互作用的力(内力)。
由于内力总是成对出现的,因此,当取整个系统为研究对象时,可不考虑其内力。
第3章 流体静力学 (华水)
微分形式的等压面方程
f x dx f y dy f z dz 0
性质:在静止流体中,作用于任意点的质量力垂直于 经过该点的等压面
等压面及其特性:
等压面: 等压面性质:
1、在平衡液体中等压面就是等势面 p=cons tan t dp 0 dU 0
液体中压强相等的点连成的面 (可能是曲面或平面)
方向特性
pc pc
pc
h
大小特性
静水压强的方向与受压面垂直并指向受压面
证明方法:……??
反证法
特性二(大小特性):静压强的大小与作用面在 空间的方位无关,只是坐标点的连续可微函数
即作用于同一点上各方向的静水压强大小相等。
边长 δx、δy、δz 静压强 px、py、pz和pn
密度 ρ
单位质量力的分量 fx 、fy、fz
1 p 0 z
2 p f x 不可压缩均质 y yx 2 p f y xy x
fx fy y x
单位质量力分量之间有下述关系
f y f x x y
f x f z z x
5.255
二 大气压的压强分布(可压缩流体中压强的变化)
在大气层中,从高11000m到20100m的空间为大气恒温层,
等温过程,气体的密度:
p RT
重力场中单位质量力分量为: 代入压差公式,得
dp p gdz RT1
f x f y 0, f z g
积分
dp RT1 gdz 0 p
用液柱高度表示 hV
pV p p a g g
三 绝对压强 计示压强(相对压强) 真空(真空度)
流体力学流体静力学
Fy
Fz
1 dxdydz Y 6
1 dxdydz Z 6
11
工程流体力学
第三章、流体静力学
3、导出关系式
• 因流体微团平衡,据平衡条件,其各方向作用力之和均为 零。则在x方向上,有: Px Pn cos(n, x) Fx 0 • 将上面各表面力、质量力表达式代入后得
二、流体静平衡微分方程的积分
1、利用Euler平衡微分方程式求解静止流体中静压 强的分布,可将Euler方程分别乘以dx,dy,dz, 然后相加,得:
p p p dx dy dz ( Xdx Ydy Zdz) x y z 因为 p=p(x,y,z),所以上式等号左边 为压强p的全微分dp,则上式可写为:
6
工程流体力学
第三章、流体静力学
由此特性可知,静止流体对固体壁 面的压强恒垂直指向壁面。
7
工程流体力学
第三章、流体静力学
2.静止流体中任意一点的各个方向的压力值都 相等。(大小性)
证明思路: 1、选取研究对象(微元体) 2、受力分析(质量力与表面力) 3、导出关系式 4、得出结论
8
px
工程流体力学
(2)质量力 微元体质量:M=ρdxdydz 设作用在单位质量流体的质量力在x方向上的分量为X。
则质量力在x方向的合力为:X· ρdxdydz
3、导出关系式:
则:
对微元体应用平衡条件 F 0
p X dxdydz dxdydz 0 x
19
工程流体力学
第三章、流体静力学
4、结论:
第三章、流体静力学
以x轴方向为例,如图所示: 1、取研究对象 微元体:无穷小平行六面体, dx、dy、dz → 0 微元体中心:A(x, y, z) 边界面中心点: A1, A2 A1点坐标: A1(x-dx/2,y,z) A2点坐标: A2(x+dx/2,y,z)
静力学力的平衡与受力分析
静力学力的平衡与受力分析在物理学中,力是物体之间相互作用的结果,是描述物体受到的外界作用的量。
静力学力的平衡与受力分析是力学中的重要概念和方法。
本文将通过对静力学平衡和受力分析的讨论,阐述力的平衡条件以及如何进行受力分析。
静力学平衡的概念使我们能够了解物体在静止状态下所受的力的关系。
在一个封闭的系统中,如果物体保持静止,则该物体的受力和力的矩之和为零。
这可以用以下公式表示:ΣF = 0其中,ΣF表示所有作用在物体上的力的矢量和。
这个方程称为力的平衡条件,它是静力学平衡的基础。
平衡条件的主要应用在于解决各种物体和结构的受力问题。
通过对平衡条件的分析,我们可以确定物体上受力的大小、方向和作用点的位置。
在进行受力分析时,我们首先需要明确物体所处的受力系统。
受力系统包括物体所受的所有外力和内力。
