DynamicCausalModelling(DCM)forfMRI:动态因果模型DCM的功能磁共振成像
SPM官网
By members & collaborators of the Wellcome Trust Centre for Neuroimaging Introduction| Software | Documentation | Courses | Email list | Data |ExtensionsSPM Menu:Introduction Software Documentation Courses Email list Data setsExtensionsThis page:Introduction Getting started Latest news SPM in briefStatistical Parametric Mapping IntroductionStatistical Parametric Mapping refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional imaging data. These ideas have been instantiated in software that is called SPM.The SPM software package has been designed for the analysis of brain imaging data sequences. The sequences can be a series of images from different cohorts, or time-series from the same subject. The current release is designed for the analysis of fMRI,PET, SPECT, EEG and MEG.Getting StartedThe best starting point is to read the introductory article on SPM available here. You could then download the latest version of the software and a data set to analyse. Step-by-step instructions for this analysis are available in the SPM manual.If you're new to imaging, perhaps an epoch fMRI data set would be appropriate. The data sets are provided with instructions on how to use SPM to analyse them. These tutorials therefore give practical instructions on how to implement the various methodologies. Our methods have been written up in books, technical reports and journal papers which are available from our Online Bibliography. This groups documentation according to year, category, author and keyword.If you're looking for help on a particular topic you can find the relevant papers from the Online Bibliography. Alternatively, you can search the SPM pages using the search facility that appears at the bottom of every page. Also browse and search the SPM WikiBook and please feel free to edit it if you can. If you still can't find what you need, you could send an email to the SPM Email list, which gives you access to our community of experts.You should also be aware of the many courses on SPM. If there isn't one in your country this year then there's always the annual short course in London. Finally, once you've mastered SPM you can learn about the various extensions provided by experts in the wider community.Good luck !Latest newsSPM Course for M/EEG VideosJuly 2012: Videos recorded at the May 2012 SPM Course for M/EEG are now freely available online.SPM Course for fMRI/PET/VBM VideosNovember 2011: Videos recorded at the May 2011 SPM Course for fMRI/PET/VBM are now freely available online.SPM8 releasedApril 2009: SPM8 is a major update to the SPM software, containing substantial theoretical, algorithmic, structural and interface enhancements over previous versions (more info).New Book: Statistical Parametric Mapping: TheAnalysis of Functional Brain ImagesNovember 2006: This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography (more info).The SPM approach in briefThe Statistical Parametric Mapping approach is voxel based:∙Images are realigned, spatially normalised into a standard space, and smoothed.∙Parametric statistical models are assumed at each voxel, using the General Linear Model GLM to describe the data in terms of experimental and confounding effects, and residual variability.∙For fMRI the GLM is used in combination with a temporal convolution model.∙Classical statistical inference is used to test hypotheses that are expressed in terms of GLM parameters. This uses an image whose voxel values are statistics, a Statistic Image, or Statistical Parametric Map (SPM{t}, SPM{Z}, SPM{F})∙For such classical inferences, the multiple comparisons problem is addressed using continuous random field theory RFT, assuming the statistic image to be a good lattice representation of an underlying continuous stationary random field. This results in inference based on corrected p-values.∙Bayesian inference can be used in place of classical inference resulting in Posterior Probability Maps PPM s.For fMRI, analyses of effective connectivity can be implemented using Dynamic Causal Modelling DCM.Last modified $Date: 2013/06/24 19:14:39 $ by $Author: guillaume $ home | search | sitemapCopyright © 1991,1994-2013 FILT SoftwareIntroductionSPM is made freely available to the [neuro]imaging community, to promote collaboration and a common analysis scheme across laboratories. The software represents the implementation of the theoretical concepts of Statistical Parametric Mapping in a complete analysis package.The SPM software is a suite of MATLAB (The MathWorks, Inc) functions and subroutines with some externally compiled C routines.SPM was written to organise and interpret our functional neuroimaging data. The distributed version is the same as that we use ourselves.LicenceSPM is free but copyright software, distributed under the terms of the GNU General Public Licence as published by the Free Software Foundation (either version 2, as given in file spm_LICENCE.man, or at your option, any later version). Further details on "copyleft" can be found at /copyleft/. In particular, SPM is supplied as is. No formal support or maintenance is provided or implied.Beta version: SPM12bA beta version of SPM12, SPM12b, was released 21st December 2012 and is available for beta-testing. Please assist us by reporting bugs to <fil.spm@>.Current version: SPM8The current version is SPM8and was released inApril 2009. This provides a major update to theSPMsoftware, containing substantial theoretical,algorithmic, structural and interface enhancementsover previous versions.SPM8 uses the NIfTI-1 file format.Previous versionsWe still provide access to previous versions of SPM, but recommend you use the current version wherever possible.SPM5SPM5 was released in December 2005.SPM2SPM2 was released in 2003.SPM99SPM99was released in January 2000.SPM96 and earlier versions are no longer available.NITRCSPM is listed in the Neuroimaging Informatics Tools andResources Clearinghouse (NITRC ). See /projects/spm/. Funded by the NationalInstitutes of Health Blueprint for Neuroscience Research,NITRC facilitates finding and comparing neuroimagingresources for fMRI and related structural analyses.Last modified $Date: 2014/02/27 12:08:57 $ by $Author: guillaume $ home | search | sitemapCopyright © 1991,1994-2014 FILThe FIL Methods group <fil.spm@ >he FIL Methods group <fil.spm@ > Documentation IntroductionSPM is an academic software toolkit for the analysis of functional imaging data, for users familiar with the underlying statistical, mathematical and image processing concepts. It is essential to understand these underlying concepts in order to use the software effectively. A good starting point is the Introduction to SPM, by Karl Friston.Peer reviewed literatureThe primary reference for the theories underlying SPM are the academic papers in the peer reviewed literature. These are available via the Online Bibliography which organises books, papers and technical reports by year, category, author and keyword. An Annotated Bibliography provides a guide to the various papers.BooksThe book Statistical Parametric Mapping: The Analysis ofFunctional Brain Images (2007) provides the backgroundand methodology for the analysis of all types of brainimaging data, from functional magnetic resonanceimaging to magnetoencephalography. Critically,"Statistical Parametric Mapping"provides a widelyaccepted conceptual framework which allows treatmentof all these different modalities. The book takes thereader from the basic concepts underlying the analysis ofneuroimaging data to cutting edge approaches thatwould be difficult to find in any other source. The materialis presented in an incremental way so that the reader canunderstand the precedents for each new development.This book will be particularly useful to neuroscientistsengaged in any form of brain mapping; who have tocontend with the real-world problems of data analysisand understanding the techniques