(完整版)同济大学___高数上册知识点

合集下载

同济高数大一上知识点总结

同济高数大一上知识点总结

同济高数大一上知识点总结在大一上学期的高数课程中,同济大学为我们介绍了许多重要的数学概念和方法。

这些知识点对于我们理解和应用更高级的数学知识起着至关重要的作用。

在这篇文章中,我将总结和回顾我们在同济高数课程中学到的一些重要知识点。

1. 乘法公式和因式分解在高数课程中,我们学习了许多乘法公式和因式分解方法。

乘法公式包括两个重要的公式,即乘积化简公式和差化积公式。

我们通过运用这些公式可以简化复杂的运算,化简式子。

因式分解是将一个数或者一个式子分解成几个因子之积。

因式分解的方法有很多,包括提公因式法、配方法和特殊公式等等。

2. 极限和连续性极限是高数中十分重要的概念之一,它构成了微积分的基础。

我们学习了极限的定义、性质和运算规则。

通过研究极限,我们可以探索函数的变化和趋势,进而推导出导数和积分等概念。

连续性是函数的重要性质,它意味着函数在某个区间上没有间断点。

我们学习了连续函数的定义以及如何判断一个函数是否连续。

3. 导数和微分在高数课程中,我们深入学习了导数和微分。

导数描述了函数在某一点的瞬时变化率,它是微分学中的核心概念。

我们通过定义导函数和求导法则来计算函数的导数。

微分则是导数的一个应用,它描述了函数在某一点的局部线性近似。

通过微分,我们可以求得函数曲线在某一点的切线方程。

4. 积分和定积分积分是微积分的另一个重要概念,它表示函数在某个区间上面积的大小。

我们学习了不定积分和定积分的定义和计算方法。

不定积分是积分的逆运算,它可以通过反求导的方式求得。

定积分则是计算给定区间上面积的大小,可以通过积分区间的分割和近似求和来计算。

5. 微分方程微分方程是在高数课程中的重要内容之一。

微分方程是包含未知函数及其导数的方程。

我们学习了一阶和二阶常微分方程的基本概念和解法。

通过求解微分方程,我们可以找到函数的特定解,并且应用到动力学、经济学等领域。

6. 三角函数和三角恒等式三角函数是数学中的重要概念,它描述了角度和长度之间的关系。

同济版大一高数知识点

同济版大一高数知识点

同济版大一高数知识点大一高等数学知识点(同济版)1. 数列与数列极限数列的概念:数列是按照一定顺序排列的数的集合。

数列的通项公式:表示第n项与n的关系的公式。

数列的极限:表示当n趋近于无穷大时,数列的趋势或稳定的值。

2. 函数与函数极限函数的定义:函数是一种将输入值映射到输出值的规则。

函数的极限:表示自变量趋近某个值时,函数的趋势或稳定的值。

3. 一元函数的导数与导数应用导数的定义:表示函数在某一点的瞬时变化率。

导数的计算方法:通过求极限或使用导数的基本运算法则计算。

导函数的应用:求函数在某点的切线方程、解函数的极值问题等。

4. 微分学基本定理与不定积分微分学基本定理:表示函数的微分与定积分之间的关系。

不定积分的概念:表示函数的原函数的集合。

不定积分的计算方法:通过使用积分的基本公式、换元法、分部积分等方法计算。

5. 定积分与定积分应用定积分的概念:表示函数在一定区间上曲线下的面积。

定积分的计算方法:通过使用积分的基本公式、换元法、分部积分等方法计算。

定积分的应用:求曲线与坐标轴所围成的面积、求函数的平均值等。

6. 一元函数的级数级数的概念:由数列的项按一定规律相加而得到的无穷和。

级数的性质:级数的收敛、发散及相关性质。

常见级数的处理方法:通过判断级数的性质,确定级数的和。

7. 二元函数与偏导数二元函数的定义:函数的自变量为两个变量。

偏导数的定义:表示函数变化率在某一方向上的分量。

偏导数的计算方法:通过将其他自变量视为常数,对某一自变量求导。

8. 二重积分与二重积分应用二重积分的概念:表示函数在二维区域上的累积。

二重积分的计算方法:通过使用二重积分的基本公式、极坐标系等方法计算。

二重积分的应用:求二维区域的面积、质心坐标等。

9. 无穷级数与幂级数无穷级数的概念:由数列的项按一定规律相加而得到的无穷和。

幂级数的定义:以自然数幂次递增的项相加而得到的级数。

幂级数的求和范围与收敛域:确定幂级数的求和范围以及其收敛、发散的区域。

同济高数大一上学期知识点

同济高数大一上学期知识点

同济高数大一上学期知识点一、函数与极限1. 函数的定义与性质1.1 函数的概念1.2 奇偶函数与周期函数1.3 反函数与复合函数2. 极限的概念与性质2.1 极限的定义与表达式2.2 极限的唯一性与有界性2.3 极限的四则运算法则2.4 集合与极限的关系3. 无穷大与无穷小3.1 无穷大的定义与性质3.2 无穷小的概念与性质3.3 无穷小的比较与运算3.4 引理与重要极限4. 两个重要的极限4.1 e的极限与自然对数4.2 sin和cos的极限与圆周率二、导数与微分1. 导数的引入1.1 导数的定义与几何意义1.2 导数存在的条件与计算法则2. 导数的运算法则2.1 常数函数与幂函数的导数 2.2 反函数与复合函数的导数 2.3 三角函数的导数2.4 隐函数与参数方程的导数3. 高阶导数与导数的几何意义 3.1 高阶导数的定义与计算 3.2 导数与函数的图象4. 微分与近似计算4.1 微分的定义与性质4.2 微分中值定理与应用4.3 泰勒公式的概念与应用三、一元函数的应用1. 最值与驻点1.1 极值与最值的概念1.2 函数的极值判定1.3 连续函数的最值定理1.4 驻点的概念与判定2. 函数的图象与曲线的参数方程 2.1 函数的图象与曲线2.2 参数方程的概念与性质2.3 参数方程与函数图象的关系 2.4 高阶导数与曲线的凹凸性3. 不定积分与定积分3.1 不定积分的定义与性质3.2 基本积分法与换元积分法 3.3 定积分的定义与几何意义 3.4 牛顿-莱布尼茨公式的应用4. 微分方程4.1 微分方程的基本概念4.2 一阶微分方程的求解4.3 高阶线性微分方程的求解综上所述,本文介绍了同济大学高等数学第一学期的知识点,包括函数与极限、导数与微分、一元函数的应用等。

