铣床液压系统设计

合集下载

专用铣床液压系统设计

专用铣床液压系统设计

摘要1.铣床概述铣床是用铣刀对工件进行铣削加工的机床。

铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,效率较刨床高,在机械制造和修理部门得到广泛应用。

2.液压技术发展趋势液压技术是实现现代化传动与控制的关键技术之一,世界各国对液压工业的发展都给予很大重视。

液压气动技术具有独特的优点,如:液压技术具有功率传动比大,体积小,频响高,压力、流量可控性好,可柔性传送动力,易实现直线运动等优点;气动传动具有节能、无污染、低成本、安全可靠、结构简单等优点,并易与微电子、电气技术相结合,形成自动控制系统。

主要发展趋势如下:1.减少损耗,充分利用能量2.泄漏控制3.污染控制4.主动维护5.机电一体化6.液压CAD技术7.新材料、新工艺的应用3. 主要设计内容本设计是设计专用铣床工作台进给液压系统,本机床是一种适用于小型工件作大批量生产的专用机床。

可用端面铣刀,园柱铣刀、园片及各种成型铣刀加工各种类型的小型工件。

设计选择了组成该液压系统的基本液压回路、液压元件,进行了液压系统稳定性校核,绘制了液压系统图,并进行了液压缸的设计。

关键词铣床;液压技术;液压系统;液压缸ABSTRACT1. Milling machine is general to stateMilling machine is to carry out the machine tool of milling processing with milling cutter for workpiece. Milling machine excludes can milling plane, groove, gear teeth, thread and spline axle are outside, can still process more complex type surface, efficiency has high planer comparatively, when mechanical production and repair department get extensive application.2. Hydraulic technology develops tendencyHydraulic technology is that the one of crucial technical, world countries that realize modern transmission and control give great attention to the development of hydraulic industry. Hydraulic pneumatic technology has unique advantage , such as: Hydraulic technology has power weight than is big, volume is little, frequently loud and high, pressure and rate of flow may control sex well, it may be flexible to deliver power , is easy to realize the advantages such as the sport of straight line; Pneumatic transmission has energy saving, free from contamination, low cost and safe reliable, structural simple etc. advantage , and is easy to form automatic control system with microelectronics and electric in technology. Develop tendency mainly to be as follows:1. Reduce wastage , use energy2 fully. Leak control3. Pollute control4. Defend5 initiatively. Electromechanical unifinication6. Hydraulic CAD technical7. The application of new material and new technology3. Design content mainlyQuantity of production. May use the garden column milling cutter, garden flat and milling cutter of end panel and is various to process the small-sized workpiece of various types into type milling cutter.Designing have selected to form hydraulic element and the basically hydraulic loop of this hydraulic system , have carried out hydraulic systematic stability school nucleus , have drawn hydraulic system to seek , and have carried out the design of hydraulic big jar.Key words milling machine;hydraulic technology;hydraulic system;hydraulic big jar目录摘要 2 毕业设计任务书 5 第一章专用铣床液压系统设计 7 1.1 技术要求 7 1.2 系统功能设计 71.2.1 工况分析 71.2.2 确定主要参数,绘制工况图 81.2.3 拟定液压系统原理图 101.2.4 组成液压系统 10 1.3系统液压元件、辅件设计12 第二章专用铣床液压系统中液压缸的设计17 2.1 液压缸主要尺寸的确定 17 2.2 液压缸的结构设计 20 致谢24 参考文献 25毕业设计任务书一、设计课题专用铣床液压系统设计二、设计依据某铣床工作台为卧式布置(导轨为水平导轨,其静、动摩擦因数µs=0.2;µd=0.1),拟采用缸筒固定的液压缸驱动工作台,完成工件铣削加工时的进给运动;工件采用机械方式夹紧。

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计引言:随着工业技术的发展,液压系统在机械设备中的应用越来越广泛。

在专用铣床中,液压系统的设计对于提高机械设备的性能和工作效率起着至关重要的作用。

本文将以专用铣床液压系统设计为主题,探讨液压系统的设计原则、组成部分以及设计过程。

一、液压系统设计原则1. 功能需求:根据专用铣床的工作需求确定液压系统的功能,包括工作压力、流量、速度等参数。

2. 安全性:设计时需考虑液压系统的安全性,确保系统能够稳定运行,避免发生泄漏、爆炸等危险。

3. 可靠性:设计时需考虑液压系统的可靠性,选择高品质、耐用的液压元件,确保系统长时间稳定运行。

4. 经济性:设计时需考虑液压系统的成本,合理选择液压元件和控制装置,使系统具有较高的性价比。

二、液压系统组成部分1. 液压泵:负责将机械能转化为液压能,提供给液压系统所需的压力和流量。

2. 液压缸:负责将液压能转化为机械能,实现对工作件的加工和运动控制。

3. 液压阀:用于控制液压系统的压力、流量和方向等参数。

4. 油箱:贮存液压油,保证液压系统的正常运行。

5. 滤清器:用于过滤液压油中的杂质和污染物,保护液压系统的元件。

6. 液压管路:将液压能传输到不同的液压元件中。

7. 液压控制装置:包括液压控制阀、传感器等,用于控制和监测液压系统的工作状态。

三、液压系统设计过程1. 确定工作需求:根据专用铣床的加工要求和工作条件,确定液压系统的工作压力、流量和速度等参数。

2. 选择液压元件:根据工作需求选择合适的液压泵、液压缸、液压阀等液压元件,确保其性能和质量符合要求。

3. 设计液压管路:根据专用铣床的结构和工作方式,设计合理的液压管路,确保液压能够传输到各个液压元件中,并满足工作需求。

4. 安全措施:在设计过程中,需考虑液压系统的安全性,采取相应的安全措施,如设置泄压阀、安装压力传感器等。

5. 控制系统设计:根据专用铣床的工作要求,设计液压控制系统,包括液压控制阀、传感器等,实现对液压系统的精确控制。

专用铣床液压系统设计

专用铣床液压系统设计

专用铣床液压系统设计
专用铣床液压系统是由专用铣床夹具、液压支架、液压缸、电磁阀、液压泵等元件组
成的液压系统,其主要任务是控制专用铣床的动作,它可以通过液压缸,实现专用铣床夹
具的自动变位和调整机床行程,精确完成工件加工。

专用铣床液压系统可以实现液压支架
升降、专用铣床安装、回转把手控制及自动补偿运动等功能。

专用铣床液压系统的设计,需要考虑的因素比较多,需要从流体机械、电气和控制几
个方面进行全面的分析,在设计中要考虑材料的选择和结构的优化,流动压力、液力学和
振动的数值仿真分析,还要科学组织液压元件,应用液压控制理论,满足加工条件,确保
铣床运转可靠、平稳和安全,最终实现工件质量的最高效率加工。

