随机变量及其概率分布
概率论与数理统计教案第2章 随机变量及其分布
概率论与数理统计教学教案 第2章 随机变量及其分布授课序号01教 学 基 本 内 容一.随机变量1. 随机变量:设E 是随机试验,样本空间为S ,如果对随机试验的每一个结果ω,都有一个实数()X ω与之对应,那么把这个定义在S 上的单值实值函数()X X ω=称为随机变量.随机变量一般用大写字母,,X Y Z ,…表示.2.随机变量的两种常见类型:离散型随机变量和连续型随机变量. 二.分布函数1. 分布函数:设X 是一个随机变量,x 是任意实数,称函数{}(),F x P X x x =≤-∞<<∞为随机变量X 的分布函数,显然,()F x 是一个定义在实数域R 上,取值于[0,1]的函数.2.几何意义:在数轴上,将X 看成随机点的坐标,则分布函数()F x 表示随机点X 落在阴影部分(即X x ≤)内的概率,如下图.3.对任意的实数,,()a b c a b <,都有:授课序号02(,)B n p ,其中在二项分(1,)B p X 服从(0-1)分布是二项分布的特例,简记0,1,2,...,其中λ为大于()P λ.在一次试验中出现的概率为(12,kk nnC p p -.)说明:泊松定理表明,泊松分布为二项分布的极限分布,即在试验次数很大,而n np 不太大时,()G p.)说明:几何分布描述的是试验首次成功的次数次才取得第一次成功,前)超几何分布:若随机变量X的分布律为H n N(,,件不合格,从产品中不放回)超几何分布与二项分布之间的区别:超几何分布是不放回抽取,二项分布是放回抽取,因此,二项两个分布之间也有联系,当总体的容量授课序号03(,)U a b .内的任一个子区间()E λ.1,0,xe x λ-⎧->⎪⎨⎪⎩其它.)定理:(指数分布的无记忆性)设随机变量()E λ,则对于任意的正数{}{P X s t t P X >+>=为连续型随机变量,若概率密度为2(,N μσ处取到最大值,并且对于同样长度(iii )当参数μ固定时,σ的值越大,()f x 的图形就越平缓;σ的值越小,()f x 的图形就越尖狭,由此可见参数σ的变化能改变图形的形状,称σ为形状参数.(iv )当参数σ固定时,随着μ值的变化,()f x 图形的形状不改变,位置发生左右平移,由此可见参数μ的变化能改变图形的位置,称μ为位置参数.(4)标准正态分布(0,1)XN(i )概率密度221(),2x x e x ϕπ-=-∞<<∞(ii )分布函数221(),.2t xx e dt x π--∞Φ=-∞<<∞⎰(iii )根据概率密度()x ϕ的对称性,有()1().x x Φ-=-Φ (5)定理:(标准化定理)若2(,)XN μσ,则(0,1).X Z N μσ-=(6)标准化定理的应用:设,,()x a b a b <为任意实数,则(){}{}{}(),X x x x F x P X x P P Z μμμμσσσσ----=≤=≤=≤=Φ{}{}()().a X b b a P a X b P μμμμμσσσσσ-----<≤=<≤=Φ-Φ6.“3σ”法则:设2(,)XN μσ,则{33}(3)(3)2(3)10.997,P X μσμσ-<<+=Φ-Φ-=Φ-≈即正态分布2(,)N μσ的随机变量以99.7%的概率落在以μ为中心、3σ为半径的区间内,落在区间以外的概率非常小,可以忽略不计,这就是“3σ”法则. 三.例题讲解例1.车流中的“时间间隔”是指一辆车通过一个固定地点与下一辆车开始通过该点之间的时间长度.设X 表示在大流量期间,高速公路上相邻两辆车的时间间隔,X 的概率密度描述了高速公路上的交通流量规律,其表达式为:0.15(0.5)0.15,0.5,()0,x e x f x --⎧≥⎪=⎨⎪⎩其它.概率密度()f x 的图形如下图,求时间间隔不大于5秒的概率.例2.设随机变量X 表示桥梁的动力荷载的大小(单位:N ),其概率密度为13,02;()880,x x f x ⎧+≤≤⎪=⎨⎪⎩其它.求:(1)分布函数()F x ;(2)概率{1 1.5}P X ≤≤及{1}P X >.例3.某食品厂生产一种产品,规定其重量的误差不能超过3克,即随机误差X 服从(-3,3)上的均匀分布.现任取出一件产品进行称重,求误差在-1~2之间的概率.例4.设随机变量X 在(1,4)上服从均匀分布,对X 进行三次独立的观察,求至少有两次观察值大于2的概率.例5.设随机变量X 表示某餐馆从开门营业起到第一个顾客到达的等待时间(单位:min ),则X 服从指数分布,其概率密度为0.40.4,0,()0,xex f x -⎧>⎪=⎨⎪⎩其它.求等待至多5分钟的概率以及等待3至4分钟的概率.例6.汽车驾驶员在减速时,对信号灯做出反应所需的时间对于帮助避免追尾碰撞至关重要.有研究表明,驾驶员在行车过程中对信号灯发出制动信号的反应时间服从正态分布,其中μ=1.25秒,σ=0.46秒.求驾驶员的制动反应时间在1秒至1.75秒之间的概率?如果2秒是一个非常长的反应时间,那么实际的制动反应时间超过这个值的概率是多少?例7.设某公司制造绳索的抗断强度服从正态分布,其中μ=300千克,σ=24千克.求常数a ,使抗断强度以不小于95%的概率大于a .授课序号0450。
概率论与数理统计第二章 随机变量及其分布
15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
2.1随机变量及其概率分布
例1
