直升飞机原理
直升飞机飞行原理
直升飞机飞行原理直升机是一种垂直起降的飞行器,它可以在空中悬停、向前、向后、向左、向右飞行,还可以进行定点停留、低高度飞行、复杂地形涂毒、运输货物等,是一种非常灵活多变的飞行器。
那么,直升机是如何实现这种“绕不过去”的飞行方式的呢?下面,我们来了解一下直升机的飞行原理。
一、空气动力学基础不论是飞机还是直升机,它们都要靠空气动力学来实现飞行。
空气动力学是研究空气对物体的作用的学科。
在空气中,物体移动时,空气会对其产生阻力、升力和推力等作用。
在直升机的飞行中,最主要的就是升力了。
升力是空气对直升机产生的向上的支持力,使其能够腾空而起。
而产生升力的关键,则是由于在直升机的旋转叶片上产生了一个向下的气流,这个气流将气体压缩,使其速度加快,压力降低,形成低压区。
而直升机上方的空气则形成高压区,从而产生了升力。
二、基本构造1.机身部分:直升机的主体部分,其中装置有驾驶室、乘客和货物舱、发动机等。
2.旋翼部分:直升机最重要的部分,由主旋翼和尾旋翼组成。
3.主旋翼:是直升机上的最重要的部分,主要产生升力和推进力。
它是一组大型的可旋转叶片,可以轮流地在上下、左右和前后方向调整。
4.尾旋翼:又称为方向舵,主要负责平衡和转向直升机。
5.起落架:支撑直升机在地面或者水面上的装置。
三、飞行原理我们知道,飞机在飞行中通过翼面产生升力和推力来维持飞行。
而直升机则是通过旋翼来产生升力和推力,从而可以实现垂直起降和各种方向的移动。
正常飞行时,主旋翼的旋转速度越快,升力就越大。
主旋翼在旋转时还产生了空气流,对于尾旋翼而言,这种空气流就相当于一束强劲的风,从而也可以产生升力和推力,平衡直升机并控制飞行方向。
直升机的旋翼不仅可以产生升力和推力,还可以调整飞行方向。
当主旋翼向右旋转时,直升机就会向左飞行,反之亦然。
而尾旋翼则可以扭转调整直升机的飞行方向。
在直升机的飞行过程中,由于旋翼旋转的高速气流形成较大的后向力,所以需要加装平衡重量使其平衡。
直升机飞行原理
直升机飞行原理:直升机主要由机体和升力(含旋翼和尾桨)、动力、传动三大系统以及机载飞行设备等组成。
旋翼一般由涡轮轴发动机或活塞式发动机通过由传动轴及减速器等组成的机械传动系统来驱动,也可由桨尖喷气产生的反作用力来驱动。
目前实际应用的是机械驱动式的单旋翼直升机及双旋翼直升机,其中又以单旋翼直升机数量最多。
直升机的最大速度可达300km/h以上,俯冲极限速度近400km/h,使用升限可达6000m(世界纪录为12450m),一般航程可达600~800km左右。
携带机内、外副油箱转场航程可达2000km以上。
根据不同的需要直升机有不同的起飞重量。
当前世界上投入使用的重型直升机最大的是俄罗斯的米-26(最大起飞重量达56t,有效载荷20t)。
直升机的来历:中国的竹蜻蜓和意大利人达芬奇的直升机草图,为现代直升机的发明提供了启示,指出了正确的思维方向,它们被公认是直升机发展史的起点。
竹蜻蜓又叫飞螺旋和“中国陀螺”,这是我们祖先的奇特发明。
有人认为,中国在公元前400年就有了竹蜻蜓,另一种比较保守的估计是在明代(公元1400年左右)。
这种叫竹蜻蜓的民间玩具,一直流传到现在。
现代直升机尽管比竹蜻蜓复杂千万倍,但其飞行原理却与竹蜻蜓有相似之处。
现代直升机的旋翼就好像竹蜻蜓的叶片,旋翼轴就像竹蜻蜓的那根细竹棍儿,带动旋翼的发动机就好像我们用力搓竹棍儿的双手。
竹蜻蜓的叶片前面圆钝,后面尖锐,上表面比较圆拱,下表面比较平直。
当气流经过圆拱的上表面时,其流速快而压力小;当气流经过平直的下表面时,其流速慢而压力大。
于是上下表面之间形成了一个压力差,便产生了向上的升力。
当升力大于它本身的重量时,竹蜻蜓就会腾空而起。
直升机旋翼产生升力的道理与竹蜻蜓是相同的。
直升机的特点:1、直升飞机可以向后飞行。
2、整个直升飞机可在空中旋转。
3、直升飞机可在空中静止盘旋。
直升机的突出特点是可以做低空(离地面数米)、低速(从悬停开始)和机头方向不变的机动飞行,特别是可在小面积场地垂直起降。
直升机和飞机的原理
直升机和飞机的原理直升机和飞机是现代航空领域中常见的飞行器,它们在飞行原理和工作原理上存在一些不同。
我们来了解一下直升机的原理。
直升机是一种能够垂直起降和悬停在空中的飞行器。
它的主要特点是具有旋翼,通过旋转旋翼产生升力来维持飞行。
直升机的旋翼由多个桨叶组成,通过发动机提供的动力使其旋转。
旋翼的旋转产生了气流,通过改变桨叶的角度来控制气流的方向和大小,从而实现飞行器的悬停、上升、下降、前进、后退、左移、右移等动作。
直升机的升力产生原理是由旋翼上方的气流产生的。
当旋翼旋转时,桨叶的前缘受到空气的冲击,产生升力。
同时,由于桨叶的扭转和变化的空气流动,也会产生一定的侧向力和推力。
通过调整桨叶的角度和旋转速度,直升机可以实现在空中的各种动作。
与直升机相比,飞机的飞行原理则有所不同。