外力是由外界环境对物体施加的力,如重力、摩擦力等。
内力是物体内部不同部分之间相互作用的力,如张力、弹力等。
确定了受力系统后,我们可以使用受力分析方法来计算物体所受力的大小和方向。
下面介绍几种常见的受力分析方法:1. 自由体图法:将物体从整体中分离出来形成自由体,只考虑物体受到的力,不考虑周围物体的作用。
通过绘制自由体图,我们可以清楚地看到物体所受的各个力的大小和方向,从而计算出受力平衡的条件。
2. 悬挂点法:对于悬挂在一定点上的物体,我们可以通过设定悬挂点作为坐标原点,建立力的平衡方程来求解物体所受的力。
通过受力分析,我们可以确定物体所受力的大小、方向和作用点的位置。
3. 斜面分解法:对于放置在斜面上的物体,我们可以将受力分解为平行和垂直于斜面的分力,通过受力分析得到物体所受力的大小和方向。
受力分析在工程学和物理学中有着广泛的应用。
它可以帮助我们解决各种实际问题,如桥梁的结构稳定性分析、机械装置的设计优化等。
除了上述介绍的受力分析方法,还有其他一些分析方法,如向量分解法、平衡方程法等。
不同的问题需要选择合适的受力分析方法,以便得到准确的结果。
3章力系的平衡方程及应用
A
FAx
3m
P
1m
2m
由: 解得:
3 3FAy 3P 4 P 0 1
l
P1
FT 17.33kN FAx 15.01kN FAy 5.33kN
• 结果均为正,表明实际受力方向与假设方向相同。 • 为使平衡方程尽可能包含较少的未知量,避免联立求 解,通常将矩心取在两个未知力的交点。
M A (Fi ) 0 M B (Fi ) 0 M C (Fi ) 0
限制条件:A、B、C矩心不能在同一直线上(共线)。
y
C B A O
FR
因为平衡方程
满足,但不能排除图 示不平衡的情形。
x
3.1 空间任意力系的平衡条件和平衡方程
• 以上三种形式的平衡方程均为平衡的 必要与充分条件。
F X 0
x
F Y 0
y
•两个独立平衡方程,可以求解两个未知数。
3.1 空间任意力系的平衡条件和平衡方程 2. 空间平行力系的平衡方程
z
F1 F2
O x
y
F
iz
0
M x ( Fi ) 0
M y ( Fi ) 0
可以求解三个未知数。
F3
Fn F4
平面平行力系的平衡方程
3.1 空间任意力系的平衡条件和平衡方程
六个方程相互独立。联立,可求解六个未知量。 由平衡条件导出的方程称为平衡方程的基本形式。 • • 空间任意力系平衡方程:基本形式、四矩 应当注意:每一种形式最多只能列6个独立 式、五矩式和六矩式。
平衡方程,解6个未知数,任何多于6个的方程都
是这些方程的线性组合。
y
(Fi ) 0
工程力学 同济 2版 第三章静力学专题
[例7] 由不计自重的三根直杆组成的A字形支架置于光滑地面 上,如图 a) 所示,杆长AC=BC=L=3 m,AD=BE=L/5,支架 上有作用力F1=0.8 kN,F2=0.4 kN,求横杆DE的拉力及铰C和A 、B处的反力。
(a)
(b)
(c)
23
解 A字形支架由三根直杆组成,要求横杆DE的拉力和铰C的 反力,必须分开研究,又DE为二力杆,所以可分别研究AC和BC 两部分,但这两部分上A、B、C、D、E处都有约束反力,且未 知量的数目都多于3个。用各自的平衡方程都不能直接求得未知 量。如果选整个系统为研究对象,则可一次求出系统的外约束 反力。 (1) 先取整体为研究对象,在其上作用有主动力Fl和F2,A、 B处均为光滑面约束,而A处是两个方向上受到约束,因而约束 反力有FAx,FAy和FB,并选取坐标轴如图 b) 所示。列出平衡方 程
目
录
§3-1 物体系统的平衡问题
§3-2 特殊构架—平面桁架
2
§3-1 物体系统的平衡问题
一、静定与超静定的概念 我们学过: ∑X = 0
平面汇交力系
力偶系 平面 任意力系
Y ∑ =0
两个独立方程,只能求两个独立未知数。
一个独立方程,只能求一个独立未知数。 三个独立方程,只能求三个独立未知数。
m ∑
i
=0
X ∑ =0 Y ∑ =0
m ∑
O
( Fi ) = 0
当:独立方程数目≥未知数数目时,是静定问题(可求解) 独立方程数目<未知数数目时,是静不定问题(超静定问题)
3
[例 ]
静定(未知数三个)
静不定(未知数四个)