袋中有3只红球, 只白球 从中任意取出3只球 只白球, 只球, 袋中有 只红球,2只白球,从中任意取出 只球, 只红球 写出所有的基本事件,并观察取出的3只球中的红 写出所有的基本事件,并观察取出的 只球中的红 球的个数. 球的个数. 我们将3只红球分别记作 只红球分别记作1, , 号 我们将 只红球分别记作 ,2,3号,2只白球分别 只白球分别 记作4,5号,则该试验的所有基本事件为: 记作 , 号 则该试验的所有基本事件为: )(1, , )( )(1, , ) (1,2,3)( ,2,4)( ,2,5) , , )( )(1, , )( )(1, , ) (1,3,4)( ,3,5)( ,4,5) , , )( )(2, , )( )(2, , ) (2,3,4)( ,3,5)( ,4,5) , , )( (3,4,5) , , )
例题分析:
例 4、同时掷两颗质地均匀的骰子, 、同时掷两颗质地均匀的骰子, 观察朝上一面出现的点数。求两颗骰 观察朝上一面出现的点数。 的概率分布, 子中出现的最大点数 X 的概率分布, 并求 X 大于 2 小于 5 的概率 P(2<X<5).
例题分析:
个灯泡, 例 5、已知盒中有 10 个灯泡,其 、 个正品, 个次品.需要从中 中 8 个正品,2 个次品 需要从中 取出 2 个正品,每次取出 1 个, 个正品, 取出后不放回, 取出后不放回,直到取出 2 个正 品为止.设 为取出的次数, 品为止 设ξ为取出的次数,求ξ 的分布列
此表称为随机变量X的概率分布表。它和① 此表称为随机变量 的概率分布表。它和①都叫做随 机变量X的概率分布。 机变量 的概率分布。
随机变量X的概率分布列:
X P x1 p1 x2 p2 … … xn pn
概率论与数理统计-随机变量及其分布
解
直接对上式求导有
二、连续型随机变量函数的分布
81
例 18
解
二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2
求
三、离散型随机变量及其分布律
18
解
四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
概率分布与随机变量的分布函数计算
概率分布与随机变量的分布函数计算随机变量是概率论和统计学中一个重要的概念,它被用来描述随机试验的结果。
概率分布是随机变量的可能取值及其相应概率的分布。
在本文中,我们将讨论如何计算概率分布和随机变量的分布函数。
一、概率分布的计算概率分布可以通过概率质量函数(probability mass function,简称PMF)或概率密度函数(probability density function,简称PDF)来描述。
这取决于随机变量是离散型还是连续型。
1. 离散型随机变量的概率分布计算对于离散型随机变量,其概率分布可以通过概率质量函数来计算。
概率质量函数给出了每个可能取值的概率。
假设随机变量X的取值集合为{x1, x2, ... , xn},对应的概率分布为{P(X=x1), P(X=x2), ... , P(X=xn)}。
其中P(X=xi)表示X取值为xi的概率。
2. 连续型随机变量的概率分布计算对于连续型随机变量,其概率分布可以通过概率密度函数来计算。
概率密度函数是一个函数,描述了随机变量在某个取值点附近的概率密度。
假设随机变量X的概率密度函数为f(x),则X在区间[a, b]上的概率可以通过计算f(x)在该区间上的面积来得到,即P(a ≤ X ≤ b) = ∫(a to b)f(x)dx。
二、随机变量的分布函数计算随机变量的分布函数是一种用来描述随机变量取值分布情况的函数。
对于离散型随机变量和连续型随机变量,它们的分布函数的计算方式是不同的。
1. 离散型随机变量的分布函数计算离散型随机变量的分布函数(cumulative distribution function,简称CDF)定义为随机变量小于等于某个取值的概率。
CDF可以通过累加概率质量函数来计算。
对于随机变量X的概率分布{P(X=x1), P(X=x2), ... , P(X=xn)},其对应的分布函数为F(x) = P(X≤x) = ∑(xi≤x) P(X=xi)。
概率论与数理统计随机变量及其分布
问题三 随机变量的一些例子
在随机试验中,试验结果很多本身就由数量表示 每天进入教室的人数X 某个时间段吃饭排队的人数X 电灯泡使用的寿命T 而在另一些随机试验中,比如检查一个产品是否合格,此时样本空间
S={合格品,不合格品},若用1对应合格品,-1对应不合格品,这 样就都有唯一确定的实数与之对应。
P { 而a 且 Xx i所 成b } 的 任P 何{ a 事 x i 件 b { 的X 概 率x 都i} 能} 够a 求 x i出 b 来p i,
2.2 离散型随机变量及其概率
分P {X 布 I} P {Xxi} p i
xi I
xi I
2.2 离散型随机变量及其概率分布
3 常用离散分布 两点分布(0-1分布):若一个随机变量X只有两个可能
1.随机变量的引入
从上面的例子可以看出随机试验的结果都可用一个实数 来表示,这个数随着试验的结果不同而变化,它是样本
点的函数,这个函数就是我们要引入的随机变量。
2 随机变量的定义
随机变量:设随机试验的样本空间为S,称定义在样本空间S 上的实值函数X=X( )为随机变量。
随机变量的表示: 常用大写字母X,Y,Z或希腊字母
时,
b(k,n, pn)=
lim
讲课本n 例6,例7
l i m k
n
Cnkpnk(1pn)nk
e k!