飞机是一种能够在大气中飞行的飞行器,其主要特点是具有机翼和发动机。
飞机的机翼通过产生升力来维持飞行,而发动机则提供了飞行所需的动力。
飞机的机翼通过空气动力学原理产生升力。
当飞机飞行时,机翼上的气流会产生上升的力量,使飞机能够克服重力并保持在空中飞行。
机翼的形状、面积和攻角等因素都会影响升力的大小。
通过调整发动机的推力和飞机的姿态,飞机可以实现前进、上升、下降等动作。
与直升机不同的是,飞机的飞行速度通常较快,而且无法垂直起降或悬停在空中。
飞机需要一定的起飞距离和降落距离,并且通常需要在专门的机场或跑道上进行起降操作。
总结来说,直升机和飞机虽然都是飞行器,但其飞行原理和工作原理存在一些区别。
直升机通过旋转的旋翼产生升力,能够垂直起降和悬停在空中;而飞机则通过机翼产生升力并依靠发动机提供的推力来维持飞行,速度较快但无法垂直起降。
这些不同的原理使得直升机和飞机在不同的领域和任务中发挥着重要的作用。
军用直升飞机起飞原理
军用直升飞机起飞原理
军用直升飞机起飞依靠的是主旋翼的旋转产生的升力。
其起飞原理可以概括为以下几点:
1. 主旋翼产生升力:主旋翼是直升飞机上最关键的组件,它由多个旋转的桨叶组成。
当发动机驱动旋转时,主旋翼产生的升力可以抵消重力,使直升飞机离开地面并向上升起。
2. 尾桨的作用:直升飞机上还有一个尾桨,主要用于控制飞机的方向。
尾桨产生的反扭矩可以抵消主旋翼旋转产生的扭矩,保持飞机的平衡。
3. 发动机提供动力:直升飞机的发动机提供动力驱动主旋翼和尾桨的旋转,并提供足够的推力以克服重力和空气阻力。
4. 控制系统的作用:直升飞机的控制系统包括操纵杆、脚踏板、液压系统等,通过操纵这些控制器可以实现对直升飞机的姿态和平衡的控制,从而实现安全起飞。
在起飞过程中,飞行员会逐渐增加主旋翼的转速,使其产生足够的升力以克服重力。
同时,飞行员还需通过控制系统进行平衡和方向的调整,确保飞机平稳起飞并保持稳定飞行姿态。
直升机与普通飞机区别及飞行简单原理
直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。
比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。
(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。
(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。
根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。
(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。
(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。
三、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。
直升飞机的桨叶大概有2—3米长,一般有5叶组成。
普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。
直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。
在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。
(2)直升飞机的横向稳定。
因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。
而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。
同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。
四、能量方式分析。
根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。
在低速流动的空气中,参与转换的能量只有压力能和动能。
一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。
直升飞机的原理是什么
直升飞机的原理是什么
直升飞机的原理是基于空气动力学的原理。
直升飞机通过旋转的直升旋翼产生向下的气流,这个气流以高速喷出,产生反作用力从而使飞机升空。
直升旋翼通常由两层或更多的旋翼叶片组成,这些叶片在旋转过程中力求保持相等的升力,通过倾斜变距方式进行操纵,从而实现悬停、垂直起降和向前或向后飞行的能力。
此外,直升飞机通常还配备了尾旋翼,通过控制尾旋翼的旋转速度来抵消旋转作用力,在飞行过程中保持平衡。
用户在操作直升飞机时,通过控制旋翼叶片角度和旋转速度来控制飞机的高度、方向和速度。
