第一章系统的状态空间表达式

合集下载

控制系统的状态空间表达式

控制系统的状态空间表达式

第一章 控制系统的状态空间表达式Chapter 1 State space representation of control systems本章内容• 状态变量及状态空间表达式 • 状态空间表达式的模拟结构图 • 状态空间表达式的建立(1) • 状态空间表达式的建立(2) • 状态矢量的线性变换 • 由传递函数求状态方程• 由状态空间表达式求传递函数阵 • 离散系统的状态空间表达式• 时变系统和非线性系统的状态空间表达式系统的动态特性由状态变量构成的一阶微分方程组来描述,能同时给出系统全部独立变量的响应,因而能同时确定系统的全部内部运动状态。

1.1 状态变量及状态空间表达式1.1 State space representation of control systems 状态变量 (State variables)状态:表征系统运动的信息和行为状态变量:能完全表示系统运动状态的最小个数的一组变量x 1(t ), x 2(t ), …, x n (t ) 状态向量(State vectors)由状态变量构成的向量 x (t )T 123()(),(),()...()n x t x t x t x t x t =⎡⎤⎣⎦状态空间 (State space) • 以各状态变量x 1(t ),x 2(t ),…… x n (t )为坐标轴组的几维空间。

•状态轨迹:在特定时刻t ,状态向量可用状态空间的一个点来表示,随着时间的推移,x (t )将在状态空间描绘出一条轨迹线。

状态方程 (State equations)• 由系统的状态变量与输入变量之间的关系构成的一阶微分方程组。

例1.1 设有一质量弹簧阻尼系统。

试确定其状态变量和状态方程。

解:系统动态方程2()().()().()()()d yF t ky t f yt m dt my t f yt ky t F t ⎧--=⎪⎨⎪++=⎩ 设1()()y t x t =,2()()yt x t = 12()()............................................(1)1()()()()........(2)x t y t f k x t y t y t F t m m m =⎧⎪⎨=--+⎪⎩12212()()1()()()()xt x t k f x t x t x t F t m m m =⎧⎪⎨=--+⎪⎩1122010()()()1()()xt x t F t f k x t x t m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ = 状态方程的标准形式:()()()xt Ax t Bu t =+ (A :系统矩阵 B :输入矩阵) 输出方程 (O u t p u t e q u a t i o n )系统的输出量与状态变量之间的关系[]112()()()10 ()x t y t x t x t ⎡⎤==⎢⎥⎣⎦()()y t Cx t =(C:输出矩阵)状态方程和输出方程的总和即称为状态空间表达式。

现代控制理论(刘豹)第一章

现代控制理论(刘豹)第一章
第一章 控制系统的状态空间表达式
状态变量
状态向量
状态空间
状态方程
状态:表征 系统运动的信 息和行为 状态变量: 能完全表示系 统运动状态的 最小个数的一 组变量
由状态变量 构成的向量 x1(t) x2(t) : xn(t)
以各状态变量 x1(t),x2(t),…… xn(t)为坐标轴 组成的几维空 间。
S nY ( s ) + an −1S n −1Y ( s ) + ... + a0Y ( s ) = bm S mu ( s ) + ... + b0Y ( s )
(bm S m + bm −1S m −1 + ... + b0 ) Y ( s ) Z ( s ) G ( s) = Y ( s) / U ( s) = = ⋅ n n −1 ( S + an −1S + ... + a0 ) Z ( s) U ( s)
& x3 x3
x2 x1
机电工程系



习题2 习题
已知离散系统的差分方程为
y (k + 2) + 3 y (k + 1) + 2 y (k ) = 2u (k + 1) + 3u (k )
试求系统的状态空间表达式,并画出其模拟结构图。
解:假设初始条件为零,系统微分方程的 Z 变换为:
z 2Y ( z ) + 3 zY ( z ) + 2Y ( z ) = 2sU ( z ) + 3U ( z )
S n Z ( s ) + an −1S n −1Z ( s ) + ... + a0 Z ( s ) = U ( s ) Y ( s ) = bn −1S

