现浇箱梁支架计算书 (midas计算稳定性)

合集下载

MIDAS连续梁计算书

MIDAS连续梁计算书

目录第1章设计原始资料 (1)1.1设计概况 (1)1.2技术标准 (1)1.3主要规范 (1)第2章桥跨总体布置及结构尺寸拟定 (2)2.1尺寸拟定 (2)2.1.1 桥孔分跨 (2)2.1.2 截面形式 (2)2.1.3 梁高 (3)2.1.4 细部尺寸 (4)2.15 主要材料及材料性能 (6)2.2模型建立与分析 (7)2.2.1 计算模型 (8)第3章荷载内力计算 (9)3.1荷载工况及荷载组合 (9)3.2作用效应计算 (10)3.2.1 永久作用计算 (10)3.3作用效应组合 (16)第4章预应力钢束的估算与布置 (20)4.1力筋估算 (20)4.1.1 计算原理 (20)4.1.2 预应力钢束的估算 (24)4.2预应力钢束的布置(具体布置图见图纸) (27)第5章预应力损失及有效应力的计算 (29)5.1预应力损失的计算 (29)5.1.1摩阻损失 (29)5.1.2. 锚具变形损失 (30)5.1.3. 混凝土的弹性压缩 (30)5.1.4.钢束松弛损失 (31)5.1.5.收缩徐变损失 (31)5.2有效预应力的计算 (32)第6章次内力的计算 (33)6.1徐变次内力的计算 (33)6.2预加力引起的次内力 (33)第7章内力组合 (35)7.1承载能力极限状态下的效应组合 (35)7.2正常使用极限状态下的效应组合 (37)第8章主梁截面验算 (41)8.1正截面抗弯承载力验算 (41)8.2持久状况正常使用极限状态应力验算 (44)8.2.1 正截面抗裂验算(法向拉应力) (44)8.2.2 斜截面抗裂验算(主拉应力) (46)8.2.3混凝土最大压应力验算 (49)8.2.4 预应力钢筋中的拉应力验算 (50)8.3挠度的验算 (51)小结 (53)第1章设计原始资料1.1 设计概况设计某预应力混凝土连续梁桥模型,标准跨径为35m+50m+35m。

施工方式采用满堂支架现浇,采用变截面连续箱梁。

满堂支架稳定性midas建模教程

满堂支架稳定性midas建模教程

Civil 临时结构计算分析例题One满堂支架稳定性分析北京迈达斯技术有限公司施工事业部例题One 满堂支架稳定性分析概要此例题介绍使用midas Civil建立并计算满堂支架结构的刚度、强度及稳定性的详细教程。

此例题的步骤如下:I. 简介II. 建立新项目并设定操作环境III. 定义特性信息IV. 建立几何模型V. 建立边界条件VI. 添加荷载VII. 定义分析控制数据VIII. 运行分析IX. 查看结果I. 简介本例题通过跨径为32m 混凝土简支现浇梁满堂支架的结构模型,详细介绍midas Civil建立结构模型、施加边界条件和施工荷载、查看分析结果等具体步骤,进行强度、刚度、稳定性及应力分析的方法。

满堂支架高度 18.4m,横向宽度16.2m,纵向长度32.4m,支架上方纵向倒扣 C 36b 的槽钢,钢材材质为 A3 钢,上部荷载通过 25mm竹胶板及150mm×150mm方木传递到槽钢,支架竖向层高1.2m,横向、纵向水平间距为0.9m,见下图,结构构造尺寸可参考《建筑施工碗口式钢管脚手架安全技术规范》。

该例题数据仅供参考II. 建立新项目并设定操作环境主菜单选择文件>新项目主菜单选择文件> 保存:输入文件名并保存主菜单选择工具> 单位系:选择单位(可设为默认)建模过程中,可以点击状态栏中单位系变化单位体系III. 定义特性信息主菜单选择特性> 材料特性值点击添加选择设计类型:钢材选择规范:JTJ(S)1选择数据库:A3点击适用2选择设计类型:用户定义3弹性模量:1.6272e+001 泊松比:0.42 容重:5.394e-009 点击确定1规范根据实际选择,可以选择GB12(S)2确定和适用均可,适用不关闭窗口3主菜单选择特性> 截面特性值点击添加选择管型截面名称:水平钢管选择P50×4点击适用1名称:竖直钢管点击适用名称:剪刀撑点击适用选择槽钢截面名称:槽钢选择C36b点击适用选择实腹长方形截面名称:方木点击用户:H=150mm;B=150mm 点击适用主菜单选择特性> 厚度点击添加面内和面外25mm点击适用IV. 建立几何模型主菜单选择节点/单元> 建立节点坐标:0,0,0点击适用主菜单选择节点/单元> 扩展材料:A3;截面:竖直钢管方向:z间距:200,15@1200,2001选择节点1点击适用1主菜单选择节点/单元> 移动复制(单元)等间距:900,0,0复制次数:36全部选择点击适用等间距:0,900,0复制次数:18全部选择点击适用主菜单选择视图>选择>平面XY平面Z坐标:200点击适用主菜单选择视图>激活主菜单选择节点/单元> 建立单元材料:A3;截面:水平钢管节点连接1:2,650材料:A3;截面:水平钢管节点连接:2,11990选择右侧节点1等间距:0,900,0 复制次数:18 点击适用选择左侧节点等间距:900,0,0 复制次数:36 点击适用等间距:0,0,1200复制次数:15点击全选点击适用主菜单选择视图>选择>平面YZ平面X坐标:0点击适用主菜单选择视图>激活主菜单选择节点/单元> 建立单元点击左视图材料:A3截面:剪刀撑交叉分割不勾选1连接节点:如下图主菜单选择节点/单元> 移动复制(单元)等间距:3600,0,0复制次数:9交叉分割不勾选树形菜单:双击剪刀撑截面点击适用主菜单选择视图> 全部激活点击左视图树形菜单:右键单击竖直钢管截面点击选择1主菜单选择节点/单元> 交叉分割点击适用点击观察缩小单元后的形状1主菜单选择视图>选择>平面XZ平面Y坐标:0点击适用主菜单选择视图>激活主菜单选择节点/单元> 建立单元点击前视图材料:A3截面:剪刀撑交叉分割不勾选连接节点:如下图主菜单选择节点/单元> 移动复制(单元)等间距:0,2700,0复制次数:6交叉分割不勾选树形菜单:双击剪刀撑截面点击适用主菜单选择视图> 全部激活点击前视图树形菜单:右键单击竖直钢管截面点击选择主菜单选择节点/单元> 交叉分割点击适用主菜单选择节点/单元> 移动复制(节点)任意间距:方向z 间距11mm选择最顶层所有节点点击适用点击消隐选项,放大后如下图点击选择最新建立的个体点击激活主菜单选择节点/单元> 建立单元材料:A3截面:槽钢Beta角:-90连接节点:建立Y=0位置的一根杆件主菜单选择节点/单元> 移动复制(单元)等间距:0,900,0复制次数:18点击选择最新建立的个体1点击适用主菜单选择特性> 截面特性值点击槽钢>编辑>修改偏心偏心:左中心点击确认1主菜单选择 节点/单元> 移动复制(节点) 右键单击树形菜单中槽钢>激活点击全部选择任意间距:方向z 间距75mm 点击适用主菜单选择节点/单元>建立单元点击选择最新建立的个体>激活材料:木材截面:方木连接节点:如下图主菜单选择节点/单元>移动复制(单元)点击选择最新建立的个体等间距:900,0,0复制次数:36点击适用主菜单选择节点/单元>移动复制(节点)点击全部选择任意间距:方向z 间距87.5mm点击适用点击选择最新建立的个体点击激活主菜单选择节点/单元>建立单元单元类型:板材料:木材厚度:25节点连接:依次连接板的四个角点11全部激活注意:以上建模数据仅供参考,工程实际应用过程中,需要根据实际图纸尺寸进行建模,需要把板单元以及下层分配梁(方木等梁结构)进行细分多份(每个跨度至少3-4份),板单元与实体单元的结果误差与分割尺寸成正比。