直升机的原理及分类【优质PPT】
2021/11/7
7
双旋翼式
目前以纵列式的使用较多,即两 个旋翼沿机身长度方向排列,它的重 心移动范围大、机身长,可以把直升 机做得很大,共轴式的紧凑,但操纵 复杂,在小型直升机上有较多的使用。
2021/11/7
8
卡-50双桨共轴武装直升机
2021/11/7
9
2021/11/7
10
纵列式双桨直升机
2021/11/7
4
单旋翼带尾桨式
单旋翼带尾桨式是目前最流行的 形式。这种直升机顶部有一个大的旋 翼,机身后伸出一个尾梁,在尾梁上 装一个尾部旋桨(简称尾桨),尾桨的作 用是平衡由于旋翼旋转而产生的使机 身逆向旋转的扭矩。
2021/11/7
5
直-5
2021/11/7
6
双旋翼式
双旋翼的直升机有多种形式,有 两个旋翼共轴的,有两个旋翼交叉的, 有两个旋翼横列的和两个旋翼纵列的。 它们的共同点是有两个旋翼,两个旋 翼的旋转方向相反,从而使旋翼的反 作用力矩相互抵消保持机身不动。
1、旋翼受力(水平铰)
旋翼的桨叶在运动中产生拉力(向上)其原理和机 翼相同,都是因空气流过翼面产生升力,但是它的运 动是绕轴旋转的,旋翼在旋转一圈时在迎风的半圈 (称为前行)和顺风半圈(后行)中桨叶的相对风速是不 同的,即迎风一半大,而顺风时小,因而会造成升力 不平衡,即前行桨叶升力大,这会使直升机倾斜,并 使桨叶根部产生交变弯矩,使桨叶加速损坏。为了解 决这个问题,桨叶和桨毂之间用一个水平铰链或是柔 性的连接起来,使桨叶可在旋翼平面上、下摆动,这 样由于铰链不传递垂直方向的力,从而使两边升力平 衡,这个铰链称为水平铰或挥舞铰。
2021/11/7
28
§4.7 直升机
直升飞机制造原理及优缺点讲义
直升飞机制造原理及优缺点讲义一、直升机与普通飞机区别及飞行复杂原理:不可否认,直升机和飞机有些共同点。
比如,都是飞行在大气层中,都重于空气,都是应用空气动力的飞行器,但直升机有诸多独有特性。
〔1〕直升机飞行原理和结构与飞机不同飞机靠它的固定机翼发生升力,而直升机是靠它头上的桨叶〔螺旋桨〕旋转发生升力。
〔2〕直升机的结构和飞机不同,主要由旋翼、机身、发起机、起落装置和操纵机构等局部组成。
依据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。
〔3〕单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼发生的反作用力矩和控制直升机的转弯。
〔4〕直升机最显眼的中央是头上窄长的大刀式的旋翼,普通由2~5片桨叶组成一副,由1~2台发起机带动,其主要作用:经过高速的旋转对大气施加向下的庞大的力,然后应用大气的反作用力〔相当与直升飞机遭到大气向上的力〕使飞机可以颠簸的悬在空中。
二、平衡剖析〔对单旋翼式〕:〔1〕直升飞机的大螺旋桨旋转发生升力平衡重力。
直升飞机的桨叶大约有2—3米长,普通有5叶组成。
普通飞机是靠翅膀发生升力下降的,而直升飞机是靠螺旋桨转动,拨动空气发生升力的。
直升飞机下降时,螺旋桨越转越快,发生的升力也越来越大,当升力比飞机的重量还大时,飞机就下降了。
在飞行中飞行员调理高度时,就只需经过改动大螺旋桨旋转的速度就可以了。
〔2〕直升飞机的横向动摇。
由于直升飞机假设只要大螺旋桨旋,那么依据动量守衡,机身就也会旋转,因此直升飞机就必需要一个可以阻止机身旋转的装置。
而飞机尾部正面的小型螺旋桨就是起到这个作用,飞机的左转、右转或坚持动摇航向都是靠它来完成的。
同时为了不使尾桨碰到旋翼,就必需把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。
三、能量方式剖析。
依据能量守恒定律可知:能量既不会消逝,也不会无事生非,它只能从一种方式转化成为另一种方式。
在低速活动的空气中,参与转换的能量只要压力能和动能。
直升飞机飞行向前的原理
直升飞机飞行向前的原理
直升飞机飞行向前的原理基于两个主要的原理:旋翼推力和机身姿态调整。
首先,旋翼推力是直升飞机向前飞行的主要动力源。
直升机的旋翼通过改变旋翼叶片的角度和旋转速度来产生升力,并通过调整旋翼的总体推力来控制飞行方向。
在前进飞行时,直升机将旋翼产生的推力分成两个部分:升力和推力。
升力是垂直向上的力量,支撑直升机的重量。
推力是由旋转旋翼产生的水平向前的力量。
通过调整旋翼的倾斜角度和转速,直升飞机可以控制这两个力量的比例,从而实现向前飞行。
其次,机身姿态的调整对于直升飞机向前飞行也非常重要。
直升机可以通过改变机身的倾斜角度,即前倾或后倾,来改变飞行方向。
当直升飞机向前飞行时,它需要倾斜机身以产生一个称为气动阻力的侧向力。
这个侧向力可以抵消旋翼产生的侧向推力,从而使直升机向前飞行。
综上所述,直升机通过旋翼推力和机身姿态的调整来实现向前飞行。