they are using. It isprimarily a scientific treatment and a didactic introductionto the analysis of brain imaging data. It can be used asboth a textbook for students and scientists starting to usethe techniques, as well as a reference for practicingneuroscientists.The book can be ordered online via Elsevier or, e.g., Amazon.Introductory articles are also provided in the earlier book Human Brain Function. PDFs of draft versions of book chapters are available online: ∙First Edition(1997)∙Second Edition(2003)ManualThere is an SPM8 manual distributed with the software (spm8/man/manual.pdf), which is written by the developers. Much of the manual's contents are also available via the SPM8 user-interface.The release notes accompanying SPM8 contain some useful information.The SPM5 distribution also contains a manual in (spm5/man/manual.pdf). There is no manual for SPM2, but the SPM99 manual is roughly applicable. Methods for DummiesEach year our department runs a series of methods talks by non-experts. Powerpoint versions are available for 2003, organised by Alexa Morcom, 2004, organised by Lucy Lee, 2005, orgainsed by Julia Hocking, 2006, organised by Davina Bristow and Marcus Gray,2007, organised by Justin Chumbley and Hanneke den Ouden,2008 organised by Maria Joao, Hanneke den Ouden and Justin Chumbley,2009organised by Antoinette Nicolle and Maria Joao,2010 organised by Christian Lambert, Suz Prejawa and Maria Joao, and 2011 organised by Rumana Chowdhury, Peter Smittenaar and Suz Prejawa. This years meetings are organised by Mona Gavert, Peter Smittenaar and Giles Story.Third party documentationThere is a SPM WikiBook, which is written and maintained by the international SPM community. The wiki allows users to read and edit the content for free. The end results will be mature, up-to-date and broad repositories for information on SPM. Please do take a look at the SPM wiki and feel free to contribute to it if you can.SPM WikiBooks/wiki/SPMBeginners guides & overviews of SPM :Cambridge Imaging Home Page (MRC Cognition and Brain Sciences Unit) /imagingHistoryThe SPM suite and associated theory was originally developed by Karl Friston for the routine statistical analysis of functional neuroimaging data from Positron Emission Tomography (PET), while at the Medical Research Council Cyclotron Unit. Now known as SPM classic, this software was made available to the emerging functional imaging community in 1991, to promote collaboration and a common analysis scheme across laboratories.SPM'94 was the first major revision of the SPM software. SPM'94 was written primarily by Karl Friston during the summer of 1994, with invaluable conceptual and technical help from John Ashburner, Jon Heather, Andrew Holmes and Jean-Baptiste Poline. SPM'95, SPM'96, SPM'99, SPM2, SPM5 and SPM8are based on SPM'94, and represent the ongoing theoretical advances and technical improvements.Tell me more about SPM history.Last modified $Date: 2013/01/22 11:55:27 $ by $Author: spm $home | search | sitemapCopyright © 1991,1994-2013 FILThe FIL Methods group <fil.spm@>SPM CoursesLondon, May & October 2014The FIL SPM course on using Statistical Parametric Mapping for neuroimaging is held each May and October as part of the Institute of Neurology's short course programme.Since 2010, we provide two separate SPM courses reflecting the different imaging modalities. There is a new three-day course on SPM for EEG/MEG followed by the long-established three-day course on SPM for fMRI/VBM/PET. Both courses are suitable for beginners and more advanced users. We advise students to gain at least some minimal familiarity with the methodology, for example, from reading introductory articles available from the SPM web pageor by following data analysis examples in the SPM manual.The next SPM courses in London will take place on 12-14 May 2014 (MEG/EEG) and 15-17 May 2014 (MRI/VBM/fMRI).The courses are organised through the Institute of Neurology(contact: Miss Jean Reynolds at the IoN to register).Externally organised SPM coursesOther SPM courses are organised around the world at different times of year and in different languages. If you do organise one, please let us know so that it can be listed here.Lausanne SPM Course, Switzerland, 22-25 April 2014This 6th edition of the Lausanne SPM course will focus on how to conduct neuroimaging studies using structural and functional MRI data within the framework of Statistical Parametric Mapping (SPM). This 4 days course is divided into two modules with theoretical and practical sessions covering all aspects of imaging data analysis from spatial pre-processing to statistical inference and reporting results. The course is suitable both for beginners and for those with previous experience of SPM.http://www3.unil.ch/wpmu/lren-spm/Zurich SPM course, Switzerland, 2015This three-day course, which is held annually since 2007, offers a comprehensive coverage of all MRI-related aspects of SPM./spm-course-2014/Course material for 2008, 2009, 2010, 2011, 2012, 2013, 2014Hannover SPM course, Germany, 3-4 November 2014The 7th SPM workshop for Beginners in Hannover, Germany, will be held on November 03. and 04. 2014. (teaching language: german)More information and program:http://www.spmworkshop-hannover.de/SPM Workshops at the Martinos Center, Boston, Massachusetts, USA: /martinos/training/fMRI-Extension/SPM8.phpMRN fMRI Image Acquisition and Analyses Course, University of Colorado, Boulder, USA:/courses/Slides of previous coursesThe latest course material are from 2013 (fMRI/VBM) and 2013 (MEEG).Archive:2002, 2003, 2004, 2005, 2005 (USA), 2006, 2007, 2008 (May), 2008 (October), 2009 (May), 2009 (October), 2009 (MEEG), 2010 (fMRI), 2010 (MEEG), 2010 (Vancouver), 2010 (October), 2011 (Brussels)May 2011 (fMRI), May 2011 (MEEG), Oct 2011 (fMRI), 2012 (MEEG, Lyon), May 2012 (fMRI/VBM), 2012 (MEEG), Oct 2012 (fMRI/VBM), May 2013 (fMRI/VBM).These can be viewed using the Microsoft PowerPoint Viewer for Windows or the multi-platform Open Office.RecordingsOnline videos are now available, recorded at the May 2011 SPM for fMRI/PET/VBM course and at the May 2012 SPM for MEG/EEG course. Higher quality versions of the videos can be obtained on a DVD available for purchase.Last modified $Date: 2014/02/26 16:06:03 $ by $Author: guillaume $ home | search | sitemapCopyright © 1991,1994-2014 FILThe FIL Methods group <fil.spm@>Discussion ListIntroductionThe SPM discussion list is an electronic mailing list for discussion and help with the methodology, implementation and use of Statistical Parametric Mapping and the SPM package. The list is not moderated, but is monitoredand owned by members of the Wellcome Trust Centre for Neuroimaging. Much of the approach and use of SPM is described in the documentation. Subscribers are urged to consult these sources, and any local expertise, before using the discussion list as a helpline. A response from one of the SPM authors cannot be guaranteed, due to resource limitations. Experienced list members are therefore encouraged to address issues within their experience, posting their responses & discussion to the list for general enlightenment.Searching archives∙Archives of SPM messages.∙Search SPMarchives.SubscriptionThe list is run at the UK's automated JISCmail service.To subscribe or unsubscribe to the SPM list:Enter your details at /cgi-bin/webadmin?SUBED1=spm&A=1To send a message to all the people currently subscribed to the SPM list: Just send a mail to <spm@> after subscription.If you have difficulties, then have a look to the frequently asked questions about JISCmail or email the list owner at <fil.spm@>, for assistance. Last modified $Date: 2013/01/22 11:55:31 $ by $Author: spm $home | search | sitemapCopyright © 1991,1994-2013 FILThe FIL Methods group <fil.spm@>Data sets and tutorialsIntroductionThe following data sets are being made available for training and personal education and evaluation purposes. Those wishing to use these data for other purposes, including illustrations or evaluations of methods, should contact the Methods group at the Wellcome Trust Centre for Neuroimaging.A set of instructions showing how SPM can be used to analyse each data set are also provided. These tutorials show how one can use SPM to implement analyses of PET data, epoch or event-related fMRI data, and data from a group of subjects using Random effects analyses (RFX). They also cover more advanced topics such as Psychophysiological Interactions (PPI s) and Dynamic Causal Modelling (DCM).fMRI: epochThe instructions accompanying these data sets show you how to implement a block-design fMRI analysis in SPM. They are both single-subject or 'first-level' analyses.