静不定问题在强度力学(材力,结力,弹力)中用位移协 调条件来求解。
第三章 力系的平衡
HOHAI UNIVERSITY ENGINEERING MECHANICS
例1: 作AB和CD示力图
HOHAI UNIVERSITY ENGINEERING MECHANICS
解: AB示力图 FAx FAy
A D C B
F
A
B F'RD FRD D
F
CD示力图
FRD D C C FRC
FRC
C
4.物体间的内约束力不应该画出。
§3-3 汇交力系的平衡
一、汇交力系平衡的充分必要条件
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR F1 F2 Fn 0
二、汇交力系的平衡方程
空间汇交力系: 平面汇交力系:
FRx =Fix=0
FRy =Fiy=0
两个构件用光滑圆 柱形销钉连接起来,称 为铰链连接(铰接)
四、活动铰支座
HOHAI UNIVERSITY ENGINEERING MECHANICS
上摆
组成分析
销钉 底板 只能限制物体与支座接触处向着支承面或 离开支承面的运动。 运动分析
滚轮
受力分析
HOHAI UNIVERSITY ENGINEERING MECHANICS
(A、B的连线不垂直于x轴)
HOHAI UNIVERSITY ENGINEERING MECHANICS
连杆的约束力沿着连杆 中心线,指向不定
F'B
空间铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
六、球铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
力系的简化和平衡方程
表示,并 合成为一
个作用在点
O'
的力
v R
如图
3—2
所示。
R΄ O M O΄΄
R′ OR
R″O΄
Od R O΄
(a)
(b) 图 3-2
(c)
这个力
v R
就是原力系的合力,合力矢等于主矢,合力的作用线在
O
的哪一侧,需根
据主矢和主矩的方向确定;合力作用线到点 O 的距离 d,可按下式计算。
d = M0 R
必须指明是力系对哪一点的主矩。
二、简化结果的讨论
由于平面任意力系对刚体的作用决定于力系的主矢和主矩,因此,可由这两个物理
量来研(究一力)系若简主化矢的Rv最′ =后0 ,结主果矩。M 0 ≠ 0 ,则原力系与一力偶等效。此力偶称为平面任意
力系的合力偶,合力偶矩等于
M0
=
n
v
∑ m0 (Fi )
。由力偶的性质可知,力偶对任意点的力
一、平面任意力系向作用面内一点简化、主矢和主矩
设刚体上作用一平面任意力系
v F1 ,
v F2
⋅⋅⋅
⋅
⋅
⋅Fvn
如图(3—1)。根据力的平移定理,将力
矩系Fv1'分中, Fv别诸2' ..等力....F于向vn' 力平,以面MFv及11内,=F相v任2M应⋅ ⋅一0⋅(的⋅F点⋅v1⋅附F)vnO加对点M力O平2偶点=移系M的,0M矩(OF1v,,2M)点即2称:..M..为..3M简=nM化。0这中(Fv些心3 )力。偶这作样用得在到同作一用平于面O内点,它的们力系的
θ
态。取料斗车为研究对象,对料斗车进行受力分析,所
O
受力有:重力
第三章 刚体平衡
力偶系:作用在物体上的若干个力偶
简化
力偶系
合成
合力偶
合力偶的力偶矩 = 力偶系中各力偶的力偶矩的代数和
M M1 M 2 M n M
平面力偶系的平衡条件: 所有力偶的力偶矩的代数和等于零
M M1 M 2 M n 0
F
q
B FBx F’Bx B F’By
q
C
FAx
A FAy
D
FD
FBy
FC
梁ADB段的受力图
梁BC段的受力图
14
第一节 静力学基本概念及原理
F
q
C
FAx
A FAy
D
FD
B
FC
整体受力图
15
第一节 静力学基本概念及原理
例3-5 不计三铰拱桥的自重与 摩擦,画出左、右拱AB,CB 的受力图与结构整体受力图。
M O M1 M 2 M n M O ( F1 ) M O ( F2 ) M O ( Fn ) M O ( Fi )
33
第三节 平面一般力系
平面一般力系向作用面内任一点 O 简化,可得一个力和一个 力偶,这个力等于该力系的主矢,作用线通过简化中心; 这个力偶 的力偶矩等于力系对于简化中心O点的主矩。