2.3 随机变量的分布函数
随 机 变( 量 的 分布x函数)
定义1 设X是一个随机变量,称F(x)=P{X≤x} 为X的分布函数。有时记作X~F(x) 这个概率具有什么特点呢? 具有累积性 这个概率与x有关,不同的x此累积概率的值也不同。 注:①X是数轴上随机点的坐标,则分布函数F(x)的值就表示X落在区间
第二章随机变量及其概率分布(概率论)
当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25
解
⎧0
x<0
F
(
x)
=
⎪⎪ ⎨
⎪
0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3
随机变量及其分布
f ( x) lim
x 0
xLeabharlann x xlim P{x X x x} lim x
f (x)dx .
x 0
x
x 0
x
故 X的密度 f(x) 在 x 这一点的值,恰好是 X落在区间 (x,x+△x] 上的概率与区间长度 △x之比的极限. 这里,如果把概率理解为质 量, f (x)相当于线密度.
f (x)
a
ba
当x b时,
x
a
b
x
F (x) f (t)dt f (t)dt f (t)dt f (t)dt 1.
a
b
因此X ~ U(a, b)的分布函数为:
0
F ( x)
P( X
x)
x b
a
a 1
xa a xb
xb
例1 长途汽车起点站于每时的10分、25分、55分发
车,设乘客不知发车时间,于每小时的任意时刻随
解: 设X表示400次独立射击中命中的次数,则
X~B(400, 0.02),故 P{X2}=1- P{X=0}-P {X=1} =1-0.98400-(400)(0.02)(0.98399) =0.9972
例5 设有80台同类型设备,各台工作是相互独立的, 发生故障的概率都是0.01, 且一台设备的故障只能 由一个人处理. 考虑两种配备维修工人的方法,其一 是由4人维护,每人负责20台;其二是由3人共同维护 30台.试比较这两种方法在设备发生故障时不能及 时维修的概率大小.
称A为几乎不可能事件,B为几乎必然事件.
(4) 若x是f(x)的连续点,则 dF(x) F(x) f (x)
dx
设随机变量X的分布函数
F
2023考研概率统计全考点精讲-第二讲 随机变量及其分布
第二讲 随机变量及其分布【考试要求】1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤−∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.(数一了解,数三掌握)泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为λ的指数分布()λE 的概率密度为()e ,00,0x x f x x λλ−⎧>=⎨≤⎩.5.会求随机变量函数的分布.考点:随机变量与分布函数1.随机变量:设试验E 的样本空间为Ω,如果对于每一个样本点Ω∈ω,都有一个实数)(ωX 与之对应,则称定义在Ω上的单值实值函数)(ωX 为随机变量,简记为X . 通常用,,X Y Z 等表示随机变量.【注】随机变量的等式和不等式可表示随机事件. 2.分布函数(1)定义:设X 是一个随机变量,x 是任意实数,称(){}()F x P X x x =≤−∞<<+∞为X 的分布函数.(2)基本性质①单调不减,即若12x x <,则12()()F x F x ≤;②lim ()0x F x →−∞=,lim ()1x F x →+∞=; ③()F x 是右连续,即(0)()F x F x +=.【注】这三条性质是一个函数作为某随机变量的分布函数的充分必要条件. (3)其他性质(用分布函数()F x 求概率)①)()(}{a F b F b X a P −=≤<; ②)0(}{−=<a F a X P ;③)0()(}{−−==a F a F a X P ;④)0()0(}{−−−=<≤a F b F b X a P ; ⑤)()0(}{a F b F b X a P −−=<<; ⑥{}()(0)P a X b F b F a ≤≤=−−. 【注】分布函数在处连续.【例1】 下述函数中,可以作为某个随机变量的分布函数的是( ) (A ) ()211F x x =+ (B )()x x F sin = (C ) ()11arctan π2F x x =+ (D ) ()1e ,020,0xx F x x −⎧−>⎪=⎨⎪≤⎩【例2】 设随机变量X 的分布函数为()00πsin 02π12,x F x A x,x ,x ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩,则A _____=,6P X ______π⎧⎫<=⎨⎬⎩⎭.【例3】 已知随机变量X 的分布函数为()0,11,18,111,1x x F x ax b x x <−⎧⎪⎪=−⎪=⎨⎪+−<<⎪≥⎪⎩,且()F x a {}0P X a ⇔=={}114P X ==,则_____,_____a b ==. 【例4】 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥−<≤<=−1,110,210,0)(x e x x x F x,则{}1P X ==( )(A )0 (B )21(C )121−−e (D )11e −−考点:离散型随机变量及其分布1.