∙Auditory - single subject∙Attention to Visual Motion - single subjectThe instructions accompanying the Attention to Visual Motion data also show you how to use SPM to implement, for example, Psychophysiological Interactions (PPI s) and Dynamic Causal Modelling (DCM).fMRI: event-relatedThe instructions accompanying these data sets show you how to use SPM to analyse data for an event-related fMRI experiment. This includes, for example, selection of different temporal basis sets. They are both single-subject or 'first-level' analyses.∙Repetition primingfMRI: multi-subject (random effects) analyses These data sets comprise contrast images from single-subject fMRI analyses or 'first-level' analyses from the repetition priming experiment described here.In the summary statistic approach to Random Effects Analysis (RFX) these contrast images are then used in a 'second-level' analysis allowing you to make inferences about the population from which the subjects were drawn.∙fMRI: multi-subject (random effects) analysesfMRI: Bayesian comparison of DCMsDynamic Causal Models from an event related fMRI study of the language system are available here∙fMRI: Bayesian comparison of DCMsEEG Single Subject Mismatch Negativity datasetThis is an 128-channel EEG single subject example data set which is used for demonstrating the usage of scripts in M/EEG pre-processing and DCM for evoked responses.Anaesthesia Depth in Rodent DataThis 2-channel Local Field Potential (LFPs) dataset demonstrates the use of DCM for Cross Spectral Densities.Multi-modal facesThis archive contains EEG, MEG and fMRI data on the same subject within the same paradigm.It can be used to examine how various measures of face perception, such as the "N170" ERP (EEG), the "M170" ERF (MEG) and fusiform activation (fMRI), are related. For example, the localisation of the generator(s) of the N170 and/or M170 can be constrained by the fMRI activations.It also includes a high resolution anatomical MRI image (aMRI) for construction of a head-model for the EEG and MEG data, together with data from a Polhemus digitizer that can be used to coregister the EEG and MEG data with the aMRI.FieldMapHere are two example data sets that can be used to demonstrate the usage of the FieldMap toolbox.PETThe instructions accompanying these data sets show you how to use SPM to analyse PET data.∙Verbal fluency - multiple subjects∙Motor activation - single subjectLast modified $Date: 2014/04/30 17:48:34 $ by $Author: guillaume $ home | search | sitemapCopyright © 1991,1994-2014 FILThe FIL Methods group <fil.spm@>SPM ExtensionsIntroductionMany SPM users have created tools for neuroimaging analyses that are based on SPM. You will find here a list of these tools classified between Toolboxes, Utilities, Batch Systems and Templates. The distinction between Toolboxes and Utilities can be blurry, but for the purposes of this page we define a toolbox to be a utility that can be completely operated via a graphical user interface.If you notice inaccuracies or out of date links, please email the SPM manager. Likewise, to have your SPM extension linked here, send an email including a URL, a contact email, and a brief summary (please note if any MATLABtoolboxes are required, or if it is platform-specific).The SPM Developers take no responsibility for the usability of the extensions listed here. In particular, some extensions may be mutually incompatible. Please contact the respective extension authors with questions and problems (though CC'ing answered questions to the Email list will be appreciated).Extensions compatible with SPM8, SPM5, SPM2, SPM99.The list of SPM extensions is also available as an RSS feed.Note: All email addresses in this page have their "@" replaced with "_at_" to minimize spam. Please reverse this change before emailing.Quick LinksToolboxes:AQuA | AAL | ACID | ALVIN | ArtRepair | AMAT | AnalyzeMovie | Anatomy | aslm | ASLtbx | at4fmri | aws4SPM | BrainNetViewer | BredeQuery | CCAfMRI | CLASS| Clinical| Complexity| conn| CPCA| DAiSS| DICOMCD_Import| Diffusion_II | Distance | DPARSF | DRIFTER | EMS | ExtractVals | FASL | FAST | FDR | FieldMap | fieldmap_undistort | FieldTrip | fMRIPower | fOSA | Grocer | HRF | HV | IBASPM | iBrainAT | iBrainLT | INRIAlign | IBZM_tool | ISAS | LI | LogTransform | MARINA | MarsBar | MASCOI | mfBox | Masking | Masks | MM | multifocal | NIRS-SPM | NS | Ortho | PSPM | REST | rfxplot | RobustWLS | SCRalyze| SDM| SimpleROIBuilder| SnPM| spm_wavelet| SPMd| SPMMouse| SSM| SUIT| SurfRend| TOM| UF2C| Unwarp2| Volumes| WBM | WSPM | WFU_PickAtlas | xjView | XMLToolsUtilities:AveLI| BrainMagix| Bruker2Analyze| CBMG-Tools| Design_Magic| dicom2nifti| DynPET| Easy_ROI| Easy_Volumes| FDRill| Fluctuation| fToolbelt| FAD| GA| GE2SPM| GIFT| JG| L2S| log_roi_batch| LMGS| Motion| mri_toolbox| MSU| Orth1| PCT| pvconv| r2agui| SEM| slice_overlay | TSDiffAna | TSU | iTT | VBMtools | VIS | visionToSPM | VoiTool Batch Utilities:aa| AutoSPET| BatchAAL| KULscripts| parallelize_matlabbatch| spm_segment | spm2-batch | spm2batch | spm2Batch | spmbatch | spmjob | X_batch | zephyrTemplates:Baboon| BrainDev_Atlas| Cerebellum| CCHMC_Pediatric| Macaca_Fascicularis| Macaca_Fascicularis_PET| Macaca_Mulatta| Macaca_Nemestrina | Rat | SPMtemplates | UNC_Pediatric | Zebra_FinchToolboxesAQuA SPM5Summary: AQuA is a tool that helps you in the assessment process for the quality of the acquired fMRI data, identifying images with movement and other artefacts, so that they do not compromise the experimental analysis. Author: Antonios Antoniou and Juan J. LullURL: http://www.ibime.upv.es/mi/AAL - Anatomical Automatic Labeling SPM99 SPM2 SPM5 SPM8Summary: Automated parcellation method, as described in Tzourio-Mazoyer et al. NI 2002.Author: CyceronURL: rs.fr/spip.php?article217ACID - Artefact correction in diffusion MRI SPM8 Summary: The Artefact correction in diffusion MRI (ACID) toolbox is an academic software toolkit for pre-processing of diffusion MRI data, estimation of DTI indices and normalisation of DTI index maps, which fully integrates into the batch system of SPM8.Author: Siawoosh MohammadiURL: /ALVIN - Automatic Lateral Ventricle delIneatioNSPM8Summary: Segmentation of the lateral ventricles validated in infants, adults and patients with Alzheimer's disease. Works with both T1 and T2 images. Author: Matthew KemptonURL: /site/mrilateralventricle/ArtRepair - Artifact Repair toolbox SPM2 SPM5 SPM8Summary: Special methods to improve the fMRI analysis of high motion pediatric and clinical subjects. The methods correct for large motions, and automatically detect and remove artifact noise in the data. Viewing tools allow quality checking at every step in the analysis.Author: Paul MazaikaURL:/tools/human-brain-project/artrepair-software.html AMAT: A meta-analysis toolbox SPM2Summary: AMAT is a matlab program which lets you search through the coordinates reported in lots of fMRI papers. It is designed to answer the frequently asked question: what the *?