现代控制理论知识点汇总

现代控制理论知识点汇总

1.状态空间表达式n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯:r n B ⨯:n m C ⨯:rm D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3.模拟结构图(积分器加法器比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4.状态空间表达式的建立1由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。

2由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。

实现是非唯一的。

方法:微分方程→系统函数→模拟结构图→状态空间表达式。

现代控制理论_制系统的状态空间表达式

现代控制理论_制系统的状态空间表达式

UC (s) U (s)
LCs2
1 RCs
1
传递函数
只反映外部情况,无法获知内部联系
定义状态变量
R +
u(t) i(t)
输入
_
x1(t) uc (t) x2 (t) i(t)
二阶微分方程,选择两个状态变量
状态向量
x(t) [x1(t), x2 (t)]T
定义输出变量
y(t) x1(t)
L +
如何选取内部信息?
•由控制任务决定: 不同的系统有 不同的控制任务。
•选取应全面,应覆盖所有的内部信息
•信息量恰到好处:“少一个不全,多一个多余”, 即线性无关。
1.1 状态变量及状态空间表达式 •状态:系统内部运动信息的集合
•系统状态为各元器 件的电压和电流 •状态变量:用变量来表示状态的话,能完全描述系统 运动状况的个数最小的一组变量即为状态变量。 •特性:线性无关、个数唯一、状态不唯一
第一章 控制系统的状态空间表达式
本章主要内容: • 状态变量及状态空间表达式 • 状态变量及状态空间表达式的系统结构图 • 状态变量及状态空间表达式的建立 • 状态矢量的线性变换 • 从状态空间表达式求传递函数阵
课程回顾
➢经典控制理论描述系统数学模型的方法: 外部描述:时域内为高阶微分方程、复频域内为输入-输 出关系的传递函数;
1 L
uc
(t)
R L
i(t)
1 L
u(t)
选 x1 uc , x2 uc,则得到一阶微分方程组:
即:
x1 x2
x2
1 LC
x1
R L
x2
1 LC
u
0 1 0
x

第一章 状态空间表达式(2013)

第一章 状态空间表达式(2013)

Y (s) bm s m bm1 s m1 b1 s b0 W ( s) n U ( s) s a n 1 s n 1 a1 s a 0
cm sm cm1sm1 c1s c0 W (s) ( s p1 )( s p2 ) ( s pn )
K1 T 1s 1
K2 T 2s 1
K3 T 3s 1
y
K4
3 状态空间表达式的建立 3.1 从系统方块图出发 变换成模拟结构图; 每个积分器的输出选作一个状态变量; 写出系统的状态方程和输出方程。
u +
K1 T 1s 1
+
K2 T 2s 1
K3 T 3s
y
K4
K1 T1 +
开环和闭环、反馈
控制的性能指标:稳定性、快速、精度。最优控制
控制理论概述
学控制理论做什么? 系统分析—分析系统的性能
系统设计—设计控制器
所谓系统分析就是在规定的条件下,对数学模型已 知系统的性能进行分析; 所谓系统设计,就是构造一个能够完成给定任务的系统, 这个系统具有希望的瞬态、稳态性能以及抗干扰性能。
f (s) f (t )e dt
0
f (s) sf (s) f (0)

传递函数:线性动态系统零初值条件下输出量的Laplace变 换像函数与输入量的Laplace变换像函数之比。 *线性系统:满足叠加和一致性, 如用线性方程或线性微分方程描述的系统 可以用于分解复杂系统 *定常系统:参数不随时间变化
J u i
x1 i
B

x2
R x1 L x K 2 a J
Kb 1 L x1 L u B x2 0 J

现代控制理论总结

现代控制理论总结

现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。

以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。

随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。

2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。

3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。

即无零,极点对消的传函的实现。

三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。

控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。

将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。

传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态和输入u作用下的状态运动x(t)分解为由初始状态和输入u分别单独作用所产生的运动和的叠加。