旋翼推力提供了主要的动力,而机身姿态的调整则是调整飞行方向的手段。
这些原理协同作用,使直升机能够在空中实现平稳、灵活的向前飞行。
直升飞机
直升飞机直升飞机,是一种可在小面积场地垂直起降、且可以做低空(离地面数米)、低速(从悬停开始)和机头方向不变的机动飞行的飞机。
●直升飞机的构造:机身:装载人员、货物、设备和燃油等,同时它将各个部分连成一个整体螺旋桨:产生升力的部件,绕固定轴旋转的机翼与空气之间发生相对运动,进而产生升力,直升机得以起飞起落架: 使直升飞机能够平稳地降落在地面上尾翼: 提供反力矩,保持飞机的平衡,同时,利用尾桨的变矩作用控制直升机的航向●直升飞机的原理:竹蜻蜓绕固定轴旋转的机翼与空气之间发生相对运动,进而产生升力,升力克服重力,直升机得以起飞●直升机的用途:观光旅游、火灾救援、海上急救、缉私缉毒、消防、商务运输、医疗救助、通信以及喷洒农药杀虫剂消灭害虫、探测资源,等国民经济的各个部门。
●直升飞机的优点:垂直升降,悬停,起降对地形要求小,超低空低速性能好,灵活直升机的突出特点是可以做低空(离地面数米)、低速(从悬停开始)和机头方向不变的机动飞行,特别是可在小面积场地垂直起降。
●直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。
比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。
(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的螺旋桨旋转产生升力。
(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。
根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。
(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。
(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。
直升机空气动力学
直升机空气动力学一、引言直升机是一种能够在垂直方向起降、悬停和倾斜飞行的飞行器。
与固定翼飞机不同,直升机的空气动力学特性较为复杂,涉及到旋翼、机身和尾桨等多个部件的相互作用。
本文将探讨直升机的空气动力学原理以及相关的设计和优化问题。
二、直升机的空气动力学原理1. 旋翼的升力和推力直升机主要依靠旋翼产生升力和推力。
旋翼的升力是由旋翼叶片产生的,其工作原理类似于固定翼飞机的机翼。
旋翼通过改变叶片的攻角和旋转速度来调节升力大小。
同时,旋翼的旋转还能够产生推力,使直升机向前飞行。
2. 尾桨的作用直升机的尾桨主要用于平衡旋翼产生的反扭矩,并提供方向稳定力。
尾桨通过改变叶片的攻角和旋转速度来产生力矩,使直升机保持平衡。
3. 机身对空气动力学的影响直升机的机身对其空气动力学性能有着重要影响。
机身的形状和气动特性会影响直升机的阻力、升阻比和操纵性能等。
因此,在直升机设计中,需要对机身进行合理的流线型设计和气动优化。
三、直升机的设计与优化问题1. 旋翼设计与优化直升机旋翼的设计与优化是直升机空气动力学研究中的重要内容。
旋翼的设计要考虑旋翼叶片的几何形状、材料和结构等因素,以及旋翼的气动性能和噪声特性等。
在旋翼的优化中,可以通过改变旋翼的几何参数、调节旋翼叶片的攻角和旋转速度等方式,来提高直升机的升力和推力性能。
2. 尾桨设计与优化尾桨的设计与优化也是直升机空气动力学研究的重要方向。
尾桨的设计要考虑尾桨叶片的几何形状、气动性能和噪声特性等因素。
在尾桨的优化中,可以通过改变尾桨叶片的几何参数、调节尾桨叶片的攻角和旋转速度等方式,来提高直升机的稳定性和操纵性能。
3. 机身优化直升机机身的优化是为了减小阻力、提高升阻比和改善飞行操纵性能等。
机身的优化可以包括减小机身的横截面积、改善机身的流线型、优化机身的表面粗糙度等。
四、直升机空气动力学的应用领域直升机空气动力学的研究不仅对直升机的设计和优化具有重要意义,还对直升机的飞行性能、操纵性能和噪声控制等方面有着广泛的应用。
图解直升机原理
图解直升机原理之一---涡轮轴发动机工作原理航空涡轮轴发动机航空涡轮轴发动机,或简称为涡铀发动机,是一种输出轴功率的涡轮喷气发动机。
法国是最先研制涡轴发动机的国家。
50年代初,透博梅卡公司研制成一种只有一级离心式叶轮压气机、两级涡轮的单转于、输出轴功率的直升机用发动机,功率达到了206kW(280hp),成为世界上第一台直升机用航空涡轮轴发动机,定名为“阿都斯特—l”(Artouste—1)。
首先装用这种发动机的直升机是美国贝尔直升机公司生产的Bell 47(编号为X H—13F),于1954年进行了首飞。
