2集合之间的关系
集合之间的基本关系 -回复
集合之间的基本关系 -回复
1. 包含关系:集合A包含集合B,表示B中的元素都属于A,用符号表示为B ⊆ A。
2. 相等关系:集合A与集合B相等,表示A和B拥有完全相同的元素,用符号表示为
A = B。
3. 真包含关系:集合A真包含集合B,表示A包含B且A与B不相等,用符号表示为
B ⊂ A。
4. 交集关系:集合A与集合B的交集,表示A和B中共有的元素的集合,用符号表示为A ∩ B。
5. 并集关系:集合A与集合B的并集,表示A和B所有元素的集合,用符号表示为A ∪ B。
6. 差集关系:集合A与集合B的差集,表示A中除去与B共有的元素剩下的元素的集合,用符号表示为A - B。
7. 对称差集关系:集合A与集合B的对称差集,表示A和B中除去共有的元素,剩下的元素的集合,用符号表示为A △ B。
8. 互斥关系:集合A与集合B互斥,表示A和B没有共有的元素,用符号表示为A ∩
B = ∅。
9. 子集关系:集合A是集合B的子集,表示A中的所有元素都属于B,用符号表示为
A ⊆ B。
10. 空集关系:空集是任何集合的子集,用符号表示为∅⊆ A。
第二讲 集合之间的基本关系及其运算
第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。
3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。
知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。
{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。
1.2集合间的基本关系及运算
集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集, 记作A B 或B A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B3、真子集:如果A B,且A B,那么集合A称为集合B的真子集,A B .4、设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作C S A5 、元素与集合、集合与集合之间的关系6 、有限集合的子集个数1 )n 个元素的集合有2n个子集2) n 个元素的集合有2n-1 个真子集3) n 个元素的集合有2n-1 个非空子集4) n 个元素的集合有2n-2 个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A Bo8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A B o9 、集合的运算性质及运用知识应用】1. 理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x A能推出x Bo【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1} ,B=Z (2)A={1,3,5,15} ,B={x|x 是15的正约数}【L】例 2.已知集合A={x|-2 x 5},B={x|m+1x 2m-1},若B A,求实数m取值范围。
【C】例3.已知集合A {0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一写出。
2. 解题方法:证明2个集合相等的方法:(1)若A 、B 两个集合是元素较少的有限集,可用【C 】例 3.集合 M={x|x=3k-2,k Z},P={y|y=3x+1,x Z},S={z|z=6m+1,m Z}之间的关列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足 的条件是否一致,若均一致,则两集合相等。
1.1.2集合间的基本关系 课件2(人教A版必修1)
又 0∈N,但 0∉M,∴M⫋ N.
反思:判断两个集合间的关系时,主要是根据这两个集合中元素的特征,结合有
关定义来判断.对于用列举法表示的集合,只需要观察其元素即可得它们之间的
关系;对于用描述法表示的集合,要从所含元素的特征来分析,分析之前可以用
列举法多取几个元素来估计它们之间可能有什么关系,然后再加以证明.当
m=
.
解析:∵B⊆ A,5∈B,
∴5∈A.∴m=5.
答案:5
3.集合相等与真子集
定义
记法
如果集合 A 是
集
集合 B 的子集,
合
且集合 B 是集
相
合 A 的子集,那 A=B
等
么称集合 A 与
集合 B 相等
如果集合 A⊆ B,
真 子 集
但存在元素 x∈ B,且 x∉A,我们 就称集合 A 是 集合 B 的真子
题型二
判断集合间的关系
【例 2】 集合 M={x|x2+x-6=0},N={x|2x+7>0},试判断集合 M 和 N 的关系.
分析:明确集合 M 和 N 中的元素,再依据有关的定义判断.
解:M={-3,2},N=
x|x
7 2
}
.
∵-3>- 7 ,2>- 7 , 22
∴-3∈N,2∈N.∴M⊆ N.
M⊆ N 和 M⫋ N 均成立时,M⫋ N 较准确地表达了 M 和 N 的关系.
空集是任何非空集合的真子集, 即⌀ ⫋ A(A≠⌀ ).
【做一做 4】 集合 M={x∈R|2x2+3=0}中元素的个数是( ).
A.不确定
B.2
C.1
D.0
解析:由于方程 2x2+3=0 无实根,则 M=⌀ .
1.2 集合之间的关系
1.子集对于两个集合A和B,如果集合A中任何一个元素都属于集合B,那么集合A叫做集合B的子集,记作A⊆B或(B⊇A),读作“A包含于B”或“B包含A”.我们规定,空集包含于任何一个集合,空集是任何集合的子集.2.相等的集合对于两个集合A和B,如果A⊆B且B⊆A,那么叫做集合A与集合B相等,记作A=B,读作“集合A等于集合B”.因此,如果两个集合所含的元素完全相同,那么这两个集合相等.3.真子集对于两个集合A、B,如果A⊆B,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A⫋B,读作“A真包含于B”.4.子集的个数5.韦恩图(文氏图)【例题】判断下列说法是否正确,并说明理由.(1)A⊆A;(2)若A⊆B,B⊆C,则A⊆C;(3)∅⊆A;(4)A⫋B,B⫋C,则A⫋C.【例题】在下面写法中,错误写法的个数是()①{0}∈{0,1};②∅⫋{0};③{0,-1,1}={1,-1,0};④0∈∅;⑤{(0,0)}={0}.A.2B.3C.4D.5【判别】a与{a},{0}与∅之间有何区别?【例题】已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0}的子集个数为 . 【例题】设集合A={1,2,3},B={x|x⊆A},求集合B.【例题】设集合A={1,2,3},B={x|x∈A},求集合B.【例题】已知A={x|x2-2x-3=0},B={x|ax-1=0},若B⫋A,试求a的值.【例题】已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N},则满足A⫋C⫋B的集合的个数是()A.1B.2C.3D.4【例题】已知集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}.(1)若B⊆A,求实数a的取值范围;(2)若A⫋B,求a的范围.。
第一章 1.2.3 集合之间的关系(2)
{0} ⊂ ,1} {0,
, ∅⊂{0,1} ≠
{1} ⊂{0,1} , {0,1} ⊆ {0,1 } , ,Байду номын сангаас
≠ ≠
例1
写出集合A={1,2,3}的所有子集. , , 的所有子集 的所有子集. 写出集合 的所有子集是: 解:集合A的所有子集是:
真子集: 真子集:
真子集 是:
∅
,
{1},{2},{3}, { { {1,2},{1,3},{2,3}, 2 { }{ 3 {1,2,3}. 23
(5) ∅⊆{ x | x ≤ 10}×
(6)
{ (3) {2} ⊂ x | x ≤ 10} √
≠
√ ∅⊂{ x | x ≤ 10} ≠
集合与元素的关系 集合与元素的关系 集合与集合的关系 集合与集合的关系
从属关系 包含关系
∈
∉
通过这堂课的学习, 通过这堂课的学习, 你有什么收获? 你有什么收获?
包含于B 读作: 包含于 A⊆ B 读作 A包含于 ⊆ 读作: 包含 包含A B ⊇ A 读作 B包含
符号开口朝向大的集合 符号开口朝向大的集合 开口朝向
规定:任何一个集合A都是它本身的子集, 都是它本身 规定:任何一个集合 都是它本身的子集,即A ⊆A . 集是任何集合的子集,即 ∅ ⊆ A 集是任何集合的子集, 任何集合的子集
真子集的概念
空集是任何非空集合的真子集。 空集是任何非空集合的真子集。 非空集合的真子集 如果A是 的子集 的子集, 如果 是B的子集, 子集 并且B中至少有一个元素不属于 ,那么A叫做 叫做B的真子集. 并且 中至少有一个元素不属于A,那么 叫做 的真子集 中至少有一个元素不属于 记作: 记作 读作: A ⊂B 读作 ≠ A真包含于 真包含于B 真包含于
集合间的基本关系
集合间的基本关系
在集合理论中,有几种基本的关系可以定义在两个集合之间。
这些基本关系包括:
1.相等关系(Equality Relation):两个集合当且仅当它们包含
相同的元素时相等。
表示为A = B。
示例:A = {1, 2, 3},B = {3, 2, 1},因此A = B。
2.包含关系(Subset Relation):如果一个集合的所有元素都是
另一个集合的元素,则称前者是后者的子集。
表示为A ⊆B。
示例:A = {1, 2},B = {1, 2, 3},因此A ⊆ B。
3.真包含关系(Proper Subset Relation):如果一个集合是另一
个集合的子集,并且两个集合不相等,则前者是后者的真子集。
表示为A ⊂ B。
示例:A = {1, 2},B = {1, 2, 3},因此A ⊂B。
4.交集关系(Intersection Relation):两个集合的交集是包含它
们共同元素的集合。
表示为A ∩ B。
示例:A = {1, 2, 3},B = {3, 4, 5},则A ∩ B = {3}。
5.并集关系(Union Relation):两个集合的并集是包含它们所
有元素的集合。
表示为A ∪ B。
示例:A = {1, 2, 3},B = {3, 4, 5},则A ∪ B = {1, 2, 3, 4, 5}。
这些基本关系在集合论中起到了重要的作用,用于描述和操作不同集合之间的关系。
它们是集合论中的基本概念,为进一步探索更高级的集合运算和性质奠定了基础。
集合之间的关系(子集
集合之间的关系(子集篇一:集合之间的关系教案1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A?A(任意一个集合A都是它本身的子集);②??A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B (或BA),读作“A真包含于B ”,或“B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果A?B ,且B?A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x) .反之,如果p(x)?q(x),则A?B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是ab,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?答:集合A,B的表示是用列举法;集合C,D,P,Q的表示是用描述法.问题2 这三组集合每组彼此之间有何关系?答:集合A中的任意一个元素都是集合B的元素,集合C中的任意一个元素都是集合D的元素,集合Q中的任意一个元素都是集合P的元素.小结:一般地,如果集合A中的任意一个元素都是集合B中的元素,那么集合A叫做集合B的子集.记作:A?B或B?A,读作:A 包含于B或B包含A.问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?答:在实数中如果a大于或等于b,则a,b的关系可表示为a ≥b或b≤a;在集合中如果集合A是集合B的子集,则A,B的关系可表示为A?B(或B?A).所以这是它们的相似之处.问题4 在导引中集合P与集合Q之间的关系如何表示?答:集合P不包含于Q,或Q不包含P,分别记作P Q或QP.问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?答:(1)空集是任意一个集合的子集;(2)任何一个集合A是它本身的子集.问题6 对于集合A,B,C,如果A?B,B?C,那么集合A与C 有什么关系?答:A与C的关系为A?C.问题7 “导引”中集合A中的元素都是集合B的元素,集合B 中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?答:如果说集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作:A B(或B A),读作“A真包含于B”或“B真包含A”.问题8 集合A,B的关系能不能用图直观形象的表示出来?1 / 3答:能.我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?答:如图所示:例1 写出集合A={1,2,3}的所有子集和真子集.分析:为了一个不漏地写出集合A={1,2,3}的所有子集,可以分类写,即空集,含一个元素的子集,含两个元素的子集,含三个元素的子集.解:集合A的所有子集是:?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.3小结:集合A={1,2,3}中有三个元素,其子集的个数为8个,即2个,事实上,如果一个集合含有n个元素,则它的子集个数为2个.跟踪训练1 写出满足{3,4}P?{0,1,2,3,4}的所有集合P.解:由题意知,集合P中一定含有元素3,4并且是至少含有三个元素的集合.此所有满足题意的集合P为{0,3,4},{1,3,4},{2,3,4},{0,1,3,4},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2};(3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.