系统的状态空间表达式

系统的状态空间表达式
(1)系统输入量中不含导数项。此时系统微分方程的一般形式为
y(n)
a y(n1) n1
a y(n2) n2
a1 y
a0 y
0u
系统的状态空间表达式
1.2 状态空间表达式的建立
2. 根据系统微分方程建立
(2)系统输入量中含有导数项。此时系统微分方程的一般形式为
y(n)
a y(n1) n 1
a y(n2) n2
1.2 状态空间表达式的建立
2. 根据系统微分方程建立
展开后得 其中
x1 y 0u
x2
y
0u
1u
x3
y
0u
1u
2u
xn1
y(n2)
u(n2) 0
u(n3) 1
u n2
xn
y ( n 1)
u(n1) 0
u(n2) 1
u n1
0 bn
1
bn1
an10
2
bn2
an 1 1
因为矩阵 A,B,C,D 描述了状态空间表达式的全部内容,所以线性定常系统的状态
空间表达式也可表示为
(A,B ,C ,D)
此时系统的状态方程为
(A,B)
系统的状态空间表达式
1.2 状态空间表达式的建立
1. 根据系统机理建立
对于简单的线性定常系统,可根据系统的物理、化学机理,按照质量、能量和动量
系统的状态空间表达式
1.1 状态空间表达式的一般形式
状态变量 X 、输入变量 U、输出变量 Y 的维数分别为 n,r,m,则称n n 型矩阵 A 为
状态矩阵或系统矩阵,称 n r 型矩阵 B 为控制矩阵或输入矩阵,称 m n 型矩阵 C 为观测矩

第一章系统的状态空间表达式

第一章系统的状态空间表达式

L + uc(t) _
输出
+ y _
i(t)
_
例2求图示RLC回路的状态空间表达式
di Ri uc u dt du C c i dt L du c 1 i dt C di 1 R 1 uc i u dt L L L

x1 uc
x2 i
状态空间表达式为
1 0 1 0 x x 1 C 1 u x 2 1 R x2 L L L x1 y 1 0 x2
x1 y [0 1] x2
例 系统如图
图示由弹簧、质量体、阻尼器组成的机械动力学系统的物理模型。 试建立以外力u(t)为系统输入、质量体位移y(t)为输出的状态空 间模型。
解:设在外力u(t)作用于小车前,小车已处于平衡态。这 里仅考虑外力加入后对小车运动的影响。系统的受力情况如 下图所示。
由牛顿第二定律有:
d2y dy m 2 u f ky dt dt
选择状态变量:对机械动力学系统,常常将位移、速度等选作 状态变量。对本例,有
x1 t yt
状态变量代入,得:
(t ) x2 (t ) y
1 x2 x k f 1 x x x u 2 1 2 m m m
状态空间表达式状态变量图
D
u
B

×
x



x

C ×
y
A
状态空间表达式
(t ) Ax x (t ) Bu (t ) y(t ) Cx (t ) Du (t )
状态变量图的绘制步骤

现代控制理论第一章(吴忠强版)

现代控制理论第一章(吴忠强版)
现代控制理论
吴忠强


第一章 控制系统的状态空间表达式 第二章 控制系统状态空间表达式的解 第三章 线性控制系统的能控性与能观性 第四章 控制系统的李亚普诺夫稳定性 第五章 线性定常系统的综合 第六章 最优控制系统设计 参考文献
内容简介

本书系统的介绍了现代控制理论的 基本内容,包括控制系统的状态空间描 述、运动分析与离散化、李亚普诺夫稳 定性分析、能控性与能观性、状态反馈 与状态观测器、最优控制系统设计。每 章配有一定的例题和习题.
b11 b 21 B bn1
b12 b 22 bn 2

b1 r b2 r b nr
y1 y2 y ym
——m维输出矢量;
—— n r 输入(或控制)矩阵;
c 11 c 12 c 21 c 22 C c m1 c m 2
1
式(1-3)就是图1-1系统的输出方程,它的矩阵表示为
y 1
T
0
x1 x2

y C x
T
y c x
T
(1-4)
式中
c
1
0
六、状态空间表达式
l 状态方程和输出方程总合起来,构成对一个系统完整的动态 描述,称为系统的状态空间表达式, 在经典控制理论中,用指定某个输出量的高阶微分方程来描 述系统的动态过程。如图1-1所示的系统,在以 uc 作输出时, 从式(1-1)消去中间变量i ,得到二阶微分方程为
回到式(1-5)或式(1-6)的二阶系统,若改选 u C 和 u c 作为 两个状态变量,即令 x 1 u C ,
x2 uc