涡轴发动机的主要机件与一般航空喷气发动机一样,涡轴发动机也有进气装置、压气机、燃烧室、涡轮及排气装置等五大机件,涡轴发动机典型结构如下图所示。
进气装置由于直升机飞行速度不大,一般最大平飞速度在3 50km/h以下,故进气装置的内流进气道采用收敛形,以便气流在收敛形进气道内作加速流动,以改善气流流场的不均匀性。
进气装置进口唇边呈圆滑流线,适合亚音速流线要求,以避免气流在进口处突然方向折转,引起气流分离,为压气机稳定工作创造一个好的进气环境。
有的涡轴发动机将粒子分离器与进气道设计成一体,构成“多功能进气道”,以防止砂粒进入发动机内部磨损机件或者影响发动机稳定工作,这种多功能进气道利用惯性力场,使含有砂粒的空气沿着一定几何形状的通道流动。
由于砂粒质量较空气大,在弯道处使砂粒获得较大的惯性力,砂粒便聚集在一起并与空气分离,排出机外(见下图)。
压气机压气机的主要作用是将从进气道进入发动机的空气加以压缩,提高气流的压强,为燃烧创造有利条件。
根据压气机内气体流动的特点,可以分为轴流式和离心式两种。
轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。
涡轴发动机的压气机,其结构形式几经演变,从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。
当前,直升机的涡轴发动机大多采用的是若干级轴流加一级离心所构成的组合压气机。
直升飞机升空原理
直升飞机升空原理
直升飞机升空的原理主要是通过旋转主旋翼产生升力来实现的。
下面将详细介绍直升飞机升空的工作原理。
直升飞机的主要部件包括机身、发动机、旋翼系统和尾桨系统。
发动机提供动力,驱动旋翼系统旋转。
旋翼由数片长而薄的旋翼叶片组成,通过使旋翼快速旋转,以产生升力。
同时,尾桨负责平衡主旋翼产生的反扭矩。
当发动机启动后,旋翼开始旋转。
由于旋翼叶片的设计和排列方式,旋翼在旋转过程中施加了一个向上的推力。
这个推力就是升力,它使得直升飞机离开地面。
为了能够升空,直升飞机需要克服其自身的重力。
通过调节旋翼的旋转速度和叶片的攻角,飞机可以产生所需的升力,以抵消重力。
当升力大于重力时,直升飞机开始升空。
除了升力,直升飞机还需要控制它的姿态和方向。
这是通过调节旋翼系统和尾桨系统的工作来实现的。
当旋翼系统的叶片倾斜时,直升飞机会向相应的方向倾斜,从而改变飞行方向。
同时,尾桨系统的工作会产生一个反扭矩,使得直升飞机能够保持平稳的飞行姿态。
总结起来,直升飞机升空的原理是利用旋转主旋翼产生的升力来克服重力,并通过调节旋翼和尾桨系统的工作来控制飞机的姿态和方向。
这种原理使得直升飞机能够在垂直起降的情况下进行飞行,具有独特的机动性和灵活性。
直升飞机的制造的原理
直升飞机的制造的原理
直升飞机的制造原理可以概括为以下几个方面:
1. 旋翼原理
旋翼产生升力是直升机飞行的基础。
旋翼叶片形状经过优化设计,在高速旋转时可以产生升力。
2. 驱动系统
直升机采用涡轴发动机或涡喷发动机提供动力,通过传动系统驱动旋翼转动。
还需要有效的控制系统控制旋翼。
3. 旋翼控制
需要采用像飞行控制系统、集合pitch机构等来精确控制旋翼的攻角。
4. 飞行稳定性
直升机的飞行稳定性较差,需要采用稳定镜等装置来提高飞行平稳性。
5. 结构设计
直升机结构设计复杂,要充分考虑旋翼产生的各种振动和载荷。
6. 电子控制系统
飞行电子控制系统对直升机飞行控制、稳定十分重要。
7. 备用系统设计
直升机需要设计各种备用系统来提高安全性,如备用发动机等。
8. 气动力学优化
充分考虑空气动力学特性,对机身、旋翼等进行气动力学优化设计。
9. 系统集成
直升机的各系统需高度集成优化,保证性能指标和飞行品质。
10. 严格的飞行测试
经过大量飞行试验测试获得数据,不断优化设计才能确保性能指标达标。
直升机前进原理图解
直升机前进原理图解直升机是一种能够垂直起降和在空中悬停的飞行器,它的前进原理与固定翼飞机有很大的不同。
直升机的前进原理主要依靠旋翼的旋转产生升力和推进力,下面我们将通过图解的方式来详细解析直升机的前进原理。
首先,我们来看一张直升机的结构图。
在图中可以清晰地看到直升机的主要部件,包括机身、旋翼、尾桨等。
其中,旋翼是直升机能够飞行的关键部件,它由多个叶片组成,通过发动机驱动旋转。
接下来,我们来看一张旋翼的工作原理图。
当发动机启动后,旋翼开始旋转,产生升力和推进力。
在旋翼旋转的过程中,叶片的扭转和上下摆动使得空气流动产生了气动力,从而使得直升机获得了升力和推进力,实现了飞行。
在飞行过程中,直升机的旋翼可以根据需要进行倾斜,这样就可以改变飞行方向。
当旋翼倾斜时,产生的升力不仅可以支撑直升机的重量,还可以产生一个水平方向的推力,从而使得直升机能够向前飞行。
这种倾斜旋翼的设计使得直升机具有了前进的能力,从而可以在空中进行各种机动飞行。
除了旋翼的工作原理,直升机的尾桨也起着至关重要的作用。