离散型随机变量定义:若随机变量X 所有可能取值是有限或可列无限个,则称X 为离散型随机变量.2.分布律(1)定义:设离散型随机变量X 的所有可能取值为()12i x i ,,=,且X 取ix 的概率为i p ,则称{}()12i i P X x p i ,,===为离散型随机变量X 的分布律.X(2)基本性质:①0,1,2,i p i ≥=;②11ii p∞==∑.【注】这两条性质也是一个数列可以作为某随机变量分布律的充分必要条件. 3.离散型随机变量的分布函数若离散型随机变量X 的分布律为{}()12i i P X x p i ,,===,则X 的分布函数为(){}{}()i i i i x xx xF x P X x P X x p x ≤≤=≤===−∞<<+∞∑∑.若123x x x <<<,则()111212230,,,x x p x x x F x p p x x x <⎧⎪≤<⎪=⎨+≤<⎪⎪⎩. 【注】若已知X 的分布函数()F x (阶梯函数),则X 的分布律为{}()()0i i i P X x F x F x ==−−,12i ,,=.【例1】 (1)做n 次伯努利实验,已知每次成功的概率均为()10<<p p ,令X 表示n 次试验中成功的次数,求X 的分布律.(2)做伯努利试验,已知每次成功的概率均为()10<<p p ,令X 表示直到第一次成功为止所进行的实验次数,求X 的分布律.【例2】 设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X 表示3个球中新球个数,求X 的分布律与分布函数.考点:连续型随机变量及其分布1.连续型随机变量及其概率密度(1)定义:设随机变量X 的分布函数为()F x ,若存在非负可积函数()f x ,使得对于任意实数x ,有()()xF x f t dt −∞=⎰,则称X 为连续型随机变量,()f x 称为X 的概率密度函数,简称概率密度(简写为.f .d .p ).【注】①只有存在概率密度的随机变量才能称为连续型随机变量,分布函数连续的随机变量不一定是连续型随机变量.②存在既非连续型又非离散型的随机变量.③(),()()0()F x x F x f x x F x '⎧=⎨⎩为的可导点,为的不可导点. (2)概率密度的基本性质:①()0f x ≥;②()1f x dx +∞−∞=⎰.【注】这两条性质是一个函数可以作为概率密度函数的充分必要条件.(3)连续型随机变量的其他性质: ①)(x F 处处连续.②对()+∞∞−∈∀,a ,有{}.0==a X P ③若()f x 在x 处连续,则有()()F x f x '=. ④对于任意的实数()1212x ,x x x ≤,有{}()()211221()x x P x X x F x F x f x dx <≤=−=⎰.【例1】 设随机变量X 的概率密度为()x f ,则下列函数中必为某随机变量的概率密度的是( )(A )()x f 2 (B )()x f 2 (C )()x f −1 (D )()x f −1【例2】 设随机变量X 的概率密度为()cos ,||20,||2A x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,求(1)常数A ; (2)X 的分布函数为()x F . 【例3】 设随机变量X 的概率密度为()1||,||10,x x f x else −<⎧=⎨⎩,则______412=⎭⎬⎫⎩⎨⎧<<−X P .考点:常见分布1.常见的离散型随机变量 (1) 0-1分布若随机变量X 的分布律为{}()()110101kk P X k p p ,k ,p −==−=<<,则称X 服从0-1分布,记为),1(~p B X .(2) 二项分布若随机变量的分布律为{}C (1),0,1,2,k k n kn P X k p p k n −==−=,其中01p <<,则称X 服从二项分布,记为~(,)X B n p .(3) 几何分布若随机变量X 的分布律为{}1(1)k P X k p p −==−⋅,1,2,3k =,其中01p <<,则称X 服从参数为p 的几何分布,记为()~X G p .(4) 超几何分布(从未考过)若随机变量X 的分布律为{}C C C k n kM N MnNP X k −−==,其中N k ∈,且{}{}n M k N n M ,min ,0max ≤≤−+,则称X 服从超几何分布.【注】:此公式的数学模型为:设N 件产品中含M 件次品,现从中任取n 件产品,则所取的n 件产品恰有k 件次品的概率.(5) 泊松分布 ①定义若随机变量X 的分布律为{}e !kP X k k λλ−==,0,1,2,k =,其中0λ>,则称X 服从参数为λ的泊松分布,记为~()X P λ.X②泊松定理(数一了解;数三掌握)设0λ>是一个常数,n 是任意正整数,若lim n n np λ→∞=,则对于任意的非负整数k ,有()e lim 1.!nk n kkknn n C p p k λλ−−→∞−=【例1】 设随机变量X 服从参数为()2,p 的二项分布,随机变量Y 服从参数为()3,p 的二项分布,若{}519P X ≥=,则{}1_______P Y ≥=. 