现浇箱梁midas结构计算书

现浇箱梁midas结构计算书

从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况 (1)1.1概述 (1)1.2主要设计标准 (1)1.3主要材料 (2)1.4结构形式简述 (2)2计算模型及计算参数选取 (3)2.1计算模型建立 (3)2.2计算荷载 (5)2.3计算工况及验算内容 (7)3上部结构计算 (9)3.1计算模型 (9)3.2短暂状况构件应力验算 (10)3.3上部结构计算小结 (24)4 横梁计算 (25)广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。

箱梁顶宽16.25m,采用单箱双室。

本桥预应力砼连续箱梁按照部分预应力混凝土A类构件设计。

下部结构采用板式桥墩,支座采用盆式支座。

1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。

(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;广东省公路勘察规划设计院/北京交科公路勘察设计研究院1(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。

具体以细部图纸为准。

(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。

凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。

(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。

单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。

1.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。

现浇箱梁midas结构计算书

现浇箱梁midas结构计算书

从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况 (1)1.1概述 (1)1.2主要设计标准 (1)1.3主要材料 (2)1.4结构形式简述 (2)2计算模型及计算参数选取 (3)2.1计算模型建立 (3)2.2计算荷载 (5)2.3计算工况及验算内容 (7)3上部结构计算 (9)3.1计算模型 (9)3.2短暂状况构件应力验算 (10)3.3上部结构计算小结 (24)4 横梁计算 (25)广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。