答:可以看出每组的两个集合的元素完全相同,只是表达形式不同.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?答:若A?B,且B?A,则A=B.小结:一般地,对于两个集合A与B,如果集合A的每一个元素都是集合B的元素,同时集合B的每一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.即:如果A?B,且B?A,那么A=B.例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};2(2)P={x|x=1},Q={x||x|=1};(3)C={x|x是奇数},D={x|x是整数}.解(1)B A;(2)P=Q;(3)C D.小结:在两个集合A,B的关系中,有一个集合是另一个集合的“子集”;或一个集合是另一个集合的“真子集”;或两个集合“相等”;另外还可能有“集合A不包含于B”或“集合B不包含于A”.跟踪训练2 用适当的符号(∈,?)填空:(1)0______{0};0______?;?______{0};22(2)?______{x|x+1=0,x∈R};{0}______{x|x+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x =4k±1,k∈Z},则A______B______C. 解析(1)0∈{0},0??,?{0};22(2)?={x|x+1=0,x∈R},{0}{x|x+1=0,x∈R};(3)A,B,C均表示所有奇数组成的集合,∴A=B=C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.答:集合A是集合B的子集,例如Q={x|x是有理数},P={x|x 是实数},易知Q?P,也容易判断命题“如果x是有理数,则x是实数”是正确命题.这个命题还可以表述为:x是有理数?x是实数,符号“?”表示推出.小结:一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x).反之,如果p(x)?q(x),则A?B.问题2 如果命题“p(x)?q(x)”和命题“q(x)?p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?答:p(x)?q(x),符号“?”表示相互推出.例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.解:(1)因为x是12的约数?x是36的约数,所以A?B;2 / 3n(2)因为x>5?x>3,所以B?A;(3)因为x是矩形?x是有一个角为直角的平行四边形,所以A=B.小结:当判定用特征性质描述法表示的两个集合关系时,一是可用赋值法,二是从两集合元素的特征性质p(x)入手,通过整理化简,看是否是一类元素.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z};**(2)C={n|n=2k+1,k∈N}和D={m|m=2l-1,l∈N}.解(1)当k∈Z,l∈Z时,n=2k+1?m=2l-1,所以A=B;**(2)当k∈N,l∈N时,n=2k+1?m=2l-1,所以C?D.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若?A,则A≠?.其中正确的个数是( )A.0B.1C.2D.3解析:由于任何集合都是它本身的子集,故①错;空集只有一个子集就是它本身,故②错;空集是任何非空集合的真子集,故③错;2.满足条件{1,2}M?{1,2,3,4,5}的集合M的个数是( )A.3 B.6C.7 D.8解析:M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.???2x=7?2x=4?解:由集合相等的定义得或?,?x+y=4?x+y =7??7x=??2∴?1y=??2舍?x=2?或???y=5 .∴x,y的值分别是2,5.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}.(2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}.(4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.解:通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而有A?B.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“?”的不同涵义.3 / 3篇二:集合间的基本关系知识点集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,(2)A与B是同一集合。
集合2 集合间的基本关系
集合2 集合间的基本关系基本概念一、子集、真子集、集合相等已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集. 三、空集空集是任何集合的子集,是任何非空集合的真子集. 注:元素与集合的关系“∈”,集合与集合的关系“⊆” 相关练习题型一 包含关系、子集和真子集 一、选择题1. 下列四个命题:① ;②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的是 A. 个B. 个C. 个D. 个2. 有下列四个关系式:① ;② ;③ ;④ .其中正确的有A. ①②B. ①③C. ①④D. ②④3. 如果集合 ,那么:① ;② ;③ ;④ ;⑤其中正确的个数为A. B. C. D.4. 集合,,之间的关系是A. B. C. D.5. 设集合,,则A. B.C. D. 与的关系不确定6. 设,,则下列关系正确的是 ( )A. B.C. D. 与没有公共元素7. 若集合,,满足,,则与之间的关系为A. B. C. D.8. 已知集合,,若,则A. B. C. 或 D. 或9. 设集合,若,则m= ( )A. 3B. 2C. -2D. -310. 集合,,若,且,则的取值为A. B. C. 或 D. 或11. 已知集合,,若,则实数的取值范围是A. B.C. D.12. 已知集合,则能使成立的实数的范围是 ( )A. B.C. D.二、填空题13. 已知集合,集合,若则实数.14. 若集合,,若,则的值.15. 已知集合,或,若,则的取值范围为.16. 集合,.若且为非空集合,则实数的取值范围是.三、解答题17. 设,,若,求实数的取值范围.18.已知集合,,若,求实数的取值范围.19.已知集合,,且,求实数的值组成的集合.20.已知集合,,若,求实数的取值范围.21.已知,,,求的取值范围.22.设集合,,若,求实数的值.题型二集合相等、元素的个数一、选择题1. 下列选项中的与相等的是A. ,B. ,C. ,D. ,2. 下列各组两个集合和,表示同一集合的是 ( )A.B.C.D.3. 下列命题正确的个数为 ( )① ,,则;② ;③;④ .A. B. C. D.4. 下列结论正确的个数为 ( )①集合,集合是的正因数,与是同一个集合;②集合与集合是同一个集合;③由,,,,这些数组成的集合有个元素;④集合是指第二和第四象限内的点集.A. B. C. D.5. 满足条件的集合的个数是A. B. C. D.6. 已知集合,且中至少有一个奇数,则这样的集合共有A. 个B. 个C. 个D. 个7. 若集合,且中至少含有一个奇数,则这样的集合有A. 个B. 个C. 个D. 个8. 已知集合,集合,若,则A. ,B. ,C. ,D. ,二、填空题(共4小题;共20分)9. 已知,,若,则.10. 若集合含有两个元素,,集合含有两个元素,,且,相等,则.11. 若,则,,.12. 已知,,且,则,,.题型三空集一、选择题1. 下列四个集合中,是空集的是A. B. 且C. D.2. 下列集合中,是空集的是A.B.C.D.3. 下列集合中为空集的是 ( )A. B.C. D.4. 若非空数集,,则能使成立的所有的集合是 ( )A. B.C. D.二、解答题5. 已知集合.Ⅰ若是空集,求的取值范围;Ⅱ若中只有一个元素,求的值;Ⅲ若中至多有一个元素,求的取值范围.6. 已知集合,,且,求实数的值组成的集合.题型一答案1. B2. A3. A4. C5. B6. B7. D8. C9. D 10. B 11. C 12. B13. 14. = 15. 或 16.17. 或.18. 因为,且,所以① 当时,,可得,所以;② 当时,,解得,此时符合,所以;③ 当时,,解得,此时不符合,舍去;④ 当时,由根与系数的关系得此时无解.综上,,即的取值范围为.19. ,若,;若,,由得,或.解得或,因此实数的值组成的集合是:.20. 因为,当时,即,得,满足.当时,要使,必须解得综上所述,的取值范围为.21. 当,即时,,满足,即;当,即时,,满足,即;当,即时,由得,即;所以.22. .因为,所以或.(1)当时,即,则,是方程的两根,代入解得.(2)当时,分两种情况:① 若,则,解得;② 若,则方程有两个相等的实数根,所以,解得,此时,满足条件.综上可知,所求实数的值为或.题型二答案1. C2. C3. B4. A5. C6. D7. D8. C9. 10. 11. ;; 12. ;;题型三答案1. B2. D3. C4. B5. (1)是空集,方程无实数根,,且,解得.即的取值范围为.(2)中只有一个元素,方程只有一个实数根.若,方程为,解得,此时;若,则,即,解得.或.(3)中至多有一个元素包含中只有一个元素和是空集两种情况,由(1)(2)可知的取值范围为或.6. ,若,;若,,由得,或.解得或,因此实数的值组成的集合是:.。
03【基础】集合的基本关系及运算知识讲解
集合的基本关系及运算【学习目标】1.理解集合之间包含与相等的含义,能识别一些给定集合的子集.在具体情境中,了解空集和全集的含义.2.理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.【要点梳理】要点一:集合之间的关系1.集合与集合之间的“包含”关系集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A;子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset).记作:A B(B A)⊆⊇或,当集合A 不包含于集合B 时,记作A B,用Venn 图表示两个集合间的“包含”关系:A B(B A)⊆⊇或要点诠释:(1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈.(2)当A 不是B 的子集时,我们记作“A ⊆B (或B ⊇A )”,读作:“A 不包含于B ”(或“B 不包含A ”).真子集:若集合A B ⊆,存在元素x ∈B 且x A ∉,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)规定:空集是任何集合的子集,是任何非空集合的真子集.2.集合与集合之间的“相等”关系A B B A ⊆⊆且,则A 与B 中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作A A ⊆.要点二:集合的运算1.并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A∪B 读作:“A 并B”,即:A∪B={x|x ∈A,或x ∈B}Venn 图表示:要点诠释:(1)“x ∈A,或x ∈B”包含三种情况:“,x A x B ∈∉但”;“,x B x A ∈∉但”;“,x A x B ∈∈且”.(2)两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只出现一次).2.交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A∩B,读作:“A 交B”,即A∩B={x|x ∈A,且x ∈B};交集的Venn 图表示:要点诠释:(1)并不是任何两个集合都有公共元素,当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A B =∅ .(2)概念中的“所有”两字的含义是,不仅“A∩B 中的任意元素都是A 与B 的公共元素”,同时“A 与B 的公共元素都属于A∩B”.(3)两个集合求交集,结果还是一个集合,是由集合A 与B 的所有公共元素组成的集合.3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.补集:对于全集U 的一个子集A,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set),简称为集合A 的补集,记作:U U A A={x|x U x A}∈∉;即且;痧补集的Venn 图表示:要点诠释:(1)理解补集概念时,应注意补集U A ð是对给定的集合A 和()U A U ⊆相对而言的一个概念,一个确定的集合A ,对于不同的集合U,补集不同.(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.(3)U A ð表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U”也必须换成相应的集合(即R A ð).4.集合基本运算的一些结论:A B A A B B A A=A A =A B=B A ⋂⊆⋂⊆⋂⋂∅∅⋂⋂,,,,A A B B A B A A=A A =A A B=B A ⊆⋃⊆⋃⋃⋃∅⋃⋃,,,,U U (A)A=U (A)A=⋃⋂∅,痧若A∩B=A,则A B ⊆,反之也成立若A∪B=B,则A B ⊆,反之也成立若x ∈(A∩B),则x ∈A 且x ∈B 若x ∈(A∪B),则x ∈A,或x ∈B求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法.【典型例题】类型一:集合间的关系例1.请判断①0{0};②{}R R ∈;③{}∅∈∅;④∅{}∅;⑤{}0∅=;⑥{}0∈∅;⑦{}0∅∈;⑧∅{}0,正确的有哪些?【答案】②③④⑧【解析】①错误,因为0是集合{}0中的元素,应是{}00∈;②③中都是元素与集合的关系,正确;④⑧正确,因为∅是任何集合的子集,是任何非空集合的真子集,而④中的{}∅为非空集合;⑤⑥⑦错误,∅是没有任何元素的集合.