专用铣床液压系统的设计一般要求满足下列条件:
(1)液压系统的设计必须与专用铣床的原理是一致的,以保证专用铣床的正常运行;
(2)液压系统要具备良好的密封性能,确保系统内部各液压元件安全运行;
(3)液压系统的各液压动力元件之间要有协调的控制和联调,使之形成完整的联动
系统;
(4)液压系统要采用可靠性高、操作简便、应用可靠性良好的液压控制元件和控制
系统。

专用铣床液压系统设计要求对液压工程的复杂性以及液压组件的精密性进行充分的考虑,要考虑如何优化液压系统的结构,实现液压系统的简化,提高工作效率、降低运行成本,可靠的保障工件的质量。

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计专用铣床液压系统设计课程设计一、引言在现代机械加工领域,铣床是一种常用的机床设备。

为了提高铣床的运行效率和精度,液压系统被广泛应用于铣床中。

本课程设计旨在通过对专用铣床液压系统的设计,使学生掌握液压系统的原理和设计方法。

二、液压系统基础知识1. 液压系统概述液压系统是利用流体传递能量的一种动力传动系统。

它由液压泵、执行元件、控制元件和辅助元件等组成。

2. 液压传动基本原理液体在容器中形成封闭的流体传递介质,通过液压泵产生的高压油将能量传递到执行元件上,从而实现工作机构的运动。

3. 液压执行元件常见的液压执行元件包括油缸、马达和阀门等。

油缸通过受力面积差异实现线性运动,马达则通过转子与定子之间的摩擦力实现旋转运动。

三、专用铣床液压系统设计1. 设计目标专用铣床液压系统的设计目标是实现铣床的高效率、高精度和安全稳定的运行。

2. 系统组成专用铣床液压系统主要由液压泵、油缸、控制阀和辅助元件等组成。

液压泵负责产生高压油,油缸负责驱动工作台进行运动,控制阀则用于控制油液的流向和压力。

3. 液压系统参数选择根据铣床的工作要求和性能指标,选择合适的液压元件参数。

包括液压泵的流量、工作台的移动速度和承载能力等。

4. 液压系统布局设计根据铣床结构和工作台运动方式,合理布局液压元件。

保证油路畅通,减小能量损失和泄漏。

5. 液压系统控制策略设计根据铣床的工作过程,确定合理的控制策略。

可以采用手动控制或自动控制方式,实现对工作台运动的精确控制。

6. 液压系统安全保护设计在液压系统中添加安全保护装置,如过载保护阀、压力传感器和液压缸的行程限位装置等,以确保铣床的安全运行。

四、课程设计步骤1. 确定课程设计内容和目标明确课程设计的具体内容和目标,包括液压系统的基本原理、专用铣床液压系统的设计要求等。

2. 学习液压系统基础知识学生需要通过自学或教师讲解等方式,掌握液压系统的基本原理、执行元件和控制元件等知识。

铣床液压课程设计

铣床液压课程设计

铣床液压课程设计一、课程目标知识目标:1. 理解铣床液压系统的基本原理和组成部分;2. 掌握铣床液压系统的主要参数及其对铣削加工的影响;3. 了解不同铣床液压系统的特点及其适用场景。

技能目标:1. 能够正确操作铣床液压系统,并进行基本的调试和故障排除;2. 能够根据加工需求,合理选择和调整铣床液压系统的参数;3. 能够运用铣床液压系统进行简单的铣削加工,并确保加工质量和效率。

情感态度价值观目标:1. 培养学生对机械加工和液压技术的兴趣,激发学习热情;2. 培养学生严谨的科学态度,注重实践操作的安全性和准确性;3. 培养学生的团队合作意识,学会在铣床液压系统操作中相互协作和沟通。

课程性质:本课程为实践性较强的技术学科,结合铣床液压系统的基础知识和操作技能,培养学生实际应用能力。

学生特点:学生为高年级中职或高职机械类相关专业的学生,具备一定的机械基础知识和动手能力。

教学要求:注重理论与实践相结合,强调操作技能的培养,同时关注学生情感态度价值观的引导。

将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容1. 铣床液压系统原理:讲解液压系统的基本工作原理,包括液压泵、液压缸、控制阀等主要组成部分的功能和相互关系。

教材章节:第二章“液压系统基本原理”2. 铣床液压系统参数:学习液压系统的主要参数,如压力、流量、油温等,探讨这些参数对铣削加工的影响。

教材章节:第三章“液压系统参数及其调整”3. 铣床液压系统操作与调试:介绍铣床液压系统的操作方法,包括启动、停止、调整等,以及系统调试的基本步骤和注意事项。

教材章节:第四章“铣床液压系统的操作与维护”4. 铣床液压系统故障排除:分析常见的铣床液压系统故障现象,学习故障诊断和排除方法。

教材章节:第五章“液压系统的故障诊断与排除”5. 铣床液压系统在实际应用中的选择与调整:根据加工需求,指导学生如何选择合适的铣床液压系统,并进行参数调整,以提高加工质量和效率。

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计一、引言随着工业技术的不断进步,液压系统在机械设备中的应用越来越广泛。