箱梁顶宽16.25m,采用单箱双室。

本桥预应力砼连续箱梁按照部分预应力混凝土A类构件设计。

下部结构采用板式桥墩,支座采用盆式支座。

1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。

(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。

具体以细部图纸为准。

(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。

凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。

(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。

单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。

1.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。

梁高1.6米,箱梁顶宽16.25m。

现浇箱梁支架稳定性验算

现浇箱梁支架稳定性验算
GONG C◎陈瑞兴 (上海市安质监总站 201812)
摘要:结合上海市某桥梁工程三座 结构( 见 图 1 ) 。 大跨径高架桥现浇连续箱梁施工,介 C 匝道曲线半径很小,横坡最大值达到 6%, 绍支架稳定性的验算方法。 关健词:现浇箱梁;施工方案;支架 模板;内力验算 随着我国公路建设的飞快发展,城市 立交桥、高速公路桥梁对结构混凝土外观 要求越来越高,只要条件允许,其梁板均 采用现浇方法施工。目前现浇梁板支承体 系主要依赖于脚手架,而脚手架的施工成 本与项目的经济效益、质量、安全等诸多 因素密切相关,怎样采用科学的计算方法 为保证支架的稳定性以及防止不侧向滑 从诸多因素中找出最佳平衡点,体现项目 移,拟在两匝道内侧端包括主线外侧端(两 的技术能力和管理水准的一个重要方面。 侧标高低)加密纵横剪刀斜支撑和两侧设置 下面结合上海市某桥梁工程施工,介绍支 缆风绳索固定(设在 3/8L 和 1/4L 处且对 架稳定性的验算方法。 等收笼)或设置足够数量纵横向的扫地杆 一、工程概况 (纵向扫地杆采用直角扣件固定在距底座上 上海某桥梁工程位于上海市浦东新区 皮< 20cm 的立杆上。横向扫地杆在紧靠纵 曹路镇,主线全长 1.7KM ,东通浦东国际 向扫地杆下方的立杆上)和斜拉杆(通顶) 机场、远东大道进入上海市区,西接五洲 以消除侧向应力负作用。另外,C 匝道支架 大道通往江苏方向,A、B、C、D 四条匝道 高度超过 15m,考虑脚手架自重,并将自重 均与崇明长江隧道相连通往崇明岛,是一 计算为荷载, 立杆的接长缝错开, 使立杆接 座三层特大型互通式立交桥,是上海、崇 长缝不在同一水平上,以保证脚手架的整 明、江苏三省市的交通枢纽,故本工程亦 体强度和稳定性。 简称沪崇苏立交。 (二)支架预压 沪崇苏立交箱梁桥分别为:主线 采用砂袋按 120% 荷载进行预压,箱梁 58.04m+91.292m+58.054m 三跨,C 匝道 箱体范围平均荷载为 42.18KN / m2,换算 45.854m+76.790m+46.057m 三跨,D 匝道 成砂袋高 3.5m;横梁部分荷载为 156.18 45.751m+74.242m+45.751m 三跨。大跨 KN / m2,实心箱体部分采用砂袋高度 1m+ 径连续箱梁桥均处于旱地,综合考虑实际 钢筋预压或整捆钢绞线堆放预压 0.8 m。 在 施工的难度和节约成本投资等因素,箱梁 地面上以纵横间隔 5m 和在模板上按高程控 采用φ 48 × 3.5mmWDJ 碗扣式多功能钢管 制点位分别设置观测点,预压时逐日对其 满堂支架(单向) 全断面现浇的方法施工。 进行沉降观测, 做好记录。 沉降稳定的标准 以下按高支架 C 匝道(难度最大)介绍。 为沉降量<1mm/d, 卸载后算出地面沉降、 二、施工方案 支架的弹性和非弹性变形数值。根据各点 (一)支架架设、立模方法 对应的弹性变形数值及设计预拱度调整模 支架以两桥墩(或桥台)中心连线为 板的高程。 轴线,并垂直于中心点法线往两翼及跨两 三、支架、模板内力验算方法 端对称搭设。依照现有图纸将其划分为 以最不利断面为例:支架竖杆纵横向间 0#~1# 断面、2#~3# 断面、4#~5# 断面、 距为 90cm × 60cm,支架步距采用 120cm, 6#~6# 断面(断面图附后)等四段分别进 模板采用 1 . 5 c m 竹胶板。 行计算,各段设计荷载的限值取该段最大 (一)模板计算 净截面积的荷载。经过计算比较选出最佳 新浇筑结构混凝土平均荷载 G1=7.866 组合,竖杆纵横向间距依次分别为:60cm × 26/7.6=26.9KN / m2;施工人员、料、 × 60cm、90cm × 60cm、60cm × 60cm、 具行走运输堆放载荷 Gr=2.5KN / m2;倾 60cm × 30cm,支架步距视架子实际高度 倒混凝土时产生的冲击荷载和振捣混凝土 采用 120cm 或 60cm,利用可调下托调整支 时产生的荷载均按 2KN / m2 考虑;支架高 架横杆使之保持整体水平。在支架搭设过 度为 20左右, 风荷载 0.5×20m(支架高)/ 程中结合模板、横梁、纵梁厚度,通过跟 12.05m(桥面宽)=0.8 KN / m2。根据规范 踪测量调整支架高度,同时确保可调 U 型 要求计算模板及支架时,所采用的荷载设 顶托螺旋调节幅度不超过 25 cm 。在支架 计值,应取荷载标准值分别乘以相应的荷 U 型顶托上沿线路纵向摆放横截面为 10cm 载分项系数, 然后再进行组合。 该段组合后 × 15cm 方木作为纵梁, 在纵梁上横向摆放 的设计荷载为:26.9 × 1.2+6.5 × 1.4+0. 横截面为 5cm × 10cm 、间距 20cm 方木作 8 × 1.0=42.18KN / m2。模板跨径 L1=0. 为横梁,方木均使用东北红杉。最后在横 9m ,模板宽度 b = 0 . 2 m 。 梁上铺设模板,模板接头之间放置海绵双 模板每米上的荷载为:g=42.18 × 0.2= 面帖,以防止因模板摆放时间过长热胀冷 8.436KN / m 。 缩造成模板鼓起或缝隙过大。支架架设 模板跨中弯距计算:M 1 / 2 = g L 1 2 / 1 0 = 8.436 × 0.92/10=0.683KN?m 。 竹胶板其容许弯应力[σ w]=90Mpa,并可 提高 1.2,模板需要的截面模量: W=M/(1.2 ×[σ w] )=0.683/(1.2 × 90 × 103)=6.327 × 10-6m3 。 根据 W 、b 得 h 为: 故模板厚度选择采用 0 . 0 1 5 m 。 (二)纵梁计算 纵梁跨度:L 2 = 0 . 9 m ;横桥向宽度 L1=0.6m;那么有: 纵梁单位荷载:g=42.18L1=42.18 × 0. 6=25.308KN/m 。 跨中弯距:M1/2= gL22 / 8=25.308 × 0.92 / 8=2.562KN?m 。 需要的截面模量:W = M / ( 1 . 2 ×[σ w ] ) =2.562/(1.2 × 13 × 103)=1.642 × 10- 4m3 。 纵梁方木宽度 b 为 0 . 1 0 m,那么有: 纵梁方木截面积取 0.10m × 0.15m,核算 其挠度,则有: I= bh3 / 12=0.1 × 0.153 / 12=2.8125 × 10-5m4 F= 5 × gL24/(384 × EI)=5 × 25.308 × 0.94/(384 × 10 × 106 × 2.8125 × 10- 5)= 7.687 × 10-4m 。 F/L2=7.687 × 10-4/0.6=1/780< f/l] [ = 1 / 4 0 0 ,符合要求。 (三)支架立杆强度、稳定性计算 立杆承受由纵梁传递来的荷载 N=gL2=25.308 × 0. 9=22.777KN 。钢 管截面最小回转半径 i=15.78mm ,支撑立 柱步距为 1.2m,长细比λ =l/i=1200 / 15.78=76,查表得φ =0.744。 强度验算:σ a=N/Aji=22777/489=46. 6MPa< [σ a ]= 2 1 5 M P a ; 稳定验算:σ a = N / φ A 0 = 2 2 7 7 7 / ( 0 . 744*489)=62.6MPa< σ a]=215 MPa [ ,满足要求。 结论:支架竖杆纵横向间距 9 0 c m × 6 0 cm,考虑到横杆竖向步距 120 cm 时,立 杆荷载 Pmax = 30KN,同时计算时是按平 均布载,故在腹板和横隔板下将横杆高度 步距加密到 60 cm。或将立杆横向间距改 为 0 . 6 m,纵梁间距相应改为 0 . 6 m,经计 算均能满足要求。

现浇箱梁支架计算书(midas计算稳定性)

现浇箱梁支架计算书(midas计算稳定性)

温州龙港大桥改建工程满堂支架法现浇箱梁设计计算书计算:复核:审核:中铁上海工程局温州龙港大桥改建工程项目经理部2015年12月30日目录1 编制依据、原则及范围············· - 1 - 1.1 编制依据················· - 1 - 1.2 编制原则················· - 1 -1.3 编制范围················· - 2 -2 设计构造··················· - 2 - 2.1 现浇连续箱梁设计构造··········· - 2 -2.2 支架体系主要构造············· - 2 -3 满堂支架体系设计参数取值··········· - 8 - 3.1 荷载组合················· - 8 - 3.2 强度、刚度标准·············· - 9 -3.3 材料力学参数···············- 10 -4 计算·····················- 10 - 4.1 模板计算·················- 11 - 4.2 模板下上层方木计算············- 11 - 4.3 顶托上纵向方木计算············- 13 - 4.4 碗扣支架计算···············- 14 - 4.5 地基承载力计算··············- 18 -温州龙港大桥改建工程现浇连续梁模板支架计算书1 编制依据、原则及范围1.1 编制依据1.1.1 设计文件(1)《温州龙港大桥改建工程两阶段施工图设计》(2013年8月)。

用midas做稳定分析步骤-范本模板

用midas做稳定分析步骤-范本模板

用MIDAS来做稳定分析的处理方法(笔记整理)对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题:A。