一、力线平移定理
力线平移定理: 作用于刚体上的力,可以平移到同一刚体 的任意指定点,但必须同时附加一力偶, 其力偶矩等于原来的力对该指定点的矩。
F′
F B d A F′′ M F′
=
B A
力线平移定理 是力系简化的 理论依据
M=±F. d=MB(F)
32
工程流体力学第三章
fx、fy、fz,则作用在微元四面体上的总质量力为:
W 1 dxdydz f
6
它在三个坐标轴上的分量为:
Wx
1 dxdydz
6
fx
Wy
1 dxdydz
6
fy
Wz
1 dxdydz
6
fz
由于流体的微元四面体处于平衡状态,故作用在其上的一切力在任意
轴上投影的总和等于零。
在x轴方向上力的平衡方程为:
d
p
f xdx
f ydy
f z dz
上式的左边是全微分,它的右边也必须是某个函数 (x, y, z) 的
全微分。
由于
d dx dy dz
x y z
(2-5)
所以
fx x
fy
y
fz
z
(2-6)
即质量力的分量等于函数 (x, y, z) 的偏导数,因此, (x, y, z) 称为力势函数(若某一坐标函数对个坐标的偏导数分别等于力 场的力在对应坐标轴上的投影,则称该坐标函数为力的势函数)。 存在力势函数的质量力称为有势力,重力、电磁力、(惯性力) 等是有势力。
px
1 2
dydz
pndAn
cos
1 6
dxdydzf x
0
(2-1)
因为:
dAn
cos
1 dydz 2
则上式变成
px
1 2
dydz
pn
1 2
dydz
1 6
dxdydzf
x
0
或
px
pn
1 3
f xdx
0
dx趋于0时,第三项为无穷小,可以略去,故得:
清华大学版理论力学课后习题答案大全 第3章静力学
清华大学版理论力学课后习题答案大全第3章静力学清华大学版理论力学课后习题答案大全-----第3章静力学第三章静态平衡问题3-1图示两种正方形结构所受荷载f均已知。
试求其中1,2,3各杆受力。
解决方案:图(a):2f3cos45??F0f3?2f(拉)2f1=f3(拉)f2?2f3cos45??0f2=f(受压)图(b):f3?f3??0f1=0F2=f(张力)FF3f33a451f2f1(a-1)图3-1:练习内容fdaf3f3df2(a-2)f3?f1(b-1)(b-2)f3?3-2图示为一绳索拔桩装置。
绳索的e、c两点拴在架子上,点b与拴在桩a上的绳索ab连接,在点d加一铅垂向下的力f,ab可视为铅垂,db可视为水平。
已知?=0.1rad.,力f=800n。
试求绳ab中产生的拔桩力(当?很小时,tan?≈?)。
联邦调查局人员?dfcbfdb?fdb?练习B的图3-2f(a)(b)晶圆厂解决方案:?fy?0,联邦调查局??被激怒了??外汇?0,fedcos??fdbfdb?fsi?nf?10ftan?从图(a)中的计算结果可以推断,图(b)中的Fab=10fdb=100F=80KN。
3-3起重机由固定塔ac与活动桁架bc组成,绞车d和e分别控制桁架bc和重物w的运动。
桁架bc用铰链连接于点c,并由钢索ab维持其平衡。
重物w=40kn悬挂在链索上,链索绕过点b的滑轮,并沿直线bc引向绞盘。
长度ac=bc,不计桁架重量和滑轮摩擦。
试用角?=∠acb的函数来表示钢索ab的张力fab以及桁架上沿直线bc的压力fbc。
法比?2.fbcwwx习题3-3图(a)―1―解:图(a):?fx?0,fabcos?2?wsin??0,fab?2wsin?2fy?0,fbc?W世界海关组织??fabsin2s?2wsin是FBC吗?W世界海关组织??2.02wwcosw(1cos)2w3-4杆AB及其两端滚轮的整体重心位于点G,滚轮放置在一个倾斜的光滑刚性平面上,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
P1
L
M3
M2
B
L
M3
B
FB
解:取工件为研究对象、画受力图。 解得 由 Mi=0 FA l M1 M2 M3 0
FA FB 200N m
例题 3-9 不计自重的杆AB与DC在C处为光滑接触,
它们分别受力偶矩为M1与M2的力偶作用 ,转向如图。 问M1与M2的比值为多大,结构才能平衡?