专用铣床是一种常见的机械设备,其液压系统是确保其正常运行的重要组成部分。

本课程设计将对专用铣床液压系统进行设计,以确保其在工作过程中具有稳定、高效的性能。

二、液压系统设计原理液压系统是通过液体传递能量来实现机械运动的系统。

在专用铣床中,液压系统主要用于控制铣刀的进给、主轴的转速和位置,以及工作台的移动等。

液压系统的设计需要考虑以下几个方面:1. 工作压力:根据铣床的工作需求和液压元件的承载能力,确定液压系统的工作压力。

通常,专用铣床的工作压力在10-20MPa之间。

2. 流量需求:根据铣床的工作速度和移动距离,确定液压系统的流量需求。

流量的大小直接影响液压系统的响应速度和工作效率。

3. 液压元件的选择:根据液压系统的工作压力和流量需求,选择适当的液压元件,如液压泵、液压阀、液压缸等。

液压元件的选择要考虑其工作性能、可靠性和维护成本等因素。

4. 液压系统的控制方式:根据铣床的工作需求,确定液压系统的控制方式。

常见的控制方式有手动控制、自动控制和数控控制等。

三、液压系统设计步骤1. 确定系统要求:根据专用铣床的工作特点和要求,明确液压系统的工作压力、流量需求和控制方式等。

2. 选择液压元件:根据系统要求,选择合适的液压元件。

液压泵的选择要考虑其流量和压力特性;液压阀的选择要考虑其控制特性和可靠性;液压缸的选择要考虑其负载能力和运动特性等。

3. 绘制液压系统图:根据系统要求和液压元件的选择,绘制液压系统图。

液压系统图应包括液压泵、液压阀、液压缸等液压元件的连接关系和管路布置。

4. 计算液压系统参数:根据系统要求和液压元件的特性,计算液压系统的参数,如泵的流量和压力、液压缸的负载和速度等。

5. 设计液压系统控制装置:根据系统要求和控制方式,设计液压系统的控制装置。

控制装置可以采用手动操作、电气控制或计算机控制等方式。

半自动液压专用铣床液压系统的设计

半自动液压专用铣床液压系统的设计

半自动液压专用铣床液压系统的设计和电动机功率2.2.2液压泵和电动机的型号选择2.3液压系统的元件选型和布置2.3.1液压缸和液压阀的选型2.3.2液压系统的管路布置第三章、机床设计3.1机床的总体设计3.1.1机床结构设计3.1.2机床工作台设计3.1.3机床夹具设计3.2机床的零部件设计3.2.1机床主轴箱的设计3.2.2机床进给系统的设计第四章、机床控制系统设计4.1机床控制系统的设计4.2机床控制系统的电气布置4.3机床控制系统的程序设计第五章、机床液压系统的试验与调试5.1试验前的准备工作5.2试验的步骤和方法5.3试验结果分析和调试第六章、结论与展望6.1结论6.2展望参考文献附录本次毕业设计的任务是设计一台半自动液压专用铣床的液压系统。