尾桨的主要功能是平衡直升机的扭矩,使得直升机在飞行过程中保持平衡。
此外,尾桨还可以产生一个反推力,帮助直升机实现水平飞行。
总的来说,直升机的前进原理主要依靠旋翼的旋转产生升力和推进力,再通过倾斜旋翼和尾桨的配合,使得直升机能够在空中实现各种机动飞行。
这种独特的设计使得直升机成为了一种非常灵活和多功能的飞行器,被广泛应用于军事、医疗救援、消防救援等领域。
通过以上的图解和解析,相信大家对直升机的前进原理有了更深入的了解。
直升机的独特设计和工作原理使得它成为了一种独特的飞行器,为人们的生活和工作带来了诸多便利。
希望本文能够帮助大家更好地理解直升机的工作原理,对相关领域的学习和研究有所帮助。
直升飞机升起来的原理
直升飞机升起来的原理直升飞机是一种垂直起降的飞行器,它利用旋翼的升力和推力来进行飞行。
其主要原理包括动力系统、旋翼系统、操纵系统和稳定系统等。
首先,动力系统是直升飞机能够起飞和维持飞行的基本要素之一。
通常情况下,直升飞机采用内燃机作为动力来源,如涡轮发动机或活塞发动机。
发动机产生的动力通过传动装置传递给旋翼,驱动旋翼产生升力和推力。
旋翼系统是直升飞机的核心部分,它由主旋翼和尾旋翼组成。
主旋翼是直升飞机产生升力和推力的关键,它由若干个叶片组成。
这些叶片在旋转过程中,由于其特殊的扭转角度和空气动力学原理,会形成上升的气流,从而产生升力。
升力的大小与旋翼的旋转速度、叶片的形状和角度、空气密度等因素有关。
尾旋翼则是为了抵消主旋翼产生的旋转力矩,保持直升飞机的稳定。
操纵系统是直升飞机进行飞行操纵的关键。
它包括主旋翼的拉升和下降、偏航、俯仰和横滚等动作的操控。
通过调节主旋翼叶片的角度、旋翼的旋转速度和尾旋翼的作用力,飞行员可以实现对直升飞机的方向和高度的控制。
稳定系统是确保直升飞机在飞行过程中保持平稳和稳定的关键因素之一。
它包括自动稳定系统和人工稳定系统。
自动稳定系统利用姿态感测器和控制设备来感知直升飞机的状态并自动调整旋翼的角度和速度,以保持平稳飞行。
人工稳定系统则依靠飞行员的操纵来实现对飞机的稳定控制。
总体而言,直升飞机的升起原理是通过动力系统提供动力,驱动旋翼产生升力和推力。
同时,通过操纵系统和稳定系统的配合,飞行员可以实现对直升飞机的控制和稳定,使其能够在空中垂直起降并进行飞行。
这种垂直起降的能力使得直升飞机在军事、紧急救援、货运运输等领域得到广泛应用。
直升飞机升空原理
直升飞机升空原理直升飞机是一种垂直起降的飞行器,它能够在狭小的空间内进行起降和悬停飞行,是一种非常灵活的飞行工具。
那么,直升飞机是如何实现升空的呢?接下来,我们将详细介绍直升飞机升空的原理。
首先,直升飞机的升空原理与其旋翼的工作原理密切相关。
直升飞机的旋翼是其升空的关键部件,它通过旋转产生升力,使得直升飞机得以升空。
旋翼的工作原理类似于空气动力学中的螺旋桨原理,通过旋转产生的气流变化,产生升力。
在直升飞机的起飞过程中,旋翼通过快速旋转,将空气压缩并向下推动,产生向上的升力,从而使得直升飞机脱离地面,开始升空。
其次,直升飞机的发动机也是实现升空的重要组成部分。
直升飞机通常采用燃气涡轮发动机或活塞发动机作为动力装置,通过输出的动力驱动旋翼旋转,产生足够的升力使得直升飞机升空。
发动机通过燃烧燃料产生高温高压的气体,然后将气体通过喷气口排出,产生推力。
这种推力通过旋翼传递到直升飞机的机身上,使得直升飞机产生向上的升力,从而升空。
此外,直升飞机的控制系统也对升空起到了至关重要的作用。
直升飞机的控制系统包括操纵杆、螺旋桨桨叶角度调节、尾桨以及平衡重心等部分。
操纵杆可以控制旋翼的倾斜角度,从而改变升力的方向和大小,实现直升飞机的上升、下降、向前飞行等动作。
螺旋桨桨叶角度调节可以调整旋翼的旋转速度,以适应不同飞行状态的需要。
尾桨的作用是平衡直升飞机的扭矩,保持其稳定飞行。
总的来说,直升飞机升空的原理主要包括旋翼的工作原理、发动机的动力输出以及控制系统的协调配合。
通过这些关键部件的协同作用,直升飞机可以实现从地面升空的动作,完成起飞任务。
当然,在实际飞行中,飞行员的操作技能和飞行经验也是至关重要的因素,只有经过严格的训练和不断的实践,飞行员才能熟练地驾驶直升飞机完成各种复杂任务。
综上所述,直升飞机升空的原理涉及到多个方面的知识和技术,需要各个部件的协同作用才能实现。
对于飞行员来说,熟练掌握直升飞机的升空原理和操作技巧是至关重要的,只有在紧急情况下,飞行员才能准确、迅速地做出正确的决策,确保直升飞机的安全飞行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注册用户
帖子 24
24 导弹
8枚 燃油
128 桶 编号 主飞ห้องสมุดไป่ตู้所属中队
旋翼旋转时,每片桨叶上的作用力如下图所示:升力 Y叶,重力G叶,挥舞惯性 力J和离心力J离心力。
