人教版初中数学二次函数难题汇编及答案
(专题精选)初中数学二次函数难题汇编含答案
(专题精选)初中数学二次函数难题汇编含答案一、选择题1.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.5B.453C.3 D.4【答案】A【解析】【分析】【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2.由勾股定理得:5设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE.∴BF OF CM AMDE OE DE AE==,x2x2255-,,解得:()52x 5BF ?x CM 22-==,. ∴BF+CM=5.故选A .2.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1, ∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.3.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3B 3C .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.4.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x 时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x,故本选项正确;故选:C .【点睛】 本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.5.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.由图象可知,a<0,c=1,对称轴:x=b1 2a-=-,∴b=2a,①由图可知:当x=1时,y<0,∴a+b+c<0,正确;②由图可知:当x=−1时,y>1,∴a−b+c>1,正确;③abc=2a2>0,正确;④由图可知:当x=−3时,y<0,∴9a−3b+c<0,正确;⑤c−a=1−a>1,正确;∴①②③④⑤正确.故选:D.【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.6.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )A.1 B.12C.43D.45【答案】D【解析】【分析】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【详解】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=12A B•OC=12AB•k,△ABD的面积=12AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=14(4﹣k),解得:k=45.【点睛】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.7.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.8.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C【解析】【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.由图象可得,a >0,b >0,c <0,∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确,当x =﹣1时,y =a ﹣b +c <0,由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确, ∵12b a ->-,a >0,得122b a >>,故③正确, 故选C .【点睛】 本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.9.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=2211a +>2, ∴B 正确; 二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a; ∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.10.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a-=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.11.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫- ⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确.故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.12.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】【详解】 解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系13.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③13<a <23;④b >c .其中含所有正确结论的选项是( )A .①②③B .①③④C .②③④D .①②④【答案】B 【解析】 【分析】根据对称轴为直线x=1及图象开口向下可判断出a 、b 、c 的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a 、b 、c 之间的关系,从而对④作判断;从图象与y 轴的交点B 在(0,-2)和(0,-1)之间可以判断c 的大小得出③的正误. 【详解】①∵函数开口方向向上, ∴a >0;∵对称轴在y 轴右侧 ∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴, ∴c <0, ∴abc >0, 故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1, ∴图象与x 轴的另一个交点为(3,0), ∴当x=2时,y <0, ∴4a+2b+c <0, 故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间, ∴-2<c <-1∵-12ba , ∴b=-2a ,∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a,∴-2<-3a<-1,∴13<a<23;故③正确④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a,∵a>0,∴b-c>0,即b>c;故④正确;故选B.【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.15.二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣12<x<2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为()A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(2)从表格可以看出,当﹣12<x<2时,y<0,符合题意;(3)﹣1<x1<0,3<x2<4时,x2离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.16.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案. 【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时, 此时,,2AP t BQ t ==2122APQSt t t =⋅⋅=,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时, 此时,AP t =,APQ 底边AP 上的高保持不变1422APQSt t =⋅⋅=,函数图象为一次函数;故选:D . 【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.17.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除. 【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限, 故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2ba>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B . 故选C .18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有( ) A .0 B .1C .2D .3【答案】B 【解析】 【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数. 【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限. 故答案为:B .【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B 【解析】试题解析:①由开口向下,可得0,a < 又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc , 故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确; ③当2x =-时,0,y < 即420a b c -+< ……(1) 当1x =时,0y <,即0a b c ++< ……(2) (1)+(2)×2得,630a c +<, 即20a c +<, 又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+> 所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦所以22().a c b +< 故④正确,综上可知,正确的结论有2个. 故选B .20.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断. 【详解】 解:抛物线开口向下,0a ∴<,对称轴12bx a=-=, 0b ∴>,抛物线与y 轴的交点在x 轴的上方,0c ∴>,0abc ∴<,故①错误;抛物线与x 轴有两个交点, 240b ac ∴->,故②正确;对称轴12bx a=-=, 2a b ∴=-,20a b ∴+=,故③正确;根据图象可知,当1x =-时,0y a b c =-+<,故④正确; 故选:C . 【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.。
初中数学二次函数难题汇编附答案
解得:2≤t≤10.
故应选 B
【点睛】
此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关
于 t 的不等式是解题关键.
2.如图,二次函数 y ax2 bx c 0a 0的图象与 x 轴正半轴相交于 A 、 B 两点,
与 y 轴相交于点 C ,对称轴为直线 x 2 ,且 OA OC ,则下列结论:
x ···
1 0 1 3 ···
y ···
1 3 5 3 ···
下列结论错误的是( )
A. ac 0
B. 3 是关于 x 的方程 ax2 b 1 x c 0
的一个根;
C.当 x 1时, y 的值随 x 值的增大而减小; D.当 1 x 3 时,
ax2 b 1 x c 0.
【答案】C 【解析】 【分析】 根据函数中的 x 与 y 的部分对应值表,可以求得 a、b、c 的值 然后在根据函数解析式及其 图象即可对各个选项做出判断.
∴其顶点坐标为:(2,−1), ∴若使其平移后的顶点为(−2,4)则先向左平移 4 个单位,再向上平移 5 个单位. 故选 C. 【点睛】 本题考查二次函数图像,熟练掌握平移是性质是解题关键.