液压专用铣床是一种以液压传动为基础,配以少量专用部件组成的机床,具有较大的实用性。

在设计过程中,我们将自己所学的知识结合辅助材料运用到设计中,尤其是一些计算、绘图等细小方面。

在设计过程中最主要的是图纸的绘制,这不仅可以清楚的将所设计的内容完整的显示出来,还能看出所学知识是否已完全掌握了。

本设计的机床类型为液压专用铣床,能够用成型铣刀在工件上加工出成型面。

机床工作台一次可安装两只工件,并能同时加工。

机床工作循环为:手工上料→按电钮→自动定位夹紧→工作台快进→铣削进给→工作台快退→夹具松开→手工卸料。

液压传动系统的具体参数要求如下:定位液压缸负载为200N,夹紧液压缸负载为4000N,进给液压缸负载为2000N,移动件重力为20N。

液压缸的行程为101mm,启动时间为6s,运动时间为15s。

夹紧缸的快进工进快退速度为m/min,快进工进速度为0.5m/min,快退速度为1m/min,快进工进快退行程为0.356mm。

在液压系统的设计中,我们需要进行参数的选择、方案的制定、图卡的编制、专用铣床的设计、液压系统的设计以及验算等工作。

液压缸和液压阀的选型、液压系统的管路布置等都需要仔细考虑。

液压课程设计-专用铣床的液压系统

液压课程设计-专用铣床的液压系统

液压课程设计-专用铣床的液压系统液压课程设计专用铣床的液压系统一、概述本课程设计主要涉及液压系统的设计和操作,即专用液压铣床系统。

铣床是一种机械工具,广泛应用于机械制造和金属加工领域。

它有三个运动轴,一个叫X轴,一个叫Y轴,一个叫Z轴,可以根据用户的需求加工各种特殊轨迹和各种复杂部件,最大限度地提高零件精度和生产效率。

由于专用液压铣床系统高效可靠,易于操作和维护,以及体积小巧,因此在工业场景中越来越多地使用。

二、特点1. 复杂可靠:液压系统有多种部件组成,由油泵、液压缸、液压回路、液压控制器及元件等构成,系统不同元件之间能够发生相互协同作用,实现高可靠的操作。

2. 精确控制:凭借特殊的液压控制器,可以根据用户的实际需要,智能控制液压系统的各部件,实现高精度的控制,保证加工准确。

3. 高度集成:相比于传统的控制结构,液压系统的优势在于所有液压部件能够直接安装在液压床头上,易于安装,降低了空间损耗,降低了系统重量,提高系统效率。

1. 系统分析:专用液压铣床的液压系统的设计可以广泛应用于工业领域。

因此,在进行设计之前,应对系统进行充分分析,确定系统的工作压力、移动速度等参数,以选择合适的液压元件。

2. 元件选择:为了使液压系统能够正常工作,还需要正确选择元件,包括液压缸、液控开关、油泵等,确保系统能够满足用户的使用需求。

3. 线路布置:完成全部组件的选择之后,即可开始绘制液压系统的线路图,此过程要根据系统的实际运行情况和特性进行计算,建立完善的液压系统回路结构。

四、总结本课程设计论述了专用液压铣床的液压系统的设计,介绍了系统的特点和设计步骤。

可见,正确的液压系统设计对于专用液压铣床的使用有很大的帮助,其声明能够保证系统的高效性、稳定性、可靠性和安全性,提高加工效率并确保零件精度。

专用铣床液压传动系统设计说明书

专用铣床液压传动系统设计说明书

专用铣床液压传动系统设计说明书一、设计背景铣床作为工业生产中常用的设备之一,在金属加工领域发挥着重要作用。

为了提高铣床的工作效率和精度,减少操作难度,我们设计了一套液压传动系统。

二、设计原则1. 功能全面:液压传动系统应能够实现铣床各项功能的顺利进行,如定位、进给、速度控制等。

2. 结构合理:液压传动系统应具有简单紧凑的结构,以便于安装、维修和调试。

3. 控制精度高:液压系统的控制精度直接关系到铣床加工的精度,因此系统应具备高精度的控制能力。

4. 安全可靠:液压传动系统应具备完善的安全保护措施,确保机器在工作过程中不发生意外。

三、系统组成1. 液压系统主体:包括主泵、油箱、电机和液压阀组等主要元件。

主泵负责将液压油送入系统并提供动力,油箱用于储存液压油,电机为主泵提供动力,液压阀组控制液压系统的工作方式。

2. 液压缸:液压缸完成铣床进给和定位功能,负责转换液压能为机械能。

3. 液压管路:将液压油从主泵传送到液压缸,并通过控制阀组实现各项操作。

4. 控制系统:包括传感器、执行器和控制器等组成,用于监控和控制液压系统的工作状态。

四、系统工作原理通过控制器向液压阀组发送指令,控制液压阀组的开关状态,进而控制液压油的流动方向和流量大小,从而实现铣床的功能操作。

具体来说,当接收到进给指令时,控制器向液压阀组发送打开液压缸进油口的指令,液压油进入液压缸,推动铣刀进行材料切削。

当接收到定位指令时,控制器向液压阀组发送关闭进油口、打开回油口的指令,液压油从液压缸回流至油箱,实现铣床的定位功能。

五、系统优势1. 高效性:液压传动系统具备高效稳定的工作特性,能够实现高速进给和高精度定位,提高工作效率。

2. 灵活性:液压传动系统可以实现多种工作方式,如自动循环、单点加工等,满足不同工作需求。

3. 节能环保:液压传动系统的能量损耗相对较低,能够节省电力消耗;同时液压油具备循环利用的特性,减少资源浪费。

4. 易于维护:液压传动系统的结构简单可靠,易于维护和保养,延长设备寿命。

专用铣床工作台液压系统设计参考

专用铣床工作台液压系统设计参考

专用铣床工作台液压系统设计参考一、需求分析1.提供稳定的工作台升降和前后移动功能,以适应不同工件的加工需求。

2.具备较高的升降速度和平稳的运动,以提高加工效率和加工质量。

3.能够实现工作台的快速定位和精准停止,以提供更加精确的加工。

4.具备较高的安全性,能够防止工作台的意外下降和突然停止。

二、液压系统的组成根据对专用铣床工作台的需求分析,液压系统的组成可包括以下部分:1.液压泵:负责提供工作台升降和前后移动所需的液压力。

2.液压马达或液压缸:根据工作台的结构形式,选用合适的液压执行元件,实现工作台的升降和前后移动。

3.油箱和油管:负责容纳液压油和传输液压油的管道。

4.液压阀和控制元件:包括液压阀门、压力传感器、流量传感器等,用于控制液压系统的运行和监测系统的工作状态。

5.液压油:选用合适的液压油,以满足系统的工作要求。

三、液压系统的工作原理液压系统的工作原理是利用液体的特性传递压力和动力。

在工作台升降方面,液压泵将液压油从油箱中抽出,通过液压阀门进入液压缸或液压马达,从而实现工作台的升降。

在工作台前后移动方面,液压泵将液压油从油箱中抽出,通过液压阀门进入液压缸或液压马达,从而实现工作台的前后移动。

液压系统的控制是通过控制液压阀门的开关来实现的。

具体来说,液压阀门可以通过电磁阀控制或手动控制,根据不同的控制信号来打开或关闭液压阀门,从而控制液压油的流量和压力。

四、液压系统的设计考虑因素在设计液压系统时,需要考虑以下因素:1.工作台的工作负荷和速度:根据工作台的负荷和速度要求,选择合适的液压泵和液压马达。

2.工作台的升降和移动方式:根据工作台的结构形式,选用合适的液压执行元件。

3.控制方式:根据系统的控制要求,选择合适的液压阀门和控制元件。

4.安全性:考虑系统的安全性要求,采用液压缓冲装置和安全阀等措施,防止工作台的意外下降和突然停止。

五、液压系统的优化设计在设计液压系统时,可以考虑以下优化设计措施:1.采用变量泵和变量液压马达:通过调节液压系统的流量和压力,以满足不同的加工需求。

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计引言:专用铣床液压系统设计是现代工程领域中一门重要的课程。

液压系统在工业生产中起着至关重要的作用,而专用铣床液压系统则是在铣床加工过程中用于控制和驱动铣刀、工作台等部件的关键系统。

本文将介绍专用铣床液压系统的设计过程和原理,并提供一些设计方案和注意事项。

一、液压系统的基本原理液压系统利用液体传递力和能量,实现机械设备的控制和驱动。

液压系统由液压泵、液压缸、液压阀和液压管路等组成。

液压泵通过机械能转化为液体压力能,液压阀控制液体的流动方向和流量,液压缸则将液体的压力能转化为机械能。

二、专用铣床液压系统设计的基本要求1. 功能要求:液压系统应能够实现铣床的各种操作,如起动、加工和停止等。

2. 系统稳定性:系统在工作过程中应具有较高的稳定性和可靠性,能够保证加工精度和加工质量。

3. 控制灵活性:液压系统应具备灵活的控制能力,能够满足不同加工工件的需求。

4. 安全性:液压系统设计应考虑到安全因素,如过载保护、漏油报警等。

5. 经济性:液压系统的设计应尽可能降低成本,并提高能源利用效率。

三、专用铣床液压系统设计的步骤1. 确定系统的工作压力和流量:根据铣床的加工要求和工作负荷,确定液压系统的工作压力和流量。

同时要考虑系统的泄漏和能量损失。

2. 选择液压元件:根据系统的工作压力、流量和控制要求,选择合适的液压泵、液压缸、液压阀等元件。

要考虑到元件的质量、可靠性和维修方便性。

3. 设计液压回路:根据铣床的工作过程和控制要求,设计合适的液压回路。

液压回路的设计应考虑到系统的稳定性、控制灵活性和安全性。

4. 设计液压管路:根据液压回路的设计,设计合适的液压管路。

液压管路的设计应考虑到管路的阻力、泄漏和安装方便性。

5. 进行系统的仿真和优化:通过液压系统仿真软件对系统的性能进行评估和优化,以确保系统的稳定性和可靠性。

6. 进行系统的实验验证:根据设计结果,进行液压系统的实验验证。

通过实验数据的分析和对比,评估系统的性能和可靠性。

液压传动课程设计设计---液压专用铣床的液压系统

液压传动课程设计设计---液压专用铣床的液压系统

液压传动课程设计设计---液压专用铣床的液压系统目前,液压技术广泛应用于生产高精度的金属组件,如汽车零件、机械工程零部件等。

液压专用铣床是液压系统的重要组成部分,能够实现传动驱动和控制。

本文旨在设计一种用于液压铣床的液压系统。

一、系统结构液压系统包括液压泵、液压调节器、启动装置、液压马达、液压电磁换向阀、油路调节装置、减压器、负荷检测系统等(图1)。

液压泵、液压调节器和启动装置组成液压源,提供泵腔内的高压油。

液压马达采用无丝螺母的逆止马达,可提供良好的控制和机械参数。

液压电磁换向阀用来控制马达的转轴力矩,改变其偏差方向,便于高效操作。

油路调节装置用于控制油路,可以连接到多个液压系统组件,并可以根据需要添加和减少油路组件,实现油路自动控制。

减压器的功能是将泵腔内的高压油转换为中高压,并通过控制阀门精确控制压力。

最后,负荷检测系统用于实时检测液压铣床的负荷,以保证减压器的工作和液压马达的正常运行。

![用于液压铣床的液压系统结构图,液压泵,液压调节器,启动装置,液压马达,液压电磁换向阀,油路调节装置,减压器,负荷检测系统](对象图片.jpg)图1 液压铣床液压系统结构二、系统运行原理1、液压泵工作原理液压泵作为流体液压系统的源头,负责将电能变换成液压能量。