%! does that bit do?Author: Antonia HamiltonURL: /amat.htmlAnalyzeMovie - AVI movies from Analyze images SPM99Summary: Create AVI movies from Analyze images, of axial, coronal, sagittal or ortho slices. Requires Matlab6 or greater.Author: Robert WelshURL: /ni-stat/AnalyzeMovie.tarAnatomy - SPM Anatomy toolbox SPM99 SPM2 SPM5 SPM8Summary: This toolbox integrates probabilistic cytoarchitectonic maps derived from human post-mortem studies into the SPM environment and provides a wide range of different approaches to analyse structure / function correlations.Author: Simon EickhoffURL:http://www.fz-juelich.de/inm/inm-1/DE/Forschung/_docs/SPMAnatomyToolbox /SPMAnatomyToolbox_node.htmlaslm - a slightly modified asl-module SPM8 Summary: aslm is an object orientated toolbox for common tasks associated with the analysis of arterial spin labeling (ASL) and other MRI data.Author: Philipp HomanURL: ASLtbx SPM2 SPM5 SPM8Summary: ASLtbx is a Matlab and SPM based toolkit for processing arterial spin labeling (ASL) perfusion MRI data. It's basically a collection of a bunch of batch scripts. I'm currently only distributing the SPM5-based version, but the SPM2(or 8)-based version can be obtained through email. The function for quantifying cerebral blood flow should be SPM independent except the image reading and writing functions from SPM.Author: Ze WangURL: /~zewang/ASLtbx.phpat4fmri - adaptive thresholding of fMRI maps SPM8 Summary: Allow to obtain a threshold for cluster FDR - the method fits a Gamma-Gaussian mixture model to the SPM-T and finds the optimal threshold(crossing between noise and activation). Optionally write the thresholded maps.Author: Chris Filo Gorgolewski and Cyril PernetURL: /projects/at-4-fmri/aws4SPM SPM2 SPM5 SPM8Summary: Structural adaptive smoothing fMRI data as described in Tabelow et al. NI (2006).Author: Devy Hoffmann and Karsten TabelowURL: http://www.wias-berlin.de/software/aws4SPM/BrainNet ViewerSummary: BrainNet Viewer is a brain network visualization tool, which can help researchers to visualize structural and functional connectivity patterns from different levels in a quick, easy, and flexible way.Author: Mingrui XiaURL: /projects/bnv/BredeQuery SPM5Summary: BredeQuery plugin for SPM5 - enables coordinate-based meta-analytic search of related literature for brain regions directly from SPM5 environment. The coordinate-based search is performed using Finn Aarup Nielsen's Brede Database. Works with coordinates in Talairach and MNI space, MNI-to-Talairach transformations are available (Brett and Lancaster transformations). Moreover, query results can be exported automatically to the suitable bibliographic file format (BibTeX, Reference Manager, RefWorks, EndNote).Author: Bartlomiej WilkowskiURL: http://neuro.imm.dtu.dk/wiki/BredeQueryCCA-fMRI SPM2 SPM5Summary: The CCA-fMRI utilizes canonical correlation analysis in combination with the Balloon model and adaptive filtering of fMRI data to detect areas of brain activation. The CCA-fMRI toolbox provides its own user interface and can also be used as stand alone scripts, e.g. for batch processing.Author: Magnus BorgaURL: /CLASS - Classifier Learning for Asymmetrically Small Samples SPM8Summary: Multivariate kernel-based pattern classification using support vector machines (SVM) with a novel modification to obtain more balanced sensitivity and specificity on unbalanced data-sets (i.e. those with very different numbers of cases in each group).Author: Ged RidgwayURL: Contact email aboveClinical Toolbox SPM8Summary: Aids normalization of clinical scans, providing an easy way to include lesion cost function masking. Allows unified segmentation-normalization (USN) or traditional normalization. Includes custom age adjusted templates for CT/CAT scans and USN. Includes FLAIR template provided by the Glahn group.Author: Rorden, Bonilha, Fridriksson, Bender and KarnathURL: /CRNL/clinical-toolbox Complexity SPM8Summary: Complexity is a toolkit used to analyze the complexity of resting state fMRI (rs-fMRI) data. Pre-processing module is included to realize low pass filtering and linear detrending. Five methods, Approximate Entropy, Sample Entropy, Cross Approximate Entropy, Multiscale Sample Entropy and Wavelet MSE, are available to calculate the entropy. Matlab toolbox, "Tools for NIfTI and ANALYZE image", is needed.。
fmri技术的原理及应用
fmri技术的原理及应用1. 引言功能性磁共振成像(functional magnetic resonance imaging,以下简称fmri)是一种非侵入性的神经影像学方法,用于研究大脑在特定任务中的功能活动。
本文将介绍fmri技术的原理以及其在神经科学研究和临床应用中的重要性。
2. 原理fmri基于血液供应和代谢的相关性,通过测量血液中氧气含量变化来推断大脑活动的区域和程度。
具体而言,fmri利用磁共振成像(magnetic resonance imaging,MRI)技术,测量血氧水平依赖(blood oxygenation level dependent,BOLD)信号来间接反映神经元的活动。
当神经元活跃时,细胞对氧气的需求增加,导致血液流动增加,血液中含氧量增加。
这种激活效应通过fmri技术可被探测到,并转化为图像显示。
3. 应用领域fmri技术在神经科学研究和临床应用中具有广泛的应用价值。
以下是一些主要的应用领域:• 3.1 认知神经科学fmri可以帮助研究者了解不同认知过程中的大脑活动模式。
通过比较在特定任务下不同个体或者不同条件下的fmri图像,研究者可以揭示大脑的功能连接及其变化,进一步研究记忆、学习、决策等认知过程。
• 3.2 精神疾病研究fmri技术在研究精神疾病中的应用发挥着重要作用。
例如,研究者可以通过比较患者与健康对照组的fmri数据,来发现精神疾病患者的大脑活动模式的差异,有助于理解疾病的发生机制,并为临床诊断和治疗提供参考。
• 3.3 神经反馈训练fmri技术还可以应用于神经反馈训练,通过让个体观察自身大脑活动的实时变化,在训练过程中调节注意力和自我调节能力。
这种技术可以被用于焦虑症、注意力缺陷多动障碍等疾病的治疗。
• 3.4 意识状态评估在一些疑似昏迷或意识障碍的患者中,fmri技术可以帮助评估其意识状态。
通过分析患者的fmri数据,研究者可以了解患者的脑活动是否存在与自发意识相关的特征,以辅助临床决策。
基于SPM2动态因果模型操作练习
2 Categories of Functional integration analysis
Functional connectivity
= the temporal correlation between spatially remote areas
MODEL-FREE
PPI
Effective connectivity
•The modelled neuronal dynamics (z) are transformed into area-specific BOLD signals (y) by a hemodynamic forward model (λ).
The aim of DCM is to estimate parameters at the neuronal level so that the modelled BOLD signals are most similar to the experimentally measured BOLD signals.
Dynamic Causal Modeling (DCM)
A Practical Perspective
Ollie Hulme Barrie Roulston Zeki lab
Disclaimer
The following speakers have never used DCM. Any impression of expertise or experience is entirely
V1
1. Which parameters do you think are most relevant? Which parameters represent my hypothesis? Which are the most relevant intrinsic anatomical Connections? Which are the most relevant changes in effective connectivity/connection strength ? Which are the relevant sensory inputs ?
功能磁共振数据处理
时间序列校正
How? 备注:
Bottom =1 Slice order: [1:2:n-1slice 2:2:nslice]
← 单个run的数据 ← 32 ←2 ← TR-TR/nSlice ← 1 3…31 | 2 4 …32 ← 16 | 31
Slice timing
批处理
FMRI原理
自旋 进动 磁化矢量 共振 豫弛
T1像 T2像
自旋回波
TR D 实验设计
Block
Event-related
SPM:
SPM介绍 数据准备 预处理
Slice timing Realign Coregister “Segment” Normalize Smooth
边学边教FMRI数据分析
Outline
知识准备:
FMRI原理
自旋 进动 磁化矢量 共振 豫弛
T1像 T2像
自旋回波
TR & TE T1像&T2像
BOLD 实验设计
Block
Event-related
SPM:
SPM介绍 数据准备 预处理
自旋回波
TR & TE T1像&T2像
BOLD 实验设计
Block
Event-related
SPM:
SPM介绍 预处理
Slice timing Realign Coregister “Segment” Normalize Smooth
统计分析
Specify 1st-level Specify 2nd-level Review “DCM”
特斯拉动态引力理论原文
Introduction:
There is a new theory of gravity called Dynamic Theory of Gravity [DTG]. Based on classical thermodynamics Ref:[1] [2] [3] [9] it has been shown that the fundamental laws of Classical Thermodynamics also require Einstein’s
p 4 = mv 4 ,
(1a)
where the velocity in the fifth dimension is given by:
•
γ v4 = , αD
•
(1b)ቤተ መጻሕፍቲ ባይዱ
and γ is a time derivative where gamma itself has units of mass density or kg/m3, and αo is a density gradient with units of kg/m4. In the absence of curvature, (1) becomes:
(5)
and for orbiting Hubble telescope (ht) of a height h the following expression:
ln[1 + z ht ] = −
M em HL R⊕ G M⊕ − . + c 2 (R + h ) + R R h ⊕ c ⊕ em
Abstract:
In a new theory called Dynamic Theory of Gravity, the cosmological distance to an object and also its gravitational potential can be calculated. We first measure its redshift on the surface of the Earth. The theory can be applied as well to an object in orbit above the Earth, e.g., a satellite such as the Hubble telescope. In this paper, we give various expressions for the redshifts calculated on the surface of the Earth as well as on an object in orbit, being the Hubble telescope. Our calculations will assume that the emitting body is a star of mass M = MX-ray(source) = 1.6×108 Msolar masses and a core radius R = 80 pc, at a cosmological distance away from the Earth. We take the orbital height h of the Hubble telescope to be 450 Km.