【例2】 设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为1e,则这段时间内至少有两辆汽车通过的概率为___________. 2.常见的连续型随机变量 (1) 均匀分布若X 的概率密度为1,()0,a xb f x b a⎧<<⎪=−⎨⎪⎩其它,则称X 在()a,b 上服从均匀分布,记为()~,X U a b ,其分布函数为0,(),1,x a x aF x a x b b a x b<⎧⎪−⎪=≤<⎨−⎪⎪≥⎩. (2) 指数分布若X 的概率密度为e ,0()0,0x x f x x λλ−⎧>=⎨≤⎩,其中0λ>,则称X 服从参数为λ的指数分布,记为()XE λ,其分布函数为1e ,0()0,0x x F x x λ−⎧−≥=⎨<⎩.(3) 正态分布若随机变量X的概率密度为22()2()()x f x x μσ−−=−∞<<+∞,其中0σ>,μ与σ均为常数,则称X 服从参数为,μσ的正态分布,记为2~(,)X N μσ,其分布函数为22()2()d ()t xF x t x μσ−−=−∞<<+∞⎰.特别地,当0,1μσ==,即~(0,1)X N ,称X 服从标准正态分布,其概率密度为22(),x x x ϕ−=−∞<<+∞,分布函数22()d t xx t −Φ=⎰,x −∞<<+∞.【注】(1)指数分布的无记忆性:若()~X E λ,则对任意的0,0s t >>,有{}{}|.P X s t X s P X t >+>=>【例3】 设随机变量()6,1~U X ,则方程012=++Xy y 有实根的概率为____.【例4】 设随机变量()~2,5X U ,现对X 进行三次独立重复观测,求至少有两次观测值大于3的概率.【例5】 设随机变量Y 服从参数为12λ=的指数分布,求关于未知量x 的方程2230x Yx Y ++−=没有实根的概率.【例6】 设随机变量的概率密度函数为()221e ()x x f x k x −+−=−∞<<+∞X则常数=_______k .【例7】 设随机变量()22,X N σ且{}240.3P X <<=,则{}0_______P X <=.【例8】 设随机变量()2,X N μσ,则概率{}P X μσ−<的值随着σ的增大而( )(A )增大 (B )减小 (C )保持不变 (D )无法确定考点:随机变量函数的分布1.离散型随机变量函数的分布设X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,函数()g x 连续,则随机变量()Y g X =的分布律为{}(),1,2,i k k i g x y P Y y p k ====∑.做法:找到Y 全部可能的取值,算出相应值的概率.【例1】 设随机变量X 在()1,2−上服从均匀分布,1,01,0X Y X −<⎧=⎨≥⎩,求Y 的分布律.【例2】(课后作业)设随机变量X 的概率分布为,求常数和的概率分布. 2.连续型随机变量函数的分布情形一:Y 为离散型. 做法:找到Y 全部可能的取值,算出相应值的概率. 情形二:Y 为连续型.(1)分布函数法(代数法和几何法)先求出()Y g X =的分布函数()Y F y ,即()(){}()()Y g x y F y P g X y f x dx ≤=≤=⎰,再对()YF y 求导得到Y 的概率密度()Y f y .(2)公式法 若()y g x =在X 的取值区间内有连续导数()g x ',且()0g x '>或者()0g x '<,则()Y g X =是连续型随机变量,且其概率密度为{}(1,2,)3k c P X k k ===c sin()2Y X π=()()()',0,X Y f h y h y y f y αβ⎧<<⎡⎤⎪⎣⎦=⎨⎪⎩其他其中(),αβ为()y g x =的值域,()h y 是()g x 的反函数.情形三:Y 既非连续型又非离散型 做法:分布函数法求其分布函数.【例3】 设随机变量X 服从()0,2上的均匀分布,则随机变量2Y X =在()0,4内的概率密度()Y f y _______=.【例4】 设随机变量X 的概率密度为()22,00,x x f x ππ⎧<<⎪=⎨⎪⎩其它,求sin Y X =的概率密度()Y f y .。
随机变量及其概率分布
随机变量及其概率分布随机变量是概率论和数理统计中的重要概念,描述了随机事件的数值特征。
概率分布则用于描述随机变量取值的概率情况。
本文将介绍随机变量及其概率分布的基本概念和常见的概率分布模型。
一、随机变量的定义与分类随机变量是对随机事件结果的数值化描述。
随机变量可分为离散型随机变量和连续型随机变量两种。
1. 离散型随机变量离散型随机变量只能取有限个或可数个值,常用字母X表示。
例如,抛掷骰子的点数就是一个离散型随机变量,可能取1、2、3、4、5、6之一。
2. 连续型随机变量连续型随机变量可以取某个区间内的任意值,通常用字母Y表示。
例如,测量某个物体长度的随机误差就可看作是一个连续型随机变量。
二、概率分布的概念与性质概率分布描述了随机变量取值的概率情况。
常见的概率分布包括离散型分布和连续型分布。
1. 离散型概率分布离散型概率分布描述了离散型随机变量取值的概率情况。