运转过程中,它将泵腔内的液体空化,通过活塞的往复运动以及叶片的旋转将低压液体输送至泵腔内,释放对应的流体能量,形成高压油流,从而起到推动作用。

液压调节器是液压系统的重要组件,主要实现液压系统的振动消除和液压换向,使液压装置能够快速、精准响应信号,从而实现高精度操作。

液压调节器由精密制成的磁性控制阀和密封件组成,能够有效控制液压压力和方向,从而保证液压马达的精准操作。

液压马达是液压传动系统中的主要组件,它将液压能量转换成机械能量,支持传动装置实现高精度操作。

液压马达采用石墨制成的活塞和活塞杆及液压密封件,可以实现调节马达的旋转,同时支撑机械装置的操作。

铣床的液压系统课程设计

铣床的液压系统课程设计

二、设计依据:设计一台专用铣床的液压系统,铣头驱动电机的功率N=7.5KW,铣刀直径为D=100mm,转速为n=300rpm,若工作台重量400kg,工件及夹具最大重量为150kg,工作台总行程L=400mm,工进为100mm,快退,快进速度为5m/min,工进速度为50~1000mm/min,加速、减速时间t=0.05s,工作台用平导轨,静摩擦系数fj=0.2,动摩擦系数fd=0.1。

设计此专用铣床液压系统。

沈阳理工大学三、工况分析液压系统的工况分析是指对液压执行元件进行运动分析和负载分析,目的是查明每个执行元件在各自工作过程中的流量、压力、功率的变化规律,作为拟定液压系统方案,确定系统主要参数(压力和流量)的依据。

负载分析(一)外负载Fw=1000P/V=60000·1000P/ 3.14Dn=4774.65N(二)阻力负载静摩擦力:Ffj=(G1+G2)·fj其中 Ffj—静摩擦力N G1、G2—工作台及工件的重量N fj—静摩擦系数由设计依据可得:Ffj=(G1+G2)·fj=(4500+1500)X0.2=1200N动摩擦力Ffd=(G1+G2)·fd其中 Ffd—动摩擦力N fd—动摩擦系数同理可得: Ffd=(G1+G2)·fd=(4500+1500)X0.1=600N(三)惯性负载机床工作部件的总质量m=(G1+G2)/g=6000/9.81=611.6kg沈阳理工大学沈阳理工大学 惯性力Fm=m ·a= =1019.37N其中:a —执行元件加速度 m/s ² 0t u u a t-=ut —执行元件末速度 m/s ² u0—执行元件初速度m/s ² t —执行元件加速时间s因此,执行元件在各动作阶段中负载计算如下表所示: (查液压缸的机械效率为0.96,可计算液压缸各段负载,如下表) 工况 油缸负载(N ) 液压缸负载(N ) 液压缸推力(N ) 启动 F=Ffj 1200 1250 加速 F=Ffd+Fm 1619.37 1686.84 快进 F=Ffd 600 625 工进 F=Ffd+ Fw 5374.65 5598.60 快退F=Ffd600625按上表的数值绘制负载如图所示。

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计

专用铣床液压系统设计课程设计专用铣床液压系统设计是机械工程领域中的重要课程之一。

液压系统在现代机械设备中发挥着至关重要的作用,它能够提供稳定、高效的动力传输和控制,使机械设备具备更高的性能和精度。

在设计专用铣床液压系统时,首先需要对铣床的工作原理和工作过程进行全面的了解。

铣床主要由工作台、切削刀具、进给机构和液压系统等组成。

液压系统是铣床的动力源,它通过液压马达提供动力,控制工作台和切削刀具的位置和运动速度。

在设计液压系统时,需要考虑以下几个方面:1. 动力需求:根据铣床的工作负荷和运行速度,确定液压系统的功率和流量需求。

同时,还需要考虑工作台和切削刀具的运动速度和精度要求,以确定液压系统的工作压力和控制精度。

2. 液压元件选择:根据系统的工作参数和要求,选择合适的液压元件,包括液压马达、液压泵、液压缸、液压阀等。

液压元件的选择应考虑其工作压力、流量、尺寸和性能等因素。

3. 液压系统布局:根据铣床的结构和装配要求,合理布置液压系统的各个组成部分,确保液压管路的连接可靠、紧凑,且易于维护和维修。

4. 控制系统设计:液压系统的控制是铣床工作的关键。

通过合理的控制系统设计,可以实现对工作台和切削刀具的位置和运动速度的精确控制。

控制系统通常包括传感器、执行器和控制器等组成部分,通过反馈控制算法实现对液压系统的控制。

5. 安全保护措施:设计液压系统时,还需要考虑安全保护措施,以防止意外事故的发生。

例如,可以设置液压系统的过载保护装置,当系统压力超过设定值时自动停机,以保护设备和操作人员的安全。

专用铣床液压系统设计课程设计的目的是培养学生对液压系统设计的能力,使其能够独立完成液压系统的设计和调试工作。

通过课程设计,学生不仅可以掌握液压系统设计的基本原理和方法,还可以了解液压系统在实际工程中的应用和发展趋势。

专用铣床液压系统设计课程设计是机械工程领域中的重要课程之一。

通过学习这门课程,可以培养学生的设计能力和创新思维,为他们今后从事机械设计和研发工作打下坚实的基础。

半自动液压专用铣床液压系统课程设计精选全文完整版

半自动液压专用铣床液压系统课程设计精选全文完整版

可编辑修改精选全文完整版液压系统设计半自动液压专用铣床液压系统1.设计要求设计一台用成型铣刀在加工件上加工出成型面的液压专用铣床,工作循环:手工上料——自动夹紧——工作台快进——铣削进给——工作台快退——夹具松开——手工卸料。

2.设计参数设计参数见表11和表12。

其中:工作台液压缸负载力(KN):FL=2.2夹紧液压缸负载力(KN):Fc= 4.8工作台液压缸移动件重力(KN):G=3.5夹紧液压缸负移动件重力(N)G c=30 工作台快进、快退速度(m/min):V1=V3 =5.5夹紧液压缸行程(mm):L c=10工作台工进速度(mm/min):V2=55 夹紧液压缸运动时间(S):t c=1工作台液压缸快进行程(mm):L1=450导轨面静摩擦系数:μs=0.2工作台液压缸工进行程(mm):L2=80导轨面动摩擦系数:μd=0.1工作台启动时间(S)t=0.53.完成工作量液压系统原理图(A3);零件图和部件装配图各1张(A3);设计说明书1份,零部件目录表1份。