6.二次函数 y ax2 bx c(a,b, c 为常数,且 a 0 )中的 x 与 y 的部分对应值如表:
9.在平面直角坐标系内,已知点 A(﹣1,0),点 B(1,1)都在直线 y 1 x 1 上, 22
若抛物线 y=ax2﹣x+1(a≠0)与线段 AB 有两个不同的交点,则 a 的取值范围是( )
A.a≤﹣2 【答案】C
B.a< 9 8
C.1≤a< 9 或 a≤﹣2 D.﹣2≤a< 9
8
8
初中数学二次函数难题汇编附答案解析
初中数学二次函数难题汇编附答案解析一、选择题1.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.如图,二次函数()200y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()200ax bx c a ++=≠有一个根为1a-,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a 代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案.【详解】由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2b a>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣1a ,把﹣1a 代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C.【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.4.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )A .-12<t ≤3B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1,∴b =−2,∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4,∴-12<t≤4,故选:C .【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.5.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ),∴244ac b a- =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.7.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()21 1226,2y t t t t =⋅-=-+y 是t 的二次函数故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.9.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11【答案】B【解析】【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA , ∴ ,HF HE EF AE AB BE == G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.11.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.12.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.14.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a -=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.15.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.【详解】解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭ ∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.16.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.17.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有( ) A .0B .1C .2D .3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(-1,0),(3,0)两点,则下列说法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C (x3,y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3,其中正确的结论是()A.①⑤B.②④C.②③④D.②③⑤【答案】D【解析】【分析】①abc<0,由图象知c<0,a、b异号,所以,①错误;②a-b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确.【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确; ④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确;故选D .【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y 的值.20.已知二次函数y =a (x ﹣h )2+k 的图象如图所示,直线y =ax +hk 的图象经第几象限( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】D【解析】【分析】 根据二次函数的图象和性质可得a <0,h <0,k >0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y =a (x ﹣h )2+k 中的a <0,h <0,k >0,∴直线y =ax +hk 中的a <0,hk <0,∴直线y =ax +hk 经过第二、三、四象限,故选:D .【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.。
中考数学二次函数-经典压轴题含详细答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称,∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).2.如图,抛物线y =﹣x 2﹣2x+3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求点A 、B 、C 的坐标;(2)点M(m ,0)为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积; (4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG =2,求点F 的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=﹣2;S=12;(4)F(﹣4,﹣5)或(1,0).【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S =12AM×EM =12. (4)∵M(﹣2,0),抛物线的对称轴为x =﹣l , ∴N 应与原点重合,Q 点与C 点重合, ∴DQ =DC ,把x =﹣1代入y =﹣x 2﹣2x+3,解得y =4, ∴D(﹣1,4), ∴DQ =DC =2. ∵FG =22DQ , ∴FG =4.设F(n ,﹣n 2﹣2n+3),则G(n ,n+3), ∵点G 在点F 的上方且FG =4, ∴(n+3)﹣(﹣n 2﹣2n+3)=4. 解得n =﹣4或n =1, ∴F(﹣4,﹣5)或(1,0). 【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m 表示出矩形PMNQ 的周长.3.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式; (2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=,解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4.已知抛物线2(5)6y x m x m =-+-+-. (1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或 【解析】 【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论. 【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥ ∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x =即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.5.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+.当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=,()22[11](0)AM m =--+-.分三种情况考虑:①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.6.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A .(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.【答案】(1)抛物线的解析式为y=x 2﹣4x ,自变量x 的取值范图是0≤x≤4;(2)△PAB 的面积=15. 【解析】 【分析】(1)将函数图象经过的点B 坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a 和b ;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ),证明△PFA ∽△AEB,求出点P 的坐标,将△PAB 的面积构造成长方形去掉三个三角形的面积. 【详解】(1)由题意得,322a b b a+-⎧⎪⎨-⎪⎩==,解得14a b -⎧⎨⎩==,∴抛物线的解析式为y=x 2-4x , 令y=0,得x 2-2x=0,解得x=0或4, 结合图象知,A 的坐标为(4,0),根据图象开口向上,则y≤0时,自变量x 的取值范围是0≤x≤4;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ), ∵PA ⊥BA ∴∠PAF+∠BAE=90°, ∵∠PAF+∠FPA=90°, ∴∠FPA=∠BAE 又∠PFA=∠AEB=90° ∴△PFA ∽△AEB,∴PF AF AE BE =,即244213x x x--=-, 解得,x= −1,x=4(舍去) ∴x 2-4x=-5∴点P 的坐标为(-1,-5),又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1 所以BP 与x 轴交点为(14,0) ∴S △PAB=115531524⨯⨯+= 【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.7.