单因素试验.

合集下载

单因素试验的方差分析——概率论与数理统计(李长青版)

单因素试验的方差分析——概率论与数理统计(李长青版)

其次, 同一品种下数据表现出来的差异称为试验(随
机)误差, 这是由客观条件的偶然干扰造成, 与因素(品种) 无直接联系.
方差分析正是分析两类误差的有效工具.
本问题只考虑品种一种因素,故是单因素试验,即只有
一个因子,记为 A, 5个不同的品种就是该因子的5个不同 的水平,分别记为 A1 , A2 , A3 , A4 , A5 , 由于同一品种在不 同的田块上的亩产量不同,故可以认为一个品种的亩产 量 就是一个母体,在方差分析中,总是假定各母体相互独 立地服从同方差的正态分布,即第 j 个品种的亩产量是 一个随机变量,它服从正态分布:
nj
ns , 称为总平均,
它是从 s 个总体中抽得的样本的样本均值.
用样本值 xij 与总平均
x 之间的偏差平方和来反映
种子品种代 号 (水平)
重复试验序号及作物实测产量 1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系 统)误差.
H 0 : 1 2 s 0, H1 : 1 , 2 , , s 不全为零.
(二) 离差平方和分解 引入记号
nj
1 xj nj
s
x
i 1
ij
( j 1, 2,
, s) 水平Aj下的样本均值,
称为组内平均(或列平均)

25.单因素试验的方差分析

25.单因素试验的方差分析

数学模型
j 与 2 均未知.
14
需要解决的问题
1.检验假设
H0 : 12 s , H1 : 1, 2 , , s不全相等.
2.估计未知参数1, 2 , , s , 2.
15
数学模型的等价形式
s
记n nj ,
j 1
1 n
s j 1
njj.
总平均
水平Aj的效 应, 表示水平 Aj下的总体 平均值与总 平均的差异.
i 1 nj
( Xij X• j )2
i 1
2
~ 2(nj 1).
23
又由于各 Xij 独立, 所以由 2 分布的可加性知
S E
2
~ 2
s
(nj
j 1
1),

S
E2~
2
(n
s),
s
其中n nj .
j1
根据 2 分布的性质可以得到,
SE 的自由度为n s; E(SE ) (n s) 2.
铝合金板的厚度
机器Ⅱ 0.257 0.253
机器Ⅲ 0.258 0.264
0.255 0.254
0.259 0.267
0.261
0.262
4
试验指标: 薄板的厚度 因素: 机器
水平:不同的三台机器是因素的三个不同的水平. 假定除机器这一因素外, 其他条件相同,
属于单因素试验. 试验目的: 考察各台机器所生产的薄板的厚度有 无显著的差异. 即考察机器这一因素对厚度有无 显著的影响. 结论: 如果厚度有显著差异, 表明机器这一因素对厚度的影响是显著的.
H0 : 1 23 ,
H1 : 1, 2 , 3不全相等.
进一步假设各总体均为正态变量, 且各总体的

单因素试验方差分析(试验数据处理)

单因素试验方差分析(试验数据处理)

SST ( X ij X ) 2
j 1 i 1
r nj
r
nj
SSA ( X j X ) 2
j 1 i 1
n j ( X j X )2
j 1
s
SSA反映了在每个水平下的样本均值与样本总均 值的差异,它是由因子A 取不同水平引起的,所以, 称SA是因子A的效应(组间)平方和.
单因素试验——在一项试验中只有一个因素改变.
多因素试验——在一项试验中有多个因素在改变.
例1 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计). 表1 电路的响应时间 类型Ⅰ 类型Ⅱ 类型Ⅲ 类型Ⅳ 19 20 16 18 22 21 15 22 20 33 18 19 18 27 26 试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验 试验目的:考察电路类型这一因素对响应时间有无 显著的影响.(从哪些值来看是否有影响呢?)
F值 31.10
显著性
934.73
2
6
467.36
**
组内 总和
90.17
1024.89
15.03
8
不同的饲料对猪的体重有非常显著的影响。
三、单因素试验方差分析的简化计算
由于方差分析的计算量比较大,所以引入一种离 差平方和的简单算法:

Ti —Ai 水平时,ni个试验值之和 Qi —Ai 水平时,ni个试验值的平方和 T—n个试验值之和 Q—n个试验值的平方和
r
列平均X i Ti ni
(组内平均值)
X1
X2
...
r i 1
Xr
n n i 其中诸 ni 可以不一样,

单因素试验

单因素试验

• 同时考虑如下 Cr2 个假设的检验问题,
H
ij 0
: i
j ,i
j, i,
j
1,2,
,r .

样本均值
yi
应是
i
的很好估计,若
H
ij 0
为真,
yi y j
不应过大,过大就应拒绝
H
ij 0

5.效应模型
在单因子试验中,对水平 A1, A2 , , Ar 的选择方式有二种: •r 个水平 A1, A2 , , Ar 是特定的,如四个玉米品种,现要
3.单因素试验的方差分析
设 A 表示欲考察的因素,它的 r个不同水平,对应
的作指若标干视次作重复r 试个验总:体nX1,1n, X2 ,2.,....n.Xr .r(. 每可个等水重平复下也,可我不们等
重复),同一水平的
的一个样本:X i1, X i2 ,
ni 个结果,就是这个总体
...X ini .
0
H
1:
2 a
0
若拒绝
H
0
,就意味着
2 a
>0,从而认定
A
的随机效应存
在显著差异,
2 a
愈大,此种差异就愈大。
在方差分析中,总平方和的分解和检验的统计量都
与固定效应完全一样,只是各平方和的含义略有差别。
谢谢! 请老师和同学们指正!
如今我们选用不平衡设计,即A1, A2, A3, A4分别制作
了7,5,6,6个样品,共有24个样品等待测试。
2.单因素试验举例——随机化
• 这里一次测试就是一次试验,试验次序要随机化。
因子 A 的水平
试验编号
A1

单因素实验设计

单因素实验设计

单因素试验设计是指只有一个因素(或仅考查一个因素)对试验指标构成影响的试验。

单因素试验设计要求对试验水平进行布局和优化,是一种水平试验设计。

单因素试验设计方法可分为两类:同时试验设计和序贯试验设计。

同时试验设计就是一次给出全部试验水平,一次完成全部试验并得到最佳试验结果,如穷举试验设计。

序贯试验设计要求分批进行试验,后批试验需根据前批试验结果进一步优化后序贯进行,直到获取最佳试验结果,如平分试验设计、黄金分割试验设计。

一、试验范围与试验精度(一)试验范围试验范围指试验水平的范围。

试验设计时需预先确定试验范围,一般采用两种方法:○1经验估计。

可凭经验估计试验范围,并在试验过程中作调整。

○2预先试验。

要求在较大范围内进行探索,通过试验逐步缩小范围。

(二)试验间隔与试验精度试验间隔是指试验水平的间距,试验精度是指试验结果逼近最佳水平的程度。

显然,试验间隔与试验精度是一对矛盾,试验间隔越大,试验精度越低。

在保证试验精度的条件下,试验水平变化而引起的试验结果变动必须显著地超过试验误差。

(三)试验顺序在确定试验顺序时,往往习惯于按照试验水平高低依次做试验。

这样,随着试验的进行,有些因素会发生缓慢变化甚至影响试验结果。

因此,正确的做法是采用随机化方法来确定试验顺序。

在试验工作量较少或者试验准确度要求较低时,也可以采用按水平高低或者选取中间试验点的方法来进行试验排序。

需强调指出,以上不仅对单因素试验设计,而且对所有试验设计方法都适用。

二、单因素试验设计(一)平分试验设计平分试验设计就是平分试验范围,把其中间点作为新试验点,然后不断缩小试验范围直到找到最佳条件。

当试验结果呈单向变化时,也就是说最佳试验点只可能在试验中间点的一侧,可采用平分试验设计。

该方法简便易行,但要注意单向性特征。

(二)穷举试验设计与均分试验设计穷举试验设计是将所有可能的试验点在一批试验中全部进行试验。

均分试验设计是根据试验精度要求,均分整个试验范围以获得所有试验点。

单因素实验设计

单因素实验设计

单因素实验设计单因素实验设计是指在实验中只有一个研究因素,即研究者只分析一个因素对效应指标的作用,但单因素实验设计并不是意味着该实验中只有一个因素与效应指标有关联。