注:在进行零部件设计时,集成块和油箱部件可以任选。

表一〈一〉工况分析:1.运动参数分析根据主机要求画出动作循环图,然后根据动作循环图和速度要求画出速度与路程的工况图。

夹紧松开2.动力参数分析(1)计算各阶段的负载1.启动和加速阶段的负载Fq从静止到快速的启动时间很短,故以加速过程进行计算,但摩擦阻力仍按静摩擦阻力考虑。

F q =Fj+Fi+Fm其中Fm=0.1FqFq = Fj+Fg+FmFq=850N2.快速阶段的负载FkF k =Fdm+Fm=0.1×3500+0.1FkFk=389N3.工进阶段的负载FgjFgj = Fdm+ Fl+ Fm=0.1X3500+2200+85 =2833N4.快退阶段的负载FktFkt =Fk=388.89N5.夹紧缸最大夹紧力FmaxFmax =Fc+UsGc+Gc/gXLc/tc2+0.1Fmax=5340N6.夹紧缸最小夹紧力FminFmin = Fc+UdGc+Gc/gXLc/tc2+0.1Fmin=5337N速度与路程的工况图:负载与路程的工况图:表二液压缸负载与工作压力之间的关系:表三液压缸内径尺寸系列:(mm)表四活塞杆直径尺寸系列:(mm)〈二〉计算液压缸尺寸和所需流量:1.工作压力的确定,查表二,取工作压力P=1MPa 2.计算液压缸尺寸(1)液压缸的有效工作面积A1A1=FP=28331000000=2833(mm2)液压缸内径:D=(4A1/π)1/2=60(mm)查表三,取标准值D=63mm(2)活塞杆直径:要求快进与快退的速度相等,故用差动连接方式,所以,取d=0.7D=44.1mm,查表四,取标准值d=45mm。

专业铣床液压系统课程设计

专业铣床液压系统课程设计

专业铣床液压系统课程设计一、课程目标知识目标:1. 让学生掌握铣床液压系统的基本原理和组成部分,理解各部件的功能和相互关系。

2. 使学生了解液压系统在铣床操作中的应用,掌握液压系统的操作方法和注意事项。

3. 帮助学生理解液压系统的故障分析与维护方法,提高实际操作能力。

技能目标:1. 培养学生运用所学知识,分析并解决铣床液压系统实际问题的能力。

2. 提高学生实际操作铣床液压系统的技能,熟练掌握各项操作要领。

3. 培养学生团队合作意识,学会在团队中分工协作,共同完成液压系统的安装、调试和维护。

情感态度价值观目标:1. 培养学生对机械加工行业的热爱,激发学习兴趣,树立正确的职业观念。

2. 引导学生树立安全意识,注重操作规范,养成良好的操作习惯。

3. 培养学生勇于探索、积极进取的精神风貌,面对液压系统故障时,敢于挑战,善于解决问题。

课程性质:本课程为专业实践课程,注重理论知识与实际操作相结合,以培养学生的实际操作能力和解决实际问题的能力为主要目标。

学生特点:学生已具备一定的机械基础知识,对铣床操作有初步了解,但对液压系统知识掌握有限,需要结合实际操作进行深入学习。

教学要求:教师需采用理论讲解、案例分析、实际操作相结合的教学方法,注重引导学生主动参与,提高学生的实践操作能力。

同时,加强对学生的个别辅导,确保课程目标的达成。

二、教学内容1. 液压系统基础知识:介绍液压系统的基本原理、组成部分及其功能,包括液压泵、液压缸、液压阀、油箱、管路等。

教材章节:第二章 液压系统基础知识2. 铣床液压系统组成与工作原理:分析铣床液压系统的具体组成,讲解其工作原理及在铣床操作中的应用。

教材章节:第三章 铣床液压系统组成与工作原理3. 液压系统操作与维护:详细介绍液压系统的操作方法、注意事项,以及日常维护和故障排除方法。

教材章节:第四章 液压系统操作与维护4. 液压系统故障分析与处理:结合实际案例,分析液压系统常见故障及其原因,讲解故障处理方法。

专用铣床液压系统设计论文

专用铣床液压系统设计论文

专用铣床液压系统设计论文专用铣床液压系统设计论文专用铣床液压系统设计论文【1】【摘要】通过设计液压传动系统,巩固和深化已学的理论知识,掌握液压系统系统设计计算的一般步骤和方法;正确合理地确定执行液压机构,运用基本回路组成满足基本性能要求的、高效的液压系统;熟悉并运用有关国家标准、设计手册和产品样本等技术资料。

【关键词】液压系统;铣床;设计1 液压系统使用要求负载分析1.1 使用要求完成快进――工进――快退――停止的工作循环1.2 负载分析在负载分析中,先不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率中加以考虑。

因为工作部件是卧式放置,重力的水平分力为零,这样要考虑的力有:切削力、导轨摩擦力和惯性力。

导轨的正压力等于动力部件的重力,设导轨的静摩擦力为Fs,动摩擦力为Fd,则如果忽略切削力引起的颠覆力矩对导轨摩擦力的影响,并设液压缸的机械效率ηm=0.93,则液压缸在各工作阶段的总机械负载可以算出,如下表:表1 液压缸各运动阶段负载表根据负载计算结果和已知的各阶段的速度,可绘出负载图(F-S)和速度图(V―L).图1 负载曲线图图2 速度曲线图图3 工作循环图2 液压系统方案设计2.1 确定液压泵类型及调速方式参考同类组合机床,选用单作用叶片泵双泵供油,溢流阀作定压阀。

为防止铣削完毕时滑台突然失去负载向前冲,回油路上设置背压阀,初定背压值Pb=0.7MPa。

2.2 选用执行元件因为系统动作循环要求正向快进和工作,反向快退,且快进,快退速度相等,所以选用单活塞杆液压缸,快进时差动连接,无杆腔面积A1等于有杆腔面积A2的两倍。