如图,(图1,图2),四边形ABCD 是边长为4的正方形,点E 在线段BC 上,∠AEF=90°,且EF 交正方形外角平分线CP 于点F ,交BC 的延长线于点N, FN ⊥BC . (1)若点E 是BC 的中点(如图1),AE 与EF 相等吗?(2)点E 在BC 间运动时(如图2),设BE=x ,△ECF 的面积为y . ①求y 与x 的函数关系式;②当x 取何值时,y 有最大值,并求出这个最大值.【答案】(1)AE=EF ;(2)①y=-12x 2+2x (0<x <4),②当x=2,y 最大值=2. 【解析】 【分析】(1)在AB 上取一点G ,使AG=EC ,连接GE ,利用ASA ,易证得:△AGE ≌△ECF ,则可证得:AE=EF ;(2)同(1)可证明AE=EF ,利用AAS 证明△ABE ≌△ENF ,根据全等三角形对应边相等可得FN=BE ,再表示出EC ,然后利用三角形的面积公式即可列式表示出△ECF 的面积为y ,然后整理再根据二次函数求解最值问题. 【详解】(1)如图,在AB 上取AG=EC , ∵四边形ABCD 是正方形, ∴AB=BC ,有∵AG=EC ,∴BG=BE , 又∵∠B=90°, ∴∠AGE=135°,又∵∠BCD=90°,CP 平分∠DCN , ∴∠ECF=135°,∵∠BAE +∠AEB=90°,∠AEB +∠FEC=90°, ∴∠BAE=∠FEC , 在△AGE 和△ECF 中,AGE ECF AG ECGAE CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGE ≌△ECF , ∴AE=EF ;(2)①∵由(1)证明可知当E 不是中点时同理可证AE=EF , ∵∠BAE=∠NEF ,∠B=∠ENF=90°, ∴△ABE ≌△ENF , ∴FN=BE=x , ∴S △ECF =12(BC-BE)·FN , 即y=12x(4-x ), ∴y=-12x 2+2x (0<x <4), ②()()222111y x 2x x 4x x 22222=-+=--=--+, 当x=2,y 最大值=2. 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,二次函数的最值问题,综合性较强,正确添加辅助线、熟练掌握相关知识是解题的关键.8.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x 2+2x+3;直线AC 的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P 的坐标为(73,209)或(103,﹣139), 【解析】分析:(1)设交点式y=a (x+1)(x-3),展开得到-2a=2,然后求出a 即可得到抛物线解析式;再确定C (0,3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D 的坐标为(1,4),作B 点关于y 轴的对称点B′,连接DB′交y 轴于M ,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD 的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.9.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax2+4ax﹣5(3)a=或【解析】试题分析:(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个点定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题试题解析:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为y=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换10.抛物线,若a,b,c满足b=a+c,则称抛物线为“恒定”抛物线.(1)求证:“恒定”抛物线必过x轴上的一个定点A;(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.【答案】(1)证明见试题解析;(2),或.【解析】试题分析:(1)由“恒定”抛物线的定义,即可得出抛物线恒过定点(﹣1,0);(2)求出抛物线的顶点坐标和B的坐标,由题意得出PA∥CQ,PA=CQ;存在两种情况:①作QM⊥AC于M,则QM=OP=,证明Rt△QMC≌Rt△POA,MC=OA=1,得出点Q的坐标,设抛物线的解析式为,把点A坐标代入求出a的值即可;②顶点Q在y轴上,此时点C与点B重合;证明△OQC≌△OPA,得出OQ=OP=,得出点Q坐标,设抛物线的解析式为,把点C坐标代入求出a的值即可.试题解析:(1)由“恒定”抛物线,得:b=a+c,即a﹣b+c=0,∵抛物线,当x=﹣1时,y=0,∴“恒定”抛物线必过x轴上的一个定点A(﹣1,0);(2)存在;理由如下:∵“恒定”抛物线,当y=0时,,解得:x=±1,∵A(﹣1,0),∴B(1,0);∵x=0时,y=,∴顶点P的坐标为(0,),以PA,CQ为边的平行四边形,PA、CQ是对边,∴PA∥CQ,PA=CQ,∴存在两种情况:①如图1所示:作QM⊥AC于M,则QM=OP=,∠QMC=90°=∠POA,在Rt△QMC和Rt△POA中,∵CQ=PA,QM=OP,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵点A和点C是抛物线上的对称点,∴AM=MC=1,∴点Q的坐标为(﹣2,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点A(﹣1,0)代入得:a=,∴抛物线的解析式为:,即;②如图2所示:顶点Q在y轴上,此时点C与点B重合,∴点C坐标为(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,∵∠OQC=∠OPA,∠COQ=∠AOP,CQ=PA,∴△OQC≌△OPA(AAS),∴OQ=OP=,∴点Q坐标为(0,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点C(1,0)代入得:a=,∴抛物线的解析式为:;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:,或.考点:1.二次函数综合题;2.压轴题;3.新定义;4.存在型;5.分类讨论.。
二次函数难题汇编附答案
二次函数难题汇编附答案一、选择题1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁【答案】B 【解析】 【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得01442b cb c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得1201bb c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则-2ba=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值 ∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误) 由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x ∴a(x 1+x 2)+b=0 ∴x 1+x 2=2b aa a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解. 【详解】∵函数的图象开口向上,与y 轴交于负半轴 ∴a>0,c<0∵抛物线的对称轴为直线x=-2ba=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y<0,即a-b+c<0,所以②不正确; ∵抛物线的顶点坐标为(1,m ),∴244ac b a- =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确; ∵抛物线与直线y=m 有一个公共点, ∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确. 故选:C . 【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.4.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.5.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( ) A .0ac < B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x时,()210.ax b x c +-+>【答案】C 【解析】 【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断. 【详解】解:根据二次函数的x 与y 的部分对应值可知: 当1x =-时,1y =-,即1a b c -+=-, 当0x =时,3y =,即3c =, 当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=,将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确;C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下,∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误;D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++,由二次函数的图象可得:当0y >时,13x ,故本选项正确;故选:C . 【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.6.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C 【解析】 【分析】 【详解】解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2ba=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.7.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2【答案】B 【解析】 【分析】画出图象,利用图象可得m 的取值范围【详解】∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2. 由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意.当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意. 综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意, ∴m =12不符合题. ∴m >12. 综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围成的区域(含边界)内有七个整点, 故选:B . 【点睛】考查二次函数图象与系数的关系,抛物线与x 轴的交点,画出图象,数形结合是解题的关键.8.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C 【解析】找到最大值和最小值差刚好等于5的时刻,则M 的范围可知. 【详解】解:如图1所示,当t 等于0时, ∵2(1)4y x =--, ∴顶点坐标为(1,4)-, 当0x =时,3y =-, ∴(0,3)A -, 当4x =时,5y =, ∴(4,5)C , ∴当0m =时,(4,5)D -,∴此时最大值为0,最小值为5-; 如图2所示,当1m =时, 此时最小值为4-,最大值为1. 