单因素实验设计的主要目标之一就是如何控制混杂因素对研究结果的影响。

常用的控制混杂因素的方法有完全随机设计、随机区组设计和拉丁方设计等。

一、完全随机设计1.概念与特点又称单因素设计或成组设计,是医学科研中最常用的一种研究设计方法,它是将同质的受试对象随机地分配到各处理组进行实验观察,或从不同总体中随机抽样进行对比研究。

该设计适用面广,不受组数的限制,且各组的样本含量可以相等,也可以不相等,但在总体样本量不变的情况下,各组样本量相同时的设计效率最高。

例如:为了研究煤矿粉尘作业环境对尘肺的影响,将18只大鼠随机分到甲、乙、丙3组,每组6只,分别在地面办公楼、煤炭仓库和矿井下染尘,12周后测量大鼠全肺湿重(g),通过评价不同环境下大鼠全肺平均湿重推断煤矿粉尘对作用尘肺的影响,具体的随机分组可以如下实施:第一步:将18只大鼠编号:1,2,3, (18)第二步:可任意设置种子数,但应作为实验档案记录保存(本例设置spss11.0软件的种子数为200);第三步:用计算机软件一次产生18个随机数,每个随意数对应一只老鼠(本例用spss11.0软件采用均匀分布最大值为18时产成的18个随机数);第四步:最小的6个随机数对应编号的大鼠为甲组,排序后的第7个至第12个随机数随因编号为乙组,最大的6个随机数对应编号的大鼠为丙组(结果见表1)。

表1 分配结果编号 1 2 3 4 5 6 7 8 93.75 8.75 16.29 11.12 5.49 3.98 13.64 16.71 1.69随机数组别甲乙丙乙乙甲丙丙甲编号10 11 12 13 14 15 16 17 1813.62 16.36 2.12 4.74 11.54 3.98 0.13 17.35 16.38 随机数组别丙丙甲乙乙甲甲丙丙2.随机数的产生方法(1)随机数字表:如附表13(马斌荣,医学统计学,第4版),这是一个由0~9十个数字组成60行25列的数字表。

单因素试验分解

单因素试验分解
12 13 23 H0 :1 2,H 0 :1 3,H 0 : 2 3
这里的关键是“同时”两字.若 r 较大,要同时检验 Cr2 个假设,问题就复杂起来了。
4.多重比较——方法
• 考察因子 A 的 r 个水平,每个水平下重复数均为
mi.假设诸试验数据
yij ~ N (i , 2 ) , i 1,2,, r, j 1,2,...,m .
2.单因素试验举例——随机化
• 这里一次测试就是一次试验,试验次序要随机化。
因子 A 的水平 试验编号
1 8 13 19 2 9 14 20 3 10 15 21 4 11 16 22 5 12 17 23 18 24 6 7
A1
A2
A3
A4
•把试验结果“对号入坐”,填写试验结果。
因子 A 的水平 数据(毫克) 样本均值 Nhomakorabea1
2
3
4
5
6
7
8
1600 1610 1650 1680 1700 1720 1800 1580 1640 1640 1700 1750 1460 1550 1600 1620 1640 1740 1660 1820