2.3 快速运动回路和速度换接回路根据本设计的运动方式和要求,采用差动连接与双泵供油两种快速运动回路来实现快速运动。

即快进时,由大小泵同时供油,液压缸实现差动连接。

本设计采用电磁阀的速度换接回路,控制工件的快进和工进。

与采用行程阀相比,电磁阀可直接安装在液压站上,由工作台的行程开关控制,管路较简单,行程大小也容易调整,另外采用二位二通电磁换向阀与单向阀来切断差动油路。

铣床液压设计指导

铣床液压设计指导

铣床液压系统的设计指导一、设计方法与步骤 (一) 设计准备可按设计步骤中的有关内容准备。

(二)液压系统的设计与计算1、分析工况及设计要求,绘制液压系统草图机床工况由题可知,各液压缸动作如下:定位液压缸 夹紧液压缸 工作台进给液压缸 按设计要求,希望系统结构简单,工作可靠,因为,系统的功率不会很大,且连续工作, 所以决定采用单个定量泵、非卸荷式供油系统,考虑到铣削时可能有负的负载力产生,故采 用回油节流调速的方法,为提高夹紧力的稳定性与可靠性,夹紧系统采用单向阀与蓄能器的 保压回路,并且不用减压阀,使夹紧油源压力与系统的调整压力一致,以减少液压元件数 量,简化系统结构,定位液压缸和夹紧液压缸之间的动作次序采用单向顺序阀来完成,并采 用压力继电器发讯启动工作台液压缸工作,以简化电气发讯与控制系统,提高系统的可靠性。

综上考虑,绘制出图1所示的液压传动系统草图。

系统中采用Y 型三位四通阀是为了使工作台能在任意位置停留,并使换向平稳。

二位四通阀在IDT 失电时,使夹紧液压缸处于夹紧状态,其目的是为了增加安全可靠性,并可以延长电磁铁的寿命。

2、计算液压缸的外负载F = F W +Fm+ F f F — 液压缸的工作负载(N ) F W — 液压缸轴线方向的外负载(N )定位 拔销 夹 松紧 开Fm — 运动部件的惯性力(N ) F f — 动部件的摩擦力(N )(1)定位液压缸:已知负载力 F ≈200N (惯性力与摩擦力可以忽略不计) (2)夹紧液压缸:巳知负载力 F ≈4000N (惯性力与摩擦力可以忽略不计) (3)工作台液压缸:有效负载力 F W =2000N (已知),惯性力Fm = ma = 3N (按等加速处理)。

摩擦力由液压缸的密封阻力与滑台运动时的摩擦力组成。

当密封阻力按5%有效作用力 估算时,总的摩擦阻力F f = 0.05F W +fG =120N , 故总负载力F = F W +Fm+ F f =2123N 3、确定系统的工作压力因为夹紧液压缸的作用力最大,所以可以按其工作负载来选定系统的压力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川师范大学工学院设计说明书液压传动课程设计---专用铣床液压系统设计学生刘畅院系工学院专业电气工程及其自动化学号2008180220指导教师隆泗答辩日期目录一、题目 (1)专用铣床动力滑台的设计 (1)二、液压系统设计计算 (1)(一)设计要求及工况分析 (1)1、设计要求 (1)2、负载与运动分析 (1)(1)工作负载 (1)(2)摩擦负载 (1)(3)惯性负载 (1)(4)运动时间 (1)(二)确定液压系统主要参数 (2)1、初选液压缸工作压力 (3)2、计算液压缸主要尺寸 (3)(三)拟定液压系统原理图 (5)1、选择基本回路 (5)(1)选择调速回路 (6)(2)选择油源形式 (6)(3)选择快速运动和换向回路 (6)(4)选择速度换接回路 (6)(5)选择调压和卸荷回路 (6)2、组成液压系统 (7)(四)计算和选择液压元件 (8)1、确定液压泵的规格和电动机功率 (9)(1)计算液压泵的最大工作压力 (9)(2)计算液压泵的流量 (9)(3)确定液压泵的规格和电动机功率 (9)三、附录与附图.附表 (10)四、总结 (14)五、参考文献 (15)一、题目专用铣床动力滑台液压系统设计二、液压系统设计计算(一)、设计要求及工况分析1.设计要求要求设计一专用铣床,其动力滑台实现的工作循环是:快进→工进→快退→停止。

主要参数与性能要求如下:切削阻力F L=30kN;运动部件所受重力G=5500N;快进、快退速度υ1=υ3 =4.5m/s,工进速度υ2 =60-1000mm/min;快进行程L1=250mm,工进行程L2=150mm;往复运动的加速、减速时间Δt=0.05s;工作台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。

液压系统执行元件选为液压缸。

2.负载与运动分析(1) 工作负载 工作负载即为切削阻力F L =30000N 。

(2) 摩擦负载 摩擦负载即为导轨的摩擦阻力:静摩擦阻力N G F S FS 110055002.0=⨯==μ动摩擦阻力N G F d fd 55055001.0=⨯==μ(3) 惯性负载N 842N 05×60.08.95500i ⨯=∆∆=t g G F υ 4.5= (4) 运动时间快进 sv L t 3.360/5.4102503111=⨯==-工进s v L t 9060/1.0101503222=⨯==-快退s v L L t 3.560/5.41040033213=⨯=+=-设液压缸的机械效率ηcm =0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。

表1液压缸各阶段的负载和推力工况负载组成液压缸负载F /N液压缸推力F 0=F /ηcm /N启 动加 速快 进工 进反向启动加 速快 退fs F F =i fd F F F +=fd F F =Lfd F F F +=fs F F =i fd F F F +=fdF F =110013925503055011001392550122215476113394412221547611根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F -t 和速度循环图 -t,如下图所示。

(二) 确定液压系统主要参数1.初选液压缸工作压力所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表2和表3,初选液压缸的工作压力p 1=4MPa 。

2.计算液压缸主要尺寸鉴于动力滑台快进和快退速度相等,这里的液压缸可选用单活塞杆式差动液压缸(A 1=2A 2),快进时液压缸差动连接。

工进时为防止车铣时负载突然消失发生前冲现象,液压缸的回油腔应有背压,参考表4选此背压为p 2=0.6MPa 。

表2 按负载选择工作压力负载/ KN<55~1010~2020~3030~50>50液压缸的负载图液压缸的速度图工作压力/MPa<0.8~1 1.5~2 2.5~33~44~5≥5表3 各种机械常用的系统工作压力机 床机械类型磨床组合机床龙门刨床拉床农业机械小型工程机械建筑机械液压凿岩机液压机大中型挖掘机重型机械起重运输机械工作压力/MPa0.8~23~52~88~1010~1820~32表4 执行元件背压力系统类型背压力/MPa 简单系统或轻载节流调速系统0.2~0.5回油路带调速阀的系统0.4~0.6回油路设置有背压阀的系统0.5~1.5用补油泵的闭式回路0.8~1.5回油路较复杂的工程机械 1.2~3回油路较短且直接回油可忽略不计表5 按工作压力选取d/D 工作压力/MPa≤5.0 5.0~7.0≥7.0d/D0.5~0.550.62~0.700.7表6 按速比要求确定d/Dυ2/υ11.15 1.25 1.33 1.46 1.612d/D0.30.40.50.550.620.71注:υ1—无杆腔进油时活塞运动速度;υ2—有杆腔进油时活塞运动速度。