【总结升华】集合的符号语言十分简洁,因而被广泛用于现代数学之中,但往往容易混淆,其障碍在于这些符号与具体意义之间没有直接的联系,突破方法是熟练地掌握这些符号的具体含义.举一反三:【变式1】用适当的符号填空:(1){x||x|≤1}{x|x 2≤1};(2){y|y=2x 2}{y|y=3x 2-1};(3){x||x|>1}{x|x>1};(4){(x,y)|-2≤x≤2}{(x,y)|-1<x≤2}.【答案】(1)=(2)(3)(4)【总结升华】区分元素与集合间的关系,集合与集合间的关系.例2.(2015秋确山县期中)已知A ={x |x 2―4=0},B ={x |ax ―6=0},且B 是A 的子集.(1)求a 的取值集合M ;(2)写出集合M 的所有非空真子集.【思路点拨】对(1)根据A 集合中的元素,B A ⊆,分类讨论B 的可能情况,再注解a ,写出集合M .根据含有n 个元素的集合的真子集个数是2n -1,求解(2).【答案】(1)M ={0,3,-3};(2){0},{3},{-3},{0,3},{0,-3},{3,-3}【解析】(1)A ={2,-2}.∵B 是A 的子集,∴B =∅,{2},{-2},①B =∅时,方程ax -6=0无解,得a =0;②B ={2}时,方程ax -6=0的解为x =2,得2a -6=0,所以a =3;③B ={-2}时,方程ax -6=0的解为x =-2,得-2a -6=0,所以a =-3.所以a 的取值集合M ={0,3,-3}.(2)M ={0,3,-3}的非空真子集为{0},{3},{-3},{0,3},{0,-3},{3,-3}【总结升华】本题考查集合的子集问题,含有n 个元素的集合的子集个数是2n ,真子集个数是2n -1;非空真子集个数是2n -2.举一反三:【变式1】已知{},a b A ⊆{},,,,a b c d e ,则这样的集合A 有个.【答案】7个【变式2】同时满足:①{}1,2,3,4,5M ⊆;②a M ∈,则6a M -∈的非空集合M 有()A.16个B.15个C.7个D.6个【答案】C【解析】3a =时,63a -=;1a =时,65a -=;2a =时,64a -=;4a =时,62a -=;5a =时,61a -=;∴非空集合M 可能是:{}{}{}{}{}{}3,1,5,2,4,1,3,5,2,3,4,1,2,4,5,{}1,2,3,4,5共7个.故选C.【变式3】已知集合A={1,3,a},B={a 2},并且B 是A 的真子集,求实数a 的取值.【答案】a=-1,a=3±或a=0【解析】∵,∴a 2∈A,则有:(1)a 2=1⇒a=±1,当a=1时与元素的互异性不符,∴a=-1;(2)a 2=3⇒a=3±(3)a 2=a ⇒a=0,a=1,舍去a=1,则a=0综上:a=-1,a=3±或a=0.注意:根据集合元素的互异性,需分类讨论.例3.设M={x|x=a 2+1,a ∈N +},N={x|x=b 2-4b+5,b ∈N +},则M 与N 满足()A.M=NB.M NC.N MD.M∩N=∅【答案】B【解析】当a ∈N +时,元素x=a 2+1,表示正整数的平方加1对应的整数,而当b ∈N +时,元素x=b 2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N 中元素是自然数的平方加1对应的整数,即M 中元素都在N 中,但N 中至少有一个元素x=1不在M 中,即M N,故选B.例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2()(x y x )()1001002y x y +++ =.A .-200B .200C .-100D .0【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性.【答案】D【解析】由M=N,知M,N 所含元素相同.由0∈{0,|x|,y}可知0∈若x=0,则xy=0,即x 与xy 是相同元素,破坏了M 中元素互异性,所以x≠0.若x·y=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N 中元素0,y 是相同元素,破坏了N 中元素的互异性,故xy≠00,则x=y,M,N 可写为M={x,x 2,0},N={0,|x|,x}由M=N 可知必有x 2=|x|,即|x|2=|x|∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立若|x|=1即x=±1当x=1时,M 中元素|x|与x 相同,破坏了M 中元素互异性,故x≠1当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1∴+++2()(x y x )()1001002y x y +++ =-2+2-2+2+…+2=0【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.举一反三:【变式1】设a,b ∈R ,集合b{1,a+b,a}={0,,b}a,则b-a=()【答案】2【解析】由元素的三要素及两集合相等的特征:b1{0,,b},0{1,a+b,a}a 0a b=0a∈∈≠∴+ ,又,∴当b=1时,a=-1,b{0,b}={0,-1,1}a∴,当b=1a时,∴b=a 且a+b=0,∴a=b=0(舍)∴综上:a=-1,b=1,∴b-a=2.类型二:集合的运算例5.(1)(2014湖北武汉期中)已知{}22A y y x ==-;{}22B y y x ==-+,则A ∩B =()A .()){}00,,,B .⎡⎣C .[-2,2]D .{(2)设集合M ={3,a },N ={x |x 2-2x <0,x ∈Z},M ∩N ={1},则M ∪N 为().A .{1,2,a }B .{1,2,3,a }C .{1,2,3}D .{1,3}【思路点拨】(1)先把集合A 、B 进行化简,再利用数轴进行相应的集合运算.(2)先把集合N 化简,然后再利用集合中元素的互异性解题.【答案】(1)C (2)D 【解析】(1)集合A 、B 均表示构成相关函数的因变量取值范围,故可知:A ={y |y ≥-2},B ={y |y ≤2},所以A ∩B ={y |-2≤y ≤2},选C .(2)由N ={x |x 2-2x <0,x ∈Z}可得:N ={x |0<x <2,x ∈Z}={1},又由M ∩N ={1},可知1∈M ,即a =1,故选D .举一反三:【变式1】设A、B 分别是一元二次方程2x 2+px+q=0与6x 2+(2-p)x+5+q=0的解集,且A∩B={21},求A ∪B.【答案】{21,31,-4}【解析】∵A∩B={21},∴21是方程2x 2+px+q=0的解,则有:0q p 2121(22=++(1),同理有:6(21)2+(2-p)·21+5+q=0(2)联立方程(1)(2)得到:⎩⎨⎧-==.4q ,7p ∴方程(1)为2x 2+7x-4=0,∴方程的解为:x 1=21,x 2=-4,∴}4,21{A -=,由方程(2)6x 2-5x+1=0,解得:x 3=21,x 4=31,∴B={21,31},则A∪B={21,31,-4}.【变式2】设集合A={2,a 2-2a,6},B={2,2a 2,3a-6},若A∩B={2,3},求A∪B.【答案】{2,3,6,18}【解析】由A∩B={2,3},知元素2,3是A,B 两个集合中所有的公共元素,所以3∈{2,a 2-2a,6},则必有a 2-2a=3,解方程a 2-2a-3=0得a=3或a=-1当a=3时,A={2,3,6},B={2,18,3}∴A∪B={2,3,6}∪{2,18,3}={2,3,6,18}当a=-1时,A={2,3,6},B={2,2,-9}这既不满足条件A∩B={2,3},也不满足B 中元素具有互异性,故a=-1不合题意,应舍去.综上A∪B={2,3,6,18}.例6.设全集U={x ∈N +|x≤8},若A∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A,B.【答案】A={1,3,5,8},B={2,3,5,6}【解析】全集U={1,2,3,4,5,6,7,8}由A∩(C u B)={1,8}知,在A 中且不在B 中的元素有1,8;由(C u A)∩B={2,6},知不在A 中且在B 中的元素有2,6;由(C u A)∩(C u B)={4,7},知不在A 中且不在B 中的元素有4,7,则元素3,5必在A∩B 中.由集合的图示可得A={1,3,5,8},B={2,3,5,6}.类型三:集合运算综合应用例7.(2014北京西城学探诊)已知集合A ={x |-4≤x <2},B ={x |-1≤x <3},C ={x |x ≥a ,a ∈R}.(1)若(A ∪B )∩C =∅,求实数a 的取值范围;(2)若(A ∪B )ÜC ,求实数a 的取值范围.【思路点拨】(1)画数轴;(2)注意是否包含端点.【答案】(1)a ≥3(2)a ≤-4【解析】(1)∵A ={x |-4≤x <2},B ={x |-1≤x <3},又(A ∪B )∩C =∅,如图,a ≥3;(2)画数轴同理可得:a ≤-4.【总结升华】此问题从表面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.举一反三:【变式1】已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是()A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)【答案】C【解析】P ={x ︱11x -≤≤}又 P M P = ,∴M P ⊆,∴11a -≤≤故选C .例8.设集合{}{}222|40,|2(1)10,A x x x B x x a x a a R =+==+++-=∈.(1)若A B B = ,求a 的值;(2)若A B B = ,求a 的值.【思路点拨】明确A B 、A B 的含义,根据的需要,将其转化为等价的关系式B A ⊆和A B ⊆,是解决本题的关键.同时,在包含关系式B A ⊆中,不要漏掉B =∅的情况.【答案】(1)1a =或1a ≤-;(2)1a =.【解析】首先化简集合A ,得{}4,0A =-.(1)由A B B = ,则有B A ⊆,可知集合B 为∅,或为{}0、{}4-,或为{}0,4-.①若B =∅时,224(1)4(1)0a a ∆=+--<,解得1a <-.②若0B ∈,代入得21011a a a -=⇒==-或.当1a =时,{}{}2|400,4,B x x x A =+==-=符合题意;当1a =-时,{}{}2|00,B x x A ===⊆也符合题意.③若4B -∈,代入得2870a a -+=,解得7a =或1a =.当1a =时,已讨论,符合题意;当7a =时,{}{}2|1648012,4B x x x =++==--,不符合题意.由①②③,得1a =或1a ≤-.(2),A B B A B =∴⊆ .又{}4,0A =-,而B 至多只有两个根,因此应有A B =,由(1)知1a =.【总结升华】两个等价转化:,A B B A B A B B B A =⇔⊆=⇔⊆ 非常重要,注意应用.另外,在解决有条件A B ⊆的集合问题时,不要忽视A ≠∅的情况.举一反三:【变式1】(2015源汇区一模)设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},其中x ∈R ,如果A ∩B =B ,求实数a 的取值范围.【答案】a =1或a ≤-1【解析】A ={x |x 2+4x =0}={0,-4},∵A ∩B =B 知,B A ⊆,∴B ={0}或B ={-4}或B ={0,-4}或B =∅,若B ={0}时,x 2+2(a +1)x +a 2-1=0有两个相等的根0,则2002(1)001a a +=-+⎧⎨⨯=-⎩,∴a =-1,若B ={-4}时,x 2+2(a +1)x +a 2-1=0有两个相等的根-4,则24(4)2(1)4(4)1a a -+-=-+⎧⎨-⨯-=-⎩,∴a 无解,若B ={0,-4}时,x 2+2(a +1)x +a 2-1=0有两个不相等的根0和-4,则2402(1)401a a -+=-+⎧⎨-⨯=-⎩,∴a =1,当B =∅时,x 2+2(a +1)x +a 2-1=0无实数根,Δ=[2(a +1)]2-4(a 2-1)=8a +8<0,得a <-1,综上,a =1或a ≤-1.。
集合间的基本关系