第一章控制系统的状态空间表达式

第一章控制系统的状态空间表达式

K1
(S
1)3
1 S(S 1)3
S1
1
K2
d
ds
(S
1)3
1 S(S 1)3
S 1
1
K3
1 d2
2!
ds
2
( S
1)3
1 S( S 1)3
S 1
1
K4
S
S(
1 S 1)3
S 0
1
因此,
F(s)
(S
1 1)3
(S
1 1)2
1 S 1
1 S
查拉普拉斯关系对照表,得:
比例环节的传递函数为: G(s) C(s) K
R(s)
作比例环节的阶跃响应曲线图
R(t)
X0
0
C(t)
t
KX0
0
t
图2-10 比例环节的阶跃响应曲线
2、积分(Integral)环节
积分环节的微分方程为: c(t) 1
t
r(t)dt
Ti 0
式中,Ti—积分时间。
积分环节的传递函数为
G(s) C(s) 1 R(s) TiS
fr
式中fr—阀门局部阻力系数。
动态数学模型
▪ 动态
----运动中的自动调节系统(或环节),当输入 信号和输出信号随时间变化时,称系统(或 环节)处于不平衡状态或动态。
▪ 动态数学模型(动态特性)---在不平衡状态时,输出信 号和引起它变化的输入信号之间的关 系,称为系统(或环节)的动态特性。
1.数学模型的建立
例2 求的反变换
※解:
F(s)
S2
S
3 2S
2
F(s)
S 3

现代控制理论课后习题及答案

现代控制理论课后习题及答案

《现代控制理论》课后习题及答案第一章控制系统的状态空间表达式1-1.试求图1-1系统的模拟结构图,并建立其状态空间表达式。

图1-27系统方块结构图图1-1 系统结构方块图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图图1-2 双输入—双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••6543211654321111111126543210000010000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2.有电路如图1-3所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

U图1-28 电路图图1-3 电路图解:由图,令32211,,x u x i x i c===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。

第一章-状态空间表达式

第一章-状态空间表达式

现代控制理论Model Control Theory前言1.胚胎萌芽期(1945年以前)•十八世纪以后,蒸汽机的使用提出了调速稳定等问题1765年俄国人波尔祖诺夫发明了锅炉水位调节器1784年英国人瓦特发明了调速器,蒸汽机离心式调速器1877年产生了劳斯稳定判据•十九世纪前半叶,动力使用了发电机、电动机促进了水利、水电站的遥控和程控的发展以及电压、电流的自动调节技术的发展•十九世纪末,二十世纪初,使用内燃机促进了飞机、汽车、船舶、机器制造业和石油工业的发展,产生了伺服控制和过程控制•二十世纪初第二次世界大战,军事工业发展很快飞机、雷达、火炮上的伺服机构,总结了自动调节技术及反馈放大器技术,搭起了经典控制理论的架子,但还没有形成学科。

2.经典控制理论时期(1940-1960)1945年美国贝尔实验室的Bode和Nyqusit提出频率响应法,奠定了控制理论的基础。

美国MIT的N. Wiener在研究随机过程的预测问题中,提出Wiener滤波理论.50年代趋于成熟.主要内容对单输入单输出系统进行分析,采用时域、频率法(频域)、根轨迹法(复数域)、相平面法、描述函数法;讨论系统稳定性的代数和几何判据以及校正网络等。

面临的挑战:被控对象日益复杂化、控制性能要求不断提高。

wiener3.现代控制理论时期(50年代末-60年代初)空间技术的发展提出了许多复杂控制问题,用于导弹、人造卫星和宇宙飞船上。

取得的成就1:1957年发射人造地球卫星;2:工业机器人产品;3:1961年载人航天;4:1969年登月;4.大系统和智能控制时期(70年代)各学科相互渗透,要分析的系统越来越大,越来越复杂。