由式cm 2211ηFA p A p =-得242621cm 1m 1092m 10)26.04(9.030550)2(-⨯=⨯-⨯=-=p p FA η则活塞直径mm108m108.0====D参考表5及表6,得d ≈0.71D=77mm,圆整后取标准数值得D=110mm,d=80mm。

由此求得液压缸两腔的实际有效面积为242221m1095m411.04-⨯=⨯==ππDA24222222m107.44m)8.011.0(4)(4-⨯=-⨯=-=ππdDA根据计算出的液压缸的尺寸,可估算出液压缸在工作循环中各阶段的压力、流量和功率,如表7所列,由此绘制的液压缸工况图如图2所示。

表7液压缸在各阶段的压力、流量和功率值工况推力F0/N回油腔压力p2/MPa进油腔压力p1/MPa输入流量q×10-3/m3/s输入功率P/KW计算公式启动1222—0.69——加速1547p1+Δp0.75——快进恒速611p1+Δp0.570.40.232121AAPAFp-∆+=121)(υAAq-=qpP1=工进339440.6 3.86 1.58×10-20.0611221AApFp+=21υAq=qpP1=启动1222—0.27——加速15470.5 1.41——快退恒速6110.5 1.200.340.412121AApFp+=32υAq=qpP1=注:1. Δp为液压缸差动连接时,回油口到进油口之间的压力损失,取Δp=0.5MPa。

2.快退时,液压缸有杆腔进油,压力为p1,无杆腔回油,压力为p2。

(三)拟定液压系统原理图1.选择基本回路图1(1) 选择调速回路由图1可知,这台机床液压系统功率较小,滑台运动速度低,工作负载为阻力负载且工作中变化小,故可选用进口节流调速回路。

为防止铣完工件时负载突然消失引起运动部件前冲,在回油路上加背压阀。

由于系统选用节流调速方式,系统必然为开式循环系统。

(2) 选择油源形式从工况图可以清楚看出,在工作循环内,液压缸要求油源提供快进、快退行程的低压大流量和工进行程的高压小流量的油液。

最大流量与最小流量之比q max/q min=0.4/(1.58×10-2) 25;其相应的时间之比(t1+t3)/t2=(3.3+5.3)/90=0.096。

这表明在一个工作循环中的大部分时间都处于高压小流量工作。

从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量泵或双联叶片泵作为油源。

考虑到前者流量突变时液压冲击较大,工作平稳性差,且后者可双泵同时向液压缸供油实现快速运动,最后确定选用双联叶片泵方案,如图2a所示。

(3) 选择快速运动和换向回路本系统已选定液压缸差动连接和双泵供油两种快速运动回路实现快速运动。

考虑到从工进转快退时回油路流量较大,故选用换向时间可调的电液换向阀式换向回路,以减小液压冲击。

由于要实现液压缸差动连接,所以选用三位五通电液换向阀,如图2b所示。

(4) 选择速度换接回路由于本系统滑台由快进转为工进时,速度变化大(υ/υ2=4.5/0.1≈45),为减少速度换接时的液压冲击,选用行程阀控制的换接回1路,如图2c所示。

(5) 选择调压和卸荷回路在双泵供油的油源形式确定后,调压和卸荷问题都已基本解决。

即滑台工进时,高压小流量泵的出口压力由油源中的溢流阀调定,无需另设调压回路。

在滑台工进和停止时,低压大流量泵通过液控顺序阀卸荷,高压小流量泵在滑台停止时虽未卸荷,但功率损失较小,故可不需再设卸荷回路。

2.组成液压系统将上面选出的液压基本回路组合在一起,并经修改和完善,就可得到完整的液压系统工作原理图,如图3所示。

在图3中,为了解决滑台工进时进、回油路串通使系统压力无法建立的问题,增设了单向阀6。

为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀13。

图中增设了一个压力继电器14。

当滑台碰上死挡块后,系统压力升高,它发出快退信号,操纵电液换向阀换向。

(四)计算和选择液压件1.确定液压泵的规格和电动机功率(1) 计算液压泵的最大工作压力小流量泵在快进和工进时都向液压缸供油,由表7可知,液压缸在工进时工作压力最大,最大工作压力为p 1=3.86MPa ,如在调速阀进口节流调速回路中,选取进油路上的总压力损失∑∆p =0.6MPa ,考虑到压力继电器的可靠动作要求压差∆p e =0.5MPa ,则小流量泵的最高工作压力估算为MPa p p p p e p 96.45.06.086.311=++=∆+∆+≥∑大流量泵只在快进和快退时向液压缸供油,由表7可见,快退时液压缸的工作压力为p 1=1.41MPa ,比快进时大。

考虑到快退时进油不通过调速阀,故其进油路压力损失比前者小,现取进油路上的总压力损失∑∆p =0.3MPa ,则大流量泵的图3 整理后的液压系统原理图最高工作压力估算为MPaMPa p p p p 71.1)3.041.1(12=+=∆+≥∑(2) 计算液压泵的流量由表7可知,油源向液压缸输入的最大流量为0.4×10-3 m 3/s ,若取回路泄漏系数K =1.1,则两个泵的总流量为min/4.26/1044.0104.01.13331L s m Kq q p =⨯=⨯⨯=≥--考虑到溢流阀的最小稳定流量为3L/min ,工进时的流量为1.58×10-5 m 3/s =0.95L/min ,则小流量泵的流量最少应为3.95L/min 。

(3) 确定液压泵的规格和电动机功率根据以上压力和流量数值查阅产品样本,并考虑液压泵存在容积损失,最后确定选取PV2R12-6/33型双联叶片泵。

其小流量泵和大流量泵的排量分别为6mL/r 和33mL/r ,当液压泵的转速n p =940r/min 时,其理论流量分别为5.6 L/min 和31L/min ,若取液压泵容积效率ηv =0.9,则液压泵的实际输出流量为()()L/min33L/min 9.271.5L/min 1000/9.0940331000/9.094062p 1p p =+=⨯⨯+⨯⨯=+=q q q 由于液压缸在快退时输入功率最大,若取液压泵总效率ηp =0.8,这时液压泵的驱动电动机功率为KW 19.1KW 108.06010331073.1336ppp =⨯⨯⨯⨯⨯=≥-ηq p P 根据此数值查阅产品样本,选用规格相近的Y100L—6型电动机,其额定功率为1.5KW ,额定转速为940r/min 。

相关文档
最新文档