离散型概率分布函数可以用概率质量函数(probability mass function,PMF)来表示。
PMF表示了随机变量取某个特定值的概率。
离散型概率分布函数具有以下性质:①非负性,即概率大于等于0;②归一性,即所有可能取值的概率之和等于1。
常见的离散型概率分布有:伯努利分布、二项分布、几何分布、泊松分布等。
2. 连续型概率分布连续型概率分布描述了连续型随机变量取值的概率情况。
连续型概率分布函数可以用概率密度函数(probability density function,PDF)来表示。
PDF表示在随机变量取某个特定值附近的概率密度。
连续型概率分布函数具有以下性质:①非负性;②积分为1。
常见的连续型概率分布有:均匀分布、正态分布、指数分布等。
三、常见的1. 伯努利分布伯努利分布描述了一次随机试验中两个互斥结果的概率情况,取值为0或1。
其概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),k=0或1其中,p为成功的概率,1-p为失败的概率。
概率论与数理统计-第二章-随机变量及其分布函数ppt课件
表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
第二章 随机变量及其函数的概率分布
第二章 随机变量及其函数的概率分布§2.1 随机变量与分布函数§2.2 离散型随机变量及其概率分布一、 填空题1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,)2.0()8.0(33=-k C k k k ;2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ;3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ⎪⎩⎪⎨⎧≥<≤-<=1 ,110 ,10,0)(x x p x x F ;4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布函数)(x F =0 10.2 120.5 231 3x x x x <⎧⎪≤<⎪⎨≤<⎪⎪≥⎩,,,,;5. 设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=3,131 ,8.011 ,4.01, 0)x x x x x F (, 则X 的概率分布为(1)0.4,(1)0.4,(3)0.2P X P X P X =-=====。
二、选择题设离散型随机变量X 的分布律为λ>=λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 11-=b λ. 三、 计算下列各题1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。
解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(51041===-k C C k X P k所以X 的分布列为2. 一批元件的正品率为4,次品率为4,现对这批元件进行有放回的测试,设第X 次首次测到正品,试求X 的分布列。
随机变量及其概率分布
第二章随机变量及其概率分布【内容提要】一、随机变量及其分布函数设是定义于随机试验的样本空间上的实值函数,且,是随机事件,则称为随机变量,而称为其概率分布函数。
随机变量的概率分布函数具有如下性质:⑴.非负性:,有;⑵.规范性:;⑶.单调性: 若,则;⑷.右连续性:,有。
二、离散型随机变量1.离散型随机变量及其概率分布律若随机变量只取一些离散值,且取到这些值的概率满足,则称为离散型随机变量,而称为其概率分布律,记为,也可用下表来表示:而其概率分布函数是单增、右连续的阶梯形函数。
2.常用离散型分布⑴.单点分布:为常数;⑵.二项分布:;特别当时,二项分布退化为两点分布;⑶.超几何分布:;⑷.分布:;特别当时,分布退化为几何分布;⑸.分布:。
三、连续型随机变量1.连续型随机变量及其概率密度函数若随机变量的一切可能取值充满了某一区间,且存在一个实值函数,使其概率分布函数,且,则称为连续型随机变量,而称为其概率密度函数,记为。
连续型随机变量的密度函数与分布函数之间有满足。
2.常用连续型分布⑴.分布:设为常数,则分布的密度函数为:,特别当时,分布即均匀:;⑵.分布:设为常数,则分布的密度函数为:,特别当时,分布即指数分布:;⑶.正态分布:。
四、随机变量函数的分布设为随机变量,而为连续的确定型函数。
⑴.若为离散型随机变量,且,则也是离散型随机变量,其概率分布律为: ;⑵.若为连续型随机变量,且,则也是连续型随机变量,其概率密度函数为:。
【第二章作业】1、从的自然数中随机地取出个数,用表示所取的个数中的最大值,求其概率分布。
解:发生所取的个数中有一个是,其余个是从中取到的,故,,即2、将一枚均匀的硬币连掷次,用表示出现的正、反面次数之差,求其概率分布。
解:用表示将一枚均匀的硬币连掷次时,正面出现了次,则,即3、设随机变量的概率分布如下,求:0 1 2 3 4 5解:由题设知所求概率为:,,。
4、设随机变量的概率分布为,求常数。
第四章 随机变量及其概率分布
HaiNan University
6
第二章 随机变量及其概念分布
即有 X (红色)=1 , X (白色)=0.