整个结构的稳定性B。

构成结构的单个杆件的稳定性C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性:1。

在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态2:极值点失稳特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载.3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。

B构成结构的单个杆件的稳定性通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的.C 单个杆件里的局部稳定(如其中的板件的稳定)在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。

和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理A整个结构的稳定性:分析方法:1:线性屈曲分析(对象:桁架,粱,板)在一定变形状态下的结构的静力平衡方程式可以写成下列形式:(1): 结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。

几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。

任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。

大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。

连续梁支架midas计算书

连续梁支架midas计算书

11 1#、4#墩桩基偏压检算 .......................................................................................... 29 12 结论 .................................................................................................................... 32
2 计算依据
(1) 《公路桥涵施工技术规范》 (JTGT F50-2011) ; (2) 《公路桥涵设计通用规范》 (JTJ021-04) ; (3) 《混凝土结构设计规范》 (GB50010-2010) ; (4) 《建筑施工碗扣式脚手架安全技术规范》 (JGJ 166-2008) ; (5) 《钢结构设计规范》 (GB 50017-2003) ; (6) 《木结构设计规范》 (GB50005-2003) (7) 《建筑施工模板安全技术规范》 (JGJ162-2008) ; (8) 《建筑地基基础设计规范》 (GB50007-2011) (9) 《公路桥涵地基与基础设计规范》 (JTG D63-2007) (10) 《装配式公路钢桥制造》 (JT/T728-2008) (11) 《装配式公路钢桥多用途使用手册》
XX 大道 XX 线 现浇连续梁支架计算书
1 工程概况
XX 大道 XX 线 XX 桥位于 XX 镇与 XX 镇交界处,全桥孔跨布置为 1× 25+(33+56+33)+1 × 25 预 应 力砼 简支 箱 梁和预 应 力砼 现 浇箱 梁, 起点 桩 号 K10+311,终点桩号 K10+491,桥梁全长 180 米,桥宽 80 米,横向布置为分离 式四幅,每幅宽 20m,桥梁与道路正交,设计纵坡 1.5%,桥面横坡为双向 1.5%。 主桥为 33+56+33 连续梁,横跨 XX 河,主墩基础为Φ1800 桩承台基础,桥 墩为拱形 3 柱式墩,设计桩长 18m,墩高 10.78m~13.00m。上部结构为变截面 预应力混凝连续箱梁, 每幅箱梁为单箱四室结构, 箱梁顶宽 20m, 底宽 14.985m, 腹板厚度 70cm、45cm,中间 5m 范围内过渡,主墩处梁高 6m,跨中及边墩处梁 高 1.7m,成 3 次抛物线过渡,底板厚度由 70cm 按三次抛物线变化至跨中 24cm, 单幅现浇 C50 砼 2900m³。 地质情况:主桥跨 XX 河,河床砂卵石覆盖层较薄 30~50cm,砂卵石以下约 2.5m 厚强风化砂岩,承载力 300kPa;强风化砂岩以下为中风化砂岩,承载力 700kPa。

MIDAS--箱梁钢筋吊装架计算书

MIDAS--箱梁钢筋吊装架计算书
3.3.1 F图
3.3.4结构变形图
最大弯距M =10.0kN·m
最大应力σ=95.3MPa<[σw]=145MPa
最大变形ν=11mm,满足箱梁钢筋的变形要设置吊点,纵向12个吊点,共设置48个吊点.腹板顶单个吊点重量G1=20t/12=1.67t,翼板G2=10t/12=0.83t.
3
3.1
按吊装架设计结构尺寸进行建模计算,下图分别为建模后吊装架横向及纵向示意图。
考虑安全系数等影响,各吊点位置受力以腹板单个吊点按2吨设置,翼板单个吊点按1吨设置。
钢筋整体吊装结构检算
1
1.1、《钢结构工程》;
1.2、《材料力学》(科学技术文献出版社);
1.3、《钢结构设计规范》(GB50017-2003);
1.4、《路桥施工计算手册》(人民交通出版社)。
2
2.132米箱梁钢筋总重约60吨,考虑钢筋重量全部由吊装架承担,需对钢筋吊装架的强度及刚度进行计算,确保在吊装箱梁钢筋笼时吊装架能够满足变形及强度要求。
3.2
吊装架主要使用材料为Q235型钢,查钢结构设计规范(GB50017-2003)表3.4.1-1主要材料强度指标为
序号
材料名称及强度等级
强度种类
容许值(N/m3)
1
Q235
抗拉、抗弯、抗压(f)
190
抗剪(f)
110
3.3采用midas/civil建模进行结构分析
3.3.1应力图
3.3.2弯矩图

现浇箱梁midas结构计算书

现浇箱梁midas结构计算书

从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况1.1概述1.2主要设计标准1.3主要材料1.4结构形式简述2计算模型及计算参数选取2.1计算模型建立2.2计算荷载2.3计算工况及验算内容3上部结构计算3.1计算模型3.2短暂状况构件应力验算3.3上部结构计算小结4 横梁计算广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁SA05-5-1,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。

箱梁顶宽16.25m,采用单箱双室。

本桥预应力砼连续箱梁按照部分预应力混凝土A 类构件设计。

下部结构采用板式桥墩,支座采用盆式支座。

1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。

(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。

具体以细部图纸为准。

(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。

凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。

(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。

单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。

1.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。

梁高 1.6米,箱梁顶宽16.25m。

箱梁为单箱双室箱梁。

主梁采用C50混凝土,预应力均采用低松弛高强钢绞线,公称直径φ15.20mm,标准强度fpk=1860MPa。

支架法现浇箱梁计算书

支架法现浇箱梁计算书

现浇箱梁支架验算书1、现浇箱梁荷载分配分析1.1 单箱二室现浇箱梁断面与面积叠加图如下:单箱二室现浇箱梁断面图单箱二室箱梁面积叠加图1.1.1、单箱二室现浇箱梁荷载计算(1)、钢筋混凝土荷载25cm厚顶及底板荷载:q1=0.25×2×26=13 (KN/m2);肋、腹板荷载:q2=2.1×26=54.6(KN/m2);横梁荷载:q3=2.1×26=54.6 (KN/m2);翼板荷载:q4=0.45×26=11.7 (KN/m2)。

(2)、模板计算荷载:q5=1.5 KN/m2。

档荷载:0.1m×0.1m×1m/0.3m×8KN/m3=0.27KN/m2,芯模及支撑等为1倍木档重量=(0.45+0.27)×2 KN/m2,故可按1.5KN/m2计)。