这些知识点是大一上学期数学学习的基础内容,对建立数学思维和解决实际问题具有重要意义。

通过深入学习这些知识点,可以为后续的高等数学学习打下坚实的基础。

同济版高数知识点总结大一

同济版高数知识点总结大一

同济版高数知识点总结大一同济版高数是大一学生必修的一门课程,内容包含了数学的基础知识和应用技巧。

在学习过程中,我们需要掌握一些重要的知识点,下面就给大家总结一下。

1. 极限与连续在高数中,极限是一个重要的概念。

我们需要了解函数的极限及其性质。

其中包括常用的极限运算法则,如加减乘除法则、复合函数极限法则等。

另外,我们还需要学习函数的连续性及其判定方法,如极限存在的条件、间断点的分类及判断等。

2. 导数与微分导数是高数中的另一个重要概念,它描述了函数在某一点上的变化率。

我们需要学习导数的定义、求导公式及运算法则,如常用函数的导数、高阶导数等。

此外,还需要了解函数的微分、微分中值定理等相关概念和应用。

3. 不定积分与定积分不定积分与定积分是高数中的重要内容。

不定积分是求函数的原函数,我们需要学习求不定积分的方法和技巧,如常用函数的积分公式、换元积分法、分部积分法等。

定积分是计算曲线下面的面积,我们需要了解定积分的定义、性质和计算方法,如区间分割法、定积分的几何应用等。

4. 一元函数的应用在大一高数中,我们会学习一元函数的应用知识。

包括函数极值与最值、函数的图像与性质、函数的模型与应用等。

其中,函数的极值与最值是我们需要重点掌握的内容,涉及到函数极值的判定条件、求极值的方法和应用问题的解答。

5. 多元函数与偏导数除了一元函数,高数课程还会介绍多元函数的知识。

我们需要了解多元函数的定义、极限、连续性及偏导数的计算方法。

尤其是偏导数的求解,需要掌握偏导数的定义以及常见函数的偏导数计算技巧。

以上是同济版高数大一知识点的简要总结。

在学习过程中,需要理解概念、掌握公式和运算技巧,并且进行大量的练习和应用实践,才能真正掌握这些知识点。

希望大家能够认真学习,取得好成绩!。

同济版本高数上第一章部分知识总结

同济版本高数上第一章部分知识总结

一、映射1、映射的概念映射:设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,在Y中有唯一确定的元素y与之对应,那么称f为从x到y的映射,记作:f:X→Y举例:注意事项:一、无论是定义域还是值域都是非空集合二、定义域内值必须在值域内有对应的数,而值域内可以不一定。