1510 1520 1530 1570 1680 1600
2.单因素试验举例——分析
水平——可控因素所处的各种各种不同的状态。每个 水平又称为试验的一个处理。 目的——考察某一个因素对试验结果的影响。
2.单因素试验举例
例 (灯丝的配料方案优选)某灯泡厂用四种配料方 案制成的灯丝生产了四批灯泡,在每批灯泡中作随机 抽样,测量其使用寿命(单位:小时),数据如下: 灯泡 寿命 灯丝 甲 乙 丙
试验设计与分析及参数优化

单因素实验

单因素实验

对每个棉花含量水平进行五次试验,于是得到 了抗拉强度观测值表。我们知道该实验是单因 素五个水平重复五次的实验。从表中以及散点 图中,得知,
第一:棉花含量影响抗拉强度
第二:含30%左右的棉花强度能使成品布的抗 拉强度达到最大值
可是我们想要检验的是5个水平的棉花百分率 的平均强度之间的差别,会检验五个均值都相
word
(七)方差分析的非参数方法 当正态性假定不能认为是合理的情况下,实验者 希望有不依赖于正态性假定的检验法来代替方差 分析的F检验法,运用Kruskal-Wallis检验法可以 解决这一问题,首先将观察值 按y升ij 序排列,然 后将每一观察值用它的秩(名次) 来代替, 最小的观察值的秩是1,如果有相同的观Ri察j 值用 平均秩表示。
算出
F统计量的值
第三:查临界值
第四:判断
第五:列方差分析表
变差来源 处理之间 误差 总和
平方和 SS处理
SSE SST
自由度
a-1 N-a N-1
均方
F0
MS处理
MSE
F0
MS处理 MSE
单因素试验的随机效应模型的a个水平是 在总体
随机选取的,平方和的分解式还是一致的,
关检意于验 义各的处理水HH平10 ::效应tt22 的 0差0 异的假设是没有
单因素实验
一、方差分析引例
产品开发工程师考虑能使一种新的合成纤 维的抗拉强度增加的方案,这种纤维织出 的布是用来缝制男士衬衫的,从以前的经 验得知,抗拉强度受到棉花在纤维中所占 的百分率的影响,开始,他预测增加棉花 含量会增大强度,他还知道,如果成品布 须具有他所希望的质量特性的话,棉花含 量应该在10%到40%之间,工程师决定检 验棉花百分率为五个水平的样本,水平是 15%,20%,25%,30%,35%。同时,还

单因素试验的方差分析

单因素试验的方差分析
2
j
μ 各个随机误差 ε ij 相互独立, 1 , μ 2 , , μ s 和 σ
未知.
单因素试验表 部分总体 样 本 A1 A2 … As
X11
X21
· · ·
X12 …
X22 … Xn22 … T.2 …
X 2
· · ·
X1s
X2s
· · ·

Xn11 样本和T.j 样本均值 X j T.1
是 σ 的无偏估计
.
结合定理(1)(2)(3),有
F S A /( s 1 ) S E /( n s ) ~ F ( s 1, n s )
ST ,SA ,SE 的计算方法
n
j
记 T j 化简得

i1
X
ij
, T

j1 i1
s
2
s
n
j
X
ij

T
j1
s
j
j1 i1
s
n
j
(X
ij
X
j )
2
说明:
SE 表示在每个水平下的样本值与该水平下的样本 均值的差异,它是由随机误差引起的,所以,称SE是 误差(组内)平方和.
平方和分解公式:
ST S A S E
证明:S
i1
s
n
j
(X
ij
X)
2