综上所述:01m ≤≤, 故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.9.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【解析】 【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值. 【详解】解:过点F 作AD 的垂线交AD 的延长线于点H , ∵∠A=∠H=90°,∠FEB=90°, ∴∠FEH=90°-∠BEA=∠EBA , ∴△FEH ∽△EBA , ∴,HF HE EFAE AB BE== G 为BE 的中点,1,2FE GE BE ∴==∴1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.10.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个【答案】C【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.11.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.12.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0, ∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫- ⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确.故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.13.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.14.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿、点同时停止运动.设P点运动的时间为→方向运动,当P运动到B点时,P QBC CD∆的面积为S,则表示S与t之间的函数关系的图象大致是()t秒,APQA .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ 底边AP 上的高保持不变1422APQ St t =⋅⋅=,函数图象为一次函数; 故选:D .【点睛】 本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.15.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .16.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.17.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.【详解】解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭ 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭ ∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.18.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得:h 3=4(舍去),h 4=6.综上所述:h 的值为1或6.故选B .点睛:本题考查了二次函数的最值以及二次函数的性质,分h <2、2≤h≤5和h >5三种情况求出h 值是解题的关键.19.平移抛物线2:L y x =得到抛物线L ',使得抛物线L '的顶点关于原点对称的点仍在抛物线L '上,下列的平移中,不能得到满足条件的抛物线L '的是( )A .向右平移1个单位,再向下平移2个单位B .向左平移1个单位,再向下平移2个单位C .向左平移32个单位,再向下平移92个单位 D .向左平移3个单位,再向下平移9个单位【答案】D【解析】【分析】通过各个选项的平移分别得到相应的函数关系式,再判断原点是否在该抛物线上即可.【详解】解:由A 选项可得L '为:2(1)2y x =--,则顶点为(1,-2),顶点(1,-2)关于原点的对称点为(-1,2),当x =-1时,y =2,则对称点在该函数图像上,故A 选项不符合题意;由B 选项可得L '为:2(1)2y x =+-,则顶点为(-1,-2),顶点(-1,-2)关于原点的对称点为(1,2),当x =1时,y =2,则对称点在该函数图像上,故B 选项不符合题意;由C 选项可得L '为:239()22y x =+-, 则顶点为(-32,-92),顶点(-32,-92)关于原点的对称点为(32,92), 当x =32时,y =92,则对称点在该函数图像上,故C 选项不符合题意; 由D 选项可得L '为:2(3)9y x =+-,则顶点为(-3,-9),顶点(-3,-9)关于原点的对称点为(3,9),当x =3时,y =27≠9,则对称点不在该函数图像上,故D 选项符合题意;故选:D .【点睛】本题考查了二次函数图像的平移,熟练掌握平移的规律“左加右减,上加下减”是解决本题的关键.20.如图1,在△ABC 中,∠B =90°,∠C =30°,动点P 从点B 开始沿边BA 、AC 向点C 以恒定的速度移动,动点Q 从点B 开始沿边BC 向点C 以恒定的速度移动,两点同时到达点C ,设△BPQ 的面积为y (cm 2).运动时间为x (s ),y 与x 之间关系如图2所示,当点P 恰好为AC 的中点时,PQ 的长为( )A .2B .4C .3D .3【答案】C【解析】【分析】 点P 、Q 的速度比为33x =2,y =3P 、Q 运动的速度,即可求解.【详解】解:设AB =a ,∠C =30°,则AC =2a ,BC 3a ,设P 、Q 同时到达的时间为T ,则点P 的速度为3a T ,点Q 的速度为3a T,故点P 、Q 的速度比为33故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=3,则HQ=CH﹣CQ=333,PQ22PH HQ+39+3,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.。
人教版初中数学二次函数难题汇编及答案解析
人教版初中数学二次函数难题汇编及答案解析一、选择题1.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C【解析】【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.【详解】由图象可得,a >0,b >0,c <0,∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确,当x =﹣1时,y =a ﹣b +c <0,由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确, ∵12b a ->-,a >0,得122b a >>,故③正确, 故选C .【点睛】 本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.3.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a <-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.4.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】 解:抛物线开口向上, 0a ∴>,对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;当1x =时,0y <,0a b c ∴++<,所以②错误;抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.5.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.6.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.7.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣4【答案】B【解析】【分析】先求出b,确定二次函数解析式,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,﹣1<x<4时﹣4≤y<5,进而求解;【详解】解:∵对称轴为直线x=2,∴b=﹣4,∴y=x2﹣4x,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,∵﹣1<x<4,∴二次函数y的取值为﹣4≤y<5,∴﹣4≤t<5;故选:B.【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.8.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )A.1 B.12C.43D.45【答案】D【解析】【分析】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【详解】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=12AB•OC=12AB•k,△ABD的面积=12AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=14(4﹣k),解得:k=45.故选:D.【点睛】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.9.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.10.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∵抛物线的对称轴为直线12b x a =-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大∵103132-<-< 点13,2y ⎛⎫- ⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确.故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.11.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.12.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线1122y x=+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是()A.①②③B.①③④C.②③④D.①②④【答案】B【解析】【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a 、b 、c 之间的关系,从而对④作判断;从图象与y 轴的交点B 在(0,-2)和(0,-1)之间可以判断c 的大小得出③的正误. 