比如上图中定义域中1到4必然都有对应的数在值域内,但是值域内有5个数,必然会留下一个数,不需要全部对应完毕。

三、对于定义域内部的每个x来说,在值域内对应的值都是有且唯一的,不可“一对多”,而值域内数则可以“多对一”,多个定义域内的值可以同时对应同一个值域内的值。

2、特殊映射满射(X到Y上的映射):值域中的每一个值都被对应。

根据映射概念可知,既然值域内部值都被对应,相应定义域内部的值也应当都已对应。

而且我们应该知道此时定义域内的值的数量应该等于或许大于值域内值的数量。

单射:定义域内对应值域内的值不同。

即x1≠x2,则f(x)1≠f(x)2一一映射:映射是满射又是单射3、逆映射若将原映射的定义域与值域进行对调,则新构成的映射称作:逆映射。

记作:f−1。

其中,新构成的这个映射,定义域 D f−1=R f,即新的定义域为原映射的值域。

而新的值域则是R f−1=X,因为此时逆映射的定义域需为定义域所在集合全部都是,也就是意味着需要构成逆映射的原映射必须为单射。

若g:X→Y1,f:Y2→Z ,则由g与f可构成复合映射,即:f∘g: X→Z。

这个对应法则确定了一个X到Z的映射,表示 f[g(x)]。

由定义可知,g的值域必须在f的定义域内。

且f∘g与g∘f意义不同。

二、函数1、函数的概念函数:若数集D⊂R,则称映射f:D⊂R为定义在D上的函数,通常简记为:y=f(x),x∈D其中,x称作自变量,y称作因变量,D称作定义域。

注意:一、y=f(x)表示在对应法则f的作用下,定义域内所对应的值,因此写作f(x)。

实际上,y与f(x)的意义一样。

高数同济大一知识点总结

高数同济大一知识点总结

高数同济大一知识点总结高等数学是大学学习中十分重要的一门基础课程,对于同济大学大一学生来说更是必修课程之一。

本文将对高等数学中的一些重要知识点进行总结,帮助同学们加深对这门课程的理解和掌握。

一、函数与极限在高等数学的学习中,函数与极限是最基础的概念之一。

函数是一种映射关系,通过自变量与因变量之间的关系描述了各种现象和问题。

极限则是函数在一点或无穷远处的趋势和趋近性,帮助我们分析函数的性质和变化规律。

1. 导数与微分导数是函数在某一点的瞬时变化率,常用于描述函数的斜率和变化趋势。

微分则是导数的一个重要应用,描述了函数在极小变化下的近似值。

2. 泰勒展开与极值问题泰勒展开是用一个无穷多项式来逼近一个函数的技巧,常用于求函数的近似值。

通过泰勒展开,我们可以解决函数的极值问题,找到函数的最大值和最小值。

二、微分方程微分方程是高等数学的一个重要分支,研究的是未知函数及其导数之间的关系。

在实际问题中,我们经常会遇到各种各样的微分方程,通过求解微分方程,我们可以得到问题的解析解或数值解。

1. 一阶微分方程一阶微分方程是最简单的一类微分方程,可以通过分离变量、齐次方程、线性方程等方法求解。

在求解中,需要注意初值条件的应用,以确定特定的解。

2. 高阶微分方程高阶微分方程是指阶数大于一的微分方程,可以通过特征根法、欧拉方程、常系数线性齐次方程等方法求解。

不同的方法适用于不同的微分方程类型。

三、重积分重积分是对多变量函数在区域上的积分,将多维问题转化为一维问题。

在物理、工程等领域中,常常需要对一定空间或曲面上的函数进行积分求解。

1. 二重积分二重积分是在二维平面上对函数进行积分,可以通过直角坐标、极坐标等多种坐标系下的转化进行求解。

在计算过程中,需要注意区域的限定和积分顺序的选择。

2. 三重积分三重积分是在三维空间上对函数进行积分,可以通过直角坐标、柱坐标、球坐标等多种坐标系下的转化进行求解。

在计算过程中,需要注意积分范围的确定和积分顺序的选择。

大一高等数学同济版知识点

大一高等数学同济版知识点

大一高等数学同济版知识点1.极限与连续:-数列极限的定义与性质-函数极限的定义与性质-连续函数的概念与性质-间断点与间断类别的划分-极大值与极小值2.导数与微分:-导数的定义与性质-高阶导数-隐函数与参数方程求导-微分的概念及其应用-柯西中值定理与拉格朗日中值定理3.微分中值定理与导数的应用:-罗尔中值定理-拉格朗日中值定理-柯西中值定理-泰勒公式与泰勒展开-极值与最值问题4.不定积分:-基本积分表-积分法与换元法-部分分式分解-定积分与可积函数-牛顿—莱布尼茨公式5.定积分与定积分的应用:-定积分的定义与性质-牛顿—莱布尼茨公式-平均值定理与均值不等式-广义积分的收敛性与计算6.微分方程:-微分方程的基本概念-可分离变量型微分方程-一阶线性微分方程-高阶线性微分方程-欧拉—柯西方程与常系数线性方程7.空间解析几何:-空间坐标系与向量的表示-点、直线及平面的方程-曲面的方程与切平面-直线和平面的位置关系-空间曲线的参数方程与切向量8.多元函数微分学:-多元函数的极限与连续性-偏导数和全微分-隐函数与函数极值-多元函数的泰勒公式-多元函数的极值与最值9.二重积分与三重积分:-二重积分的概念与性质-二重积分的计算方法-三重积分的概念与性质-三重积分的计算方法-应用:质心、质量和转动惯量10.曲线积分与曲面积分:-第一类曲线积分-第二类曲线积分-变量替换与格林公式-第二类曲面积分-斯托克斯公式与高斯公式除了以上列举的知识点之外,还涉及到一些高维空间的数学知识、无穷级数等内容。

本文只是对大一高等数学同济版的知识点进行了概览,具体的内容还需要细致学习教材。

希望对你的学习有所帮助!。

大一同济版高数知识点

大一同济版高数知识点

大一同济版高数知识点1. 一阶导数与高阶导数在微积分中,导数是一个非常重要的概念。

一阶导数表示函数在某一点的斜率,用f'(x)或dy/dx表示。

对于高数来说,我们需要重点掌握求导的方法和规则,比如常用的求导法则,如常数法则、幂法则、和差法则等。

另外,还需要掌握复合函数求导、隐函数求导以及参数方程求导等技巧。

2. 极限与连续性极限是高数中一个基础而重要的概念。

我们需要理解极限的定义、性质和运算法则,掌握求函数极限的方法和技巧。

此外,在讨论极限的时候,要注意左极限和右极限的关系,以及无穷大极限和无穷小极限的概念。

连续性是极限的重要应用之一。

我们需要知道连续函数的定义和性质,以及连续函数的运算法则。

另外,需要掌握在一定条件下判断函数连续的方法,例如分段函数的连续性判断。

3. 导数与微分导数是函数变化率的表示,微分是导数的微小变化量。

我们需要了解导数的几何意义和物理意义,熟悉导数的性质和运算法则。

在微分方面,需要明白微分的定义和性质,以及微分的运算法则。

在应用中,导数和微分常被用于函数的最值问题、曲线的斜率和切线方程、函数的增减性和凹凸性、泰勒公式等。

4. 积分与不定积分积分是对函数的反求导运算,也是微积分中的重要部分。

我们需要掌握积分的定义和性质,以及积分的运算法则。

常用的积分法则有换元积分法、分部积分法、有理函数的积分等。

不定积分是求导的逆运算,也称为原函数。

我们需要掌握不定积分的基本性质和计算方法,以及一些特殊函数的积分。

5. 微分方程微分方程是描述变化规律的数学方程,也是高数中的重要内容。

我们需要了解微分方程的基本概念和分类,以及常微分方程的基本解法,如分离变量法、齐次方程法、一阶线性方程法等。

微分方程在物理、经济、生物等领域有广泛的应用,掌握微分方程的理论和解题技巧对进一步学习有很大帮助。

以上是大一同济版高数知识点的一个概览。

在实际学习中,我们需要通过大量的练习和实例来深入理解和掌握这些知识点。

高等数学(同济第七版)(上册)-知识点

高等数学(同济第七版)(上册)-知识点
推论:如果函数f ( x) 在闭区间[ a,b] 上连续,且f ( a) 与f ( b) 异号,则在( a,b) 内至少存在一个点ξ ,使得f ( ξ ) = 0这个推论也称为零点定理
WORD 格式可编辑版
...
第二章 导数与微分 一.基本概念
1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导。
∈[ a,b] ,有公式

, 称为拉格朗日余项 上面展开式称为以0(x) 为中心的n 阶泰勒公式。当 x0 =0 时,也称为n阶麦克劳林
WORD 格式可编辑版
...
公式。 常用公式( 前8个)
WORD 格式可编辑版
...
五.导数的应用
一.基本知识 设函数f ( x) 在 x0 处可导,且 x0 为f ( x) 的一个极值点,则 f '(x0) 0 。 我们称x 满足 f '(x0) 0 的 x0 称为 f (x) 的驻点,可导函数的极值点一定是驻点, 反之不然。极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。
二.求导公式
三.常见求导
WORD 格式可编辑版
...
1. 复合函数运算法则 2. 由参数方程确定函数的运算法则
设x =( t) ,y =(t) 确定函数y = y( x) ,其中'(t),'(t) 存在,且'(t) ≠ 0,则 dy '(t)
dx '(t) 3. 反函数求导法则 设y = f ( x) 的反函数x = g( y) ,两者皆可导,且f ′( x) ≠ 0 则 g'( y) 1 1 ( f '(x) 0)
2. 第二充分条件
f (x) 在 x0 处二阶可导,且 f (x0) 0 ,f (x0 ) 0 ,则①若 f (x0 ) 0 , 则 x0 为极大值点;②若 f (x0 ) 0 ,则 x0 为极小值点.