fmri的原理与应用
fmri的原理与应用1. 介绍功能磁共振成像(functional magnetic resonance imaging, fMRI)是一种用于观察人脑活动的非侵入性成像技术。
它利用磁共振成像(MRI)技术测量脑部血氧水平的变化,从而间接反映出神经活动的强度和区域。
本文将介绍fmri的原理和应用。
2. 原理•fMRI利用血氧水平依赖性信号(blood oxygenation level dependent, BOLD)来观测脑部活动。
当神经元活跃时,局部血流量增加,血红蛋白中的氧含量也增加。
这种血氧水平的变化可以通过MRI技术进行测量和成像。
•BOLD信号是在基于磁场的MRI仪器中通过磁共振检测到的。
MRI 仪器用于测量脑部不同区域的氧含量和血液流动情况,并生成相应的图像。
3. 应用3.1 神经科学研究fMRI广泛用于神经科学研究,可以帮助研究者理解人脑的功能和结构。
以下是一些常见的应用: - 神经功能定位:fMRI被用于确定特定的脑区在特定功能过程中的参与程度,如语言和视觉处理等。
- 神经网络建模:通过观察大脑在特定任务下的活动,研究者可以构建神经网络模型,来解释和预测人脑的功能。
- 研究脑部疾病:fMRI可以帮助研究人员了解脑部疾病的发病机制和病理生理。
3.2 临床诊断与治疗fMRI也有一些临床应用,可以帮助医生进行诊断和治疗。
- 神经影像诊断:fMRI可以提供更详细、准确的脑部图像,用于辅助医生对脑部疾病的诊断。
- 神经可塑性训练:通过观察患者在特定任务下的脑活动,医生可以利用fMRI来指导和监测神经可塑性训练,促进康复。
- 术前计划:对于需要进行脑部手术的患者,fMRI可以提供精确的脑图像和功能定位信息,帮助医生进行术前计划。
4. 优缺点4.1 优点•非侵入性:fMRI是一种非侵入性的成像技术,不需要对患者进行手术或注射药物。
•高时空分辨率:fMRI可以提供高时空分辨率的脑图像,可以监测到神经活动的细微变化,并定位到特定的脑区。
Dynamic Causal Modelling (DCM) for fMRI动态因果模型(DCM)的功能磁共振成像
z1
LG left
LG right
z2
RVF
u2
state changes
LVF
u1
effective connectivity system state input external parameters inputs
a21 0
a12 0
2 b21 0
green: neuronal activity red: bold response
Example: modelled BOLD signal
Underlying model
(modulatory inputs not shown)
FG left FG right
( A u j B ) z Cu z
j j 1
m
Conceptual overview
Input u(t)
c1 b23
n z F ( z , u , ) Neuronal state equation The bilinear model ( A u j B j ) z Cu z
b 0
2 21
modulatory input u2 activity through the coupling a21
Neurodynamics: reciprocal connections
u1
a11
u2
a12
z1
a21
a22
z2
1 a11 a12 z1 z 0 0 z1 c u u1 2 2 z a 2 21 a22 z2 b21 0 z2 0
fMRI实验刺激系统解决方案
fMRI实验刺激系统解决方案一、概述磁共振成像(MRI)使用无线电波和一个比x-射线能量更大的强磁场为人们提供人体内部器官和组织的清晰且详细的图片。
FMRI是使用MRI来测量在大脑的活跃的部分发生的迅速、极微小新陈代谢变化的一个相对的新方法。
内科医师们知道,人的说话、感觉、记忆以及其它功能行为的产生是分别由大脑的哪些区域控制的。
然而,对每个人的大脑结构内部的精确定位却各不相同。
创伤和功能性疾病,例如中风或者脑瘤,甚至能导致大脑其它部分的功能障碍。
FMRI不仅能帮助放射科医师细致地查看大脑的解剖图,而且能帮助他们精确地确定大脑的哪个部分正在处理着比如思考、说话、运动和感觉等关键性的行为。
这些信息对外科手术计划、辐射治疗、治疗中风或者治疗其它的大脑紊乱性障碍都起着关键性的作用。
二、视觉刺激系统(SA-9800,VisualStimulationPackage)SAMRTECSA-9800视觉刺激系统源于美国著名的德克萨斯大学脑功能成像研究中心(ResearchImagingCenterofTexasUniversity)的专业技术,为用户提供了独一无二的、完整的fMRI视觉刺激系统解决方案,让研究者和医生能够运用fMRI对健康人和病人进行视觉、语言、注意、记忆等认知功能的研究以及大量的临床应用。
SAMRTEC fMRI 刺激系统解决方案示意图国外大多数实验室采用直接背投式视觉刺激装置,投影系统为完全无磁射频屏蔽,可以安放在磁共振扫描室中,并有风冷散热装置,保证投影的稳定性。
与一般在扫描控制室放置投影仪相比,背投方式能够避免亮度衰减,视觉信号的衰减,保持亮度均匀,保证高分辨率的视觉信号,保证实验环境的一致性,并可方便地与其他刺激装置相匹配,具有无限的升级空间。
按照人体工程学设计的无射频按键式响应控制盒通过CREATOR光纤传输系统把受试者的反应直接传送到计算机,可利用事件相关设计对不同类别的认知任务进行统计比较。
生理心理学的研究内容有哪些
生理心理学的研究内容有哪些生理心理学是心理科学体系中的重要基础学科,它除用人为研究对象外还用各种实验动物为对象,研究心理行为活动的生理学机制。
随着心理科学、生物学、神经科学和新技术的发展,生理心理学超越了传统生理心理学的视野和方法,越来越明显地表现出自身多学科交叉的发展特点和趋势。
科学家们延伸了这个领域,给这个领域起了很多名称,如生物心理学(Biopsychology),行为神经科学(BehavioralNeuroscience),行为脑科学(BehavioralandBrainSciences)等,这些名称也都反映出揭示行为的脑机制的基本目标。
这一学科的发展促进了将行为水平的研究方法渗透到神经生物学微观领域,同时将神经生物学研究方法渗透到心理学领域。
从多学科、多方面、多角度、多层次对心理行为现象展开研究。
中国社会正处于快速转型期,各类心理疾病(如抑郁症、自杀、社会适应障碍、行为问题)和心身疾病(如冠心病、癌症)的发病率持续升高,已成为21世纪中国最令人关注的心理卫生课题。
我国生理心理学的研究也正密切地关注心身健康领域的基础研究。
与此相配合,该专辑收录了19篇文章,内容涉及应激、精神疾病、抑郁、成瘾、认知神经科学、和学习记忆等多学交叉性研究,从不同侧面概述了国内外生理心理学研究进展。
行为的动机和情绪,睡眠和觉醒,学习和记忆,语言和思考的心理过程,感觉和知觉过程,以及心理障碍等问题的生理机制。
心理生理学方法(一)电生理测量方法神经系统活动时,我们可以在体表或者神经元上记录到电信号,这种电信号为我们推知个体心理话动的生理机制提供了直接的证据。
脑电某某某、脑磁某某某及多导生理记录仪是记录电生理信号的有效技术。
1.脑电某某某和脑磁某某某脑电某某某(electroencephalography,简称EEG )通过在头皮表面记录大脑内的电生理活动情况获得。
神经元处于静息状态时,细胞膜内为负电位,膜外为正电位,由此形成极化状态。
fmri的名词解释
fmri的名词解释fmri技术(Functional Magnetic Resonance Imaging,功能性磁共振成像)是一种用于探索大脑活动的非侵入性方法。
它结合了MRI(Magnetic Resonance Imaging,磁共振成像)和神经科学,能够通过测量血液氧合水平的变化,反映出大脑各个区域的功能活动。
本文将从fmri的原理、应用范围、数据分析方法以及局限性等方面进行详细解释。
fmri的原理是基于血液氧合水平依赖效应(BOLD,Blood Oxygenation Level Dependent)的测量。
当大脑某个区域活跃时,该区域的神经细胞会消耗氧气,并引起周边血液流量的增加。
增加的血流导致血液中的氧含量增加,进而改变血液的磁性质。
为了获取fmri数据,研究者需要将被试者放置在磁共振设备中,该设备利用强磁场和无害的无线电频率来获取图像。
在进行fmri扫描时,被试者通常会执行一系列特定的任务,或者在休息状态下进行观察。
通过监测被试者大脑不同区域的BOLD信号变化,研究者可以推断哪些区域与特定任务相关联,进而研究脑功能和大脑结构之间的关系。
fmri的应用范围非常广泛。
在认知心理学领域,它被用来研究不同认知过程如记忆、学习、决策等的脑机制。
在神经病学和精神病学领域,fmri可以帮助研究人员了解各类神经疾病的潜在机制,例如阿尔茨海默病、帕金森病、精神分裂症等。
此外,fmri还在神经工程学、人机交互以及脑机接口等领域得到广泛应用。
在fmri数据分析方面,研究者常常使用统计学方法来识别与特定任务或条件相关的脑活动模式。
研究者会首先预处理数据,包括去除噪声、校正头部运动等。
然后,使用特定的统计模型对数据进行分析,以确定哪些区域在特定任务下显示出显著的激活。
常用的统计测试方法有单样本t检验、多样本t检验、方差分析等。
此外,数据分析还可以使用机器学习方法,如支持向量机、深度学习等,以提高脑活动模式分类的精确度。
脑网络一些基本概念
集群系数(clustering coefficient).或称聚类系数.集群系数衡量的是网络的集团化程度, 是度量网络的另一个重要参数, 表示某一节点i 的邻居间互为邻居的可能. 节点i 的集群系数C i 的值等于该节点邻居间实际连接的边的数目(e i)与可能的最大连接边数(k i(k i–1)/2)的比值(图 1(a)), 即网络中所有节点集群系数的平均值为网络的集群系数, 即易知0≤C≤1. 由于集群系数只考虑了邻居节点间的直接连接, 后来有人提出局部效率(local efficiency) E loc 的概念. 任意节点i 的局部效率为其中, G i 指节点i 的邻居所构成的子图, l jk 表示节点j,k 之间的最短路径长度(即边数最少的一条通路). 网络的局部效率为所有节点的局部效率的平均, 即集群系数和局部效率度量了网络的局部信息传输能力, 也在一定程度上反映了网络防御随机攻击的能力.最短路径长度(shortest path length).最短路径对网络的信息传输起着重要的作用, 是描述网络内部结构非常重要的一个参数. 最短路径刻画了网络中某一节点的信息到达另一节点的最优路径,通过最短路径可以更快地传输信息, 从而节省系统资源. 两个节点i,j 之间边数最少的一条通路称为此两点之间的最短路径, 该通路所经过的边的数目即为节点i,j 之间的最短路径长度, l ij (图 1(b)). 网络最短路径长度L 描述了网络中任意两个节点间的最短路径长度的平均值.通常最短路径长度要在某一个连通图中进行运算, 因为如果网络中存在不连通的节点会导致这两个节点间的最短路径长度值为无穷. 因此有人提出了全局效率(global efficiency)E glob的概念.最短路径长度和全局效率度量了网络的全局传输能力. 最短路径长度越短, 网络全局效率越高, 则网络节点间传递信息的速率就越快.中心度(centrality). 中心度是一个用来刻画网络中节点作用和地位的统计指标, 中心度最大的节点被认为是网络中的核心节点(hub). 