层桨的构造同旋翼相似,不过比旋翼要简单得多。尾桨的每一桨叶和旋翼桨叶一样, 其旋转铀转动。由于 尾桨转速很高,工作时会产生很大的离心力。
直升机水平飞行要使旋翼旋转平面倾斜,使旋翼总空气动力矢量倾斜得出水平分
MIG-29SMT
力。旋 转 平面倾斜是靠周,期性改变桨距得到的。这说明,旋翼每片桨叶的桨距在每一转动周期中 (每转一周),先增大 到某一数值,然后下降到某一最小数值,继而反复循环。 各种方位的桨距周期性变化如下图所示。下面考察自 动倾斜器未倾斜和向前倾斜时作用于桨叶上的各力。
垂直飞行,靠改变总距来实施,换句话说,就是靠同时改变所有桨叶的迎角来实施。此时所有桨叶同时增 大或减小相同的迎角,就会相应地增大或减小升力,因而直升机也会相应 地进行垂直上升或下降。操纵总距是 用座舱内驾驶员座椅左侧的油门总距杆。 从下图中看出,若上提油门总距杆,则不旋转环和旋转环向上抬起,
用座舱内驾驶员座椅左侧的油门总距杆。 从下图中看出,若上提油门总距杆,则不旋转环和旋转环向上抬起, 各片桨叶的桨距增大,直升机上升。若下放油门总距杆,直升机则垂直下降。
悬停时功率分配
从能量转换的观点分析,直升机在悬停状态时(如下图) 发动机输出的轴功率,其中约90%用于旋翼,分配 给尾桨、 传动装置等消耗的轴功率加起来约占 10%。旋翼 所得到的90%的功率当中,旋翼型阻功率又用去 20%,旋翼用于 转变成气流动能以产生拉力的诱导功率仅占70%。
旋翼拉力产生的涡流理论 根据前面所述的理论,只能宏观地确定不同飞行状态整个旋翼的拉力和需用功率,但 无法得知沿旋翼桨叶 径向的空气动力载荷,无法进行旋设计。为此,必须进一步了解旋翼周围的流场,即旋 冀桨叶作用于周围空气 所引起的诱导速度,特别是沿桨叶的诱导速度,从而可计算桨叶各个剖面的受力分布。 在理论空气动力学中,涡流理论就是求解任一物体(不论飞机机翼或旋翼桨叶)作用于周围空气所引起的诱 导速 度的方法。从涡流理论的观点来看,旋翼桨叶对周围空气的作用, 相当于某一涡系在起作用,也就是 说,旋翼的每片桨叶可 用一条(或几条)附着涡及很多由桨叶后缘逸出的、以螺旋形在旋翼下游顺流至无限远的 尾随涡来代替。 按照旋翼经典涡流理论,对于悬停及垂直上升状态(即轴流状态),旋翼涡系模型就像 一个半无限长的涡 拄,由一射线状的圆形 涡盘的附着涡系及多层同心的圆柱涡面(每层涡面 由螺旋涡线所组成)的尾迹涡系两部 分所构成(如下图所示)。
调整片操纵(又称配平操纵)的主要原因是因为直升机在飞行中驾驶杆上的载荷,不同于飞机的舵面载 荷。如果直升机旋翼使用可逆式操纵系统,那么驾驶杆要受周期(每一转)的 可变载荷,而且此载荷又随着 飞行状态的改变而产生某些变化。为减小驾驶杆的载荷,大多 数直升机操纵系统中都安装有液压助力器。 操纵液压助力器可进行不可逆式操纵,即除了操纵系统的摩擦之外,旋翼不再向驾驶杆传送任何力。
尾桨操纵没有自动倾斜器,也不存在周期变距问题。靠蹬脚蹬改变尾桨的总距来操纵尾桨。当驾驶员蹬 脚蹬后,齿轮通过传动链条带动蜗杆螺帽转动,蜗杆螺帽沿旋转轴推动滑动操纵杆滑动(见上图),杆用轴承 固定在三爪传动臂上,另一端则用槽与支座 相连,以防止滑动操纵杆转动。 三爪传动臂随同尾桨叶转动, 通过三个拉杆使三片桨叶绕自身纵轴同时转动,此时,根据脚蹬蹬出方向和动作量大小,来增大或减小尾桨 桨距。
为消除因飞行状态改变而产生的驾驶杆的弹簧载荷,可对弹簧张力进行调整,相当于飞 机上的调整片 所起的调整作用,因此在直升机上通常把此种调整机构称为调整片,或称作调 平机构。弹簧张力是由调整 片操纵开关或电动操纵按钮控制的。
自动倾斜器的主要零件包括:旋转环连接桨叶拉杆,旋转环利用滚珠轴承连接在不旋转环上,不旋转环压在套 环上;套环带有横向操纵拉杆和纵向操纵拉杆;操纵总桨距的滑筒。直升机的驾驶杆动作时,旋转环和不旋转 环随同套环一起向前、后、左、右倾斜或任意方向倾斜。 因为旋转环用垂直拉杆同桨叶连接,所以旋转环 的旋转面倾斜会引起桨叶绕纵轴做周期性转动,即旋翼每转一周重复一次,换句话说,每一桨叶的桨距将进行 周期性变化。为了解桨距的变化,应分别分析直升机的两种飞行状态,即垂直飞行状态和水平飞行状态。
直升机旋停、垂直上升状态的涡柱 这套涡系模型完全与推进螺旋桨的情况相同。至于旋冀在前飞状态的涡系模型,可以合 理地引伸为一个半 无限长的斜向涡柱,由一圆形涡盘的附着涡系及多层斜向螺旋涡线的斜向涡面的尾迹涡系两部分所构成(如下图 所示)。
直 升机前飞状态的涡柱
1
评分次数
碧血青天
收藏 分享 评分 回复 引用
旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴 旋转,因此桨叶空气动力现象要比机翼的复杂得多。