(3)、设备及施工均布活荷载:q6=2.5 kN/m2。

(4)、混凝土浇注冲击荷载:q7 =2 kN/m2。

(5)、混凝土振捣荷载:q8=2 kN/m2。

1.2 单箱四室现浇箱梁断面与面积叠加图如下:单箱四室现浇箱梁断面图单箱四室箱梁面积叠加图1.2.1、单箱四室现浇箱梁荷载计算(1)、钢筋混凝土荷载25cm厚顶及底板荷载:q1=0.25×2×26=13 (KN/m2)。

肋、腹板荷载:q2=1.4×26=36.4 (KN/m2)。

横梁荷载:q3=1.4×26=36.4 (KN/m2)。

翼板荷载:q4=0.45×26=11.7 (KN/m2)。

(2)、模板计算荷载:q5=1.5 KN/m2。

的木档荷载:0.1m×0.1m×1m/0.3m×8KN/m3=0.27KN/m2,芯模及支撑等为1倍木档重量=(0.45+0.27)×2 KN/m2,故可按1.5KN/m2计)(3)、设备及施工均布活荷载:q6=2.5 kN/m2。

MIDAS检算现浇梁支架计算书3-1.1-整体模型

MIDAS检算现浇梁支架计算书3-1.1-整体模型

目录1 计算依据 (1)2 工程概况 (1)3 施工方案综述 (2)4 现浇支架计算 (2)4.1 支架设计 (2)4.2 设计参数及材料强度 (3)4.2.1 设计参数 (3)4.2.2 材料设计强度 (4)4.3 荷载分析 (4)4.3.1 荷载类型 (4)4.3.2 荷载组合 (4)4.3.3 箱梁混凝土自重 (5)4.3.4 模板自重 (6)4.3.5 分配梁12.6工字钢自重 (6)4.3.6 单片贝雷梁荷载统计 (6)4.4 建立模型计算分析 (6)4.4.1 模型单元 (6)4.4.2 边界条件 (7)4.4.3 模型荷载 (7)4.4.4 支架体系计算模型 (7)4.4.5 计算结果 (7)5 结论 (11)32.6m简支箱梁现浇支架计算书1 计算依据(1)连续梁相关施工图(2)《钢结构设计规范》GB50017-2003(3)《建筑结构荷载规范》(GB50009-2012)(4)《桥梁临时结构设计》中国铁道出版社(5)《路桥施工计算手册》人民交通出版社(6)《装配式公路钢桥多用途使用手册》(7)Midas设计手册2 工程概况32m现浇简支梁全长32.6m,计算跨度31.1m,截面中心梁高3.05m,梁顶宽为12m,梁底宽5.5m,墩高9.85m,每片梁重836.8t。

箱梁正视图、断面图分别如图2.1.1所示。

图2.1.1 简支箱梁正视图图2.1.2 简支箱梁断面图3 施工方案综述简支梁现浇施工工序为施工准备→支架搭设→支架预压→调整模板→绑扎钢筋→安装内模→浇筑混凝土→养护→支架拆除,具体施工流程简图3.1.1所示。

施工准备测量放样支架搭设安装底模及外模支座安装支架预压沉降观测调整模板安装、绑扎钢筋安装内模测量中线及标高检查合格浇筑混凝土及预应力养护支架拆除图3.1.1 简支梁现浇流程图4 现浇支架计算4.1 支架设计现浇支架采用钢管柱+分配梁+贝雷梁结构体系,采用φ530x10钢管做受力支柱,单层贝雷片做受力纵梁。

现浇箱梁扩大基础及边坡稳定性计算

现浇箱梁扩大基础及边坡稳定性计算

现浇箱梁扩大基础及边坡稳定性计算摘要:64m现浇箱梁扩大基础及边坡稳定性计算关键词:扩大基础边坡稳定计算1.支架扩大基础上部荷载:N=2600KN地基承载力:f=110KPa埋置深度:d=2m地基土及基础平均重度:△γ=20KN/m则基础底面积:A≥N/(f-△γd)=2600/(110-20×2)=37.14m2根据万能杆件支架及箱梁横向尺寸,取扩大基础尺寸为:a×a×d=6.5×6.5×1.5m2.大堤边坡稳定性计算边坡高度:11.5m扩大基础宽:6.5m基础距边坡边缘:1m坡脚至坡顶水平距离:28m基础承受上部荷载:N=2600KN坡面土天然重度:γ=19KN/m3内摩擦角:φ=100粘聚力:c=15KPa2.1本计算采用圆弧法分析大堤边坡稳定性。

取滑动圆弧下端通过坡脚A点,上端通过支架扩大基础边缘,半径R为40m,圆心为O。

2.2取土条宽度b=R/10=4m。

2.3土条编号:作圆心O的铅垂线OO‘,铅垂线处为0条,依次向上编号为1、2、3,4,5,6,7,向下编号为-1、-2。

2.4计算圆弧AB的弧长l:设AB弦长为L,则有:sinα/2=L/2R=(11.52+362)1/2/(2×40)=0.472375所以:α=56.3810l=56.381×3.14×40/180=39.34m2.5上部荷载分布:上部荷载2600KN,分布在6.5m宽扩大基础的6、7两个土条上,这里近似取每个土条上承受1300KN。

扩大基础长为6.5m,边坡稳定计算取1m长,则作用在6、7两个土条上的计算上部荷载为200KN。

2.6边坡各土条切向力与摩阻力列表计算如下:编号土条重量Qi=γhi/KNsinαi切向力/(KN)Ti=Qi sinαcosαi法向力(KN)Ni=Qicosαitgφ摩阻力(KN)Nitgφ总的粘聚力(KN) Cl-219×0.37=7.0-0.2-1.40.9806.860.17631.2115×39.34=590.1 -119×1.76=33.4 -0.1-3.340.99533.2335.86119×5.00=95.0 0.19.50.99594.52516.66219×6.08=115.5 0.223.10.980113.1919.96319×6.68=126.9 0.338.070.954121.06321.34419×6.82=129.6 0.451.840.917118.84320.95519×6.17=117.20.558.60.866101.49517.89619×3.87+200=273.50.6164.10.800218.80038.57719×1.28+200=224.30.7157.010.714160.15028.23合计497.48170.672.7边坡稳定安全系数计算K=MR/MT=R(∑Nitgφ+cl)/(R∑Ti)=(170.67+590.1)/497.48=1.53(安全)注:1、本计算未考虑大堤护坡的有利因素。