【详解】①∵函数开口方向向上, ∴a >0;∵对称轴在y 轴右侧 ∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴, ∴c <0, ∴abc >0, 故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1, ∴图象与x 轴的另一个交点为(3,0), ∴当x=2时,y <0, ∴4a+2b+c <0, 故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间, ∴-2<c <-1∵-12ba , ∴b=-2a ,∵函数图象经过(-1,0), ∴a-b+c=0, ∴c=-3a , ∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0), ∴a-b+c=0, ∴b-c=a , ∵a >0,∴b-c >0,即b >c ; 故④正确; 故选B . 【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.14.二次函数y =ax 2+bx +c (a ≠0)中的x 与y 的部分对应值如下表:x…﹣3﹣2﹣101234…y…1250﹣3﹣4﹣305…给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣12<x<2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为()A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(2)从表格可以看出,当﹣12<x<2时,y<0,符合题意;(3)﹣1<x1<0,3<x2<4时,x2离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.15.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC CD→方向运动,当P运动到B点时,P Q、点同时停止运动.设P点运动的时间为t秒,APQ∆的面积为S,则表示S与t之间的函数关系的图象大致是()A .B .C .D .【答案】D 【解析】 【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案. 【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时, 此时,,2AP t BQ t ==2122APQSt t t =⋅⋅=,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时, 此时,AP t =,APQ 底边AP 上的高保持不变1422APQSt t =⋅⋅=,函数图象为一次函数; 故选:D . 【点睛】 本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.16.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.17.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正确的是()A.①③④B.①②④C.①②③D.②③【答案】B【解析】【分析】①根据二次函数图象与x轴有两个不同的交点,结合根的判别式即可得出△=b2-4ac>0,①正确;②由点M(x0,y0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x0是方程ax2+bx+c=y0的解,②正确;③分a>0和a<0考虑,当a>0时得出x1<x0<x2;当a<0时得出x0<x1或x0>x2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M(x0,y0)在x轴下方即可得出y0=a(x0-x1)(x0-x2)<0,④正确.【详解】①∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2-4ac>0,①正确;②∵图象上有一点M(x0,y0),∴a+bx0+c=y0,∴x=x0是方程ax2+bx+c=y0的解,②正确;③当a>0时,∵M(x0,y0)在x轴下方,∴x1<x0<x2;当a<0时,∵M(x0,y0)在x轴下方,∴x0<x1或x0>x2,③错误;④∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),∴y=ax2+bx+c=a(x-x1)(x-x2),∵图象上有一点M(x0,y0)在x轴下方,∴y0=a(x0-x1)(x0-x2)<0,④正确;故选B.【点睛】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.18.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.19.在函数2yx,3y x,2y x的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2y x =符合条件. 故选:B . 【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.20.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B 【解析】试题解析:①由开口向下,可得0,a < 又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc , 故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确; ③当2x =-时,0,y < 即420a b c -+< ……(1) 当1x =时,0y <,即0a b c ++< ……(2) (1)+(2)×2得,630a c +<, 即20a c +<, 又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+> 所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦所以22().a c b +< 故④正确,综上可知,正确的结论有2个. 故选B .。
人教中考数学 二次函数 培优 易错 难题练习(含答案)及答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =.【解析】 【分析】(1)先利用对称轴公式x=2a12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值. 【详解】 解:(1)∵2ax 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=. ∵2y ax ax 3=-+人最大值为4, ∴抛物线过点()1,4. 得a 2a 34-+=, 解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -. 易得直线CD 的方程为y x 3=+. 把()P t,0代入,得t 3=-. ∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-.∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=.当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点.所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=.()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.2.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可.【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.3.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.4.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?【答案】(1)y=60-10x;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800 =﹣110(x ﹣210)2+15210 当x =210时,w 有最大值.此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.5.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x 2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E (x ,x 2﹣4x+3),则F (x ,﹣x+3), ∵0<x <3,∴EF=﹣x+3﹣(x 2﹣4x+3)=﹣x 2+3x , ∴S △CBE =S △EFC +S △EFB =EF•OD+EF•BD=EF•OB=×3(﹣x 2+3x )=﹣(x ﹣)2+,∴当x=时,△CBE 的面积最大,此时E 点坐标为(,),即当E 点坐标为(,)时,△CBE 的面积最大.考点:二次函数综合题.6. 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M (1,3)的特征线有:x =1,y =3,y =x +2,y =﹣x +4.问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线21()4y x m n =-+经过B 、C 两点,顶点D 在正方形内部. (1)直接写出点D (m ,n )所有的特征线;(2)若点D 有一条特征线是y =x +1,求此抛物线的解析式;(3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【答案】(1)x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m+n ;(2)21(2)34y x =-+;(3)抛物线向下平移933-或2312距离,其顶点落在OP 上. 【解析】试题分析:(1)根据特征线直接求出点D 的特征线;(2)由点D 的一条特征线和正方形的性质求出点D 的坐标,从而求出抛物线解析式; (2)分平行于x 轴和y 轴两种情况,由折叠的性质计算即可.试题解析:解:(1)∵点D (m ,n ),∴点D (m ,n )的特征线是x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m +n ;(2)点D 有一条特征线是y =x +1,∴n ﹣m =1,∴n =m +1.∵抛物线解析式为21()4y x m n =-+,∴21()14y x m m =-++,∵四边形OABC 是正方形,且D 点为正方形的对称轴,D (m ,n ),∴B (2m ,2m ),∴21(2)24y m m n m =-+=,将n =m +1带入得到m =2,n =3;∴D (2,3),∴抛物线解析式为21(2)34y x =-+. (3)①如图,当点A ′在平行于y 轴的D 点的特征线时:根据题意可得,D (2,3),∴OA ′=OA =4,OM =2,∴∠A ′OM =60°,∴∠A ′OP =∠AOP =30°,∴MN =3=233,∴抛物线需要向下平移的距离=2333-=9233-. ②如图,当点A ′在平行于x 轴的D 点的特征线时,设A ′(p ,3),则OA ′=OA =4,OE =3,EA ′=2243-=7,∴A ′F =4﹣7,设P (4,c )(c >0),,在Rt △A ′FP 中,(4﹣7)2+(3﹣c )2=c 2,∴c =1647-,∴P (4,1647-),∴直线OP 解析式为y =47-x ,∴N (2,827-),∴抛物线需要向下平移的距离=3﹣827-=127+. 综上所述:抛物线向下平移9233-或1273+距离,其顶点落在OP 上.点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答本题的关键是用正方形的性质求出点D的坐标.7.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣3≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.【详解】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC=3OE=33,∴﹣3a=33,∴a=﹣3,∴45°≤β≤60°,a的取值范围为﹣3≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)3﹣1;(4)n=﹣m﹣1(m<1).【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。