集合间的基本关系[学习目标] 1.掌握两个集合之间的包含关系和相等关系,并能正确判断.2.了解Venn图的含义,会用Venn图表示两个集合间的关系.3.了解空集的含义及其性质.知识点一Venn图(1)定义:在数学中,经常用平面上封闭曲线的内部代表集合,这种图称为Venn图,这种表示集合的方法叫做图示法.(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.知识点二子集的概念思考符号“∈”与“⊆”有什么区别?答(1)“∈”是表示元素与集合之间的关系,比如1∈N,-1∉N.(2)“⊆”是表示集合与集合之间的关系,比如N⊆R,{1,2,3}⊆{3,2,1}.(3)“∈”的左边是元素,右边是集合,而“⊆”的两边均为集合.知识点三集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.思考(1)集合{0,1}与集合{(0,1)}相等吗?(2)集合{x∈R|-1<x<2}与集合{y∈R|-1<y<2}相等吗?答(1)不相等.前者是数集,有两个元素:0和1;后者是点集,只有一个元素:数对(0,1).(2)相等.虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于-1且小于2的所有实数,所以这两个集合相等.知识点四真子集的概念知识点五空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.思考{0},∅与{∅}之间有什么区别与联系?答{0}是含有一个元素0的集合,∅是不含任何元素的集合,因此有∅⊆{0},而{∅}是含有一个元素∅的集合,因此有∅∈{∅}.知识点六子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.题型一有限集合的子集确定问题例1(1)写出集合{a,b,c}的所有子集,并指出其中哪些是它的真子集;(2)已知集合A满足{a,b}⊆A{a,b,c,d},求满足条件的集合A.解(1)子集为:∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}.真子集为:∅,{a},{b},{c},{a,b},{a,c},{b,c}.(2)由题意可知,A中一定有a,b,对于c,d可能没有,也可能有1个,故满足{a,b}⊆A{a,b,c,d}的A有:{a,b},{a,b,c},{a,b,d}.反思与感悟 1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.跟踪训练1已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5};所以满足条件的集合M为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个数为8.题型二 集合间关系的判定例2 指出下列各对集合之间的关系:(1)A ={-1,1},B ={(-1,-1),(-1,1),(1,-1),(1,1)}; (2)A ={x |x 是等边三角形},B ={x |x 是等腰三角形}; (3)A ={x |-1<x <4},B ={x |x -5<0};(4)M ={x |x =2n -1,n ∈N *},N ={x |x =2n +1,n ∈N *}.解 (1)集合A 的代表元素是数,集合B 的代表元素是有序实数对,故A 与B 之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A ⊆B . (3)集合B ={x |x <5},用数轴表示集合A ,B ,如图所示,由图可知A ⊆B .(4)由列举法知M ={1,3,5,7,…},N ={3,5,7,9,…},故NM .例3 已知集合A ={x |x =19(2k +1),k ∈Z },B ={x |x =49k ±19,k ∈Z },则集合A ,B 之间的关系为( ) A.A ⊇B B.B ⊆A C.A =B D.A ≠B答案 C解析 设x 1∈A ,则x 1=19(2k 1+1),k 1∈Z .当k 1=2n ,n ∈Z 时,x 1=19(4n +1)=49n +19,∴x 1∈B ;当k 1=2n -1,n ∈Z 时,x 1=19(4n -1)=49n -19,∴x 1∈B .∴A ⊆B .设x 2∈B ,则x 2=49k 2±19=19(4k 2±1),k 2∈Z .由于4k 2+1=2×2k 2+1,4k 2-1=2(2k 2-1)+1,且2k 2表示所有的偶数,2k 2-1表示所有的奇数,∴4k 2±1与2k +1(k ∈Z )一样,都表示所有奇数. ∴x 2=19(4k 2±1)=19(2k +1),k ∈Z .∴x 2∈A .∴B ⊆A . 故A =B .故选C.反思与感悟 判断集合与集合关系的常用方法:(1)一一列举观察.(2)集合元素特征法:首先确定“集合的元素是什么”,弄清元素的特征,再利用集合元素的特征判断关系.一般地,设A ={x |p (x )},B ={x |q (x )}.①若p (x )推出q (x ),则A ⊆B ;②若q (x )推出p (x ),则B ⊆A ;③若p (x ),q (x )互相推出,则A =B ;④若p (x )推不出q (x ),q (x )也推不出p (x ),则集合A ,B 无包含关系.(3)数形结合法:利用数轴或Venn 图判断.若A ⊆B 和A ⊇B 同时成立,则A=B 更能准确表达集合A ,B 之间的关系.跟踪训练2 集合M ={x |x =3k -2,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m ∈Z },则M ,P ,S 之间的关系为( ) A.S=P ⊇M B.S =P ⊆M C.S ⊆P =M D.S ⊇P =M答案 C解析 对于M :x =3k -2=3(k -1)+1,k ∈Z , 对于P :y =3n +1,n ∈Z , ∴M =P .而z =6m +1=3·(2m )+1,m ∈Z , ∴S ⊆P =M ,故选C. 题型三 集合相等例4 已知M ={2,a ,b },N ={2a,2,b 2},若M =N ,求a 与b 的值.解 由题意得⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a , 解得⎩⎪⎨⎪⎧ a =0,b =0或⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.又a =0,b =0时,M ={2,0,0}与集合的互异性矛盾, 故舍去.∴a =0,b =1或a =14,b =12.反思与感悟 由A =B (或A ⊆B )求字母的值时,要注意检验所求出的值是否满足集合中元素的互异性.跟踪训练3 设a ,b ∈R ,集合{1,a +b ,a }={0,ba ,b },则b -a 等于( )A.1B.-1C.2D.-2答案 C解析 因为a ≠0,所以a +b =0,所以ba =-1,所以b =1,a =-1.故b -a =2.题型四 由集合间的关系求参数范围问题例5 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A ,求实数m 的取值范围.解 ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得{m |m ≥-1}.反思与感悟 1.求解集合中参数问题,应先分析,简化每个集合,然后应用数形结合思想与分类讨论思想求解;2.利用数轴分析法,将各个集合在数轴上表示出来,其中特别要注意端点值的检验;3.注意空集的特殊性,遇到“B ⊆A ”时,若B 为含字母参数的集合,一定要分“B =∅”和“B ≠∅”两种情形讨论.跟踪训练4 已知集合A ={x |1≤x ≤2},集合B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解 (1)若A B ,由图可知a >2.(2)若B ⊆A ,由图可知1≤a ≤2.忽略空集的特殊性致误例6 设M ={x |x 2-2x -3=0},N ={x |ax -1=0},若N ⊆M ,求所有满足条件的a 的取值集合.错解 由N ⊆M ,M ={x |x 2-2x -3=0}={-1,3}, 得N ={-1}或{3}.当N ={-1}时,由1a =-1,得a =-1.当N ={3}时,由1a =3,得a =13.故满足条件的a 的取值集合为{-1,13}.正解 由N ⊆M ,M ={x |x 2-2x -3=0}={-1,3}, 得N =∅或N ={-1}或N ={3}. 当N =∅时,ax -1=0无解,即a =0. 当N ={-1}时,由1a=-1,得a =-1.当N ={3}时,由1a =3,得a =13.故满足条件的a 的取值集合为{-1,0,13}.易错警示跟踪训练5 设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的取值范围.解 因为A ={x |x 2+4x =0}={0,-4},B ⊆A , 所以B 可能为∅,{0},{-4},{0,-4}. ①当B =∅时,方程x 2+2(a +1)x +a 2-1=0无解. 所以Δ=4(a +1)2-4(a 2-1)<0, 所以a <-1.②当B ={0}时,方程x 2+2(a +1)x +a 2-1=0有两个相等的实数根0,由根与系数的关系,得⎩⎪⎨⎪⎧0+0=-2(a +1),0×0=a 2-1, 解得a =-1.③当B ={-4}时,方程x 2+2(a +1)x +a 2-1=0有两个相等的实数根-4,由根与系数的关系,得⎩⎪⎨⎪⎧-4+(-4)=-2(a +1),-4×(-4)=a 2-1, 该方程组无解.④当B ={0,-4}时,方程x 2+2(a +1)x +a 2-1=0有两个不相等的实数根0和-4,由根与系数的关系,得⎩⎪⎨⎪⎧0+(-4)=-2(a +1),0×(-4)=a 2-1, 解得a =1.综上可得a ≤-1或a =1.1.集合A={x|0≤x<3,x∈N}的真子集的个数为()A.4B.7C.8D.162.设集合M={x|x>-2},则下列选项正确的是()A.{0}⊆MB.{0}∈MC.∅∈MD.0⊆M3.若集合P={x|x≤3},则()A.-1⊆PB.{-1}∈PC.∅∈PD.{-1}⊆P4.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N*},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.45.设集合A={x,y},B={0,x2},若A=B,则实数x=________,y=________.答案10一、选择题1.已知集合A={-1,1},则下列式子表示正确的有()①1∈A;②{-1}∈A;③∅⊆A;④{1,-1}⊆A.A.1个B.2个C.3个D.4个2.已知集合P和Q的关系如图所示,则()A.P>QB.Q⊆PC.P=QD.P⊆Q3.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D4.若集合M={x|x=k2+14,k∈Z},集合N={x|x=k4+12,k∈Z},则()A.M=NB.M⊆NC.M⊇ND.以上均不对5.已知集合A={x|0<x<1},B={x|0<x<c},若A⊆B,则实数c的取值范围是()A.{c|0<c≤1}B.{c|c≥1}C.{c|0<c<1}D.{c|c>1}6.已知集合M={y|y=x2-2x-1,x∈R},集合N={x|-2≤x≤4},则集合M与N之间的关系是()A.M>NB.M=NC.N⊇MD.M⊆N7.若集合A={1,3,x},B={x2,1},且B⊆A,则满足条件的实数x的个数是()A.1B.2C.3D.4二、填空题8.集合{-1,0,1}共有________个子集.9.设集合M={x|2x2-5x-3=0},集合N={x|mx=1},若N⊆M,则实数m的取值集合为________.10.设A={x|1<x<2},B={x|x<a},若A⊆B,则实数a的取值范围是________.三、解答题11.设集合A={1,a,b},集合B={a,a2,ab},且A=B,求a2 016+b2 016.12.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.13.已知三个集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-bx+2=0},同时满足B A,C⊆A的实数a,b是否存在?若存在,求出a,b所有的值;若不存在,请说明理由.当堂检测答案1.答案 B解析可知A={0,1,2},其真子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},即共有23-1=7(个).2.答案 A解析选项B、C中均是集合之间的关系,符号错误;选项D中是元素与集合之间的关系,符号错误.3.答案 D解析∵P={x|x≤3},∴-1∈P,故{-1}⊆P,故答案为D.4.答案 D解析A={x|x2-3x+2=0,x∈R}={1,2},B={x|0<x<5,x∈N*}={1,2,3,4}.因为A⊆C⊆B,所以根据子集的定义,集合C必须含有元素1,2,且可能含有元素3,4,原题即求集合{3,4}的子集个数,所以集合C的个数为22=4.故选D.5.答案10解析因为A=B,所以x=0或y=0.若x=0,则x2=0,此时集合B中的元素不满足互异性,舍去;若y=0,则x=x2,得x=0(舍去)或x=1,此时A=B={0,1}.所以x=1,y=0.课时精练答案一、选择题1.答案 C解析正确的是①③④,故选C.2.答案 B解析由图可知Q中的元素都是P中的元素,所以Q是P的子集,故选B.3.答案 B解析选项A错,应当是B⊆A.选项B对,正方形一定是矩形,但矩形不一定是正方形.选项C错,正方形一定是菱形,但菱形不一定是正方形.选项D错,应是D⊆A.4.答案 B解析由k2+14=2k+14,k∈Z,k4+12=k+24,k∈Z,可知选B.5.答案 B6.答案 C解析因为y=(x-1)2-2≥-2,所以M={y|y≥-2},所以N M.7.答案 C解析 由B ⊆A ,知x 2=3,或x 2=x ,解得x =±3,或x =0,或x =1,当x =1时,集合A ,B 都不满足元素的互异性,故x =1舍去. 二、填空题8.解析 由于集合中有3个元素,故该集合有23=8个子集.9.解析 集合M ={3,-12}.若N ⊆M ,则N ={3}或{-12}或∅.于是当N ={3}时,m =13;当N={-12}时,m =-2;当N =∅时,m =0.所以m 的取值集合为{-2,0,13}.10.解析 因为A B ,所以a ≥2, 即a 的取值范围是{a |a ≥2}.三、解答题11.解 方法一 ∵A =B ,∴⎩⎪⎨⎪⎧a 2=1,ab =b 或⎩⎪⎨⎪⎧a 2=b ,ab =1.解方程组,得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数.由集合元素的互异性得a ≠1, ∴a =-1,b =0,故a 2 016+b 2 016=1.方法二 由A =B ,可得⎩⎪⎨⎪⎧1·a ·b =a ·a 2·ab ,1+a +b =a +a 2+ab , 即⎩⎪⎨⎪⎧ab (a 3-1)=0, ①(a -1)(a +b +1)=0. ②因为集合中的元素互异,所以a ≠0,a ≠1. 解方程组,得a =-1,b =0.故a 2 016+b 2 016=1. 12.解 当B =∅时,只需2a >a +3, 即a >3. 当B ≠∅时,根据题意作出如图所示的数轴,可得11⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4.解得a <-4或2<a ≤3. 综上,实数a 的取值范围为{a |a <-4或a >2}.13.解 A ={x |x 2-3x +2=0}={1,2},∵B ={x |x 2-ax +(a -1)=0}={x |(x -1)[x -(a -1)]=0},∴1∈B . 又∵B A ,∴a -1=1,即a =2.∵C ={x |x 2-bx +2=0},且C ⊆A ,∴C =∅或{1}或{2}或{1,2}.当C ={1,2}时,b =3;当C ={1}或{2}时,Δ=b 2-8=0,即b =±22,此时x =±2(舍去);当C =∅时,Δ=b 2-8<0,即-22<b <2 2.综上可知,存在a =2,b =3或-22<b <22满足要求.。
北师大版必修1 第1章 2 集合的基本关系