( X
j1 i1
2
都是未知参数。
在水平Aj下进行nj次独立试验,得样本
X 1 j, X
2 j
, ,X
nj j



X
ij

第五篇-单因素实验设计及实验因素水平确定方法

第五篇-单因素实验设计及实验因素水平确定方法
实用文档
因素
噪声因素是试验过程中可使试验结果发生偏差,且无法对 其进行控制的因子。它具有以下特征:
1、使试验结果偏离目标。 2、无法或很难人为控制。 当试验中存在噪声因素时,有两种方法可以进行改善。
1、首先确认此因素对指标Y的影响程度,如影响大,则须对其 进行中和(即直接控制或降低其对Y的影响)。
2、通过重复精确试验来确定可控因素的最佳水平,当可控因素 的水平足够好时,即可得到可靠的设计(对噪声因素不敏感)。
实用文档
实用文档
可控因素 噪声因素
实用文档
水平的选取
(1)水平有两种:量的变化(数量因素)和质的变化(质 量因素)。 (2)数量因素水平水平范围要足够宽,否则就可出现缩小 甚至抵削变量影响,同时也看不出因素间交互作用对输出 的影响。 (3)水平设置也不可过宽,否则同样可能缩小此因素的影 响,或将其它因素的影响掩盖掉。过宽还可能超出允许操 作范围,造成意外损失。一般要求3个以上。 (4)依据:专业知识、以往的研究结论、经验教训;最重 要的是在阅读文献基础上结合自身实际情况选择。
数,即在试验范围内只有一个最优点 d,其效 果f(d)最好,比 d 大或小的点都差,且距最优 点 d 越远的试验效果越差。
实用文档
3 黄金分割法(0.618法)
• 设x1 和x2 是因素范围[a,b]内的任意两个试点,C 点为问题的最优点,并把两个试点中效果较好的点称
由 为好点,把效果较差的点称为差点。则:最优点与好 来 点必在差点同侧,因而我们把因素范围被差点所分成
x3=大+小-第一点=1382+2000-1618=1764克 • 第四步 比较在上次留下的好点,即第(1)处和第(3)
处的试验结果,看那个点好,然后就去掉效果差的那个 试验点以外的那部分范围,留下包含好点在内的那部分 范围作为新的试验范围,……如此反复,直到得到较好的 试验结果为止。

2021年试验统计方法名词解释

2021年试验统计方法名词解释

You can't measure it, you can't manage it.(WORD文档/A4打印/可编辑/页眉可删)试验统计方法名词解释1. 试验方案:根据试验目的和要求所拟进行比较的一组试验处理的总称。

2. 试验因素:被变动并设有比较的一组处理的因子。

简称因素或因子。

3. 单因素实验:整个试验中只变更、比较一个试验因素的不同水平,其它作为试验条件的因素均严格控制一致的试验。

4. 多因素试验:在同一试验方案中包含两个或两个以上的试验因素,各个因素都分为不同水平,其它试验条件均严格控制一致的试验。

5. 处理组合:各因素不同水平的组合。

6. 试验指标:用于衡量试验效果的指示性状。

7. 试验效应:试验因素对试验指标所起的增加或减少的作用。

8. 简单效应:在同一因素内两种水平间试验指标的相差。

9. 平均效应:一个因素内各简单效应的平均数。

也称主要效应,简称主效。

10. 交互作用效应:两个因素简单效应间的平均差异。

简称互作。

11. 准确度:试验中某一性状的观察值与其理论值真值的接近程度。

12. 精确度:试验中同一性状的重复观察值彼此接近的程度。

(即试验误差的大小)13. 空白试验:在整个试验地上种植单一品种的作物。

14. 田间试验设计:广义上指整个试验研究课题的设计,狭义上指小区技术。

15. 试验小区:在田间试验中,安排处理的小块地段。

简称小区。

16. 边际效应:小区两边或两端的植株,因占较大空间而表现的差异。

17. 生长竞争:相邻小区种植不同品种或施用不同肥料时,由于株高、分蘖力或生长期的不同,通常有一行或更多行受到影响。

18. 区组:将全部处理小区分配于具有相对同质的一块土地上。

19. 完全区组:重复与区组相等,每一区组或重复包含有全套处理。

20. 不完全区组:一个重复安排在几个区组上,每个区组只安排部分处理。

21. 主区:在裂区设计中,按主处理划分的小区。

也称整区。

22. 副区:裂区设计中,主区内按各副处理划分的小区。

单因素实验设计

单因素实验设计

单因素实验设计单因素实验设计单因素实验设计是指在实验中只有⼀个研究因素,即研究者只分析⼀个因素对效应指标的作⽤,但单因素实验设计并不是意味着该实验中只有⼀个因素与效应指标有关联。