X
(e
)
1,
0,
e 红色, e 白色.
这样便将非数量的 ={红色,白色} 数量化了.
HaiNan University
7
第二章 随机变量及其概念分布
实例2 抛掷骰子,观察出现的点数. 则有
P{ x1 X x2} P{ X x2}P{ X x1}
?
F ( x2 )
F ( x1 ) 分布
P{ x1 X x2 } F ( x2 ) F ( x1 ).
函数
HaiNan University
22
第二章 随机变量及其概念分布
2.分布函数的定义
定义 设 X 是一个随机变量, x是任意实数,函数 F(x) P{X x}
={1,2,3,4,5,6}
样本点本身就是数量 恒等变换
X (1) 1, X (2) 2, X (3) 3, X (4) 4, X (5) 5, X (6) 6,
且有
P{ X i} 1 , (i 1,2,3,4,5,6). 6
HaiNan University
8
第二章 随机变量及其概念分布
实例3 结果:
掷一个硬币, 观察出现的面 , 共有两个 e1 (反面朝上), e2 (正面朝上),
若用 X 表示掷一个硬币出现正面的次数, 则有
e1 (反面朝上)
X (e)
0 X (e1) 0
e2 (正面朝上)
1 X (e2 ) 1
即 X (e) 是一个随机变量.
HaiNan University
随机变量及其概率分布
考试内容
随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布
连续型随机变量的概率密度常见随机变量的概率分布随机变量函数的概率分布
考试要求
1.理解随机变量及其概率分市的概念.理解分布函数F(x)=P{X≤x}(-∞<x<+∞)的概念及性质,并会计算与随机变量相联系的事件的概率。
理解各种分布的背景和主要特征;
注意随机变量和随机事件的转化〔等价性〕。
7、函数分布
离散型:已知 的分布列为
,
的分布列( 互不相等)如下:
,
若有某些 相等,则应将对应的 相加作为 的概率。
例2.23:已知随机变量 的分布列为
,
其中 。求 的分布列。
解:
连续型:先利用X的概率密度 写出Y的分布函数, ,再利用变上下限积分的求导公式求出 。
具有如下性质:
1° 的图形是关于 对称的;
2°当 时, 为最大值;
若 ,则 的分布函数为
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
标准化公式及其应用:〔正态分布的概率计算一定要化为标准正态分布〕
一、主要内容讲解
1、分布函数
设 为随机变量, 是任意实数,则函数
称为随机变量X的分布函数,本质上是一个累积函数。
可以得到X落入区间 的概率。分布函数 表示随机变量落入区间(–∞,x]内的概率。
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
随机变量及其概率分布
(1)非负性 f(x)≥0 ;
(3)
P{x
1<X≤x
2}=
x2
x1
f
(
x)dx
;
(2)归一性 f ( x)dx =1 ; (4)若 f (x)在点 x 处连续,则 f (x)=F/ (x) .
注意:连续型随机变量 X 取任一指定实数值 a 的概率为零,即 P{X= a}=0 .
3.三种重要的连续型随机变量的分布
(1)X~U (a,b) 区间(a,b)上的均匀分布
f
(
x)
1 b
a
0
a xb 其它 .
(2)X
服从参数为的指数分布.
f
x
1
e x /
0
若x 0 若x 0
(>0).
(3)X~N (,2 )参数为,的正态分布 f ( x)
1
( x)2
e 2 2
2
-<x<,
>0.
特别, =0, 2 =1 时,称 X 服从标准正态分布,记为 X~N (0,1),其概率密度
三.连续型随机变量 1. 定 义 如 果 随 机 变 量 X 的 分 布 函 数 F(x) 可 以 表 示 成 某 一 非 负 函 数 f(x) 的 积 分
F(x)= x f t dt ,-∞< x <∞,则称 X 为连续型随机变量,其中 f (x)称为 X 的概率密度(函数).
1
2.概率密度的性质
Xk x
其跳跃值为 p k=P{X=x k} .