§2 集合的基本关系学习目标 1.理解子集、集合相等、真子集的概念.2.能用符号和Venn图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一子集思考如果把“马”和“白马”视为两个集合,则这两个集合中的元素有什么关系?答案所有的白马都是马,马不一定是白马.梳理一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,即若a∈A,则a∈B,我们就说集合A包含于集合B,或集合B包含集合A,称集合A为集合B的子集,记作A⊆B(或B⊇A),读作“A包含于B”(或“B包含A”).子集的有关性质:(1)∅是任何集合A的子集,即∅⊆A.(2)任何一个集合是它本身的子集,即A⊆A.(3)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.(4)若A⊆B,B⊆A,则称集合A与集合B相等,记作A=B.知识点二真子集思考在知识点一里,我们知道集合A是它本身的子集,那么如何刻画至少比A少一个元素的A的子集?答案用真子集.梳理如果集合A⊆B,但A≠B,称集合A是集合B的真子集,记作:A?B(或B?A),读作:A真包含于B(或B真包含A).知识点三Venn图思考图中集合A,B,C的关系用符号可表示为__________.答案A⊆B⊆C梳理一般地,用平面上封闭曲线的内部代表集合,这种图称为Venn图.Venn图可以直观地表达集合间的关系.1.若用“≤”类比“⊆”,则“?”相当于“<”.( √)2.空集可以用{}∅表示.( ×)3.若a∈A,则{}a⊆A.( √)4.若a∈A,则{}a?A.( ×)类型一求集合的子集例1 (1)写出集合{a,b,c,d}的所有子集;(2)若一个集合有n(n∈N)个元素,则它有多少个子集?多少个真子集?验证你的结论.考点子集及其运算题点求集合的子集解(1)∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}.(2)若一个集合有n(n∈N)个元素,则它有2n个子集,2n-1个真子集.如∅,有1个子集,0个真子集.反思与感悟为了罗列时不重不漏,要讲究列举顺序,这个顺序有点类似于从1到100数数:先是一位数,然后是两位数,在两位数中,先数首位是1的等等.跟踪训练1 适合条件{1}⊆A?{1,2,3,4,5}的集合A的个数是( )A.15B.16C.31D.32考点与两个已知集合有包含关系的集合个数题点与两个已知集合有包含关系的集合个数答案 A解析这样的集合A有{1},{1,2},{1,3},{1,4},{1,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5}共15个.类型二判断集合间的关系命题角度1 概念间的包含关系例2 设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为( ) A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P考点集合的包含关系题点集合包含关系的判定答案 B解析正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形,故选B.反思与感悟一个概念通常就是一个集合,要判断概念间的关系首先要准确理解概念的定义.跟踪训练2 我们已经知道自然数集、整数集、有理数集、实数集可以分别用N,Z,Q,R表示,用符号表示N,Z,Q,R的关系为______________.考点集合的包含关系题点集合包含关系的判定答案N?Z?Q?R命题角度2 数集间的包含关系例3 设集合A={0,1},集合B={x|x<2或x>3},则A与B的关系为( )A.A∈B B.B∈AC.A⊆B D.B⊆A考点集合的包含关系题点集合包含关系的判定答案 C解析∵0<2,∴0∈B.又∵1<2,∴1∈B.∴A⊆B.反思与感悟判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.跟踪训练3 已知集合A={x|-1<x<4},B={x|x<5},则( )A.A∈B B.A?BC.B?A D.B⊆A考点集合的包含关系题点集合包含关系的判定答案 B解析由数轴易知A中元素都属于B,B中至少有一个元素如-2∉A,故有A?B.类型三 由集合间的关系求参数(或参数范围)例4 已知集合A ={x|x 2-x =0},B ={x|ax =1},且A ⊇B ,求实数a 的值. 考点 子集及其运算题点 根据子集关系求参数的值 解 A ={x|x 2-x =0}={0,1}. (1)当a =0时,B =∅⊆A ,符合题意.(2)当a ≠0时,B ={x|ax =1}=⎩⎨⎧⎭⎬⎫1a ,∵1a ≠0,要使A ⊇B ,只有1a =1,即a =1. 综上,a =0或a =1.反思与感悟 集合A 的子集可分三类:∅,A 本身,A 的非空真子集,解题中易忽略∅.跟踪训练4 已知集合A ={x|1<x<2},B ={x|2a -3<x<a -2},且A ⊇B ,求实数a 的取值范围. 考点 子集及其运算题点 根据子集关系求参数的取值范围解 (1)当2a -3≥a -2,即a ≥1时,B =∅⊆A ,符合题意. (2)当a<1时,要使A ⊇B ,需满足⎩⎪⎨⎪⎧a<1,2a -3≥1,a -2≤2,这样的实数a 不存在.综上,实数a 的取值范围是{a|a ≥1}.1.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅?A,则A≠∅.其中正确的个数是( )A.0B.1C.2D.3考点空集的定义、性质及运算题点空集的定义答案 B解析只有④正确.2.集合P={x|x2-1=0},T={-1,0,1},则P与T的关系为( ) A.P?T B.P∈TC.P=T D.P⊈T考点集合的包含关系题点集合包含关系的判定答案 A3.若A={1},则下列关系错误的是( )A.∅⊆∅B.A⊆AC.∅⊆A D.∅∈A考点空集的定义、性质及运算题点空集的性质答案 D4.下列正确表示集合M ={-1,0,1}和N ={x|x 2+x =0}关系的Venn 图是( )考点 集合的包含关系 题点 集合包含关系的判定 答案 B5.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =19(2k +1),k ∈Z,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =49k ±19,k ∈Z,则集合A ,B 之间的关系为________. 考点 集合的关系 题点 集合关系的判定 答案 A =B解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k +19,k ∈Z=⎩⎨⎧⎭⎬⎫…,-59,-39,-19,19,39,59,…,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =4k±19,k ∈Z =⎩⎨⎧⎭⎬⎫…,-59,-39,-19,19,39,59,…,故A =B.1.对子集、真子集有关概念的理解(1)集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A ,能推出x ∈B ,这是判断A ⊆B 的常用方法. (2)不能简单地把“A ⊆B ”理解成“A 是B 中部分元素组成的集合”,因为若A =∅时,则A 中不含任何元素;若A =B ,则A 中含有B 中的所有元素.(3)在真子集的定义中,A ?B 首先要满足A ⊆B ,其次至少有一个x ∈B ,但x ∉A. 2.集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集.集合的子集、真子集个数的规律为:含n 个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.写集合的子集时,空集和集合本身易漏掉. 3.由集合间的关系求参数问题的注意点及常用方法 (1)注意点:①不能忽视集合为∅的情形; ②当集合中含有字母参数时,一般需要分类讨论.(2)常用方法:对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.一、选择题1.在下列关系中错误的个数是( ) ①1∈{0,1,2}; ②{1}∈{0,1,2}; ③{0,1,2}⊆{0,1,2}; ④{0,1,2}={2,0,1}; ⑤{0,1}⊆{(0,1)}. A .1B .2C .3D .4 考点 集合的包含关系 题点 集合包含关系的判定 答案 B解析 ①正确;因为集合{1}是集合{0,1,2}的真子集,而不能用符号∈来表示,所以②错误;③正确,因为任何集合都是它本身的子集;④正确,因为集合元素具有无序性;因为集合{0,1}表示数集,它有两个元素,而集合{(0,1)}表示点集,它只有一个元素,所以⑤错误,所以错误的个数是2.故选B. 2.已知集合M ={(x ,y)|x +y<0,xy>0}和P ={(x ,y)|x<0,y<0},那么( ) A .P ?M B .M ?P C .M =PD .M ⊈P考点 集合的包含关系 题点 集合包含关系的判定 答案 C解析 由⎩⎪⎨⎪⎧x +y<0,xy>0得⎩⎪⎨⎪⎧x<0,y<0,故M =P.3.已知集合U ,S ,T ,F 的关系如图所示,则下列关系正确的是( )①S∈U;②F⊆T;③S⊆T;④S⊆F;⑤S∈F;⑥F⊆U.A.①③B.②③C.③④D.③⑥考点集合的包含关系题点集合包含关系的判定答案 D解析元素与集合之间的关系才用∈,故①⑤错;子集的区域要被全部涵盖,故②④错.4.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D考点集合的包含关系题点集合包含关系的判定答案 B解析∵等腰三角形包括等腰直角三角形,∴C⊆B.5.若M⊆P,M⊆Q,P={0,1,2},Q={0,2,4},则满足上述条件的集合M的个数是( )A.1B.2C.4D.8考点子集个数题点求集合的子集个数答案 C解析P,Q中的公共元素组成集合C={0,2},M⊆C,这样的集合M共有22=4个.6.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅,B⊆A,则(a,b)不能是( )A.(-1,1) B.(-1,0)C .(0,-1)D .(1,1)考点 子集及其运算题点 根据子集关系求参数的值答案 B 解析 当a =-1,b =1时,B ={x|x 2+2x +1=0}={-1},符合;当a =b =1时,B ={x|x 2-2x +1=0}={1},符合;当a =0,b =-1时,B ={x|x 2-1=0}={-1,1},符合;当a =-1,b =0时,B ={x|x 2+2x =0}={0,-2},不符合.7.已知集合A ⊆{}0,1,2,且集合A 中至少含有一个偶数,则这样的集合A 的个数为( )A .6B .5C .4D .3考点 子集及其运算题点 求集合的子集答案 A解析 方法一 集合{}0,1,2的子集为∅,{}0,{}1,{}2,{}0,1,{}0,2,{}1,2,{}0,1,2,其中含有偶数的集合有6个.方法二 {}0,1,2共有23=8(个)子集,其中不含偶数的有∅,{}1.故符合题意的A 共有8-2=6(个).二、填空题8.已知{0,1}?A ⊆{-1,0,1},则集合A 的个数为________.考点 与两个已知集合有包含关系的集合个数题点 与两个已知集合有包含关系的集合个数答案 1解析 由题意知集合A 中一定含有元素0,1,并且A 中至少含三个元素,又因为A ⊆{-1,0,1},所以A ={-1,0,1},满足题意的集合A 有1个.9.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k 2+14,k ∈Z ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k 4+12,k ∈Z ,则集合A ,B 满足的关系是________.(用⊆,?,=连接A ,B)考点 集合的包含关系题点 集合包含关系的判定答案 A ?B解析 若x 0∈A ,即x 0=k 02+14=2k 04+12-14=2k 0-14+12,k 0∈Z. ∵2k 0-1∈Z ,∴x 0∈B ,即A ⊆B ,又12∈B ,但12∉A ,即A ≠B , ∴A ?B.10.已知集合{b}={x|x ∈R|ax 2-4x +1=0}(a ,b ∈R),则a +b =________.考点 子集及其运算题点 根据子集关系求参数的值答案 14或92解析 由题意知方程ax 2-4x +1=0有唯一解,当a =0时,x =14,此时b =14,则a +b =14;当a ≠0时,由Δ=(-4)2-4a =0,得a =4,方程ax 2-4x +1=0的解为x =12,此时b =12,则a +b =92. 三、解答题11.已知集合A ={x|x 2-3x +2=0,x ∈R},B ={x|0<x<5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有多少个?考点 与两个已知集合有包含关系的集合个数题点 与两个已知集合有包含关系的集合个数解 先用列举法表示集合A ,B.由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.综上,满足题意的集合C 共有4个.12.设A ={x|x 2+4x =0},B ={x|x 2+2(a +1)x +a 2-1=0},其中x ∈R ,如果B ⊆A ,求实数a 的取值范围.考点 子集及其运算题点 根据子集关系求参数的取值范围解 由于A ={0,-4},又B ⊆A ,则①当B =A 时,即0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,代入方程解得a =1.②当B ≠A 时,(ⅰ)当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a<-1;(ⅱ)当B ={0}或B ={-4}时,方程x 2+2(a +1)x +a 2-1=0应有两相等实数根0或-4,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0},满足条件.综上,可知a =1或a ≤-1.13.已知集合A ={1,3,-x 3},B ={x +2,1},是否存在实数x ,使得B 是A 的子集?若存在,求出集合A ,B ;若不存在,请说明理由.考点 子集及其运算题点 求集合的子集解 因为B 是A 的子集,所以B 中元素必是A 中的元素,若x +2=3,则x =1,符合题意.若x +2=-x 3,则x 3+x +2=0,所以(x +1)(x 2-x +2)=0.因为x 2-x +2≠0,所以x +1=0,所以x =-1,此时x +2=1,集合B 中的元素不满足互异性.综上所述,存在实数x =1,使得B 是A 的子集,此时A ={1,3,-1},B ={1,3}.四、探究与拓展14.给定集合U ,若非空集合A ,B 满足A ⊆U ,B ⊆U ,且集合A 中的最大元素小于B 中的最小元素,则称(A ,B)为U 的一个有序子集对,若U ={1,2,3,4},则U 的有序子集对的个数为( )A .16B .17C .18D .19考点 子集及其运算题点 求集合的子集答案 B解析 当A ={1}时,集合B 为集合{2,3,4}的非空子集,有7个;当A ={2}时,集合B 为集合{3,4}的非空子集,有3个;当A ={3}时,集合B ={4},有1个;当A ={1,2}时,集合B 为集合{3,4}的非空子集,有3个;当A ={1,3}时,集合B ={4},有1个;当A ={2,3}时,集合B ={4},有1个;当A ={1,2,3}时,集合B ={4},有1个.所以符合条件的有序子集对有17个.15.已知集合A ={x|x 2-4mx +2m +6=0},B ={x|x<0},若A ⊆B ,求实数m 的取值集合.考点 子集及其运算题点 根据子集关系求参数的取值范围解 ∵A ⊆B ,∴当A =∅时,即方程x 2-4mx +2m +6=0无实根,故Δ=16m 2-8(m +3)<0,解得-1<m<32. 当A ≠∅时,方程x 2-4mx +2m +6=0的根为负,则⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2<0,x 1x 2>0⇒⎩⎪⎨⎪⎧ m ≥32或m ≤-1,4m<0,2m +6>0⇒⎩⎪⎨⎪⎧ m ≥32或m ≤-1,m<0,m>-3⇒-3<m ≤-1. 综上,实数m 的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m⎪⎪⎪-3<m<32.。