B
qa M FC 4 2a
FAy 7qa M 4 2a
3qa M FBy 4 2a
M A 3qa2 M
研究方法二: 局部到局部
q
A B
M
C
a
a
a
a
1、 BC 梁为研究
FBx
B
q
M
C
FBy
FC
F 0 F 0 M 0
x
y
FBx 0
FBy qa Fc 0
F B
4a
约束反力数 m 独立平衡方程数 n 静不定的次数为: k=m-n
m = n m >n
静定问题 静不定问题
二、刚体系统的平衡问题的特点与解法
1. 刚体系统:由几个刚体通过一定的约束方式联 系在一起的系统。
q
A
M
C
a
a
B
a
a
返回
2.求解刚体系统平衡问题的一般方法和步骤 方法一:整体
弄清 题意, 标出 已知 量 选整体 为研究 对象画 受力图 ,列平 衡方程 局部 选局部为 研究对象 画受力图 ,列平衡 方程求解 。 检 查 结 果, 验 算
2.平面力偶系的平衡方程
h1
F3 F1
h2
F
h
F2
平面力偶系可以合成为一个合力偶,合力偶之
矩等于力偶系中各力偶之矩的代数和。
M=Mi
M=Mi=0 平面力偶系的平衡方程
例题 3-5
图示平面刚架的支反力。
P
4m
解:以刚架为研究对象,受 力如图,建立如图坐标。
Fx 0 : FA cos P 0
约束反力方位亦可确定,画受力图。
B B C
F′C
C
M2
M1
A 60
o
M2
60o D
A 60o
60o
D
FD
FD = FC = F M2 = 0.5 a F
Mi = 0
(2)
- 0.5a F + M2 = 0
联立(1)(2)两式得:M1/M2=2
§3-2 简单的刚体系统平衡问题
一、刚体系统静定与静不定的概念
1m
解: 1.取整体为研究对象
D
A
E
4m
B
P1
10m
P1
C 4m
F 0 ,F F 0 F 0,F 2P P F 0
x Bx Cx
y By 1 Cy
1m 3m P
1m
M
B
0 ,
FCy 48KN FBy 52KN
D
4m
A
E
P1 1 4 P 9 P1 10FCy 0
例题 3-1 图示简支梁AB,梁的自重及各处摩擦均
不计。试求A和B处的支座约束力。
q y Me C 2a 4a a D
q
Me C D a 4a
A
B
A FAx FAy 2a
B x FNB
(a)
(b)
解:
(1)选AB 梁为研究对象。 (2)画受力图如右图所示。
(4) 列平衡方程
Fx 0 FAx 0
y
4. 联立求解,得
FAB 54.5 KN
FAB B
30° 30° FT1
x
FBC 74.5KN
FBC
FT2
反力FAB 为负值,说明该力实际指向与图上假 定指向相反。即杆AB 实际上受拉力。
例题 3-7 折杆AB的支承方式如图所示,设有一力矩数
值为M的力偶作用在折杆AB上,求支承处的约束力大小。
2-4 物体系统平衡问题
例题 3-11 如图所示的三铰拱桥由两部分组成,彼此
用铰链A联结,再用铰链B和C固结在两岸桥墩上。每 一部分的重量P1=40 KN,其重心分别在点D和E点。 桥上载荷P=20KN。求A、B、C 三处的约束力。
1m 3m
P
4m
1m
D 4m
A
E
P1
B
10m
P1
C
1m 3m
P
4m
例题 3-10
图a所示铰接横梁。已知荷载q,力偶矩M
和尺寸a,试求杆的固定端A及可动铰B、C 端约束力。
q
A
M
C
a
a
B
a
a
2-4 物体系统平衡问题
研究方法 一: 整体到局部
1.取整体为研究对象
MA
FAy
A