单因素实验设计的主要⽬标之⼀就是如何控制混杂因素对研究结果的影响。

常⽤的控制混杂因素的⽅法有完全随机设计、随机区组设计和拉丁⽅设计等。

⼀、完全随机设计1.概念与特点⼜称单因素设计或成组设计,是医学科研中最常⽤的⼀种研究设计⽅法,它是将同质的受试对象随机地分配到各处理组进⾏实验观察,或从不同总体中随机抽样进⾏对⽐研究。

该设计适⽤⾯⼴,不受组数的限制,且各组的样本含量可以相等,也可以不相等,但在总体样本量不变的情况下,各组样本量相同时的设计效率最⾼。

例如:为了研究煤矿粉尘作业环境对尘肺的影响,将18只⼤⿏随机分到甲、⼄、丙3组,每组6只,分别在地⾯办公楼、煤炭仓库和矿井下染尘,12周后测量⼤⿏全肺湿重(g),通过评价不同环境下⼤⿏全肺平均湿重推断煤矿粉尘对作⽤尘肺的影响,具体的随机分组可以如下实施:第⼀步:将18只⼤⿏编号:1,2,3, (18)第⼆步:可任意设置种⼦数,但应作为实验档案记录保存(本例设置spss11.0软件的种⼦数为200);第三步:⽤计算机软件⼀次产⽣18个随机数,每个随意数对应⼀只⽼⿏(本例⽤spss11.0软件采⽤均匀分布最⼤值为18时产成的18个随机数);第四步:最⼩的6个随机数对应编号的⼤⿏为甲组,排序后的第7个⾄第12个随机数随因编号为⼄组,最⼤的6个随机数对应编号的⼤⿏为丙组(结果见表1)。

表1 分配结果编号 1 2 3 4 5 6 7 8 93.75 8.75 16.29 11.12 5.49 3.98 13.64 16.71 1.69随机数组别甲⼄丙⼄⼄甲丙丙甲编号10 11 12 13 14 15 16 17 1813.62 16.36 2.12 4.74 11.54 3.98 0.13 17.35 16.38 随机数组别丙丙甲⼄⼄甲甲丙丙2.随机数的产⽣⽅法(1)随机数字表:如附表13(马斌荣,医学统计学,第4版),这是⼀个由0~9⼗个数字组成60⾏25列的数字表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整个试验的均值
r 1 r 令 ni i , (其中 n ni )称为一般平均值。 n i 1 i 1
i i , 称为因素A的第 i 个水平 Ai 的效应。
显然有:
n n n n 0
i 1 i i i 1 i i i 1 i i
r
r
r
则线性统计模型变成
X ij i ij , j 1, 2,...ni , i 1, 2,...r
于是检验假设: H : ... 0 1 2 r

等价于检验假设: H0 : 1 2 ... r 0
若H0成立,则
可控因素——在影响试验结果的众多因素中,可人为 控制的因素。
水平——可控因素所处的各种各种不同的状态。每个 水平又称为试验的一个处理。 单因素试验——如果在一项试验中只有一个因素改变, 其它的可控因素不变,则该类试验称为 单因素试验。
引例
例1 (灯丝的配料方案优选)某灯泡厂用四种配料方案制成的灯 丝生产了四批灯泡,在每批灯泡中作随机抽样,测量其使用寿 命(单位:小时),数据如下: 灯泡 寿命 灯丝 甲 乙 丙