1.1.2 集合间的基本关系
1.1.2 集合间的基本关系一、子集1、定义:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含包含关系,称集合A 为集合B 的子集2、记法与读法:记作B A ⊆(或A B ⊇),读作“A 含于B ”(或“B 包含A ”)3、结论(1)任何一个集合是它本身的子集,即A A ⊆.(2)对于集合A ,B ,C ,若A ⊆B ,且B ⊆C ,则C A ⊆4、对子集概念的理解(1)集合A 是集合B 的子集的含义是:集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A 能推出x ∈B .例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A 中存在着不是集合B 的元素,那么集合A 不包含于B ,或B 不包含A .此时记作A B 或B ⊉A .(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N.而不能写成{0}∈N ,“∈”只能用于元素与集合之间.如0∈N ,而不能写成0⊆N.二、集合相等1、集合相等的概念如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作B A =.2、对两集合相等的认识(1)若A ⊆B ,又B ⊆A ,则A =B ;反之,如果A =B ,则A ⊆B ,且B ⊆A .这就给出了证明两个集合相等的方法,即欲证A =B ,只需证A ⊆B 与B ⊆A 同时成立即可.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.三、真子集1、定义:如果集合A ⊆B ,但存在元素A x ∈,且B x ∈,我们称集合A 是集合B 的真子集2、记法与表示:3、对真子集概念的理解(1)在真子集的定义中,A B 首先要满足A ⊆B ,其次至少有一个x ∈B ,但x ∉A .(2)若A 不是B 的子集,则A 一定不是B 的真子集.四、空集1、定义:我们把不含任何元素的集合,叫做空集2、记法:∅3、规定:空集是任何集合的子集,即∅⊆A4、特性:(1)空集只有一个子集,即它的本身,∅⊆∅(2)A ≠∅,则∅真包含A5、∅与{0}的区别(1)∅是不含任何元素的集合;(2){0}是含有一个元素的集合,∅{0}.题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是( B )①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0} A.1B.2 C.3 D.4题型二、有限集合子集的确定例2(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}M⊆{1,2,3,4,5}的集合M有________个.[解析](1)集合M的真子集所含有的元素的个数可以有0个,1个或2个,含有0个为∅,含有1个有3个真子集{1},{2},{3},含有2个元素有3个真子集{1,2}{1,3}和{2,3},共有7个真子集,故选B.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M共有7个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.[活学活用]非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.解析:由“若a∈S,则6-a∈S”知和为6的两个数都是集合S中的元素,则()集合S中含有1个元素:{3};集合S中含有2个元素:{2,4},{1,5};集合S中含有3个元素:{2,3,4},{1,3,5};集合S中含有4个元素:{1,2,4,5};集合S中含有5个元素:{1,2,3,4,5}.故满足题意的集合S共有7个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.[解]当B=∅时,只需2a>a+3,即a>3;当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.[活学活用]1、已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 的取值范围. 解:(1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1}且A ⊆B , 如图作出满足题意的数轴:∴⎩⎪⎨⎪⎧ a >0,1a≥-1,2a ≤1,∴a ≥2. (3)当a <0时,A ={x |2a <x <1a } ∵A ⊆B ,如图所示, ∴⎩⎪⎨⎪⎧ a <0,2a≥-1,1a ≤1,∴a ≤-2.综上所述,a 的取值范围是{a |a =0或a ≥2或a ≤-2}.2、已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R},若B ⊆A ,求实数a 的取值范围.解:A ={x |x 2+4x =0}={0,-4},∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}.(1)当B =∅时,方程x 2+2(a +1)x +a 2-1=0无实根,则Δ<0,即4(a +1)2-4(a 2-1)<0.∴a <-1.(2)当B ={0}时,有⎩⎪⎨⎪⎧Δ=0,a 2-1=0,∴a =-1.(3)当B ={-4}时,有⎩⎪⎨⎪⎧Δ=0,a 2-8a +7=0,无解. (4)当B ={0,-4}时,由韦达定理得a =1.综上所述,a =1或a ≤-1.课堂练习1.给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有( )A .0个B .1个C .2个D .3个解析:由空集的性质可知,只有④正确,①②③均不正确.答案:B2.已知A ={x |x 是菱形},B ={x |x 是正方形},C ={x |x 是平行四边形},那么A ,B ,C 之间的关系是 ( B )A .A ⊆B ⊆C B .B ⊆A ⊆C C .A B ⊆CD .A =B ⊆C3.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.解析 :∵B ⊆A ,B ={3,4},A ={-1,3,m}∴m ∈A ,∴m =4.答案:44.集合A ={x|0≤x<3且x ∈N}的真子集的个数为________.解析:由题意得A ={0,1,2},故集合A 有7个真子集.答案:75.已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:(1)若A 是B 的真子集,即A B ,故a>2.(2)若B 是A 的子集,即B ⊆A ,则a ≤2.(3)若A =B ,则必有a =2.课时跟踪检测(三) 集合间的基本关系一、选择题1.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间最适合的关系是( )A .A ⊆BB .A ⊇BC .A BD .A B2.已知集合M ={x |-5<x <3,x ∈Z },则下列集合是集合M 的子集的为( )A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈N}3.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是( ) A.1 B.-1C.1或-1 D.0,1或-14.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为( ) A.6 B.5C.4 D.35.已知集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么( ) A.P M B.M PC.M=P D.M P二、填空题6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.8.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为________.三、解答题9.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求实数a组成的集合C.10.设集合A={x|-1≤x+1≤6},B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.答 案课时跟踪检测(三)1.选D 显然B 是A 的真子集,因为A 中元素是3的整数倍,而B 的元素是3的偶数倍.2.选D 先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},集合S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .故选D.3.选D 由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1.4.选A 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.故选A.5.选C ∵⎩⎪⎨⎪⎧ x +y <0,xy >0,∴⎩⎪⎨⎪⎧ x <0,y <0. ∴M =P .6.解析:∵y =(x -1)2-2≥-2,∴M ={y |y ≥-2}.∴N M .答案:N M7.解析:由Venn 图可得AB ,CD B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.答案:小说 文学作品 叙事散文 散文8.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时,方程化为2x =0,∴x =0,此时A ={0},符合题意.当a ≠0时,Δ=22-4·a ·a =0,即a 2=1,∴a =±1.此时A ={-1},或A ={1},符合题意.∴a =0或a =±1.答案:{0,1,-1}9.解:由x 2-3x +2=0,得x =1,或x =2.∴A ={1,2}.∵B ⊆A ,∴对B 分类讨论如下:(1)若B =∅,即方程ax -2=0无解,此时a =0.(2)若B ≠∅,则B ={1}或B ={2}.当B ={1}时,有a -2=0,即a =2;当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.10.解:化简集合A 得A ={x |-2≤x ≤5}.(1)∵x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5},即A 中含有8个元素,∴A 的非空真子集数为28-2=254(个).(2)①当m ≤-2时,B =∅⊆A ;②当m >-2时,B ={x |m -1<x <2m +1},因此,要B ⊆A ,则只要⎩⎪⎨⎪⎧ m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述,知m 的取值范围是:{m |-1≤m ≤2或m ≤-2}.。
1_2集合之间的关系
【课题】1.2 集合之间的关系
【教学目标】
知识目标:
掌握集合之间的关系(子集、真子集、相等)的概念,会判断集合之间的关系.
水平目标:
(1)通过集合语言的学习与使用,培养学生的数学思维水平;
(2)通过集合的关系的图形分析,培养学生的观察水平.
情感目标:
(1)经历利用集合语言描绘集合与集合间的关系的过程,养成规范意识,发展严谨的作风;
(2)经历利用图形研究集合间关系的过程,体验“数形结合”的探究方法.
【教学重点】
集合与集合间的关系及其相关符号表示.
【教学难点】
真子集的概念.
【教学设计】
(1)从复习上节课的学习内容入手,通过实际问题导入知识;
(2)通过实际问题引导学生理解真子集,突破难点;
(3)通过简单的实例,理解集合的相等关系;
(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
}6
x<.
是用来表示集合与集合之间关系的符号;
”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,准确选用符号.
的元素,所以
}6
x<的元素,
}6
x<.
∈”或“∉
}2
的子集,并且集合
叫做集合
B(或B A),读作“
.
空集是任何非空集合的真子集.