基于MIDAS的现浇贝雷片+支架计算分析

基于MIDAS的现浇贝雷片+支架计算分析
根据 《钢结构设计标准》(GB 50017—2017) [3]要求进 行计算,最不利工况下结构强度应力值见图 2,各种工况下 结构强度计算结果数据见表 1、表 2。
图 2 最不利工况下结构强度应力值图
表 1 贝雷片+支架正应力计算结果
单位:MPa
工况
贝雷片
立杆
10#工 字钢
方木
水平 杆件
双拼工 字钢
向 , 主 线 大 桥 起 止 桩 号 为 YK27+013.5/ZK27+030.455— K29+183.000,全长 2669.5m /2552.545m。桥梁为分离式断 面,标准宽度为 16m。现浇箱梁为 4 联,上跨 S319 省道跨径
组 合 为 37m+55m+37m、 上 跨 人 和 路 (规 划) 跨 径 组 合 为 31m+40m+31m 现浇箱梁,左幅桥对应桥墩号为 49~52#。
程实例,采用贝雷片+支架这种少支架施工方案,以提高整体大临结构的强度、刚度、稳定性。工程结果表明:该方案施工
周期短、施工方便,结构受力明确。
关键词:贝雷梁;支架;强度;设计与施工
中图分类号:U445.4
文献标识码:B
0 引言 目前整体现浇桥梁施工中多采用支架法,悬臂法等施
工工艺,其中支架法由于施工安全,造价低等因素,应用 较为广泛。但支架法对地基承载力要求较高,如何在软弱 地基条件下安全施工是工程技术人员普遍关注的问题。
表 2 贝雷片+支架剪应力计算结果
单位:MPa
工况
贝雷 立 10#工 方 水平 双拼工字 片 杆 字钢 木 杆件 钢
自重+风荷载+模板+施工荷载 29.21 1.47 22.35 0.07 4.4 8.51

匝道现浇箱梁支架计算书_secret

匝道现浇箱梁支架计算书_secret

现浇箱梁计算书匝道现浇箱梁支架计算书支架正立面图设计计算排架的设计的布置需要通过验算来确定其使用的安全性由于现浇箱梁为变截面的形式,而采用取排架也是组合型的根据具体情况,对三个部分进行验算其安全性和稳定性。

一、脚手架及支撑计算1.1、脚手架取任意6m长箱梁进行计算受力部分脚手架宽取7.2m,则A=7.2×6=43.2m2混凝土及钢筋重(6m箱梁)103838kg=1017612N每m2重为1017612/43.2=23556N/m2模板重2000N/m2支架重1500N/m2振捣产生作用力2000N/m2其他荷载1000N/m2共计23556+2000+1500+2000+1000=30056N/m2取安全系数1.25则计算荷载:30056×1.25=37570N/m2强度验算:每区格面积为0.9×1.2=1.08m2每根立杆承受荷载:37570×1.08=40575N钢管截面特性A=489mm2I=12.15cm4σ=N/A=40575/489=83Mpa<[σ]=210Mpa强度验算通过。

稳定性验算:λ=L/I=600/12.15=50查钢结构规范附表三φ=0.79σ= N/φA =40575/(0.79×489)=105<[σ]=210Mpa故横杆间距120步距90满足要求。

二、木枋1、按防水竹胶板下10×10横向木枋间距,对模板进行验算混凝土容重取2500kg/m3,混凝土自重Q=2.4T/m2最大荷载3.0T/m2根据防水竹胶板受力特性计算横向木枋间距,选用厚15mm防水竹胶板,其挠度按1.5mm控制。

顺桥向弹性模量E=7.6×103N/mm2惯性矩:I=1/12bh3=1×1×0.0153/12=2.81×10-7m4取最不利荷载Q=3.0T/m2,横向木枋间距为25cm一道。

现浇箱梁支架稳定性验算54

现浇箱梁支架稳定性验算54

现浇箱梁支架稳定性验算摘要:在本研究中我们结合某市高速公路某路段三座大跨径高架桥梁连续箱梁的结构施工情况进行分析,详细阐述了箱梁支架稳定性的计算方法,希望能给相关工作人员提供帮助。

关键字:现浇箱梁;支架;稳定性;验算目前在进行现浇梁板支撑体系构建过程中主要采用的是脚手架的方式,而脚手架的施工成本是与施工质量,经济,安全等多种因素相关的。

在本研究中我们结合某高速公路立交工程施工情况并阐述了现浇箱梁支架结构稳定性的计算方法。

一、工程分析在本研究中我们分析的该高速公路位于上海浦东新区,全长为1.7千米,东边连接浦东机场,远东大道进入市区,两端连接五洲大道通往江苏,由四条匝道与长江隧道连接通向崇明岛,呈现一座三层大型的立交桥,也是江苏,上海,崇明这三个省市的重要交通枢纽。

从该立交桥梁参数上来看主线为58+91+58米,C匝道为45+76+46米,D匝道为45+74+45米,主线的横桥是双向四车道且呈现南北分离式的断面结构,采用单向双车道断面的匝道方式,主线中的匝道为六米高,C匝道为二十米高,同时曲线半径为三百五十米,整体箱梁高度比较高,主线两高为2.5到五米,匝道梁高为2.3到4.5米,箱梁顶板宽度为12米,底板为7.6米,箱梁的底板和顶板的厚度分别为主线的0.25、0.22米,匝道0.25、0.22米,中腹板和边腹板的厚度分别为主线0.34、0.41、0.58米,匝道分别为0.34/0.45、0.50、米,两侧的悬臂长度为2.2米。

从整体上来看在桥墩的支点截面处设置了端横梁和中横梁,其中端横梁宽度为1.2米,中横梁为2.2米。

该大跨径的连续箱梁结构处于旱地,考虑在实际施工中的问题和节约施工成本等因素,因此采取扣碗式钢管支架按照现浇筑的方法开展施工。

在本研究中针对施工难度较高的C匝道进行分析。

二、具体的施工方案首先在地基处理上,箱梁的地基是现浇筑箱梁支架结构的关键位置,从施工范围上地基的承载力需要满足全部负荷,且不会出现明显的沉降现象,在一定桥宽范围中先要除去桥梁表面的废弃垃圾和杂草,经过碾压达到要求之后需要铺设厚度为20cm的石灰土和一层渣垫层,对于一些软地基来说还需要填换加固处理之后浇筑15cm厚度的混凝土为面层,在桥墩的两侧铺设40cm厚度的灰土,15cm的道渣和20cm的混凝土,在桥梁顶面需要做好排水处理措施,具体地基处理方式如下所示。