高等数学(同济六版)上册总结

高等数学(同济六版)上册总结

高等数学知识纲要一、定义1、基本初等函数、初等函数2、极限(数列、函数)理解定义3、无穷小与无穷大4、函数连续与间断(点、区间)5、导数与微分(点、区间)6、原函数与不定积分7、定积分理解定义二、性质1、极限的性质2、收敛函数的性质3、闭区间上连续函数性质4、中值定理5、不定积分与定积分的性质三、关系1、数列(函数)敛散性与有界性之间2、收敛数列及其子数列之间3、函数极限与左右极限4、无穷小与无穷大5、连续与可导、可导与可微6、驻点与极值点、极值之间、极值与最值之间7、连续与可积四、计算(极限、导数、积分)五、应用1.导数的几何意义应用(切线、法线方程)2.导数的应用(单调性、凹凸性、极值、最值)3.定积分的应用极限的运算运算法则(四则、复合、换序)1、 特殊极限1sin lim ,1sin lim ,1sin lim 000===→→→uux x x x u x x 对比0sin lim =∞→x x x e ue x e x uu xx x x =+=+=+∞→→∞→)11(lim ,)1(lim ,)11(lim 10 2、 等价无穷小当0→x 时,kx kx kx kx arctan ,arcsin ,tan ,sin ~kxx cos 1-~22x ,11-+nx ~nx3、 有理函数的极限?)()(lim0=→x Q x P x x当0)(0≠x Q 时, )()()()(lim000x Q x P x Q x P x x =→. 当0)(0=x Q 且0)(0≠x P 时, ∞=→)()(lim0x Q x P x x .当Q (x 0)=P (x 0)=0时, 先将分子分母的公因式(x -x 0)约去. ⎪⎩⎪⎨⎧>∞=<=+⋅⋅⋅+++⋅⋅⋅++--∞→mn m n b a mn b x b x b a x a x a mm m n n n x 0 lim 00110110 4、导数定义 若)(0x f '存在,则=+-→hh x f x f h )()(lim000)(0x f '-. =--+→hh x f h x f h )()5(lim000)(60x f '5、罗比达法则(00或∞∞型,∞⋅0、∞-∞、00、∞1、0∞型的未定式)1.0)3562(lim 20142013=-+∞→x x x 2.535sec 53cos 3lim 5tan 3sin lim 2-==→→x x x x x x ππ3. e x x xx x x xx =+=+⋅→→sin sin 101)sin 1(lim )sin 1(lim4. =-+=-→-→xx xx x x111111)11(lim lim 1-e .5.=+-=+++-⋅+∞→-∞→xx x x x x xx x 633361)631(lim )63(lim 3-e .6.2211)1(4lim 145lim 11=⋅--=---→→x x x x x x x 7.21)1cos ()1(cos 2lim )1cos )(1(cos 1cos lim )1(cos 1cos lim 2000-=+-=+--=--→→→x x x x x x x x x x x x x 8.3232lim 2sin 3)1(cos tan lim )1sin 1)(11(tan sin lim 22020320-=⋅⋅-=⋅-=-+-+-→→→xx x x xx x x x x xx x x x216lim 2sin tan sin lim 2)1sin 1(tan sin limsin 1tan 1sin 1lim33020202-==-=-+-=-++-+→→→→x x x x x x x x x x xx x x x x x x x10.81)2(4sin cos lim )2(sin ln lim 222-=--=-→→x x x x x x x ππππ 11.2111lim )1112(lim 2121-=--=---→→x x x x x x 12.1lim )(sin lim )ln(sin lim )ln(sin 0===→→→x x x x xx x xe e x13. ex xe xdt e xdte xx x t x xt x 212sin lim limlim222cos 02cos 121cos 0==--→-→-→⎰⎰导数与微分的运算练习1.已知1sin +=x xey ,求22dxy d . y d dy 2,解:1)cos (sin ++=x e x x dxdy ,122cos 2+=x xe dx y d dx e x x dy x 1)cos (sin ++=,212cos 2dx xe y d x +=2.已知⎩⎨⎧==te y t e x tt cos sin 求3π=t 时dx dy的值. (参看P112-5.6.7) 解:tt tt t e t e t e t e t x t y dx dy tt t t sin cos sin cos sin cos sin cos )()(+-=+-=''=,所以3π=t 时=dxdy23-. 3.已知0333=-+xy y x ,求dxdy .(参看P111-1)解:0333322=--+dxdy x y dx dy yx ,x y x y dx dy --=224.已知xy e yx 2=+,求dxdy .解: dx dy x y dx dy e yx 22)1(+=++,xxy xyy dx dy --=5.已知5ln 2+=x x y ,求dxdy .解:xx x e x ln =于是有)1(ln )()(ln +='='x x e x x x x x 故)1(ln 2+=x x dxdy x(或先用对数求导法求x x y =的导数) 6.x x y sin = ,求y '.解:等式两端取自然对数得x x y ln sin ln =,等式两端对x 求导,得xx x x y y sin ))(ln (cos +=',⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+='x x x x x x x x x y y x sin ))(ln (cos sin ))(ln (cos sin 练习:1cos sin +=xx y ,求y '. 7、()()54132+-+=x x x y 求'y解:两端同时取自然对数 得()()()1ln 53ln 42ln 21ln +--++=x x x y两端同时对x 求导 得153421211'+--++=⋅x x x y y故()()()()⎥⎦⎤⎢⎣⎡+--+++-+=⎥⎦⎤⎢⎣⎡+--++=1534221132153422154'x x x x x x x x x y y 8.32)3()2(1-++=x x x y ,求y '.解:等式两端取自然对数得[])3ln(3)2ln(2)1ln(21ln --+-+=x x x y等式两端对x求导,得)332211(21--+-+='x x x y y ,)332211()3()2(12132--+-+-++='x x x x x x y (对数求导法参看P112-4)9. ⎰-=2)(x tdt e x f ,x e dxdudt e du d x f u x u u t 2)(20-=-=⋅='⎰=22xxe -10.⎰⎰⎰⎰⎰+-+=+++=+=xx x x x xdt t dt t dt t dt t dt t x f 011111)(222xx x dt t dt t x f x x +-+='+-'+='⎰⎰1)2(1)1()1()(202(对数求导法参看P243-5)积分的计算练习1.dxx x ⎰-1tan cos12解:dxx x ⎰-1tan cos 12=)1(tan 1tan 1--⎰x d x =C x +-1tan 22.计算不定积分⎰xx dxsin cos .解:==⋅=⎰⎰⎰x xd xxx dx x x dx tan tan sec cos sin sin cos 2C x +tan ln 3.计算不定积分dx x x x⎰+2)ln (ln 1. 解: ==+⎰⎰)ln ()ln (1)ln (ln 122x x d x x dx x x x C xx +-ln 1(凑微分参看P207习题4-2和P253第1题)4.⎰-10dx xe x=⎰--10)(xe xd =[]dx exexx ⎰--+-101=[]e e e e ex 21)11(1110-=+-+-=-+--(分部积分参看P212习题4-3和P254第7题)5.dx xx ⎰--145解:令tdt dx t x t x 2,5,52-=-==-,2,1,3,4===-=t x t x dx xx ⎰--145=38532)5(2)2(5233232232-=⎥⎦⎤⎢⎣⎡-=-=--⎰⎰t t dt t dt t t t6.dx x 2312)1(-⎰+解:令4,1;0,0,sec ,tan 2π======t x t x tdt dx t xdx x 23102)1(-⎰+=22sin cos )(sec sec )tan 1(4040401223402====+⎰⎰⎰--ππππttdt dt t tdt t (提示:t a x x a t a x x a tan ,;sin ,2222=+=-)7、dx x x x ⎰+--6512解:dx x x x ⎰+--6512=()()⎰⎰+-+--=⎪⎭⎫ ⎝⎛-+--=---C x x dx x x dx x x x 3ln 22ln 3221321 (提示:设32)3)(2(1-+-=---x Bx A x x x 通分求出A,B ) 8.⎰⎰+---=---dx x x x dx x x x )1()1(352)1)(1(52622 ⎰⎥⎦⎤⎢⎣⎡+-----=dx x x x )1(1)1(1)1(1522 C x x x +--+--=)1(5211ln 52 (提示:设)1()1(1)1()1(322++-+-=+--x C x B x A x x x 通分求出A,B,C ) (有理函数积分参看P215例1.2.3)9.计算由x y x y ==、32所围成的图形的面积.(参看P284习题6-2) 解解方程组⎩⎨⎧==xy x y 32可得⎩⎨⎧==00y x ,⎩⎨⎧==33y x所求面积为21)3(212=-=⎰-dy y y a 10.求曲线2223336x y +=所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.解:星形线的参数方程⎩⎨⎧==t a y ta x 33sin cos , 上半平面图形对应π≤≤t 0,第一象限对应20π≤≤t ,注意上下限对应的t 值 ⎰⎰⎰===2422233sin cos 34)cos ()sin (44ππtdt t at a d t a ydx A a2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰.当a=6时,旋转体体积为272π (参看P285第13题)证明:P74-2.3;P134-6.9.10.11;P153-5。