对于集合A、B、C,假如A
典型例题
{1,2,3,4,5,6}
=9}={3,-3}
x x=={x x= |2}
;⑸a{0}∅ 2
{|x x+ |10}
x x+=2。
北师大版数学高一必修1学案第一章2集合的基本关系
2 集合的基本关系1.子集(1)子集的概念一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,即若a∈A,则a∈B,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A),这时我们说集合A是集合B的子集.谈重点如何理解子集的概念(1)从文字的角度来看,集合A是集合B的子集,一定要强调集合A中的任意一个元素都是集合B中的元素,即强调任意性,否则不一定成立.例如A={1,2,3},B={2,3,4,5},集合A中有一个元素“1”不在集合B中,B中元素“4,5”不在集合A中,因此集合A与集合B不具有包含关系,尽管集合B中的元素比集合A中的元素多,但也不能以元素个数的多少来确定包含关系.(2)从符号的角度看,“A⊆B”说明“对任意的x∈A,都有x∈B”.这种符号语言对于证明一个集合是另一个集合的子集,作用十分明显.(3)当集合A不包含于集合B(或集合B不包含集合A)时,记作A B(或B A),用符号可以表示为“存在一个x∈A,使得x∉B”.“A B”表达的意义有两个方面.其一,A,B互不包含,如A={2,3},B={4,5};其二,A有可能包含B,如A={2,3,4,5},B={3,4,5}.(2)子集的图形表示为了直观地表示集合间的关系,我们常用封闭曲线的内部表示集合,称为Venn图.常用的封闭曲线有椭圆、矩形等.如,若用A表示我们班所有同学组成的集合,用B表示我们班所有女同学组成的集合,则B⊆A.集合A与B的关系可用Venn图表示为:(3)子集的性质根据子集的定义和Venn图的表示方法可以得到以下性质:①任何一个集合A都是它本身的子集,即A⊆A.②规定:空集是任何集合的子集,也就是说,对于任何一个集合A,都有∅⊆A.③对于集合A,B,C,如果A⊆B,B⊆C,则A⊆C,即子集具有传递性,并且这条性质也可以推广到有限多个集合,即:若A⊆B,B⊆C,C⊆D,…,M⊆N,则A⊆N.下面仅对三个集合的情况进行证明.证明:设x是集合A中的任一元素,∵A⊆B,∴x∈B.又∵B⊆C,∴x∈C,即可由x∈A推出x∈C.∴A⊆C.【例1-1】下列命题:(1)空集没有子集;(2)任何集合至少有两个子集;(3)空集是任何集合的子集;(4)若∅⊆A,则A≠∅;(5)集合A⊆B,就是集合A中的元素都是集合B中的元素,集合B中的元素也都是集合A中的元素.其中正确的有().A.0个B.1个C.2个D.3个解析:(1)错误,因为空集是任何集合的子集,其中“任何集合”包括空集,所以∅⊆∅也成立(或由于任何一个集合都是它本身的子集,所以空集的子集是它本身);(2)错误,如空集只有一个子集,即它本身;(3)正确;(4)错误,由∅⊆A可知,集合A可以是任何集合,其中包括∅;(5)错误,A⊆B只能说明集合A中的任何元素都是集合B中的元素,而不能说明集合B 中的元素都是集合A中的元素.答案:B【例1-2】已知集合A={-1,0},集合B={0,1,x+2},且A⊆B,则实数x的值为__________.解析:由A⊆B可知,集合A中的任何一个元素都是集合B中的元素,也就是说,集合A中的元素-1,0都必须在集合B中,故x+2=-1,x=-3.答案:-32.集合相等对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,同时集合B 中的任何一个元素都是集合A中的元素,这时,我们就说集合A与集合B相等,记作A=B.即若A⊆B,又B⊆A,则A=B.用Venn图可表示为:谈重点如何理解集合相等的概念(1)所谓集合A与集合B相等,就是集合A,B中的元素完全相同.例如,试比较集合A ={x|x2-1=0}与集合B={-1,1}的关系.由x2-1=0可知x=±1,所以集合A用列举法可表示为A={-1,1},我们看到集合A与B中都含有两个元素-1,1,故A=B.(2)集合相等的概念中给出了一种证明集合相等的方法,即欲证A=B,只需证A⊆B与B⊆A都成立.【例2-1】下列各组中的两个集合相等的有().①P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z};②P={x|x=2n-1,n∈N+},Q={x|x=2n+1,n∈N+};③P={x|x2-x=0},Q=1(1),2nx x n⎧⎫+-⎪⎪=∈⎨⎬⎪⎪⎩⎭Z.A.①②③B.①③C.②③D.①②解析:①集合P,Q都表示所有偶数组成的集合,有P=Q;②P是由1,3,5,…所有正奇数组成的集合,Q是由3,5,7,…所有大于1的正奇数组成的集合,1∉Q,∴P≠Q.③P={0,1},当n为奇数时,1(1)2nx+-==,当n为偶数时,1(1)12nx+-==,∴Q={0,1},P=Q.答案:B【例2-2】已知A={1,x,2x},B={1,y,y2},若A⊆B,且A⊇B,求实数x和y的值.分析:由A ⊆B ,且A ⊇B 可知A =B ,即集合A 与B 中的元素相同,可根据集合中元素的性质,用分类讨论的方法,通过列方程组求出x ,y 的值;也可根据两个集合中元素的和与积分别相等来建立方程组.两种方法殊途同归,需要注意的是最后都要检验集合中的元素是否具有互异性.解:(方法1)由A ⊆B ,且A ⊇B 知,A =B ,由集合相等的概念可得:2,2,x y x y =⎧⎨=⎩或2,2.x y x y ⎧=⎨=⎩ 解方程组得0,0,x y =⎧⎨=⎩或2,2,x y =⎧⎨=⎩或1,41.2x y ⎧=⎪⎪⎨⎪=⎪⎩ 当x =0,y =0时,A ={1,0,0},B ={1,0,0}不符合集合中元素的互异性,舍去.∴x =2,y =2或14x =,12y =. (方法2)由A ⊆B ,且A ⊇B 知,A =B . ∴集合A 与B 中元素的和与积分别相等,即22121,121.x x y y x x y y ⎧++=++⎨⋅⋅=⋅⋅⎩ 解得0,0,x y =⎧⎨=⎩或2,2,x y =⎧⎨=⎩或1,41,2x y ⎧=⎪⎪⎨⎪=⎪⎩ 当x =0,y =0时,A ={1,0,0},B ={1,0,0}不符合集合中元素的互异性,舍去.∴x =2,y =2或14x =,12y =. 3.真子集(1)真子集的概念对于两个集合A 与B ,如果A ⊆B ,并且A ≠B ,我们就说集合A 是集合B 的真子集,记作A B (或B A ),读作“集合A 真包含于集合B (或集合B 真包含集合A )”.从符号的角度来看,则为对任意的x ∈A ,都有x ∈B ,但存在x 0∈B ,使得x 0∉A .例如:已知集合A ={a ,b },集合B ={a ,b ,c ,d },试判断集合A ,B 的关系.显然A ⊆B ,又因为B 中存在一个元素c ,使c ∉A ,所以AB . (2)真子集的Venn 图表示 如果集合A 是集合B 的真子集,则用Venn 图表示这两个集合的关系为:即把表示A 的区域画在表示B 的区域内,但区域A 不能与B 重合.(3)真子集的性质根据真子集的定义和Venn 图的表示方法可以得到以下性质:①任何一个集合A 都不是其自身的真子集.②规定:空集是任何非空集合的真子集,即若集合A ≠∅,则∅A .③对于集合A,B,C,如果A B,B C,则A C,即真子集具有传递性.这条性质可以推广到有限多个集合,即若A B,B C,C D,…,M N,则A N.下面仅对三个集合的情况进行证明.证明:设x是集合A中的任一元素,∵A B,∴x∈B,且B中至少有一个元素a,使得a∉A,又B C,∴x∈C,a∈C,且C中至少存在一个元素b,使得b∉B,∴x∈C,且C中至少有两个元素a,b,使得a∉A,b∉A,∴A C.【例3】设集合A={2,8,a},B={2,a2-3a+4},且A B,则a的值为__________.解析:因为A B,所以集合B中的元素都在集合A中,对照两个集合中的元素可得a2-3a+4=8或a2-3a+4=a.由a2-3a+4=8,得a=4或a=-1;由a2-3a+4=a,得a=2.经检验:当a=2时,集合A,B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a的值为-1或4.答案:-1或4警误区不可忽视元素的互异性此题易错点是忘记对a的值进行检验,忽视集合中元素的互异性.4.元素与集合、集合与集合之间关系的判断(1)元素与集合的关系是属于与不属于的关系;集合与集合之间的关系是包含与不包含的关系,在包含关系中又分真包含、相等两种情况.(2)符号“∈”和“⊆”的区别:符号“∈”只能适用于元素与集合之间,符号“∈”的左边只能写元素,右边只能写集合,说明左边的元素属于右边的集合,表示元素与集合之间的关系,如-1∈Z,2∈R;符号“⊆”只能适用于集合与集合之间,其左右两边都必须写集合,说明左边的集合是右边集合的子集,左边集合的元素均属于右边的集合,如{1}⊆{1,0},{x|x<2}⊆{x|x<3}.析规律如何判断两个集合间的基本关系判断两个集合间的关系时,主要是根据这两个集合中元素的特征,结合有关定义来判断.对于用列举法表示的集合,只需要观察其元素即可知道它们之间的关系;对于用描述法表示的集合,要从所含元素的特征来分析,分析之前可以多取几个元素来估计它们之间可能有什么关系,然后再加以证明.【例4-1】在以下六个写法中:①{0}∈{0,1};②∅{0};③{0,1,-1}⊆{-1,0,1};④0∈∅;⑤Z={全体整数};⑥{(0,0)}={0},错误写法的个数是().A.3B.4C.5D.6解析:①中是两个集合的关系,不能用“∈”;④∅表示空集,空集中无任何元素,所以应是0∉∅;⑤集合符号“{}”本身就表示全体之意,故此“全体”不应写;⑥等式左边集合的元素是平面直角坐标系的原点,而右边集合的元素是数零,故不相等.只有②和③正确,因为空集是任何非空集合的真子集,任何集合都是其本身的子集.答案:B【例4-2】判断下列集合之间的关系:(1)A={三角形},B={等腰三角形},C={等边三角形};(2)A={x|x2-x-2=0},B={x|-1≤x≤2},C={x|x2+4=4x};(3)A={x|1≤x≤1010},B={x|x=t2+1,t∈R},C={x|2x+1≥3};(4)1,24kA x x k⎧⎫==+∈⎨⎬⎩⎭Z,1,42kB x x k⎧⎫==+∈⎨⎬⎩⎭Z.分析:给出两个集合A与B,其关系有如下情况:A=B,A B,B A,A⊆B,B⊆A,A B,B A.因此判断两集合之间的关系时,要根据集合相等、真子集、子集、互不包含的定义,转化为分析它们所含元素的关系.解:(1)∵等腰三角形、等边三角形是两种特殊的三角形,而等边三角形又是特殊的等腰三角形,∴A B C.(2)∵A={-1,2},B={x|-1≤x≤2},C={2},∴C A B.(3)∵A={x|1≤x≤1010},B={x|x≥1},C={x|x≥1},∴A B=C.(4)∵21,4kA x x k⎧+⎫==∈⎨⎬⎩⎭Z,2,4kB x x k⎧+⎫==∈⎨⎬⎩⎭Z,而当k∈Z时,2k+1是奇数,k+2是整数,∴A B.5.集合子集个数的确定(1)当一个集合的元素个数很少时,可以直接写出它的全部子集,从而获取其子集的个数.例如:列举集合{1,2,3}的所有子集.在书写时可以按子集元素个数的多少分别写出所有子集(以一定顺序来写不易发生重复和遗漏现象).含有0个元素的子集有:∅;含有1个元素的子集有:{1},{2},{3};含有2个元素的子集有:{1,2},{1,3},{2,3};含有3个元素的子集有:{1,2,3}.所以集合{1,2,3}的所有子集的个数为8.(2)当一个集合中元素个数较多时,一一写出它的全部子集不太现实,对于其子集的个数有如下结论:①含有n个元素的集合有2n个子集.②含有n个元素的集合有2n-1个真子集.③含有n个元素的集合有2n-1个非空子集.④含有n个元素的集合有2n-2个非空真子集.例如:集合A={1,2,3}中含有3个元素,其子集的个数是23=8,真子集的个数是23-1=7,非空子集的个数是7,非空真子集的个数是6.解技巧求有限集合的子集步骤求有限集合的子集,首先明确有限集合的元素的个数,然后再套用相应的公式即可.【例5-1】集合A={x|0≤x<3且x∈N}的真子集的个数是().A.16 B.8 C.7 D.4解析:集合A用列举法可表示为{0,1,2},其含有3个元素,故A的真子集的个数是23-1=7.答案:C【例5-2】已知非空集合M⊆{1,2,3,4,5},且若a∈M,则6-a∈M,那么集合M的个数为().A.5 B.6 C.7 D.8解析:已知a∈M,6-a∈M,且∅M⊆{1,2,3,4,5},又∵当a=1时,6-a=5∈M;当a=2时,6-a=4∈M;当a=3时,6-a=3∈M;当a=4时,6-a=2∈M;当a=5时,6-a=1∈M,∴非空集合M可能是{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.答案:C【例5-3】已知集合M满足{1,2}⊆M⊆{1,2,3,4,5},则集合M的个数是________.