现浇箱梁支架结构计算公式

现浇箱梁支架结构计算公式

现浇箱梁支架结构计算公式在现代建筑工程中,箱梁是一种常见的结构形式,它具有承载能力强、刚度大、施工方便等优点,因此在桥梁、高架、隧道等工程中得到广泛应用。

而箱梁的支架结构则是箱梁施工中至关重要的一环,支架的设计和计算对于箱梁的施工质量和安全性都具有重要意义。

箱梁支架结构的计算公式是支架设计的基础,它可以通过计算得出支架的各项参数,确保支架的稳定性和安全性。

下面将介绍箱梁支架结构计算公式的相关内容。

1. 支架的承载能力计算公式。

支架的承载能力是指支架在受力作用下的最大承载能力,通常通过计算得出。

支架的承载能力计算公式如下:F = A ×σ。

其中,F为支架的承载能力,A为支架的截面面积,σ为支架的材料抗压强度。

在计算中需要考虑支架的材料和截面形状等因素,确保支架的承载能力符合设计要求。

2. 支架的稳定性计算公式。

支架的稳定性是指支架在受力作用下不会发生倾斜或破坏的能力。

支架的稳定性计算公式如下:P = W × tan(θ)。

其中,P为支架的稳定性参数,W为支架的重力,θ为支架的倾斜角度。

在计算中需要考虑支架的结构形式和地基条件等因素,确保支架的稳定性满足要求。

3. 支架的刚度计算公式。

支架的刚度是指支架在受力作用下的变形能力,通常通过计算得出。

支架的刚度计算公式如下:K = F / δ。

其中,K为支架的刚度,F为支架的受力,δ为支架的变形。

在计算中需要考虑支架的结构形式和材料性能等因素,确保支架的刚度满足要求。

4. 支架的材料消耗计算公式。

支架的材料消耗是指支架在施工过程中所需的材料数量,通常通过计算得出。

支架的材料消耗计算公式如下:M = V / ρ。

其中,M为支架的材料消耗,V为支架的体积,ρ为支架材料的密度。

在计算中需要考虑支架的结构形式和尺寸等因素,确保支架的材料消耗符合施工要求。

通过以上计算公式,可以对箱梁支架结构进行合理设计和计算,确保支架在施工过程中具有良好的承载能力、稳定性和刚度,同时满足施工材料的消耗要求。

现浇箱梁支架计算书91928

现浇箱梁支架计算书91928

附件现浇箱梁支架计算书及相关图纸1 支模架施工荷载参数及门架参数1。

1支模架施工荷载取值:1、模板支架设计时考虑的荷载标准值:表1 荷载标准值永久荷载荷载分项系数:1.35可变荷载荷载分项系数:1.4验算强度、稳定性时:采用荷载设计值:分项系数×荷载标准值验算挠度时采用:采用荷载标准值且不组合③、④表2 Q235钢材的强度设计值与弹性模量(N/mm2)1.2重型门式支架规格及性能指标重型门式支架系HR100A 可调重型门式支架,其尺寸为:宽1。

0m ;高1。

9m,并配HR201调节杆,HR301E 、HR301J 交叉支撑、HR601可调托座、HR602可调底座、HR211插销、HR701连接杆。

门架立杆为Φ57×2.5mm 钢管,门架横杆、调节杆、扫地杆、横杆及剪刀撑杆选用Φ48×3。

5mm (验算时按3。

0mm )钢管.根据JGJ128-2010《建筑施工门式钢管脚手架安全技术规范》(以下简称规范)5.2.1之规定,现计算一榀HR100A 型重型门架稳定承载力设计值如下:N d ————门架稳定承载力设计值 i-——--门架立杆换算截面回转半径 I —————门架立杆换算截面惯性矩 h 0————门架高度,h o =1900mmI 0、A 1—-——分别为门架立杆的毛截面惯性矩与毛截面积h 1、I 1—-——分别为门架加强杆的高度及毛截面惯性矩,h 1=1700mm A ——门架立杆的毛截面积,A=2A 1=2×428=856mm 2 f —-门架钢材强度设计值,Q235钢材用205N/mm 2 D 1、d 1——分别为门架立杆的外径和内径D 1=57mm ,d 1=52mm D 2、d 2—-分别为门架加强杆的外径和内径D 2=27mm 。

d 2=24mm φ--———--门架立杆稳定系数,按λ查规范表B.0.6 λ-—-—-——门架立杆在门架平面外的长细比λ=Kh 0/iK ————----门架高度调整系数,查规范表 5.2.15当支架高度≤30米时,K=1.13I 0=π(D 14—d 41)/64=15。

现浇箱梁支架受力计算书及审核

现浇箱梁支架受力计算书及审核

现浇箱梁支架计算书一、箱梁支架概述搭设高度H=9米(取最大高度,28排),步距h=1200mm ,立杆纵距l a =900mm ,立杆横距l b =900mm 。

横桥向搭设150mm ×150mm 的方木,设置在支架顶托上,其上顺桥向铺设48mm 的木板。

箱梁底腹板和翼缘板采用在木板上铺δ=3mm 厚的钢板,斜腹板采用加工的定型钢模板,具体详见支架图。

图1 箱梁支架布置图二、荷载标准值1、新浇混凝土自重:钢筋砼容重γ=25kN/m 32、模板及方木q 2=2.0kN/ m 23、施工人员荷载按均布施工荷载按q 3=2.5kN/m 24、混凝土振捣时产生的荷载q 4=2.0kN/ m 2三、方木强度、挠度验算把箱梁底腹板方木横梁简化为四跨连续梁计算,计算简图如下:图2 方木横梁简化计算图(1)荷载计算:取板宽B=900mm,按四跨连续梁计算现浇混凝土: g1=0.9×25×0.5=11.25KN/m模板及方木: g2=0.9×1.0=0.9KN/m施工人员荷载: g3=0.9×2.5=2.25KN/m砼振捣产生荷载:g4=0.9×2.0=1.8KN/m横桥向作用在方木上的均布荷载为:g=1.2×(11.25+0.9)+1.4×(2.25+1.8)=20.25KN/m (2)强度验算均布荷载作用下方木横梁的弯矩如下图所示x5图3 弯矩图方木弹性模量E=9×109Pa,惯性矩I=1/12×B×H3=4.219×10-5 m4, 抗弯刚度为W=1/6×B×H2=562500mm3=5.625×10-4 m3由上图可知,max 1.76M kN m=⋅则3maxmax41.76103.13[]125.62510MMPa MPaWσσ-⨯===<=⨯,满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 现浇箱梁支架计算书(midas计算稳定性) 温州龙港大桥改建工程满堂支架法现浇箱梁设计计算书计算:复核:审核:中铁上海工程局温州龙港大桥改建工程项目经理部2015年12月30日1/ 24温州龙港大桥改建工程现浇箱梁支架计算书目录 1 编制依据、原则及范围············· - 1 1.1 编制依据················· - 1 1.2 编制原则················· - 1 1.3 编制范围················· - 2 -2 设计构造··················· - 2 2.1 现浇连续箱梁设计构造··········· - 2 2.2 支架体系主要构造············· - 2 -3 满堂支架体系设计参数取值··········· - 8 3.1 荷载组合················· - 8 3.2 强度、刚度标准·············· - 9 3.3 材料力学参数··············· - 10 -4 计算····················· - 10 4.1 模板计算················· - 11 4.2 模板下上层方木计算············ - 11 4.3 顶托上纵向方木计算············ - 13 4.4 碗扣支架计算··············· - 14 4.5 地基承载力计算·············· - 18 ----------------------------------------------------------------最新资料推荐------------------------------------------------------ 温州龙港大桥改建工程现浇箱梁支架计算书温州龙港大桥改建工程现浇连续梁模板支架计算书1 编制依据、原则及范围 1.1 编制依据1.1.1 设计文件(1)《温州龙港大桥改建工程两阶段施工图设计》(2013年8 月)。