同济大学(高等数学)_第一章_函数极限

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续第一章 函数、极限与连续高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识.第1节 集合与函数1.1 集合1.1.1 集合讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素.通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素.如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ∉,读作“a 不属于A ”.一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ.集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成A ={1,2,3,4,5};第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为{}P x x M 具有性质|=.例如,集合A 是不等式022<--x x 的解集,就可以表示为{}02|2<--=x x x A .由实数组成的集合,称为数集,初等数学中常见的数集有:(1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =;(2)所有正整数组成的集合称为正整数集,记作+N ,即 {} ,,,3,2,1n N =+;(3)全体整数组成的集合称为整数集,记作Z ,即{} ,,,3,2,1,0,1,2,3,,,n n Z ----=;(4)全体有理数组成的集合称为有理数集,记作Q ,即⎭⎬⎫⎩⎨⎧∈∈=+互质与且q p N q Z p q p Q ,,;(5)全体实数组成的集合称为实数集,记作R .1.1.2 区间与邻域在初等数学中,常见的在数集是区间.设R b a ∈,,且b a <,则(1)开区间 {}b x a x b a <<=|),(;(2)半开半闭区间 {}b x a x b a <≤=|),[,{}b x a x b a ≤<=|],(;(3)闭区间 {}b x a x b a ≤≤=|],[;(4)无穷区间 {}a x x a ≥=+∞|),[, {}a x x a >=+∞|),(,{}b x x b ≤=-∞|],(,{}b x x b <=-∞|),(,{}R x x ∈=+∞-∞|),(.以上四类统称为区间,其中(1)-(4)称为有限区间,(5)-(8)称为无限区间.在数轴上可以表示为(图1-1):(1) (2)(3) (4)(5) (6)(7) (8)图 1-1 在微积分的概念中,有时需要考虑由某点0x 附近的所有点组成的集合,为此引入邻域的概念.定义1 设δ为某个正数,称开区间),(00δδ+-x x 为点0x 的δ邻域,简称为点0x 的邻域,记作),(0δx U ,即{}δδδ+<<-=0000|),(x x x x x U {}δ<-=|||0x x x .在此,点0x 称为邻域的中心,δ称为邻域的半径,图形表示为(图1-2):图1-2另外,点0x 的邻域去掉中心0x 后,称为点0x 的去心邻域,记作),(0δx U o,即 {}δδ<-<=||0|),(00x x x x U o,图形表示为(图1-3):图1-3 其中),(00x x δ-称为点0x 的左邻域,),(00δ+x x 称为点0x 的右邻域.1.2函数的概念1.2.1函数的定义定义2 设x 、y 是两个变量,D 是给定的数集,如果对于每个D x ∈,通过对应法则f ,有唯一确定的y 与之对应,则称y 为是x 的函数,记作)(x f y =.其中x 为自变量,y 为因变量,D 为定义域,函数值)(x f 的全体成为函数f 的值域,记作f R ,即{}D x x f y y R f ∈==),(|.函数的记号是可以任意选取的, 除了用f 外, 还可用“g ”、“F ”、“ϕ”等表示. 但在同一问题中, 不同的函数应选用不同的记号.函数的两要素:函数的定义域和对应关系为确定函数的两要素.例1 求函数211x x y --=的定义域. 解 x1的定义区间满足:0≠x ;21x -的定义区间满足:012≥-x ,解得11≤≤-x .这两个函数定义区间的公共部分是1001≤<<≤-x x 或.所以,所求函数定义域为]1,0()0,1[ -.例2 判断下列各组函数是否相同.(1)x x f lg 2)(=,2lg )(x x g =;(2)334)(x xx f -=,31)(-=x x x g ;(3)x x f =)(,2)(x x g =.解 (1)x x f lg 2)(=的定义域为0>x ,2lg )(x x g =的定义域为0≠x .两个函数定义域不同,所以)(x f 和)(x g 不相同.(2))(x f 和)(x g 的定义域为一切实数.334)(x x x f -=)(13x g x x =-=,所以)(x f 和)(x g 是相同函数.(3)x x f =)(,x x x g ==2)(,故两者对应关系不一致,所以)(x f 和)(x g 不相同.函数的表示法有表格法、图形法、解析法(公式法)三种.常用的是图形法和公式法两种.在此不再多做说明.函数举例: 例3 函数⎪⎩⎪⎨⎧>=<-==0,10,00,1sgn x x x x y ,函数为符号函数,定义域为R ,值域{}1,0,1-. 如图1-4:图1-4例4 函数[]x y =,此函数为取整函数,定义域为R , 设x 为任意实数, y 不超过x 的最大整数,值域Z . 如图1-5:图1-5特别指出的是,在高等数学中还出现另一类函数关系,一个自变量x 通过对于法则f 有确定的y 值与之对应,但这个y 值不总是唯一.这个对应法则并不符合函数的定义,习惯上我们称这样的对应法则确定了一个多值函数.1.2.2 函数的性质设函数)(x f y =,定义域为D ,D I ⊂.(1)函数的有界性定义3 若存在常数0>M ,使得对每一个I x ∈,有M x f ≤)(,则称函数)(x f 在I 上有界.若对任意0>M ,总存在I x ∈0,使M x f >)(0,则称函数)(x f 在I 上无界.如图1-6:图1-6例如 函数 x x f sin )(=在),(+∞-∞上是有界的:1sin ≤x .函数 xx f 1)(=在)1,0(内无上界,在)2,1(内有界.(2)函数的单调性 设函数)(x f y =在区间I 上有定义, 1x 及2x 为区间I 上任意两点, 且21x x <.如果恒有)()(21x f x f <, 则称)(x f 在I 上是单调增加的;如果恒有)()(21x f x f >, 则称)(x f 在I 上是单调递减的.单调增加和单调减少的函数统称为单调函数(图1-7).图1-7(3)函数的奇偶性 设函数)(x f y =的定义域D 关于原点对称.如果在D 上有)()(x f x f =-, 则称)(x f 为偶函数;如果在D 上有)()(x f x f -=-, 则称)(x f 为奇函数.例如,函数2)(x x f =,由于)()()(22x f x x x f ==-=-,所以2)(x x f =是偶函数;又如函数3)(x x f =,由于)()()(33x f x x x f -=-=-=-,所以3)(x x f =是奇函数.