初中数学《二次函数》重难点题型汇编含解析
二次函数重难点题型汇编【题型01:二次函数的概念】【题型02:二次函数的条件】【题型03:列处二次函数关系式】【题型04:特殊二次函数的图像和性质】【题型05:与特殊二次函数有关的几何知识】【题型06:二次函数y=ax2+bx+c的图像和性质】【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】【题型09:二次函数的平移变换】【题型10:二次函数的交点个数问题】【题型01:二次函数的概念】1下列函数是关于x的二次函数的是()A.y=x2+1x2B.y=x1-xC.y=x+12-x2 D.y=ax2+bx+c【答案】B【分析】本题考查了二次函数的定义,根据形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数是二次函数,判断即可,熟练掌握二次函数的一般形式是解题的关键.【详解】解:A、y=x2+1x2的分母含有自变量,不是y关于x的二次函数,故A不符合题意;B、y=x1-x=-x2+x,是y关于x的二次函数,故B符合题意;C、y=x+12-x2=2x+1,不是y关于x的二次函数,故C不符合题意;D、y=ax2+bx+c,当a=0时不是二次函数,故D不符合题意;故选:B.2下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-1x【答案】C【分析】本题主要考查了二次函数的定义,解题的关键是掌握一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【详解】解:A、y=2x+1,是一次函数,故本选项不合题意;B、y=-2x+1,是一次函数,故本选项不合题意;C、y=x2+2,是二次函数,故本选项符合题意;D、y=2x2-1x,右边中-1x不是整式,不是二次函数,故本选项不合题意.故选:C.3下列函数解析式中,y是x的二次函数的是()A.y=ax2+bx+cB.y=-5x+1C.y=-23x2+x-34D.y=2x2-1x【答案】C【分析】根据:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,进行判断即可.【详解】解:A、当a=0时,y=ax2+bx+c不是二次函数,不符合题意;B、y=-5x+1,是一次函数,不是二次函数,不符合题意;C、y=-23x2+x-34,是二次函数,符合题意;D、y=2x2-1x,不是二次函数,不符合题意;故选C.4如图,分别在正方形ABCD边AB、AD上取E、F点,并以AE、AF的长分别作正方形.已知DF= 3,BE=5.设正方形ABCD的边长为x,阴影部分的面积为y,则y与x满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系【答案】A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE、AF的长度,再结合阴影部分的面积等于以AE、AF的长的正方形的面积之差可得y=4x-16,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:AE=AB-BE=x-5,AF=AD-DF=x-3,则阴影部分的面积为y=x-32-x-52=x2-6x+9-x2+10x-25=4x-16,即:y=4x-16,为一次函数,故选:A.【题型02:二次函数的条件】5抛物线y=ax2+a-2x-a-1经过原点,那么a的值等于()A.0B.1C.-1D.35【答案】C【分析】本题考查了抛物线与点的关系,熟练掌握把(0,0)代入函数解析式,求解关于a的一元一次方程是解题的关键.【详解】解:∵抛物线y=ax2+a-2x-a-1经过原点,∴a≠0-a-1=0,解得:a=-1,故选C.6已知y=m-1x m2+1-2x+5是二次函数,则m的值为()A.1或-1B.1C.-1D.0【答案】C【分析】本题考查了二次函数的定义,根据二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2即可求解.【详解】解:根据二次函数的定义:m2+1=2,且m-1≠0,解得:m=1或m=-1,又∵m≠1,∴m=-1,故选:C.7已知二次函数y=m-2x m2-2+3x+1,则m=.【答案】-2【分析】此题考查了二次函数的定义,根据二次函数的定义:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,得到m-2≠0,m2-2=2,进行求解即可.解题的关键是熟练掌握二次函数的定义.【详解】解:∵函数y=m-2x m2-2+3x+1是二次函数,∴m-2≠0,m2-2=2,∴m=-2.故答案为:-2.【题型03:列处二次函数关系式】8某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为()A.y=91+x2 B.y=9+9x+x2C.y=9+91+x+91+x2 D.y=91+x2【答案】C【分析】此题主要考查了根据实际问题抽象出二次函数解析式.根据题意得到二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,再求和即可,正确表示出三月份的研发资金.【详解】解:根据题意可得二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,今年一季度新产品的研发资金y=9+91+x+91+x2,故选:C.9已知一正方体的棱长是3cm,设棱长增加xcm时,正方体的表面积增加ycm2,则y与x之间的函数关系式是()A.y=6x2-36xB.y=-6x2+36xC.y=x2+36xD.y=6x2+36x【答案】D【分析】本题考查了二次函数的应用,根据题意直接列式即可作答.【详解】根据题意有:y=6x+32-6×32=6x2+36x,故选:D.10某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件(7.5<x<13.5)时,获取利润y元,则y与x的函数关系为()A.y=x-7.5500+xB.y=13.5-x500+200xC.y=x-7.5500+200xD.以上答案都不对【答案】D【分析】当销售价为x元/件时,每件利润为(x-7.5)元,销售量为[500+200×(13.5-x)],根据利润=每件利润×销售量列出函数关系式即可.【详解】解:由题意得w=(x-7.5)×[500+200×(13.5-x)],故选:D.【点睛】题考查了根据实际问题列二次函数关系式,用含x的代数式分别表示出每件利润及销售量是解题的关键.11正方形边长3,若边长增加x,增加后正方形的面积为y,y与x的函数关系式为.【答案】y=x+32/y=3+x2【分析】本题考查了列二次函数关系式,根据正方形面积等于边长的平方,即可求解.【详解】解:依题意,y=x+32,故答案为:y=x+32.【题型04:特殊二次函数的图像和性质】12已知函数y=-(x-2)2的图象上有A-32,y1,B3,y2,C4,y3三点,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 1<y 3<y 2D.y 2<y 3<y 1【答案】C【分析】本题考查二次函数的性质,当开口向上时,距离对称轴越近,函数值越小;当开口向下时,距离对称轴越近,函数值越大,解题的关键是熟练掌握二次函数的图象与性质.先找到对称轴和开口方向,根据点到对称轴的距离比较函数值的大小即可.【详解】解:∵函数y =-(x -2)2,∴图象开口向下,对称轴为直线x =2,∴图象上的点距离对称轴越近,函数值越大,2--32=72,3-2 =1,4-2 =2,∵1<2<72,∴y 1<y 3<y 2,故选:C .13对于二次函数y =2x -1 2+3,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y 轴D.当x =1时,y 有最小值【答案】D【分析】本题考查了二次函数的性质:根据抛物线的性质,由a =2得到图象开口向上,根据顶点式得到顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3,再进行判断即可.【详解】解:二次函数y =2(x -1)2+3的图象开口向上,顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3.故选项D 正确,故选:D14下列抛物线中,对称轴为直线x =12的是()A.y =x -122B.y =12x 2C.y =x 2+12D.y =x +122-3【答案】A【分析】本题考查了抛物线求对称轴方程的公式:x =-b2a.利用抛物线对称轴的公式即可确定每一个函数的对称轴,然后即可确定选项.【详解】解:A 、y =x -122的对称轴为直线x =12,故选项符合题意.B 、y =12x 2的对称轴为直线x =0,故选项不符合题意.C 、y =x 2+12的对称轴为直线x =0,故选项不符合题意.D、y=x+122-3的对称轴为直线x=-12,故选项不符合题意.故选:A.15在二次函数y=-x-12+3的图象中,若y随x的增大而减小,则x的取值范围是()A.x>-1B.x<-1C.x>1D.x<1【答案】C【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键;由题可知,函数图象开口向下,对称轴为x=1,在对称轴右侧,y随x的增大而减小;在对称轴左侧,y随x 的增大而增大,据此即可得到答案.【详解】解:由二次函数的解析式得,抛物线开口向下,对称轴为x=1,当x>1时,y 随 x 的增大而减小.故选:C .16抛物线y=-2x+12+2的顶点的坐标是.【答案】(-1,2)【分析】本题考查了二次函数的性质,根据顶点式y=a(x-h)2+k的顶点坐标为h,k,即可求解.【详解】解:抛物线y=-2x+12+2的顶点坐标是(-1,2),故答案为:(-1,2).17点A-3,y1,B2,y2均在二次函数y=-x2+2的图象上,则y1y2.(填“>”或“<”)【答案】<【分析】本题主要考查了二次函数的图象和性质.根据开口向下的二次函数,离对称轴越远函数值越小进行求解即可.【详解】解:∵二次函数解析式为y=-x2+2,∴二次函数开口向下,对称轴为y轴,∴离对称轴越远函数值越小,∵0--3=3>2-0=2,∴y1<y2,故答案为:<.【题型05:与特殊二次函数有关的几何知识】18如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是()A.4πB.2πC.πD.无法确定【答案】B【分析】据函数y =12x 2与函数y =-12x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y =-12x 2的图象,C 2是函数y =-12x 2的图象,且当x 相等时,两个函数的函数值互为相反数,∴函数y =12x 2的图象与函数y =-12x 2的图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选:B .