(2)其它相关招投标文件、图纸及相关温州龙港大桥改建工程设计文件。

1.1.2 行业标准(1)《公路桥涵施工技术规范》(JTG/T F50-2011)。

(2)《建筑施工碗扣式钢管脚手架安全技术规范》 JGJ166-2008。

(3)《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)。

(4)《建筑施工扣件式钢管脚手架安全技术规范》 JGJ130-2011。

(5)《建筑结构荷载规范》GB50009-2001。

(6)《竹胶合板模板》(JG/T156-2004)。

(7)《建筑施工模板安全技术规范》(JGJ 162-2008)。

(8)《混凝土结构设计规范》(GB50010-2010)。

(9)《路桥施工计算手册》(2001年10月第1版)。

1.1.3 实际情况(1)通过对施工现场的踏勘、施工调查所获取的资料。

(2)本单位现有技术能力、机械设备、施工管理水平以及多年来参加公路桥梁工程建设所积累的施工经验。

1.2 编制原则(1)依据招标技术文件要求,施工方案涵盖技术文件所规定的内容。

3/ 24-1----------------------------------------------------------------最新资料推荐------------------------------------------------------ 温州龙港大桥改建工程现浇箱梁支架计算书(2)施工方案力求采用先进的、可靠的工艺、材料、设备、达到技术先进,力求工艺成熟,具有可操作性。

(3)根据温州龙港大桥设计文件,施工方案结合桥址的地质、水文、气象条件及工程规模、技术特点、工期要求、工程造价等多方面比选的基础上确定。

1.3 编制范围适用于温州龙港大桥现浇连续梁模板支架法施工。

2 设计构造 2.1 现浇连续箱梁设计构造现浇连续上部结构为16m 跨径的钢筋混凝土等截面现浇连续箱梁,4跨连续箱梁为一联,共有3联,每联左右幅分开。

梁为单箱三室截面,梁高1.2m,左幅箱梁顶板宽15.75m,底板宽11.75m,挑臂长2m。

右幅箱梁向内侧加宽,顶板宽17.25m,底板宽13.25m,挑臂长2m。

端支点处梁高1.5m、2.1m,中支点处梁高1.5m。

箱梁顶、底板厚度为25cm,腹板厚度为50cm。

箱梁的横梁为预应力横梁,横梁高度采用 1.5m(即箱梁在支点横梁处局部加高为1.5m)。

连续箱梁下部采用无盖梁的桩柱式墩,每幅桥墩横向为2根桩柱,柱径1.3m,桩径1.5m。

2.2 支架体系主要构造(1)支架立杆为φ 48×3.5mm钢管。

5/ 24(2)满堂支架立杆纵向间距为60cm;支架横向间距为:在箱室下及翼缘板下为90cm及120cm、在横隔梁及腹板下间距均为 60cm、部分特殊部位横线间距为30cm,详见支架平面图。

(3)满堂支架横杆步距为:在腹板、横隔板和横梁下为60cm、箱室和翼板下均为120cm。

(4)底模及侧模均为15mm厚竹胶模板,采用10cm×10cm方木作为横向分配梁,按照中心间距30cm布置,采用10cm×10cm方-2----------------------------------------------------------------最新资料推荐------------------------------------------------------ 温州龙港大桥改建工程现浇箱梁支架计算书木作为纵向向分配梁。

(5)支架底托下垫10cm×10cm方木。

下垫方木以上30cm位置安装一层扫地杆,纵向及横向每隔5m布置一道扫地杆。

(6)满堂支架搭设按照规范要求必须设置横向、纵向及水平方向剪刀撑,横向及纵向剪刀撑每隔5m布置一道,剪刀撑倾斜角度为45°-60°。

(7)采用20cm厚度硬化混凝土和30cm厚度宕渣,以分散碗扣支架体系立杆传递过来的压力,从而保证地基承载的稳定。

根据现场采用轻便触探检测到原状土地基承载力为70kPa。

-3-7/ 24温州龙港大桥改建工程现浇箱梁支架计算书图 2.2-1 左幅桥墩处满堂支架横断面图-4----------------------------------------------------------------最新资料推荐------------------------------------------------------ 温州龙港大桥改建工程现浇箱梁支架计算书图 2.2-2 左幅箱室下满堂支架横断面图-5-9/ 24温州龙港大桥改建工程现浇箱梁支架计算书图 2.2-3满堂支架纵断面图-6----------------------------------------------------------------最新资料推荐------------------------------------------------------ 温州龙港大桥改建工程现浇箱梁支架计算书图 2.2-4 右幅桥墩处满堂支架横断面图-7-11/ 24温州龙港大桥改建工程现浇箱梁支架计算书图 2.2-5 右幅两跨满堂支架平面图3 满堂支架体系设计参数取值 3.1 荷载组合-8----------------------------------------------------------------最新资料推荐------------------------------------------------------ 温州龙港大桥改建工程现浇箱梁支架计算书计算模板、支架所要考虑的荷载如下:序号荷载类别取值1模板、方木自重0.7kN/m2新浇筑混凝土、钢筋、预应力筋或其他圬 2工结构物的重力26kN/m33 施工人员及施工设备、施工材料等荷载2.5kN/m24倾倒混凝土产生的冲击荷载2kN/m25振捣混凝土时产生的振动荷载2kN/m2横桥向风压1kN/m2,顺桥6风荷载向风压0.7kN/m2依据《公路桥涵施工技术规范》(JTG/T F50—2011)的相关规定,模板、支架设计应按照下列方式进行荷载组合:模板、支架设计计算的荷载组合见下表。

相关文档
最新文档