如图1-8:图1-8从函数图形上看,偶函数的图形关于y 轴对称,奇函数的图形关于原点对称.(4)函数的周期性设函数)(x f y =的定义域为D . 如果存在一个不为零的数l ,使得对于任一D x ∈有()D l x ∈±, 且())(x f l x f =±, 则称)(x f 为周期函数, l 称为)(x f 的周期.如果在函数)(x f 的所有正周期中存在一个最小的正数,则我们称这个正数为)(x f 的最小正周期.我们通常说的周期是指最小正周期.例如,函数x y sin =和x y cos =是周期为π2的周期函数,函数x y tan =和x y cot =是周期为π的周期函数.在此,需要指出的是某些周期函数不一定存在最小正周期.例如,常量函数C x f =)(,对任意实数l ,都有)()(x f l x f =+,故任意实数都是其周期,但它没有最小正周期.又如,狄里克雷函数⎩⎨⎧∈∈=c Qx Q x x D ,0,1)(, 当c Q x ∈时,对任意有理数l ,cQ l x ∈+,必有)()(x D l x D =+,故任意有理数都是其周期,但它没有最小正周期. 1.3 反函数 在初等数学中的函数定义中,若函数)(:D f D f →为单射,若存在:1-f D D f →)(,称此对应法则1-f 为f 的反函数.习惯上,D x x f y ∈=),(的反函数记作)(),(1D f x x f y ∈=-.例如,指数函数),(,+∞-∞∈=x e y x 的反函数为),0(,ln +∞∈=x x y ,图像为(图1-9)图1-9反函数的性质:(1)函数)(x f y = 单调递增(减),其反函数)(1x fy -=存在,且也单调递增(减). (2)函数)(x f y =与其反函数)(1x f y -=的图形关于直线x y =对称.下面介绍几个常见的三角函数的反函数:正弦函数x y sin =的反函数x y arcsin =,正切函数x y tan =的反函数x y arctan =. 反正弦函数x y arcsin =的定义域是]1,1[-,值域是⎥⎦⎤⎢⎣⎡-2,2ππ;反正切函数x y arctan =的定义域是),(+∞-∞,值域是⎪⎭⎫ ⎝⎛-2,2ππ,如图1-10:9图1-101.4复合函数定义4 设函数f D u u f y ∈=),(,函数f g g D R D x x g u ⊂∈=值域,),(,则()()g D x x g f y x g f y ∈==),()( 或称为由)(),(x g u u f y ==复合而成的复合函数,其中u 为中间变量.注:函数g 与函数f 构成复合函数g f 的条件是f g D R ⊂,否则不能构成复合函数.例如,函数]1,1[arcsin -∈=u u y ,,R x x u ∈+=,22.在形式上可以构成复合函数()2arcsin 2+=x y .但是22+=x u 的值域为]1,1[),2[-⊄+∞,故()2arcsin 2+=x y 没有意义. 在后面的微积分的学习中,也要掌握复合函数的分解,复合函数的分解原则: 从外向里,层层分解,直至最内层函数是基本初等函数或基本初等函数的四则运算.例5 对函数x a y sin =分解.解 x a y sin =由u a y =,x u sin =复合而成.例6 对函数)12(sin 2+=x y 分解.解 )12(sin 2+=x y 由2u y =,v u sin =,12+=x v 复合而成.1.5初等函数在初等数学中我们已经接触过下面各类函数:常数函数:C y =(C 为常数);幂函数:)0(≠=ααx y ;指数函数:)10(≠>=a a a y x 且;对数函数:)10(log ≠>=a a x y a 且;三角函数:x y x y x y x y x y x y csc ,sec ,cot ,tan ,cos ,sin ======;反三角函数:x arc y x y x y x y cot ,arctan ,arccos ,arcsin ====.这六种函数统称为基本初等函数.定义5 由基本初等函数经过有限次的四则运算和有限次的复合步骤所构成的并用一个式子表示的函数,称为初等函数.例如,x e y sin =,)12sin(+=x y ,2cot x y =等都是初等函数. 需要指出的是,在高等数学中遇到的函数一般都是初等函数,但是分段函数不是初等函数,因为分段函数一般都有几个解析式来表示.但是有的分段函数通过形式的转化,可以用一个式子表示,就是初等函数.例如,函数⎩⎨⎧≥<-=0,0,x x x x y , 可表示为2x y =.习题 1-11.求下列函数的定义域.(1)21x y -=; (2)2411x xy -++=; (3)2ln 2x x y -=; (4)43arcsin -=x y ; (5)452+-=x y ; (6)2)3ln(--=x x y . 2.下列各题中,函数)(x f 和)(x g 是否相同,为什么?(1)2lg )(x x f =,x x g lg 2)(=; (2)x x f =)(,2)(x x g =; (3)x x f =)(,x e x g ln )(=; (4)x x f =)(,)sin(arcsin )(x x g =.3.已知)(x f 的定义域为]1,0[,求下列函数的定义域.(1))(2x f ; (2))(tan x f ; (3))0)(()(>-++a a x f a x f .4.设()5312++=+x x x f ,求)(x f ,)1(-x f . 5.判断下列函数的奇偶性.(1)x x y tan sin ⋅=; (2)()1lg 2++=x x y ; (3)2xx e e y -+=; (4))1(3+=x x y ; (5)⎩⎨⎧>+≤-=0,10,1x x x x y . 6.设下列考虑的函数都是定义在区间)0)(,(>-l l l 上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数和奇函数的乘积是奇函数.7.下列函数中哪些是周期函数?如果是,确定其周期.(1))1sin(+=x y ; (2)x y 2cos =;(3)x y πsin 1+=; (4)x y 2cos =.8.求下列函数的反函数.(1)31-=x y ; (2))2lg(1++=x y ;(3)x x e e y +=1; (4)),(2sin 2ππ-∈=x x y ;(5)⎪⎩⎪⎨⎧>≤≤<=4,241,1,2x x x x x y x .9.下列函数是有哪些函数复合而成的.(1))13sin(+=x y ; (2))21(cos 3x y +=;(3)))1ln(arcsin(+=x y ; (4)2sin x e y =.10.设2)(x x f =,x x ln )(=ϕ,求())(x f ϕ,())(x f f ,())(x f ϕ.第2节 极限极限在高等数学中占有重要地位,微积分思想的构架就是用极限定义的. 本节主要研究数列极限、函数极限的概念以及极限的有关性质等内容.2.1 数列的极限2.1.1 数列的概念定义1 若按照一定的法则,有第一个数1a ,第二个数a 2,…,依次排列下去,使得任何一个正整数n 对应着一个确定的数n a ,那么,我们称这列有次序的数a 1,a 2,…,a n ,…为数列.数列中的每一个数叫做数列的项。