3.三种重要的离散型随机变量的分布
(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 f (x)dx
x1
性质3:概率密度函数在整个取值区间 积分为1,即
Hale Waihona Puke f (x)dx 1 1.3.6 二维随机变量及其分布
1.二维随机变量及其分布函数
定义 设随机试验E的样本空间 S={e},X=X(e)和Y=Y(e)是定义在样 本空间S上的两个随机变量,由X和 Y构成的矢量(X,Y)称为二维随机矢 量或二维随机变量。
定义 设(X,Y)为二维随机变量,对
F于XY任( x意, 实y)数x和Py{,X令 x,Y y}
则称FXY(x,y)为二维随机变量(X,Y) 的联合分布函数,或称二维分布函 数。
二维分布函数FXY(x,y)的性质: 性质1:
0 FXY (x, y) 1
性质2:对于任意固定的x和y,分 布函数满足
定义 设X、Y为两个随{机X变量,x}如 果{Y对任意y实} 数x和y,事件
P{X和 x,Y 相y}互独P立{X,即 x}P{Y y}
则称X和Y相互独立。
5.条件分布
在 X x的条件下,随机变量Y的条件 概率分布函数和条件概率密度函数可
分别表示为
FY
(y
|
x)
FXY ( x, y) FX ( x)
有时简称为密度函数。
对于离散随机变量,其概率密
度函数为
f (x) dF(x)
dx
i
pi ( x xi )
根据概率分布函数的性质,可得到 概率密度的性质:
性质1:概率密度函数非负
f (x) 0
性质2:概率密度函数在(x1,x2)区间 积分,得到该区间的取值概率
P{x1 X x2}
fY ( y | x)
f XY ( x, y) fX (x)
1.3.7 n维随机变量及其分布
( X1, X 2 ,, X n )
定义 n维随机变量
F (的x1n, 维x2(,联,合x)n )分布函数为 P{X1 x1, X 2 x2,, X n xn}
f XY
( x,
y)
2 FXY ( x, xy
y)
为(x,y)的二维联合概率密度,简称为 二维概率密度。
二维概率密度具有以下性质:
性质1:
fXY (x, y) 0
性质2:
f XY ( x, y)dxdy 1
性质3:
P{x1 X x2, y1 Y y2}
随机变量及其概率分布
1.3.1 随机变量的概念
E1抛硬币:可能出现正面或反面; E2从一批产品中任取10件,抽到的废品 数可能是0,1,2,…,10中的一个数; E3掷骰子:可能出现1,2,3,4,5,6点
定义 设随机试验的样本空间为S={ei}, 如果对样本空间的每一个元素ei,都有一 实数X(ei)与之对应,对所有的元素
则称FX (x)、 FY(y)分别为(X,Y)关于X和Y 的边缘分布函数,简称为X和Y的边缘 分布函数。
将 f X ( x) f XY ( x, y)dy
fY ( y) f XY ( x, y)dx
分别称fX(x)和fY(y)为X和Y的边缘概 率密度函数。
4.随机变量的独立性
对于离散随机变量的分布函数,除 满足以上性质外,还具有阶梯形式, 即
F ( x) P{X xi}U ( x xi )
i 1
piU ( x xi )
i 1
1.3.5 概率密度函数
概率密度函数定义为概率分布函数 F(x)对x的导数,即
f (x) dF(x) dx
F(x1) F(x2)
则有
性质3:
P{X x} 1 F(x)
性质4:随机变量X在区间
x1 X x2
上取值的概率为
P{x1 X x2} F ( x2 ) F ( x1)
性质5:
F() 0, F() 1
性质6:F(x)右连续,即
F(x) F(x)
e S,就得到一个定义在空间S上的实单 值函数X(e),称X(e)为随机变量,简写为 X。
1.3.2 离散型随机变量及其分布律
如果随机变量X只能取有限个或可 列无穷多个数值,则称X为离散型随机 变量。
定义 设X为一个离散型随机变量,它所有可能取的值为 xk(k=1,2,…),而pk (k=1,2,…)是X取值xk时相应的概率,即
如果二维随机变量的可能取值为有限 个或可列无穷个,则称(X,Y)为二维离 散型随机变量。
对于二维离散型随机变量,有
P{X xi ,Y y j} pij
pij称为(X,Y)的联合概率分布列,简称 为分布列。
2.二维概率密度
定义 若二维分布函数FXY(x,y)连续并存 在二阶偏导数,则定义
或写成 P{X xk } pk (k 1,2,)
则或称称上为式X的或分表X布格律表。示x的1 函数x为2 离散…型随机x变k 量X…的概率分布,
P
p1
p2
…
pk
…
1.3.3 连续型随机变量
对于可以在某一区间内任意取值的 随机变量,它的值不是集中在有限个 或可列无穷个点上,这就是连续型随 机变量。
FXY (, y) 0 , FXY (x,) 0
FXY (,) 0 , FXY (, ) 1
性质3:对于每个变量,FXY(x,y)都是单 调非减的,即
当y2>y1时
FXY (x, y2 ) FXY (x, y1)
当x2>x1时
FXY (x2 , y) FXY (x1, y)
1.3.4 概率分布函数
定义 设X是一随机变量,x是任意实数, 函数
F(x) P{X x} x (,)
称为X的概率分布函数,简称为分布函数。 (对连续和离散随机变量都适用)
根据分布函数的定义,可得下面的 基本性质:
性质1:满足
0 F(x) 1
当性质2:F(x)是x单1 调x非2减函数,即
x2 x1
y2 y1
fXY (x, y)dxdy
例:设(X,Y)的e联合( x密y)度函x数 0, y 0
f XY ( x, y)
0
P{0 X 1,0 Y 1}
求
3.边缘分布
定义 设FXY(x,y)为二维随机变量(X,Y)的 分布函数,令
FX (x) F (x,) FY ( y) F (, y)