在工农业生产和科研活动中,我们经常遇到这
样的问题:影响产品产量、质量的因素很多,例如
影响农作物的单位面积产量有品种、施肥种类、施
肥量等许多因素。我们要了解这些因素中哪些因素
对产量有显著影响,就要先做试验,然后对测试结
果进行分析,作出判断。方差分析就是分析测试结
果的一种方法。
基 本 概 念
试验指标——试验结果。
2. X1 , X 2 ,... X r 相互独立,从而各子样也相互独立。
由于同一水平下重复试验的个体差异是随机误差, 所以设:
X ij i ij , j 1, 2,...ni , i 1, 2,...r 线性统计模型
其中

ij 为试验误差,相互独立且服从正态分布
ij ~ N 0, 2

n
2 r i 1 i i


2
如果H0 成立,则SSA 较小。
组间平方和(系 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
1 其中 ij , n i 1 j 1
r
ni
i ij
j 1
ni
SSE X ij X i
i
因此, X i1 , X i 2 ,... X in 相互独立,且与 X i 同分布。 i 我们的目的是通过试验数据来判断因素 A 的不 同水平对试验指标是否有影响。
单因素试验资料表
重复 1 ... ni
ni
水平 试验结果
A 1
X 11 ... X 1n1
A2
X 21 ... X 2 n2
...
X ij ij , j 1, 2,...ni , i 1, 2,...r
r ni i 1 j 1
考察统计量 SST X ij X

2ຫໍສະໝຸດ 总离差平方和 见书P168
i
经恒等变形,可分解为: SST SS A SSE 其中 SSA X i X
i 1 j 1 r ni
若假设 H0 : a1 a2 ... ar 0 成立,则
X ij ~ N , 2
SS A
(各子样同分布)
由P106定理5.1可推得:
例:五个水稻品种单位产量的观测值——P165
品种
重复 1 2 3
A1
A2
A3
A4
A5
41 39 40
ij
33 37 35
105 35
38 35 35
108 36
37 39 38
114 38
31 34 34
99 33
x
j 1
3
120 40
x
i 1 j 1
3
5
3
ij
546
15 36.4
单因素试验的方差分析
设 A 表示欲考察的因素,它的 r个不同水平,对 应的指标视作 r 个总体 X1 , X 2 ,...X r . 每个水平下,我 们作若干次重复试验:n1 , n2 ,...nr . (可等重复也可不 等重复),同一水平的 ni 个结果,就是这个总体 X i 的一个样本:X i1, X i 2 ,...X in .
xi
x
i 1 j 1
5
ij
纵向个体间的差异称为随机误差(组内差异),由试验造 成;横向个体间的差异称为系统误差(组间差异),由因素的 不同水平造成。
单因素试验的方差分析的数学模型
首先,我们作如下假设:
1. X i ~ N i , 2 , i 1, 2,...r 具有方差齐性。
1
2
3
4
5
6
7
8
1600 1610 1650 1680 1700 1720 1800 1580 1640 1640 1700 1750 1460 1550 1600 1620 1640 1740 1660 1820

1510 1520 1530 1570 1680 1600


灯泡的使用寿命——试验指标 灯丝的配料方案——试验因素(唯一的一个) 四种配料方案(甲乙丙丁)——四个水平 因此,本例是一个四水平的单因素试验。 用X1,X2,X3,X4分别表示四种灯泡的使用寿命,即为 四个总体。假设X1,X2,X3,X4相互独立,且服从方差 相同的正态分布,即Xi~N(i,2)(i=1,2,3,4) 本例问题归结为检验假设 H0:1= 2= 3= 4 是否成立
... ... ...
Ar
X r1 ... X rnr
列和Ti X ij
j 1
T 1
T2
...
Tr
总和 Ti
i 1
r
列平均X i Ti ni
(水平组内平均值)
X1
X2
...
Xr
r
(总平均值)
1 r X ni X i n i 1
其中诸
ni 可以不一样,n ni
i 1
i 1 j 1
r
ni


2 r i 1 j 1
ni
ij
i

2
组内平方和 误差平方和 反映的是重复试验种随机误差的大小。
1 r ni 这里 ij , n i 1 j 1
i ij
j 1
ni
i 表示水平Ai的随机误差; 表示整个试验的随机误差
相关文档
最新文档