解析:(方法1)由题意可知,集合M中至少含有元素1,2,至多含有元素1,2,3,4,5.故可按M中所含元素的个数分类写出集合M.当M中含有两个元素时,M为{1,2};当M中含有三个元素时,M为{1,2,3},{1,2,4},{1,2,5};当M中含有四个元素时,M为{1,2,3,4},{1,2,3,5},{1,2,4,5};当M中含有五个元素时,M为{1,2,3,4,5}.所以满足条件的集合M有{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.(方法2)由{1,2}⊆M⊆{1,2,3,4,5}知,集合M中一定含有元素1,2,而不一定含有元素3,4,5,所以问题可转化为求集合{3,4,5}的子集的个数,即23=8个.答案:86.已知两集合间的关系求参数的值已知两集合之间的关系求参数的值时,要明确集合中的元素,通常依据相关的定义,观察这两个集合元素的关系,进而转化为解方程或解不等式.这类问题常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时,常借助于数轴,利用数形结合来建立变量间的关系.需要特别说明的是有关等号能否取到的问题(界点问题),在解决具体问题时,一方面要注意端点是实心还是空心,另一方面可以将端点值代入检验.例如:已知集合A={x|1≤x<4},B={x|x<a}.若A B,求实数a的取值范围.我们可以先把集合A中的元素在数轴上表示出来,再根据两个集合之间的关系确定a,这样就能非常直观地看出实数a的取值范围是a≥4(如图所示).警误区忽视空集致错若B⊆A,则可分B=∅或B≠∅两种情况进行分类讨论,有时还会涉及对最高次项系数的讨论,对二次函数根的讨论等,在讨论中,B可能为∅易被忽视,要注意这一“陷阱”,时刻记住空集是任何集合的子集这一性质.【例6-1】已知集合A={x|-3<x<4},B={x|2m-1≤x≤m+1},且B⊆A,求实数m的取值范围.解:由B⊆A,将集合A,B分别表示在数轴上(如图所示).∵B⊆A,∴当B=∅时,m+1<2m-1,解得m>2;当B≠∅时,有321,211,14,mm mm-<-⎧⎪-≤+⎨⎪+<⎩解得-1<m≤2.综上可知,m的取值范围是{m|m>-1}.【例6-2】已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},求满足B⊆A 的a值组成的集合.分析:若B⊆A,则可分B=∅和B≠∅两种情况进行分类讨论,通过解方程或不等式求出参数a的取值范围.解:由已知得A={-2,4},B是关于x的一元二次方程x2+ax+a2-12=0(*)的解集.方程(*)的判别式Δ=a2-4(a2-12)=-3(a2-16).(1)若B=∅,则方程(*)没有实数根,即Δ<0,∴-3(a2-16)<0,解得a<-4或a>4.此时B⊆A.(2)若B≠∅,则B={-2}或{4}或{-2,4}.①若B={-2},则方程(*)有两个相等的实数根x=-2,∴(-2)2+(-2)a+a2-12=0,即a2-2a-8=0.解得a=4或a=-2.当a=4时,恰有Δ=0.当a=-2时,Δ>0,舍去.∴当a=4时,B⊆A.②若B={4},则方程(*)有两个相等的实数根x=4,∴42+4a+a2-12=0,解得a=-2,此时Δ>0,舍去.③若B={-2,4},则方程(*)有两个不相等的实数根x=-2或x=4,由①②知a=-2,此时Δ>0,-2与4恰是方程的两根,∴当a=-2时,B⊆A.综上所述,满足B⊆A的a值组成的集合是{a|a<-4或a=-2或a≥4}.7.判断两个集合相等的方法判断两个集合相等的方法有:(1)利用集合相等的定义,即两个集合中的元素是否完全相同来判断.①将两个集合中的元素一一列出比较;②看集合中的代表元素是否一致且代表元素满足的条件是否相同,若两者均一致,则可判断其相等.(2)利用集合相等的等价命题来证明,即A⊆B且B⊆A,则A=B.此法常适用于无限集,其关键是将集合中元素满足的条件作适当变形.【例7】集合A={x|x=2k-1,k∈Z},B={x|x=4k±1,k∈Z},试证A=B.证明:(1)任取x∈A,则x=2k-1,k∈Z,若k为偶数,则k=2m,m∈Z,此时x=4m-1,m∈Z,∴x∈B.若k为奇数,则k=2m-1,m∈Z,此时x=4m-3=4(m-1)+1,m-1∈Z,∴x∈B.综上所述,任取x∈A,均有x∈B,∴A⊆B.(2)任取y∈B,则y=4k±1,k∈Z.当y=4k+1时,y=2(2k)+1=2(2k+1)-1且2k+1∈Z.∴y∈A. 当y=4k-1时,y=2(2k)-1,2k∈Z,∴y∈A.综上所述,任取y∈B,均有y∈A,∴B⊆A.由(1)(2)知,A=B.。
高一数学讲义-集合间的基本关系
集合间的基本关系一、子集、空集等概念的教学:比较下面几个例子,试发现两个集合之间的关系:(1){1,2,3}A =,{1,2,3,4,5}B =;(2){}C =新华一中高一 班全体女生,{}D =新华一中高一 班全体学生;(3){|}E x x =是两条边相等的三角形,{}F x x =是等腰三角形1.子集的定义:对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:()A B B A ⊆⊇或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn 图表示两个集合间的“包含”关系:A B ⊆2. 集合相等定义:如果A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B 中的元素是一样的,因此集合A 与集合B 相等,即若A B B A ⊆⊆且,则A B =。
如(3)中的两集合E F =。
3. 真子集定义:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset )。
记作: A B (或B A )读作:A 真包含于B (或B 真包含A )4. 空集定义:不含有任何元素的集合称为空集(empty set ),记作:∅。
用适当的符号填空: ∅ {}0; 0 ∅; ∅ {}∅; {}0 {}∅重要结论:(1) 空集是任何集合的子集;(2) 空集是任何非空集合的真子集;(3) 任何一个集合是它本身的子集;(4) 对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。
说明:1. 注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;2. 在分析有关集合问题时,要注意空集的地位。
三、例题讲解:例1.若集合{}{}260,10,A x x x B x mx =+-==+= B A ,求m 的值。
1.1.2 集合间的基本关系
(3)空集是任何非空
集合的真子集。
BA
A为非空集合 ⫋ A
3.集合相等
示例2: A={ x|x是两边相等的三角形}, B={ x|x是等腰三角形},
有AB,BA
若AB,BA,则A=B.
集合之间的基本关系
BA
CB
AB
C BA
BC
传递性
AC
集合之间的基本关系
(3)对于集合A,B,C,如果 若A B且B C,则A C
作业:
1)完成课本P12A组5题, B组2题(书上), 2)完成1.1.2蓝皮+活页。
如果你有兴趣,请思考并查阅资料:
集合元素个数为n,则其子集个数为2n ,这是为什么?
传递性
例1.用适当的符号填空:
(1)若A {a,b,c},则a A,a ⫋ A;
(2){a,b,c} {b,c,a}; (3() 1,2) ({ 1,1)(, 2,1)}; (4)若A { x | x既是奇数又是偶数},则 A; (5)0 {0},{0} ⫌ ,0 , A .
例2、已知集合A={1,3,a},集合B={1,a2-a+1},
若B A,求实数a的取值范围。
分析:a2-a+1=3或a2-a+1=a。
易错点:注意用集合元素的互异性检验。
例3. (1)写出集合{a}的所有子集, 并指出其真子集; (2)写出集合{a, b}的所有子集, 并指出其真子集; (3)写出集合{a,b, c}的所有子集,并指出其真子集; (4)你能发现元素个数与子集数目之间的规律吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 集合之间的关系
【知识解读】
1、集合与集合之间的关系:
(1)子集:对于两个集合A 和B ,若集合A 中______元素都属于集合B ,那么集合A 叫做集
合B 的子集,记作_______(或B A ⊇),读作“___________”或“B 包含A ”。
如:每个整数都是有理数,就是说:整数集中Z 的每个元素都属于有理数集Q ,即Z Q ⊆,同理Q R ⊆,即N _____Z ______Q ______R ;
注意: 任何集合都是它自身集合的子集,如A_____A 。
(2)相等的集合:对于集合A 和B ,如果______且_______,那么叫做集合A 与集合B 相等。
记作A=B ,读作“集合A 等于集合B ”。
因此,如果两个集合所含的元素完全相同,那么这两个集合相等。
注意: 当A=B 时,A 一定是B 的子集,B 一定是A 的子集,即A=B ,A B B A ⇔⊆⊆。
(3)真子集:对于两个集合A ,B ,如果________,且B 中至少有一个元素不属于A ,那么
集合A 叫做集合B 的真子集,记作A ___ B 或(B _____A ),读作“A 真包于B ”或是“B 真包含A ”。
由真子集的定义可见,真子集是子集关系中的特殊关系。
如:对于数集N ,Z ,Q ,R 来说,有N _____ Z _______ Q _______ R ;
注意: 空集是任何集合的子集,空集是任何非空集合的真子集。
2、有关有限集的子集个数的结论:
若集合A 是含有n 个元素的有限集,则集合A 的子集共有____________个, 集合A 的非空子集有__________个,集合A 的非空真子集有_____________个;
【例题讲解】
例1、 确定实数,x y ,使{}{}2,7,4x x y +=。
例2、确定下列每组两个集合的包含关系或相等关系;
(1){|A n n =为12的正约数
}与}{1,3,2,4,6,12B =; (2)}{
*|2,C m m k k N ==∈与{|D m m =为4的正整数倍数}。
例3、设{}{}1,2,3,4,1,2A B ==,试写出集合C ,使C
A ,
B
C ⊆。
例4、(1)写出集合{}a 的所有子集;
(2)写出集合{},a b 的所有子集; (3)写出集合{},,a b c 的所有子集,进而猜想含有n 个元素的有限集的子集的个数.
例5、已知{}{}34211A x x B x m x m =-≤≤=-≤≤+,,若B A ⊆,求实数m 的取值范围。
※例6、若{}
{}2|320,|20A x x x B x mx =-+==-=,且B A ⊆,求m 的值。
【课后作业】
1、用适当符号,,,,∈∉⊆⊇=, 填空:
(1)t __{}t ; (2){}|10x x +<____{}
2|10x x +=; (3)Q ___R ;
(4)6___{|x x <; (5){10以内的质数}_____{}1,2,3,5,7。
2、集合{}0与空集φ之间的关系中正确的是:( )
A 、{0}φ=
B 、{}0φ∈
C 、φ{}0
D 、{}φ{}0;
3、集合{}1,2,3的所有子集是_________________________________________________。
4、设()3,|
12y A x y x -⎧⎫==⎨⎬-⎩⎭,(){},|1B x y y x ==+,则A 与B 的关系是_________。
5、已知{}
,a b {},,,A a b c d ⊆,写出所有符合条件的集合A 。
6、若{}{}|2,|A x x B x x a =≤=<,且A B ⊆,则a 的取值范围是___________;
7、设{}{}|12,|A x x B x x a
=-<≤=>满足A B ,则实数a 的取值范围是___________。
8、非空集{}1,3,7,9S ⊆满足:如果x S ∈,则10x S -∈,则符合条件的集合S 为_____________________________________________。
9、若{}1,,,{0,
,}b A a a b B b a =+=,且A B =,则b a -=___________。
10、集{}2|60,{|10}P x x x Q x kx =+-==+=,且满足Q P ,求实数k 的值。
*11、已知集合A 满足条件:若1a A a ∈≠,,则11A a
∈-. (1) 若2A ∈,则集合A 中是否还有其它元素?若没有,说明理由:若有,求出A 中所
有元素;
(2)集合A 是否有可能是只有一个真子集的集合?如果有可能,求出集合A ,如果不能,说明有理由;
*
12、已知非空集合S N *,并且满足条件“如果x S ∈,那么()8x S -∈”,
(1) 写出所有只含有一个元素的集合S ;
(2) 写出所有只含有两个元素的集合S ;
(3) 满足题设的集合S 共有集合?
【回顾反思】。