【点睛】此题主要考查了二次函数的图象,根据已知得出阴影部分面积即是半圆面积是解题关键.19如图,已知点A 1,A 2,...,A 2024在函数y =2x 2位于第二象限的图像上,点B 1,B 2,...,B 2024在函数y =2x 2位于第一象限的图像上,点C 1,C 2,...,C 2024在y 轴的正半轴上,若四边形O 1A 1C 1B 1,C 1A 2C 2B 2,...,C 2023A 2024C 2024B 2024都是正方形,则正方形C 2023A 2024C 2024B 2024的边长为()A.1012B.10122C.20232D.202322【答案】B【分析】根据正方形对角线平分一组对角可得OB 1与y 轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA 1C 1B 1是正方形,∴OB 1与y 轴的夹角为45°,∴OB 1的解析式为y =x ,联立方程组得:y =xy =2x 2 ,解得x 1=0y 1=0 ,x 2=12y 2=12.∴B 点的坐标是:12,12,∴OB 1=122+122=22=1×22;同理可得:正方形C 1A 2C 2B 2的边长C 1B 2=2×22;⋯依此类推,正方形C 2023A 2024C 2024B 2024的边长是为2024×22=10122.故选B .【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.20如图,正方形OABC 有三个顶点在抛物线y =14x 2上,点O 是原点,顶点B 在y 轴上则顶点A 的坐标是()A.2,2B.2,2C.4,4D.22,22【答案】C【分析】连接AC 交y 轴于点D ,设点B 坐标为0,m ,根据正方形的性质可得OD =12m ,AD =12m ,从而得到A 12m ,12m,再代入y =14x 2,即可求解.【详解】解:如图,连接AC 交y 轴于点D ,设点B 坐标为0,m ,∵四边形OABC 是正方形,∴OD =12OB ,CD =AD ,AC ⊥y 轴,∴OD =12m ,AD =12m ,∴A 12m ,12m,∵A 在抛物线y =14x 2上,∴12m =14×12m 2,解得m =0(舍去)或8,∴点A 的坐标为4,4 .故选:C .【点睛】本题主要考查了二次函数的性质,正方形的性质,利用数形结合思想解答是解题的关键.21如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .若抛物线y =ax 2的图象与正方形ABCD 有公共点,则a 的取值范围是.【答案】116≤α≤4【分析】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,求出抛物线经过两个特殊点时的a 的值即可解决问题.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .∴D 4,1 ,当抛物线经过点B 1,4 时,则a =4,当抛物线经过D4,1时,a=1 16,观察图象可知,抛物线y=ax2的图象与正方形ABCD有公共点,则a的取值范围是116≤α≤4,故答案为:116≤α≤4.【题型06:二次函数y=ax2+bx+c的图像和性质】22将抛物线y=x2-4x+3绕原点O顺时针旋转180°,则旋转后的函数表达式为()A.y=x2+4x-3B.y=-x2+4x+3C.y=-x2-4x-3D.y=-x2+4x-3【答案】C【分析】本题考查了二次函数的旋转变换,熟练掌握二次函数的性质和旋转的性质是解题的关键.设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,则P 是在旋转后的抛物线上,然后代入化简即可解答.【详解】解:设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,由题意可知:P -x,-y是在抛物线y=x2-4x+3上,即:-y=x2+4x+3,化简得:y=-x2-4x-3.故选C.23直线y=ax+b与抛物线y=ax2+bx+b在同一坐标系里的大致图象正确的是()A. B. C. D.【答案】D【分析】本题考查二次函数的图象、一次函数的图象,根据题意和各个选项中的函数图象,可以得到一次函数中a和b的正负情况和二次函数图象中a、b的正负情况,然后即可判断哪个选项中的图象符合题意,解题的关键是明确题意,利用数形结合的思想解答.【详解】解:A、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;B、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;C、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,ab>0,而抛物线对称轴位于y轴右侧,则ab<0,故选项不符合题意;D、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,对称轴位于y轴左侧,则ab>0,故选项符合题意;故选:D.24已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表,x⋯-4-2035⋯y ⋯-24-80-3-15⋯则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x >0时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x =1【答案】D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得4a -2b +c =-8c =09a +3b +c =-3 ,解得a =-1c =0b =2,∴二次函数的解析式为y =-x 2+2x =-x -1 2+1,∵a =-1<0,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线x =1,故选项D 符合题意;当0<x <1时,y 的值随x 的值增大而增大,当x >1时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为1,1 且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D .25如图,平面直角坐标系中有两条抛物线,它们的顶点P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若AB =10,BC =5,CD =6,则PQ 的长度为()A.7B.8C.9D.10【答案】B【分析】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,得四边形PMNQ 是矩形,利用抛物线的对称性计算即可.本题考查了抛物线的性质,矩形的性质,熟练掌握抛物线的性质是解题的关键.【详解】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,∴四边形PMNQ 是矩形,∴MN =PQ ,∵AB=10,BC=5,CD=6,∴MA=MC=12AC=12AB+BC=152,BN=ND=12BD=12CD+BC=112,∴MN=AD-AM-ND=AB+BC+CD-AM-ND,=21-112-152=8,∴PQ=8,故选B.26二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程x2-bx+a=0的根的情况是()A.只有一个实数根B.没有实数根C.有两个不相等的实数根D.有两个相等的实数根【答案】C【分析】此题考查了二次函数的图象和性质,一元二次方程的判别式,首先根据二次函数的图象得到a<0,b>0,然后判断一元二次方程的判别式求解即可.【详解】∵二次函数图象开口向下,对称轴大于零,∴a<0,-b2a>0∴b>0∴方程x2-bx+a=0的判别式Δ=b2-4ac=-b2-4×1×a=b2-4a>0∴关于x的一元二次方程x2-bx+a=0的根的情况是有两个不相等的实数根.故选:C.27抛物线y=x2+14x+54的顶点坐标是()A.7,5B.7,-5C.-7,5D.-7,-5【答案】C【分析】依据题意,由抛物线为y=x2+14x+54=(x+7)2+5,从而可以判断得解.本题主要考查了二次函数图象与性质,解题时要熟练掌握并能利用顶点式进行判断是关键.【详解】解:由题意,∵抛物线为y=x2+14x+54=(x+7)2+5,∴顶点为-7,5.故选:C.28用配方法将二次函数y=-x2-2x-3化为y=a x-h2+k的形式为()A.y=-x-12-2 D.y=x-12+22-4 C.y=-x+12+3 B.y=x+1【答案】C【分析】本题考查了二次函数的三种表达形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.运用配方法即可将其化为顶点式.【详解】解:y=-x2-2x-3=-x2+2x+1-2=-x+12-2故选:C.29如图,抛物线y=ax2+bx+c的对称轴为x=1,点P、点Q是抛物线与x轴的两个交点,若点P的坐标为-1,0,则点Q的坐标为()A.0,-1D.3,0C.4,0B.2,0【答案】D【分析】本题考查二次函数的图象和性质,由题意可得点P、点Q关于对称轴对称即可求解.【详解】解:由题意得:点P、点Q关于对称轴对称,∴点Q的坐标为3,0,故选:D.【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】30已知抛物线y=-x2+2x+1在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值为()A.1或-2B.2或-2C.3或-1D.-1或-2【答案】B【分析】本题考查二次函数的图象和性质,根据二次函数的性质,分2种情况进行讨论求解即可.【详解】解:∵y=-x2+2x+1=-x-12+2,∴抛物线的开口向下,对称轴为直线x=1,∴抛物线的上的点离对称轴越远,函数值越小,∵t≤x≤t+2时,与其对应的函数值y的最小值为-7,分两种情况:①当t-1≤t+2-1时,即:t≥0时,当x=t+2时,y=-t+22+2t+2+1=-7,解得:t=-4(舍去)或t=2;②当t-1>t+2-1时,即:t<0时,当x=t时,y=-t2+2t+1=-7,解得:t=4(舍去)或t=-2;综上:t的值为2或-2;故选B.31已知二次函数y=x2-2x-1≤x≤t-1,当x=-1时,函数取得最大值;当x=1时,函数取得最小值,则t的取值范围是()A.0<t≤2B.0<t≤4C.2≤t≤4D.t≥2【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由y=x2-2x=x-12-1,可知图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y =3,即-1,3关于对称轴对称的点坐标为3,3,由当x=-1时,函数取得最大值;当x=1时,函数取得最小值,可得1≤t-1≤3,计算求解,然后作答即可.【详解】解:∵y=x2-2x=x-12-1,∴图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y=3,∴-1,3关于对称轴对称的点坐标为3,3,∵当x=-1时,函数取得最大值;当x=1时,函数取得最小值,∴1≤t-1≤3,解得,2≤t≤4,故选:C.32已知抛物线y=x2+(2a-1)x-3,当-1≤x≤3时,函数最大值为1,则a值为()A.-12B.-13C.-12或-13D.-1或-13【答案】D【分析】根据顶点的位置分两种情况讨论即可.【详解】解:∵y=x2+(2a-1)x-3,∴图象开口向上,对称轴为直线x=-2a-12,∵-1≤x≤3,∴当-2a-12≤1时,即a≥-12,x=3时有最大值1,∴9+(2a-1)×3-3=1,∴a=-13,当-2a-12≥1时,即a≤-12,x=-1时有最大值1,∴1+(2a-1)×(-1)-3=1,∴a=-1,∴a=-1或-13,故选:D.