例如:人工智能、模拟人的人脑功能、机器人等。

应用举例本课程内容•状态空间模型;•基于状态空间模型的系统分析(Analysis):运动分析、能控性、能观性、稳定性•基于状态空间模型的系统综合(Synthesis):极点配置、控制器设计、观测器设计、最优控制器设计。

天津大学 现代控制理论课件 第1章 控制系统的状态空间表达式

天津大学 现代控制理论课件 第1章 控制系统的状态空间表达式

例题 1.1 【解答】 1 选择状态变量
图1.1-1 R-L-C电路
状态变量个数:独立储能元件个数。所以选择电容C两 端电压,和流经电感L的电流。
状态:x1 (t ) = uC , x2 (t ) = iL = i, 输入:u (t ), 输出:y (t ) = uC = x1
1.1 状态变量及状态空间表达式
& x(t ) = Ax(t ) + Bu (t ) y (t ) = Cx(t ) + Du (t )
(2)MIMO
L a1n b11 b12 L L a2 n , B = b21 b22 L M O M M O L ann bn1 bn 2 L u1 y1 c11 c12 L c1n d11 y u c d c22 L c2 n 2 2 21 , D = 21 u= ,y= ,C = M M M M M O M cm1 cm 2 L cmn d m1 u r ym
1.1 状态变量及状态空间表达式
1 状态
描述一个系统得过去、现在和将来的状况
2 状态变量
足以表征系统运动状态的最小个数的一组变量 为状态变量 例如微分方程:
& & y ( n ) + a1 y ( n−1) + L + an−1 y + an y = bou ( n ) + b1u ( n−1) + L + bn−1u + bnu (1.1 − 1)
注1.1-1:一个用n阶微分方程描述的系统,有n个独立变量,当这n 个独立变量的时间响应都求得时,系统的运动也就被揭示无遗。 注1.1-2:状态变量的个数等于系统独立储能元件的个数。

现代控制理论状态空间表达式

现代控制理论状态空间表达式

《现代控制理论》MOOC课程第一章控制系统的状态空间表达式第一章控制系统的状态空间表达式状态空间变量及状态空间表达式状态空间表达式的建立状态向量的线性变换从状态空间表达式求传递函数组合系统的状态空间表达式离散系统、时变系统和非线性系统的状态空间表达式经典控制理论:数学模型:传递函数)()()(s U s Y s G =uy∑G(s)传递函数的定义线性定常系统的传递函数是指在初始状态为零的条件下,系统输出变量的拉氏变换与输入变量的拉氏变换之比。

G(s)=Y(s)U(s)经典控制理论:数学模型:传递函数)()()(s U s Y s G =uy∑G(s)现代控制理论:Xuy∑数学模型:状态空间表达式《现代控制理论》MOOC课程1.1 状态空间变量及状态空间表达式一. 状态变量足以完全表征系统运动状态的最少个数的一组变量,称为状态变量。

完全表征) (t u1R1L2R2LC)(1ti)(2ti-)(tu c+)(),(),(210ctutiti)(tu已知:确定系统在任何t≥t0时间的动态行为。

只要给定状态变量的初值x(t0)以及t≥t0时刻的输入u(t),就能够完全一. 状态变量最小性而增加变量的个数则是完全表征系统动态行为所不需要的。

) (t u1R1L2R2LC)(1ti)(2ti-)(tu c+)(c tidttduti c)(C)(c=体现在减少变量个数就不能够完全表征系统的动态行为,)(),(),(21tutiti c关于状态变量的几点说明状态变量是相互独立的。

对于一个实际的物理系统,状态变量个数等于系统中独立储能元件的个数。

不能多,也不能少。

对同一个动态系统,状态变量的选取不是唯一的,但状态变量的个数是唯一确定的,) (t u1R1L2R2LC)(1ti)(2ti-)(tu c+)(),(),(21tutiti c状态变量1:)(),(),(21tititi c状态变量2:二. 状态向量由系统状态变量构成的向量,称为系统的状态向量。