最常用的度中心度(degree centrality)以节点度刻画其在网络中的中心程度, 而介数中心度(betweenness centrality)则从信息流的角度出发定义节点的中心程度 . 对于网络G 中的任意一点i, 其介数中心度的计算公式如下:其中σjk 是从节点j 到节点k 的所有最短路径的数量,σjk(i)是这些最短路径中通过节点i 的数量.“小世界”网络. 研究表明, 规则网络具有较高的集群系数和较长的最短路径长度, 与此相反,随机网络拥有较低的集群系数和较短的最短路径长度. 兼具高集群系数和最短路径长度的网络称为“小世界”网络. 将随机网络作为基准,如果所研究网络相对于随机网络具有较大的集群系数和近似的最短路径长度, 即γ = C real/C random>> 1, λ= L real/L random ~ 1 (其中脚标 random 表示随机网络,real 表示真实网络), 则该网络属于“小世界”网络范畴.σ =γ /λ来衡量“小世界”特性, 当σ>1 时网络具有“小世界”属性, 且σ越大网络的“小世界”属性越强.概念:小世界网络( small-world network)无标度网络( scale-free network)随机网络( random network)规则网络( regular network)无向网络( undirected network)加权网络( weighted network)图论( Graph theory)邻接矩阵( adjacency matrix)结构性脑网络( structural brain networks 或 anatomical brain networks)功能性脑网络( functional brain networks)因效性脑网络( effective brain networks)感兴趣脑区( region of interest, ROI)血氧水平依赖( BOLD,blood oxygenation level depended)体素( voxel)自发低频震荡( spontaneous low-frequency fluctuations, LFF)默认功能网络( default mode network,DMN)大范围皮层网络( Large-scale cortical network)效应连接(effective connectivity)网络分析工具箱(Graph Analysis Toolbox,GAT)自动解剖模板(automatic anatomical template,AAL)技术:脑电图(electroencephalogram, EEG)脑磁图(magnetoencephalogram, MEG)功能磁共振成像(Functional magnetic resonance imaging, fMRI)弥散张量成像(Diffusion Tensor Imaging, DTI)弥散谱成像( diffusion spectrum imaging ,DSI)细胞结构量化映射 ( quantitative cytoarchitecture mapping)正电子发射断层扫描(PET, positron emisson tomography)精神疾病:老年痴呆症( Alzheimer’ s disease,AD)癫痫( epilepsy)精神分裂症( Schizophrenia)抑郁症( major depression)单侧注意缺失( Unilateral Neglect)轻度认知障碍(mild cognitive impairment, MCI)正常对照组(normal control, NC)指标:边( link,edge)节点(vertex 或 node)节点度(degree)区域核心节点(provincial hub)度分布(degree distribution)节点强度( node strength)最短路径长度(shortest path length)特征路径长度( characteristic path length)聚类系数( clustering coefficient)中心度(centrality)度中心度(degree centrality)介数中心度( betweenness centrality)连接中枢点( connector hub)局部效率(local efficiency)全局效率( global efficiency)相位同步( phase synchronization)连接密度(connection density/cost)方法:互相关分析( cross-correlation analysis)因果关系分析( Causality analysis)直接传递函数分析( Directed Transfer Function,DTF)部分定向相干分析( Partial Directed Coherence,PDC)多变量自回归建模( multivariate autoregressive model,MVAR)独立成分分析( independent component analysis,ICA)同步似然性(synchronization likelihood, SL)结构方程建模(structural equation modeling, SEM)动态因果建模(dynamic causal modeling, DCM)心理生理交互作用模型(Psychophysiological interaction model)非度量多维定标(non-metric multidimensional scaling)体素形态学(voxel-based morphometry, VBM)统计参数映射(statistical parametric mapping,SPM)皮尔逊相关系数(Pearson correlation)偏相关系数(Partial correlation)脑区:楔前叶( precuneus)后扣带回( posterior cingulated cortex,PCC)腹侧前扣带回( ventral anterior cingulated cortex, vACC) 前额中分( medial prefrontal cortex,MPFC)额叶眼动区( the frontal eye field,FEF)副视区( the supplementary eye field,SEF)顶上小叶( the superior parietal lobule,SPL)顶内沟( the intraparietal sulcus,IPS)。
格兰杰因果关系及其在医学影像数据中的应用
the two groups.The evidences show that sparsification is necessary for
complex network,difference methods result from difference results,but
效应连接是脑功能成像中一项重要的研究内容,格兰杰因果分析 是一种重要的效应连接分析,其是在自回归模型(AR)的基础进行 的研究。本文主要是通过广义线性模型(GLM)与固定效应分析和 随机效应分析相结合,找到与任务态相关的2-back对0-back的9个 激活脑区,用格兰杰因果分析得到两两激活脑区间的这种效应连接, 然后采用非参的秩和检验和监督型的概率密度函数这两种方法来提 取病人组与对照组存在显著性差异的这种效应连接进行研究。为了找 出病人组与对照组这些效应连接的变化规律,本文计算的是两组被试 问每个组块(block)这种效应连接的的平均强度。结果发现激活脑 区主要集中在注意力网络中,这种有差异性的效应连接主要集中在额 叶内部,少部分是额叶与项叶的连接。本文不仅对激活脑区间的效应
both groups. Effective connectivity is an important content of brain imaging
research,granger causality is one of the effective connectivity.Granger causality analysis based on autoregressive model as the foundation of the research.This paper is mainly combined the generalized linear model with fixed effect analysis and random effect analysis to find the nine activated clusters about 2-back minus 0-back in the first place;second, using the pair-wise GCA to get the effective connectivity;third,using the rank-sum test and probability density function to find the significantly
fmri原理
fmri原理一、前言功能磁共振成像(functional magnetic resonance imaging,fMRI)是一种非侵入性的神经影像技术,可通过测量脑部血流变化来反映大脑活动。
自1990年代初期以来,fMRI已成为神经科学研究中最常用的影像技术之一。
本文将详细介绍fMRI的原理。
二、磁共振成像(MRI)基础1. 原理简介磁共振成像(magnetic resonance imaging,MRI)是一种利用核磁共振现象进行成像的技术。
它利用强大的静态磁场和高频交变电场来激发人体内的水分子,使其发生共振,并通过检测回波信号来重建图像。
2. 磁共振信号来源人体内含有大量水分子,其中氢原子数量最多。
在外加强静态磁场时,氢原子会沿着磁场方向自旋进动,并产生一个微小的矢量。
当外加高频交变电场与这个微小矢量共振时,氢原子会吸收能量并发生状态改变。
当高频电场停止作用时,吸收的能量被释放出来,并形成一个回波信号。
这个回波信号可以被检测到并用来重建图像。
3. MRI图像构建MRI图像构建是通过对获得的信号进行处理得到的。
首先,需要对获得的数据进行傅里叶变换,将时域数据转换为频域数据。
然后,可以使用不同的成像序列(如T1加权、T2加权、FLAIR等)来突出不同的组织结构。
最后,将处理后的数据转换为二维或三维图像。
三、fMRI原理1. 血氧水平依赖性(BOLD)信号fMRI利用血氧水平依赖性(blood oxygen level dependent,BOLD)信号来反映大脑活动。
当神经元活跃时,局部血流量会增加,导致局部氧合血红蛋白(oxyhemoglobin)和去氧血红蛋白(deoxyhemoglobin)比例发生变化。
由于oxyhemoglobin和deoxyhemoglobin具有不同的磁共振特性,因此它们对磁场的影响也不同。
在静态磁场中,deoxyhemoglobin呈现出负对比度(即低信号强度),而oxyhemoglobin呈现出正对比度(即高信号强度)。
DynamicCausalModellingDCMforfMRI动态因果模型DCM的功能磁共振成像
DCM可以通过比较健康人群和疾病患者或不同认知状态下的大脑活动数据,揭示相关 疾病或认知过程的神经机制,为治疗和干预提供理论支持。
04
DCM在fMRI中的挑 战与前景
数据质量和处理难度
数据质量