先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情 况。由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。在分析、设计上就有所区别 设一旋冀,桨叶片数为k,以恒定角速度Ω 绕轴旋转,并以速度 Vo沿旋转轴作直线运 动。如果在想象中用一中 心轴线与旋翼轴重合,而半径为 r的圆柱面把桨叶裁开(参阅图 2,1—3),并将这圆柱面展开成平面,就得到 桨叶剖面。 既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度 (等于Ωr)和垂直于旋转 平面的速度(等于 Vo), 而合速度是两者的矢量和。显然可以看出(如图2.1—3),用不同半径的圆柱面所截出 来的各个桨叶剖面,他们的合速度是不同的: 大小不同,方向也不相同。如果再考虑到由于桨叶 运动所激起 的附加气流速度(诱导速度) ),那么桨叶各个剖面与空气之间的相对速度就更加 不同。与机翼相比较,这就是 桨叶工作 条件复杂,对它的分析比较麻烦的原因所在。
注册 登录
论坛 搜索 帮助 导航 飞行者俱乐部(inSky)论坛 » 『教程及新手Q&A』 » 直升飞机原理 zt 12下一页 返回列表 回复 发帖
1楼 打印
字体大小: tT
发表于 2008-5-10 17:10 | 只看该作者
直升飞机原理 zt
旋翼的空气动力特点
(1)产生向上的升力用来克服直升机的重力。 即使直升机的发动机空中停车时, 驾驶员可通过操纵旋翼 使其自转,仍可产生一定升 力,减缓直升机下降趋势。
MIG-29SMT 这里的v1是桨盘处的诱导速度。v2是下游远处的诱导速度,也就是在均匀流场内或静止空气中所引起的速
度增量。对于这种现象,可以利用牛顿第三用动定律来解释拉力产生的原因。 旋翼的锥体
注册用户
帖子 24
导弹 8枚
燃油 128 桶
编号 主飞 所属中队
旋翼的锥体
在前面的分析中,我们假定桨叶位:桨毂旋转平面内旋转。实际上,目前的直升机都具水平铰。旋翼不旋 转时,桨叶受垂直 向下的本身重力的作用(如下图左)。旋翼旋转 时,每片叶上的作用力除自身重力外, 还有 空气动力和惯性离心力。空气动力拉力向上的分(T)方向与重力相反,它绕水平铰构 成的力矩,使桨叶上挥。 惯性离心力(F离心)相对 水乎铰所形成的力矩,力求使桨叶在桨毂 旋转平面内旋转(如下图右)。在悬停或垂直 飞 行状态中,这三个力矩综合的结果,使得 桨叶保持在与桨毂旋转平面成某一角度的位置上,翼形成一个倒 立的锥体。 桨叶从桨毂 旋转平面扬起的角度叫锥角。桨叶产生的拉力约为桨 叶本身重量的10一15倍,但桨 叶的惯性和离心力更 大(通常约为桨叶拉力的十几倍),所以锥 如果打开速度慢,可以尝试快速bs /thread-17093-1-1.站的即时页面。)
脚蹬位于座椅前下部,对 于单旋翼 带尾桨的直升机来 说,驾驶员蹬脚蹬操 纵尾桨 变距改变尾桨推(拉)力,对直 升机实施航向操纵。
油门总距杆通常位于驾驶 员座椅的左方,由驾驶员左手 操纵,此杆可同时 操纵旋翼 总距和发动机油门,实现总距 和油门联合操纵。
油门调节环位于油门总距杆的端部,在不动总距油门杆的情况下,驾驶员左手拧动油门调节环可以在较 小的发动机转速范围内调 整发动机功率。
直升机操纵图解
[ 本帖最后由 MIG-29SMT 于 2008-5-10 17:15 编辑 ] 回复 引用
MIG-29SMT
TOP 3楼
发表于 2008-5-10 17:21 | 只看该作者
直升机飞行主 要靠旅翼产生的拉 力。当旋翼由发动 机通过旋 转轴带动 旋转时,旋翼给空 气以作用力矩(或称 扭矩),空气 必然 在同一时间以大小 相等、方向相反的 反作用 力矩作用于
为了说明直升机操纵特点,先介绍直升机驾驶舱内的操纵机构。直升机驾驶员座舱操纵机构及配置 直 升机驾驶员座舱主要的操纵机构是:驾驶杆(又称周期变距杆)、脚蹬、油门总距杆。 此外还有油门调节 环、直升机配平调整片开关及其他手柄(如下图所示)。
驾驶杆位于驾驶员座椅前 面,通过操纵线系与旋翼的自 动倾斜器连接。驾驶杆偏离中 立位置表示: 向 前 ——直升机低头并向前运 动; 向 后 ——直升机抬头并向后 退; 向 左 ——直升机向左倾斜并向 左侧运动; 向 右 ——直升机向右倾斜并向 右侧运动。
旋翼(或称反扭 矩),从而再通过旋 翼将这一反作用力 矩传递到直升机 机 体上。如果不采取 措施予以平衡,那 么这个反作用力矩 就会 使直升机逆旋 翼转动方向旋转。
(2)产生向前的水平分力克服空气阻 力使直升机前进,类似于飞机上推进器的作用(例 如螺旋桨或喷气发 动机)。
(3)产生其他分力及力矩对直升机; 进行控制或机动飞行,类似于飞机上各操纵面的作用。 旋翼由数片桨 叶及一个桨毂组成。工作时,桨叶与空气作相对 运动,产生空气动力;桨毂则是用来连接 桨叶和旋翼轴,以 转动旋翼。桨叶一般通过铰接方式与桨毂连接(如下图所示)。
订阅 TOP 2楼