q
B
M
C
FAx
a
a
a
a
FC
F 0 F 0
x
FAx 0
FAy FC 2qa 0
注意:
力偶 M 在任一轴上的投影为零; 力偶对任一点之矩即为M。 选取适当的坐标轴和矩心,注意正负号。
方法二:局部
选局部 为研究 对象画 受力图 ,列平 衡方程
局部 检 查 结 果, 验 算
弄清 题意, 标出 已知 量
再选局部 为研究对 象画受力 图,列平 衡方程求 解。
注意:
力偶 M 在任一轴上的投影为零; 力偶对任一点之矩即为M。 选取适当的坐标轴和矩心,注意正负号。
i 1
Fix 2 Fiy 2
F
i 1
iy
0
o
M
i 1
n
( Fi ) 0
F
i 1
n i 1
n
ix
0
0
F
n i 1
iy
平面一般力系的平衡方程 (基本形式)
M
o
( Fi ) 0
为了书写方便,通常将平面一般力系的平衡方程简写为
Fx 0
Fy 0 M o (F ) 0
y
A
30°
30°
B
FAB
30°
B
30° F
T1
x
C
P FBC
FT2
解:1.
取滑轮B 连同销钉作为研究对象。 画出受力图
2.
3. 列出平衡方程:
Fx 0 : FBC cos300 FAB FT 2 sin 300 0
Fy 0 : FBC sin 300 FT 1 FT 2 cos 300 0
MO
(b)
x
M o M o ( Fi )
i 1
平面一般力系平衡的必要与充分条件是力系的主矢和对任意一 点的主矩同时等于零。这一条件简称为平衡条件。 n Fix 0 n
Fi 0 FR
n
因为
FRx 2 FRy 2 FR
i 1
n
i 1
M o M o ( Fi ) 0
M B ( F ) 0 : FAy a m P sin b 0
C
b
M A (F ) 0: FB a P sin (a b) m 0
解得: FAx P cos
m Pb sin FAy a m P sin (a b) FB a
2L 2L
L
M
B
L
M
B
FB
A
A
FA
解: 由
Mi=0
FA l M 0
M FA FB l
例题 3-8 工件上作用有三个力偶如图所示。已知:
M1= M2= 10N· m, M3 =20N· m,固定螺栓A和B的距
离l=200mm。求两光滑螺栓所受的水平力。
FA
A
M1 M2
A
M1
F R=0
F3 (a)
F5 x
(b)
x
M M M
(F ) 0 B (F ) 0 ( F ) 0 C
A
三力矩式 (A、B、C三点不共线)
例题 3-4
求图示梁的支座反力。
A
P m a B
解:以梁为研究对象,受力如图。
Fx 0 : FAx P cos 0
FAy P
2 M A Pa 1 qb 2
例题 3-3 平面刚架的所有外力的作用线都位于刚架平
面内。A处为固定端约束。若图中q、FP、M、l 等均为 已知,试求: A处的约束力。
l
FP FP
l
l
l
2l
A
FAx A
2l
M
q
M
q
l
MA FAy
解:1.选择研究对象。
2 受力分析,画出受力图如图所示。
第 3 章
静力学平衡问题
§3-1 平面力系的平衡条件与平衡方程
§3-2 简单的刚体系统平衡问题 §3-3 考虑摩擦时的平衡问题
§3-4 结论与讨论
§3-1 平面力系平衡条件与平衡方程 一、平面一般力系的平衡条件与平衡方程
y F1
O
F2
F4
y
F R
O
Fi FR
i 1
n
n
F3 (a)
F5 x
y
q
Fy 0 FAy q 2a FNB 0
M o (F ) 0