功能磁共振成像(fMRI)数据的质 量受到多种因素的影响,如信号噪声 、运动伪影等,这给DCM的应用带 来了挑战。
限制
DCM的应用受到一些限制,例如对数据质量和模型复杂度的要求较高,以及在处理多模态数据时可能 存在局限性。
未来研究方向与展望
研究方向
进一步优化DCM方法,提高其在处理复 杂数据和多模态数据方面的能力,同时 加强其在临床应用方面的研究。
VS
展望
随着技术的不断进步和研究的深入, DCM在fMRI中的应用将更加广泛和深入 ,有望为神经科学、心理学和临床医学等 领域的研究提供更多有价值的信息。
动态因果模型( DCM在功能磁共振 成像(fMRI中的应 用
目录
• 引言 • DCM的基本原理 • DCM在fMRI中的应用 • DCM在fMRI中的挑战与前景 • 结论
01
引言
DCM和fMRI的定义与重要性
要点一
DCM(Dynamic Causal Modeling)
动态因果模型是一种基于贝叶斯网络的统计模型,用于描 述大脑区域间的动态相互作用和因果关系。它能够根据多 期fMRI数据,估计不同脑区之间的连接强度和方向,从而 揭示大脑的动态功能连接和信息传递过程。
它通常使用梯度下降法或其它优化算法来寻找最优参数,使 得模型能够最好地拟合给定的fMRI数据。
DCM的模型选择与验证
01
DCM通过比较不同模型之间的证据来选择最优模型 。
发展心理学专业名词英汉互译收集(从课本上收集的)
发展心理学专业名词英汉互译收集Information processing 信息加工cognition 认知pnowing 认识personality 人格、个性behavior 外部行为life-span 生命全过程act 动作activity 活动comparative psychology 比较心理学socialization 社会化socialization process 社会化过程life-span developmental psychology 毕生发展心理学human development 人类发展life-span human development 个体生命全程发展;人类毕生发展developmental psycholinguistics 发展心理语言学developmental psychobiology 发展心理生物学the ecological move-ment 生态化运动CAI 计算机辅助教学CAL 计算机辅助学习theory of mind 心理理论socio-moral reflection 社会道德反思the three-stratum therory of intelligence智力的三层级理论Multiple intelligence多元智力Naturalictic intelligence自然主义者智力Successful intelligence 成功智力Experiential intelligence经验智力Neural intelligence神经智力Reflective intelligence反应智力The bio-ecological theory生态理论Emotional intelligence情绪智力Psychoanalysis 精神分析Consciousness 意识unconsciousness 无意识id 本我ego 自我superego 超我libido 力比多primary process thinking 初级过度思维secondary process thinking 二级过度思维Oedipus complex 俄底普斯情结(即恋母情结)adaptation适应equilibrium平衡assimilation同化accommodation顺应scheme图式Structuralism 结构主义Consturctivisim 建构主义Transformation 转换性Synchronic 共时性Diachronic 历时性Dualism 二元论Relativism 相对论Commitment 约定性Cross-sectional design 横断研究设计Longitudinal design 纵向研究设计Cross-sequential design 聚合交叉设计MicroGenetic design 微观发生学设计Cohort effect 代群效应Electroencephalography 简称EEG 脑电图Event related potentials 简称ERP 事件相关电位Magnetic resonance imaging 简称MRI 磁共振成像Functional resonance imaging 简称fMRI 功能性磁共振成像Psychophysiological interactions 简称PPIs 身心交互检验Dynamic causal modeling 简称DCM 动态因果模型Structural equation model 简称SEM 结构方程模型Granger causality 格兰杰因果检验Positron emission tomography 简称PET 正电子放射断层扫描Transcranial magnetic stimulation 简称TMS 经颅磁刺激Grounded theory 扎根理论Attention-deficit hyperactivity disorder 简称ADHD 缺损多动障碍Fetal growth restriction 简称FGR 胎儿生长受限Fetal growth retardation 胎儿宫内发育迟缓GDM 妊娠糖尿病ICP 妊娠期内肝内胆汁淤积症CG 血清肝胆酸HCMV 人类巨细胞病毒MG 重症肌无力VIR 视觉诱发(够物)行为VGR 视觉指导(够物)行为Visual scanning 扫视Joint attention 共同注意Familiarization 熟识Problem solving 问题解决Verbal modeling 言语模式Prelinguistic stage 言语阶段Proro-imperacves 原始祈使Proro-declaratives 原始陈述Ritualization of previously instrumental gestures 工具性姿态的仪式化The prototype theory 原型理论Overgeneralization 过度规则化或规则扩大化Goodness-model 拟合优度模式Social referencing 社会性参照Self-recognition 自我认知Self –regulation 自我调节Self-monitoring 自我监控Self-evaluation 自我评价Self-esteem 自尊Self-consciousciousness 自我意识Mother stage “妈妈”阶段Playmate stage “同伴”阶段Action following mirror-image stage “伴随行动”阶段Play therapy 游戏疗法Gender identity 性别认同Sex-role identity 性别角色认同Sensory integration dysfunction 感觉综合失调Diffusion 统一性扩散Foreclosure 同一性早期封闭Moretorium 同一性延缓Achievement 同一性完成Psychosocial problems in adolescence 青少年的心理社会问题Internet addiction disorder 简称IAD 网络成瘾Acquisitive stage 知识获取阶段Achieving stage 实现阶段responsibility stage 责任阶段reintegrative stage 重新组合阶段post-formal operation 终止时后形式思维reflective judgement 反省判断dialectical thinking 辩证思维dualism 二元论阶段relativism 相对性阶段commitment 约定性阶段sdult contexted model 成人背景模式regression 倒退disequilibrium 失衡rigidification 固化disorgination 整合失败secure 安全型preoccupied 专注型fearful 恐惧型dismissing 冷漠型intimacy 亲密成分passion 激情成分decision/commitment 决定或承诺成分dual-process model 双重过程模型congnitive mechanics 认知机械成分congnitive pragrmatics 认知实用成分cohort effect 群伙效应implicity theory 内隐理论ill-structured problem 结构不良问题equilibrium 平衡relativistic postformal operation 相对后形式运算self reference 自我参照de-contextualized 去情境化的reflective cognition 反省认知wisdom 智慧reflective processes 反省过程think aloud 出声思维expertise 专长declarative knowledge 陈述性知识procedural knowledge 程序性知识primary control 初级控制secondary control 次级控制veridicality 真实性neuroticism 神经质family life cycle 家庭生命周期life events 生活事件occupational career 个体职业生涯vocational maturity or career maturity 职业成熟性absolute degree 职业成熟的绝对度job satisfaction 工作满意感job burn-out 职业倦怠senility 衰老genetic program theory 遗传程序理论processing speed theory 加工速度理论working memory 工作记忆postformal thought 后形式思维subjective well-being 主观幸福感SES 自尊量表UCLA 孤独量表MUNSH 幸福感量表WHO 世界卫生组织。
fMRI简介
1.磁共振成像(MRI)技术的基本原理是什么?与CT采用x射线相反,MRI利用有机体组织的磁特性。
某些特定原子核中的质子数和中子数使得这些原子对磁力特别敏感,遍布于整个大献皮和其他有机体组织的氢原子就是这样一种原子。
形成氢原子核的质子围绕着其主轴恒定地运动,这运动形成了一个微磁场。
在正常状态下,这些质子的方向是随机分布的,并不受地球所产生的微弱的磁场所影响。
MRI扫描仪产生一个以特斯拉为单位的强大磁场。
地球所形成的磁场强度约为1/1000特斯拉,而典型的MRI扫描仪制造的磁场强度达到0.5至1.5特斯拉。
当一个人进人MRI仪器产生的磁场中时,相当大部分的质子变得与磁力线方向平行排列。
无线电波穿过磁区域,当质子吸收了这些电波的能量后,它们的方向会被干扰指向一个可预测的方向。
当无线电波关闭后,吸收的能量消散,质子重新朝向磁场的方向。
这种同步反弹产生的能量能被头部周围探测器接收。
通过系统地测量整个头部的三维信号,MRI系统可以建构反映组织中质子和其他磁性物质分布的图像。