(完整版)同济大学---高数上册知识点

(完整版)同济大学---高数上册知识点

高等数学上册复习要点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数;4、 函数的连续性与间断点;函数)(x f 在0x 连续)()(lim 00x f x f xx =→第一类:左右极限均存在.间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论.(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f xx )( 0 , ,0 ,0)(lim 00时,当 左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b) e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (a x x a ln ~)1(log +)e)x x αα~1)1(-+二、 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→- 右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、 可导与连续的关系:4、 求导的方法1) 导数定义; 2) 基本公式; 3) 四则运算;4) 复合函数求导(链式法则); 5) 隐函数求导数; 6) 参数方程求导; 7) 对数求导法. 5、 高阶导数1) 定义:⎪⎭⎫⎝⎛=dx dy dx d dx y d 222)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关. 2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 罗尔定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使.2、 Lagrange 拉格朗日中值定理*:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使.3、 Cauchy 柯西 中值定理:若函数)(),(x F x f 满足:1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠' 则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则 (三) T aylor 公式(四) 单调性及极值1、 单调性判别法:],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.c) 第二充分条件:)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2(,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2( ,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的.2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点. (五) 不等式证明1、 利用微分中值定理;2、 利用函数单调性;3、 利用极值(最值). (六) 方程根的讨论1、 连续函数的介值定理;2、 Rolle 定理;3、 函数的单调性;4、 极值、最值;5、 凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线; 2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线;四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数.2、 不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性).(二) 换元积分法1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换:三角代换、倒代换、根式代换等):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv (反对幂指三,前U 后 V ’)(四) 有理函数积分 1、“拆”;2、变量代换(三角代换、倒代换、根式代换等).五、 定积分 (一) 概念与性质:1、 定义:∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ2、 性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ (平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式) 1、 变上限积分:设⎰=Φxadt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ 2、 N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分 1、 换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)(2、 分部积分法:[]⎰⎰-=babab a vdu uv udv (四) 反常积分 1、 无穷积分:⎰⎰+∞→+∞=tat a dx x f dx x f )(lim )( ⎰⎰-∞→∞-=bt t bdx x f dx x f )(lim)(⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、 瑕积分:⎰⎰+→=btat ba dx x f dx x f )(lim )((a 为瑕点)⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1 ,11,d 1p p a p x x p a p2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q q a b x b xa x x qb a q b a q。