第1章控制系统的状态空间表达式

第1章控制系统的状态空间表达式
●状态方程用于描述系统输入引起系统状态变化的动态过程 。

u
X
y
●状态方程的一般形式为:
x Ax Bu
§1-1 状态空间变量及状态空间表达式
五. 输出方程
在指定系统输出y 的情况下,输出y 与状态变量x 及系统输入u 的
函数关系式,称为系统的输出方程 。
●系统的状态和输入决定了系统输出的变化 。
2.根据给定的数学模型,画出相应的加法器和比例器。
3.用箭头将这些元件连接起来。
§1-2 状态空间表达式的模拟结构图
二. 绘制状态空间模拟结构图的例子
例1 一阶标量微分方程x: ax bu
u
b+
x x
+
a
§1-2 状态空间表达式的模拟结构图
二. 绘制状态空间模拟结构图的例子
例2 三阶微分方程 : x a2 x a1x a0 x bu
值以及t≥t0时间的输入,就完全能够确定系统在任何t≥t0时间的动态行 为;
●状态变量的最小性,体现在减少变量个数就不能够完全表征系统的动态
行为,而增加变量数则是完全表征系统动态行为所不需要的。
●状态变量在数学上是线性无关的。
●状态变量的选取不是唯一的。
●对于一个实际的物理系统,状态变量个数等于系统独立储能元件的个数。
Kn
J2 x2
x1
Kb
x2
x1
§1-3 状态空间表达式的建立(一)
由以上方框图可知:x1 x2

x2

J2 Kb
x4
x3 K n x4

状态方程:
x4
1 J1
x3

Kp J1

第一章 控制系统的状态空间表达式

第一章   控制系统的状态空间表达式
2013-8-21
1 0 C , b C 1 L L
16
六、输出方程
在指定系统输出的情况下,该输出与状态变量间的函数关系式, 称为系统的输出方程。 输出一般用y表示。
在RLC网络中,指定x1=uc作为输出,则有: y=uc
这就是该系统的输出方程。
1 矩阵表示式为: y x1 0 x2
2013-8-21
26
离散系统的状态空间描述中,状态方程为差分方程,输出方程为 离散时间变换方程:
x(k 1) G (k )x(k ) H(k )u(k ) y (k ) c(k )x(k ) D(k )u(k )
2013-8-21
27
四、确定性系统和随机系统
确定性系统:指系统的特性和参数是按确定的规律而变化的,且 各个输入变量(包括控制和扰动)也是按确定的规律而变化的。
x f ( x, u) y g ( x, u)
x Ax Bu y Cx Du
2013-8-21
25
三、连续系统和离散系统
连续系统的一个基本特点是,不管是作用于系统的变量,还是 表征系统形态的变量,都是时间t的连续变量过程。 当系统的各个变量取值于离散的时刻时,为离散时间系统。 离散系统是一类实际的离散时间问题的数学模型,如许多社会 经济问题、生态问题等; 或是一个连续系统因为采用数字计算机进行计算或控制的需要 而人为地加以时间离散化而导出的模型。
• tt0时的输入电压u(t)
则:
tt0时的状态可完全确定
因此,i(t)、uc(t)是这个系统的一组状态变量。
2013-8-21
11
状态变量:
动力学系统的状态变量是指能完整地、确定地描述系统的时域 行为的最小一组变量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性系统状态空间表达式
f ( x , x ,, x , u , u ,, u , t ) x 1 2 n 1 2 m y g ( x1 , x2 ,, xn , u1 , u2 ,, um 统状态空间表达式
x f ( x1, x2 ,, xn , u1, u2 ,, um , t ) y g ( x1 , x2 ,, xn , u1 , u2 ,, um , t ) (t ) A(t ) x x (t ) B(t )u (t ) y(t ) C (t ) x (t ) D(t )u (t )
状态空间表达式为
1 0 x k x 2 m
1 x 0 b 1 1 u x2 m m x1 y 1 0 x2
系统的外部描述 系统输入-输出描述 从系统“黑箱”的输 入-输出因果关系中 获悉系统特性 传递函数描述属系统 的外部描述 系统的内部描述 系统的完全描述 完整地表征了系统的 动力学特征 状态空间表达式属系 统的内部描述
基本概念