2.PET(正电子发射断层扫描)、fMRI相比于MEG(脑磁图)和EEG (脑电图)有什么差异?认知神经科学最激动人心的方法学进展就是能够通过新的成像技术来确定解剖学和认知过程的关系,两种重要方法是PET(正电子发射断层扫描)和fMRI。
这些方法检测被试在进行认知任务时,大脑新陈代谢或者血流的改变。
就其本身而论,它们使得研究者能够确定在这些任务中激活的脑区,并且检验功能解剖学的假设。
与EEG和MEG不同,PET和fMRI并不直接测量神经活动。
相反,它们测量与神经活动相关的新陈代谢变化。
神经元与人体其他细胞没有差异,它们需要氧和葡萄糖作为能量,以维持细胞完整性和完成它们的特殊功能。
与身体其他部分样,氧和葡萄糖是通过循环系统分配到大脑的。
大脑是极度需要新陈代谢的器官。
正如之前所提到的,中枢神经系统消耗人体吸人氧气量的大约20%。
但是在大脑最活跃时与其静息时相比,供应到大脑的血量仅有很小的差异(这可能是因为我们所认为的行为上的活动和静息与神经活动上的活动和静息是不相关的)。
fmri 相位编码 实现 -回复
fmri 相位编码实现-回复FMRI相位编码实现是一种常用于功能性磁共振成像(fMRI)研究中的技术。
相位编码可以提供更加精确的遥感数据,从而更好地揭示人脑的结构和功能。
功能性磁共振成像是一种能够非侵入性地测量人脑活动的技术。
通过检测血液氧合水平的变化,fMRI可以提供详细的三维图像,揭示人脑在特定任务下的活动。
然而,由于脑均衡血液氧合水平变化较小,为了获得更高的灵敏度和空间分辨率,相位编码技术被引入。
相位编码技术基于磁共振成像中的自旋磁矩相位的变化。
自旋磁矩是由核磁共振过程中被激发的原子核的自旋所引起的。
在一个磁场中,自旋磁矩会发生进动,并且由于其周围特定的局域磁场的影响,进动的频率会发生变化。
这种频率变化是与局部磁场强度以及磁场梯度有关的。
在fMRI相位编码实现中,通常使用梯度回波(gradient echo)序列来获得图像,该序列允许同时获取多个位置的图像,并且可以使用不同的梯度方向对不同的位置进行编码。
相位编码可以通过在不同位置上施加不同的梯度磁场来实现。
在每个位置上施加的梯度场的方向和强度会导致自旋磁矩在进动方向上发生相位偏移。
具体来说,fMRI相位编码技术使用了三个步骤:编码、重构和分析。
首先是编码步骤。
在这个步骤中,通过施加不同的梯度场在每个位置上进行编码。
施加梯度场时,需要选择合适的梯度方向和强度,并且确保控制好每个位置的相位偏移。
编码过程中,还需要记录每个位置的相位信息。
接下来是重构步骤。
在这个步骤中,需要使用恢复算法来将编码后的相位信息转化为图像。
常用的重构算法包括傅里叶变换、求解线性方程组等。
通过重构算法,我们可以根据相位信息恢复出高分辨率的三维图像。
最后是分析步骤。
在这个步骤中,需要对重构后的图像进行进一步的分析,以提取感兴趣区域的活动特征。
常用的分析方法包括统计学假设检验、时域或频域分析等。
通过相位编码技术,我们可以获得更加精确的活动状况,进一步揭示人脑的结构和功能。
相位编码技术在fMRI研究中具有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z1 z2
a11 a21
0 a22
z1 z2
c 0u1
a21 0
activity in z2 is coupled to z1 via
coefficient a21
5
Neurodynamics: positive modulation
a11
u1
u2
a21
z1
a22
z2
z1 z2
observation model
BOLD response
19
Haemodynamics: 2 nodes with input
Dashed Line: Real BOLD response
a11
a22
a21
Activity in z1 is coupled to z2 via coefficient a21
z (A
u j B j )z Cu
neuronal state equation
• Specify model (neuronal and hemodynamic level)
• Make it an observation model by adding measurement error e and confounds X (e.g. drift).
a11 a21
0 a22
z1 z2
u2
0 b221
0 0
z1 z2
c 0u1
modulatory input u2 activity
a b221 0
through the coupling 621
Neurodynamics: reciprocal connections
u1
a11
0 0
a24 a34 a44
u3
0 0 0
b132 0 0 0
0 0 0 0
0
0
b334
0
z1
z2
z3 z4
0
c21
0
0
c12 0 0 0
0
0 0
u1 u2
0u3
13
Bilinear state equation in DCM/fMRI
state changes
• Bayesian parameter estimation using Bayesian version of an expectation-maximization algorithm.
• Result: (Normal) posterior parameter distributions, given by mean ηθ|y and Covariance Cθ|y.
Visual input in the - left (LVF) - right (RVF) visual field.
RVF
u2
state changes
LVF
u1
effective connectivity
system input external state parameters inputs
activity z(t)
vasodilatory signal
s z s γ( f 1)
f
s
flow induction
f s
f
changes in volume v
changes in dHb
τv f v1/α
τq f E( f,) q v1/α q/v
v
q
BOLD signal
y(t) v, q
• System parameters :
specify exact form of system
z (t) 1
overall
system state
z(t) represented
by state variables
zn (t)
z1 z1 f1(z1...zn ,u,1)
z3 left
dynamic
system
z1
LG left
FG
right z4
LG
right z2
RVF CONTEXT LVF
u2
u3
u1
m
z ( A u j B j )z Cu j 1
z1 z2 zz43
aaa0132111
a12 a22 0 a42
a13 0 a33 a43
z Az Cu
{A,C}
z1 a11 a12 a13 0 z1 0 c12
z2
a21
a22
0
a24
z2
c21
zz43
a031
0 a42
a33 a43
a34 a44
z3 z4
0
0
0 0 0
u1 u2
12
Extension:
FG
bilinear
A F z z z
Input u(t)
modulation of connectivity
direct inputs
c1
b23
B j 2F z zu j u j z
C F z u u
integration
activity z1(t)
y
a12 activity
z2(t)
y
activity z3(t)
h { ,g ,t ,a , } n {A, B1...Bm ,C} { h , n}
changes in volume v τv f v1/α
v
changes in dHb τq f E( f,) q v1/αq/v
q
ηθ|y
y (x)
modelled
y h(u, ) X e
a21 0
a12 0
b221 0
green: neuronal activity red: bold response
9
Example: modelled BOLD signal
Underlying model
(modulatory inputs not shown)
FG
FG
left
right
z
change of
state vector in time
zn zn fn (z1...zn ,u,n )
z F (z,u, )
11
Example: linear dynamic system
FG
z3 left
z1
LG left
FG
right z4
LG right
z2
LG = lingual gyrus FG = fusiform gyrus
a11
a12
a21
a22
Bold Response
Simulated response
Bold Response
z1
z2
a11 a21
a12 a22
z1 z2
u2
0 b221
0 0
z1 z2
c 0u1
a21 0
a12 0
b221 0
green: neuronal activity red: bold response
u2
a12
z1
a21
a22
z2
z1 z2
a11 a21
a12 a22
z1 z2
u2
0 b221
0 0
z1 z2
c 0u1
a21 0
a12 0
b221 0
reciprocal connection disclosed by7 u2
Haemodynamics: reciprocal connections
c1m u1 cnm um
m
z ( A u j B j )z Cu j 1
14
Conceptual overview
Neuronal state equation z F (z, u, n )
The bilinear model z (A ujB j )z Cu
effective connectivity
connectivity
modulation of system direct m external connectivity state inputs inputs
z1
a11
zn an1
a1n
m
u j b1j1
ann j1 bnj1
b1jn
z1
c11
bnjn znห้องสมุดไป่ตู้ cn1
Constraints on
•Connections •Hemodynamic parameters
p( )
prior
posterior
p( | y) p( y | ) p( )
Bayesian estimation
18
Overview:
stimulus function u
parameter estimation
neuronal states
y BOLD
z
λ
hemodynamic model
y
Friston e1t 5al. 2003,
NeuroImage
The hemodynamic “Balloon” model
• 5 hemodynamic parameters:
h { ,g ,t ,a, }
important for model fitting, but of no interest for statistical inference • Empirically determined a priori distributions. • Computed separately for each area