高数大一知识点总结同济版

高数大一知识点总结同济版

高数大一知识点总结同济版高数大一知识点总结(同济版)一、导数与微分导数和微分是高等数学中最基础的概念之一。

导数描述了函数在某一点的变化率,微分则表示函数在某一点的局部线性近似。

1. 导数的定义及计算方法:导数定义为函数在某一点的极限,常用的导数计算方法有基本函数导数法则、常见函数的导数以及复合函数的导数法则。

2. 微分的定义和性质:微分表示函数在某一点的线性近似,微分的计算方法包括差分、泰勒展开以及一阶微分的近似计算。

二、极限与连续极限和连续是函数研究中的重要概念,可以描述函数的趋势、性质和变化。

1. 极限的基本概念和性质:极限表示函数在某一点的无穷接近情况,常用的极限计算方法包括基本极限、夹逼定理以及洛必达法则。

2. 连续的概念和判定方法:连续表示函数在某一点处无间断,连续的判定方法有极限判定法、函数定义域的判定以及闭区间上连续函数的性质。

三、一元函数的导数与应用一元函数的导数是研究函数变化率、极值和拐点的重要工具,应用广泛。

1. 函数的单调性和极值:导数的符号确定函数的单调性,导数的变化确定函数的极值,常用的判定方法包括导数法则和二阶导数判定。

2. 函数的凸凹性与拐点:导数的增减确定函数的凸凹性,导数的变化确定函数的拐点,常用的判定方法包括导数法则和二阶导数判定。

四、不定积分与定积分不定积分和定积分是微积分学中的重要内容,可以求函数的原函数和计算曲线下的面积。

1. 不定积分的概念和计算方法:不定积分是求函数的原函数,常用的不定积分方法包括基本积分法和换元积分法。

2. 定积分的概念和计算方法:定积分是计算曲线下的面积,常用的定积分计算方法包括定积分近似计算、基本积分法和换元积分法。

五、微分方程微分方程是数学中一类函数与其导数之间的关系方程,是工程、物理和生命科学等领域的重要应用工具。

1. 一阶微分方程:一阶微分方程包括可分离变量、一阶线性微分方程和一阶齐次微分方程,其求解方法包括分离变量、常微分方程的线性特解和齐次方程的解。

大一上高数知识点总结同济大学

大一上高数知识点总结同济大学

大一上高数知识点总结同济大学大一上学期的高等数学(简称高数)是对中学数学的延伸和深化,也是大多数大学工科专业的必修课程之一。

作为同济大学的大一上学期的学生,我有幸学习了同济大学的高数课程,并总结了一些重要的知识点,希望能够对学弟学妹们的学习有所帮助。

1. 极限与连续在高数的开端,我们首先学习了极限与连续。

极限是高数的基础,也是后续学习的重要概念。

它可以理解为一个函数在某一点上的特定性质。

我们学习了数列极限、函数极限的定义,以及一些常见的极限性质和计算方法。

连续是极限的一个重要应用,它指的是函数在某一区间上的无间断性。

2. 导数与微分导数与微分是高数的重要内容,其概念基于极限。

导数是函数在一点处的变化率,也可以理解为函数在某一点的切线斜率。

我们学习了导数的定义、导数的运算法则、高阶导数以及一些重要的导数公式,如常见函数的导数、复合函数求导、隐函数求导等等。

微分则是导数的应用,它可以帮助我们求解函数的变化量与近似值。

3. 积分与定积分积分与定积分是导数的逆运算。

积分可以理解为曲线下方的面积,定积分则是在一定区间内曲线下方的面积。

我们学习了积分的定义、积分的性质、常见函数的不定积分和定积分以及一些重要的积分公式,如分部积分法、换元积分法等。

定积分在物理学、经济学等学科中有着重要应用,可以计算曲线下面积、长度、体积等。

4. 一元函数的应用问题高数的学习不仅仅局限于理论,我们还学习了如何将数学知识应用于实际问题的解决中。

一元函数的应用问题是高数的一个重要部分。

通过建立数学模型,并运用导数、积分等方法,我们可以解决一些实际问题,如最优化问题、曲线的渐近线问题、变化率问题等。

5. 多元函数与偏导数在学习了一元函数后,我们进一步学习了多元函数与偏导数。

多元函数是指含有多个自变量的函数。

在研究多元函数的过程中,我们引入了偏导数的概念,它表示多元函数在某个自变量上的变化率。

我们学习了多元函数的极限、连续性、偏导数的定义、偏导数的运算法则、高阶偏导数以及一些重要的求偏导数的方法。

同济大学 高数上册知识点

同济大学  高数上册知识点
x x0
2) 单调有界准则:单调有界数列必有极限.
f
(x)
高等数学(上)知识点
f (x0 ) f (x0 )
3、 无穷小(大)量
1) 定义:若 lim 0 则称为无穷小量;若 lim 则称为无穷大量.
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、 k 阶无穷小
f (x) f (x0 ) x x0
(1
函数 f (x) 在 x0 点可导 f(x0 ) f(x0 )
2、 几何意义: f (x0 ) 为曲线 y f (x) 在点 x0 , f (x0 )处的切线的斜率.
3、 可导与连续的关系:
4、 求导的方法
1) 导数定义;
e) (1 x) 1 ~ x
二、 导数与微分
(一)导数
1、
定义:
左导数:
右导数:
f
(x0 )
f ( x0
f(x0 )

lim
x x0
)



高等数学(上)知识点
loga
f (x) f (x0 ) x x0
lim
x x0
lim
x x0
f (x) f (x0 ) x x0
xn

a

0,
lim f (x) A 0, 0, x, 使
x x0
N ,
n
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

高等数学(同济第七版)(上册)_知识点总结

高等数学(同济第七版)(上册)_知识点总结

...高等数学(同济第七版)上册-知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较f(x)设l imf(x)0,limg(x)0且llimg(x)(1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[g(x)],称g(x) 是比f(x)低阶的无穷小。

(2)l≠0,称f(x)与g(x)是同阶无穷小。

(3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x)2.常见的等价无穷小当x→0时sinx~x,tanx~x,arcsinx~x,arccosx~x,1-cosx~x^2/2,xe-1~x,ln(1x)~x,(1x)1~x二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x)≤f(x)≤h(x)若limg(x)A,limh(x)A,则l imf(x)A2.两个重要公式sinx公式11limx0x1/x公式2xelim(1)x03.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次xe 1x2x2!3x3!...nxn!no(x )sinxx3x3!5x5!... (n1)(2nx2n11)!2no(x1)WORD格式可编辑版...cosx12x2!4x4!... (2nxnox2n1)(2n!)ln(1x)x2x23x3... (nxnox n11)(n)(1x)1x (1)2!2x n ox n(1)...((n1))x...(n!)arctanxx3x35x5... (2n1xnox2n11)(2n11)5.洛必达法则定理1设函数f(x)、F(x)满足下列条件:(1)lim()0fxxx0 ,limF(x)0xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limxx0Fx)(f(x)f(x)存在(或为无穷大),则limlimxx0FFx(x)xx()这个定理说明:当f(x)limx0Fxx()存在时,f(x)limxx0Fx()也存在且等于f(x)limxx0F(x);当f(x) limxx()0Fx 为无穷大时,f(x)limx()x0Fx也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(LHospital)法则.型未定式定理2设函数f(x)、F(x)满足下列条件:(1)lim()fxxx0 ,limF(x)xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limx)x0F(x存在(或为无穷大),则f(x)f(x)limlimxx0F(x)x x F(x)注:上述关于x时未定式型的洛必达法则,对于x时未定式型x同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“0”和“”型的未定式,其它的未定式须先化简变形成“0”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限WORD格式可编辑版...f(xx)f(x)00'基本公式()limfx0x0x(如果存在)3.利用定积分定义求极限基本格式1n1klimf()f(x)dxnnnk1(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设x是函数y=f(x)的间断点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学上册复习要点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数;4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在.间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论.(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f xx )( 0 , ,0 ,0)(lim 00时,当 左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b) e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+二、 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→- 右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、 可导与连续的关系:4、 求导的方法1) 导数定义; 2) 基本公式; 3) 四则运算;4) 复合函数求导(链式法则); 5) 隐函数求导数; 6) 参数方程求导; 7) 对数求导法. 5、 高阶导数1) 定义:⎪⎭⎫⎝⎛=dx dy dx d dx y d 222) Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关. 2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 罗尔定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使.2、 Lagrange 拉格朗日中值定理*:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使. 3、 Cauchy 柯西 中值定理:若函数)(),(x F x f 满足:1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠' 则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则 (三) T aylor 公式(四) 单调性及极值1、 单调性判别法:],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.c) 第二充分条件:)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2(,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2( ,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的.2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点. (五) 不等式证明1、 利用微分中值定理;2、 利用函数单调性;3、 利用极值(最值). (六) 方程根的讨论1、 连续函数的介值定理;2、 Rolle 定理;3、 函数的单调性;4、 极值、最值;5、 凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线; 2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线;四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数.2、 不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性).(二) 换元积分法1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换:三角代换、倒代换、根式代换等):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv (反对幂指三,前U 后 V ’)(四) 有理函数积分 1、“拆”;2、变量代换(三角代换、倒代换、根式代换等).五、 定积分 (一) 概念与性质: 1、 定义:∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ2、 性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ (平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式) 1、 变上限积分:设⎰=Φxadt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ 2、 N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分 1、 换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)(2、 分部积分法:[]⎰⎰-=babab a vdu uv udv (四) 反常积分 1、 无穷积分:⎰⎰+∞→+∞=tat a dx x f dx x f )(lim )( ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、 瑕积分:⎰⎰+→=btat ba dx x f dx x f )(lim )((a 为瑕点)⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1 ,11,d 1p p a p x x p a p2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q q a b x b xa x x qb a q b a q。

相关文档
最新文档