状态变量:足以完全表征系统运动状态的最小个数的一组变量称 为状态变量 状态向量(矢量):如果n个状态变量用x1(t)、x2(t)、…、xn(t)表 示,并把这些状态变量看作是矢量的分量,则就称为状态向量 (简称状态)。记作: x [ x1 (t ), x2 (t ),, xn (t )]T , t t0
基本概念

状态方程:系统状态方程描述的结构图如下图所示
输入引起状态的变化是一个动态过程,每个状态变量的一阶导与 所有状态变量和输入变量的数学方程称为状态方程。非线性系统 状态方程为
f ( x , x ,, x , u , u ,, u , t ) x 1 2 n 1 2 m
x(t ) A(t ) x(t ) B(t )u (t )
1896
1920
1987
2006
第1章 控制系统的 状态空间表达式
本章内容


状态变量和状态空间表达式 化输入-输出方程为状态空间表达式 状态方程的对角线和约旦标准型(状态向量的 线性变换) 由状态空间表达式导出传递函数阵 离散时间系统的状态空间表达式 时变系统的状态空间表达式
状态变量和状态空间表达式
离散系统状态空间表达式
x(k 1) G(k ) x(k ) H (k )u (k ) y (k ) C (k ) x(k ) D(k )u (k )
x(k 1) Gx(k ) Hu(k ) y(k ) Cx(k ) Du(k )
建立状态方程的步骤
①选择状态变量
系统的分类


线性系统和非线性系统 时变系统和时不变系统(定常系统) 连续系统和离散系统 确定性系统和随机系统
线性系统和非线性系统
线性系统状态空间表达式
x(t ) A(t ) x(t ) B(t )u (t )
y(t ) C (t ) x (t ) D(t )u (t )
连续系统和离散系统
连续系统状态空间表达式
x f ( x1, x2 ,, xn , u1, u2 ,, um ) y g ( x1 , x2 ,, xn , u1 , u2 ,, um ) (t ) Ax x (t ) Bu (t ) y(t ) Cx (t ) Du (t )
状态空间:状态向量取值的空间,即以状态变量 x1 、x2、…、xn 为坐标轴所构成的n维空间称为状态空间

状态变量的个数与选择



n阶微分方程描述的系统,有n个独立的状态变量。 同一个系统状态变量的选择不唯一,但状态变量的个数总是相等, 通常选择容易测量的量。 例如: 机械和液压系统:流量、压力、速度、加速度、位移、力及它们 的导数等 电系统:电压、电流、电荷、磁通及它们的导数等 如果将储能元件的物理变量选为系统的状态变量,则状态变量的 个数等于系统中独立储能元件的个数
线性系统输出方程为

状态空间表达式:状态方程和输出方程合在一起,构成对一个系 统完整的动态描述,称为系统的状态空间表达式。线性系统状态 空间表达式可写成
x(t ) A(t ) x(t ) B(t )u (t ) y(t ) C (t ) x (t ) D(t )u (t )
定常系统状态空间表达式
x f ( x1, x2 ,, xn , u1, u2 ,, um ) y g ( x1 , x2 ,, xn , u1 , u2 ,, um ) (t ) Ax x (t ) Bu (t ) y(t ) Cx (t ) Du (t )
②根据物理或其它机理、定律列写运动微分方程
③化为状态变量的一阶微分方程组
④用向量矩阵形式表示
状态空间分析法举例一
例1求图示机械系统的状态空间表达式
u(t) m
K
by ky u(t ) m y 令 x1 y x2 y
y(t) b
得动态方程组 1 x2 x k b 1 x 2 y y u y m m m k b 1 x1 x2 u m m m y x 1
线性系统状态方程为
基本概念

输出方程:描述状态与输入一起引起输出的变化是一个代数方程 称为输出方程。非线性系统输出方程为
y g ( x1 , x2 ,, xn , u1 , u2 ,, um , t )
y(t ) C (t ) x (t ) D(t )u (t )
相关文档
最新文档