【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.33已知二次函数y=x-m2-1(m为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y 的最小值为3,则m的值为()A.0或3B.0或7C.3或4D.4或7【答案】B【分析】利用二次函数的性质,分三种情况求解即可.【详解】解:∵y=x-m2-1,∴当x=m时,y的最小值为-1.当m<2时,在2≤x≤5中,y随x的增大而增大,∴2-m2-1=3,解得:m1=0,m2=4(舍去);当2≤m≤5时,y的最小值为-1,舍去;当m>5时,在2≤x≤5中,y随x的增大而减小,∴5-m2-1=3,解得:m1=3(舍去),m2=7.∴m的值为0或7.故选:B.【点睛】本题考查了二次函数的性质,以及二次函数图象上点的坐标特征,分三种情况求解是解题的关键.34已知二次函数y=mx2-2mx+2(m≠0)在-2≤x≤2时有最小值-2,则m=()A.-4或-12B.4或-12C.-4或12D.4或12【答案】B【分析】本题考查了二次函数的性质,根据解析式可得对称轴为直线x=1,进而分m>0和m<0两种情况讨论,根据二次函数的性质,即可求解.【详解】解:∵二次函数解析式为y=mx2-2mx+2(m≠0),∴二次函数对称轴为直线x=-2m-2m=1,当m>0时,∵在-2≤x≤2时有最小值-2,∴当x=1时,y=m-2m+2=-2,∴m=4;当m<0时,∵在-2≤x≤2时有最小值-2,∴当x=-2时,y=4m+4m+2=-2,∴m=-12;综上所述,m=4或m=-1 2,故选:B.35已知二次函数y=-x2-2x+2,当m≤x≤m+2时,函数y的最大值是3,则m的取值范围是()A.m≥-1B.m≤2C.-3≤m≤-1D.0≤m≤2【答案】C【分析】本题主要考查二次函数的性质,依据题意,由y=-x2-2x+2=-x+12+3,可得当x=-1时,y取最大值是3,又当m≤x≤m+2时,函数y的最大值是3,故m≤-1≤m+2,进而计算可以得解.【详解】解:由题意,∵y=-x2-2x+2=-x+12+3,∴当x=-1时,y取最大值是3.又当m≤x≤m+2时,函数y的最大值是3,∴m≤-1≤m+2.∴-3≤m≤-1.故选:C.【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】36已知二次函数y=ax2+bx+c a≠0的图象如图所示,对称轴为x=32,且经过点-1,0,下列结论:①ab<0;②8b-3c=0;③若y≤c,则0≤x≤3.其中正确的有()A.0个B.1个C.2个D.3个【答案】C【分析】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.由对称轴为x =32即可判断①,由抛物线经过点-1,0 ,得出a -b +c =0,对称轴x =-b 2a =32,得出a =-13b ,代入即可判断②;根据二次函数的性质以及抛物线的对称性即可判断③.【详解】解:∵对称轴x =-b 2a =32,∴b =-3a ,∴ab =-3a 2<0,①正确;∵经过点-1,0 ,∴a -b +c =0,∵对称轴x =-b 2a =32,∴a =-13b ,∴-13b -b +c =0,∴3c =4b ,∴4b -3c =0,故②错误;∵对称轴x =32,∴点0,c 的对称点为3,c ,∵开口向上,∴y ≤c 时,0≤x ≤3.故③正确;综上所述,正确的有2个.故选:C .37二次函数y =ax 2+bx +c 的图像如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0C.a+b+c>0D.当x<-1时,y随x的增大而减小【答案】C【分析】本题考查了抛物线的图像及其性质,根据性质,结合图像判断解答即可.【详解】解:A、由图像可知函数有最小值,故正确;B、由抛物线可知当-1<x<2时,y<0,故正确;C、当x=1时,y<0,即a+b+c<0,故错误;D、由图像可知在对称轴的左侧y随x的增大而减小,故正确.故选:C.38二次函数y=ax2+bx+c的图象如图所示,与x轴左侧交点为-1,0,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③a+c2-b2<0;④a+b≤m am+b(m为实数).其中结论正确的为()A.①④B.②③④C.①②④D.①②③④【答案】A【分析】本题考查了二次函数图象与系数的关系,掌握二次函数的性质是解题关键.根据抛物线开口方向,对称轴位置,以及与y轴交点位置,可判断①结论;由抛物线对称轴得到b=-2a,再结合当x=-1时,y= 0,可判断②结论;根据平方差公式展开,可判断③结论;根据抛物线的最小值,可判断④结论.【详解】解:由图象可知,抛物线开口向上,对称轴在y轴右侧,与y轴交点在负半轴,∴a>0,a、b异号,c<0,∴b<0,∴abc>0,①结论正确;∵抛物线对称轴是直线x=1,=1,∴-b2a∴b=-2a,由图象可知,当x=-1时,y=0,∴a-b+c=a--2a+c=3a+c=0,②结论错误;由图象可知,当x=1时,y<0,∴a+b+c<0,又∵a-b+c=0,∴a+ca+c-b=0,③结论错误;2-b2=a+c+b∵当x=1时,y=a+b+c为最小值,∴a+b+c≤am2+bm+c,∴a+b≤m am+b,④结论正确,故选:A.39已知二次函数y=ax2+bx+c的部分图象如图所示,则下列结论正确的是()A.abc>0B.关于x的一元二次方程ax2+bx+c=0的根是x1=-2,x2=3C.a+b=c-bD.a+4b=3c【答案】C【分析】本题考查了二次函数的图象和性质;熟练掌握二次函数的图象和性质是解题的关键.根据二次函数的图象先判定a,b,c的符号,再结合对称轴求解抛物线与x轴的交点坐标,再进一步逐一分析即可.【详解】解:由函数图像可知开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为x=-b=1,2a∴b>0,∴abc <0,故A 不符合题意;∵抛物线与x 轴交于3,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为-1,0 ,∴关于x 的一元二次方程ax 2+bx +c =0的根是x 1=-1,x 2=3;故B 不符合题意;∵抛物线与x 轴交于3,0 ,-1,0 ,对称轴为直线x =1,∴b =-2aa -b +c =09a +3b +c =0,解得:b =-2ac =-3a ,∴∵a +b =a -2a =-a ,c -b =-3a --2a =-a ∴a +b =c -b ,故C 符合题意;∴a +4b =a +-8a =-7a ≠-9a ;∴a +4b =3c 错误,故D 不符合题意;故选:C .40如图,二次函数y =ax 2+bx +c a ≠0 的图象与x 轴交于点A 3,0 ,与y 轴交于点B ,对称轴为直线x =1,下列四个结论:①bc <0;②3a +2c <0;③ax 2+bx ≥a +b ;④若-2<c <-1,则-83<a +b +c <-43,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c =-3a ,进一步得到13<a <23,又根据b =-2a 得到a +b +c =a -2a -3a =-4a ,即可判断④.【详解】解:①∵函数图象开口方向向上,∴a >0;∵对称轴在y 轴右侧,∴a 、b 异号,∴b <0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A3,0,与y轴交于点B,对称轴为直线x=1,∴-b2a=1,∵b=-2a,∴x=-1时,y=0,∴a-b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵-2<c<-1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=-1×3=-3=c a,∴c=-3a,∴-2<-3a<-1,∴1 3<a<23,∵b=-2a,∴a+b+c=a-2a-3a=-4a,∴-83<a+b+c<-43,故④正确;综上所述,正确的有②③④,故选:C【题型09:二次函数的平移变换】41将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移1个单位得到的抛物线解析式为()A.y=2(x+3)2-4B.y=2(x+3)2-2C.y=2(x-1)2-2D.y=2x-1【答案】C【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2(x+1)2-3向右平移2个单位,向上平移1个单位得到的抛物线解析式是:y=2 (x+1-2)2-3+1,即y=2(x-1)2-2.故选:C.42将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x+1)2-3D.y=-3(x+1)2-1【答案】D【分析】此题主要考查了二次函数图象的平移,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-3x2+2向左平移1个单位所得直线解析式为:y=-3(x+1)2+2;再向下平移3个单位为:y=-3(x+1)2+2-3,即y=-3(x+1)2-1.故选:D.【题型10:二次函数交点的个数问题】43如图所示,已知函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点,则b的取值范围是()A.-14≤b≤2 B.b>-14C.-14≤b<2 D.-14<b<2【答案】D【分析】此题考查了一次函数和二次函数图象交点问题,一元二次方程的判别式,首先根据题意画出图象,然后求出A2,4,代入y2=x+b求出b=2;然后得到当一次函数y2=x+b的图象与y=x2相切时,得到x2-x-b=0的Δ=b2-4ac=0,进而求出b=-14,然后根据图象求解即可.【详解】解:如图所示,当x=2时,函数y=x2=22=4,∴A2,4,当一次函数y2=x+b的图象经过点A时,∴4=2+b,解得b=2;当一次函数y2=x+b的图象与y=x2相切时,∴x2=x+b,即x2-x-b=0,∴Δ=b2-4ac=0,∴-12-4×1×-b=0,解得b=-1 4,∴由图象可得,当-14<b<2时,函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点.故选:D.44如图,二次函数y=-x2+x+2及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有4个交点时,m的取值范围是()A.14<m<-3 B.254<m≤1 C.-2<m<1 D.-3<m<-2【答案】D【分析】如图所示,过点B作直线y=x+m,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,即可求解【详解】解:在y=-x2+x+2中,当y=0,0=-x2+x+2,解得x1=-1,x2=2,A-1,0,B2,0,当x=0时,y=2,∴原抛物线与y轴交点坐标为0,2,∴翻折后与y轴的交点坐标为0,-2,如图,当直线y=x+m经过点B时,直线y=x+m与新图有3个交点,把B2,0代入y=x+m中,得m=-2,∵抛物线y=-x2+x+2翻折到x轴下方的部分的解析式为:-y=-x2+x+2,∴翻折后的部分解析式为:y=x2-x-2-1<x<2,当直线y=x+m与抛物线y=x2-x-2-1<x<2只有一个交点C时,直线y=x+m与图象有3个交点,把y=x+m代入y=x2-x-2-1<x<2中,得到方程x+m=x2-x-2有两个相等的实数根,整理得x2-2x-2-m=0,∴Δ=-22-4×1×-2-m=0,解得m=-3,∴当直线y=x+m与新图象有4个交点时,m的取值范围是-3<m<-2.故选:D.【点睛】本题主要考查了二次函数与一次函数综合应用,理解题意,找准临界点是解题关键.45抛物线y=-x2+kx+k-54与x轴的一个交点为A(m,0),若-2≤m≤1,则实数k的取值范围是()A.-214≤k≤1 B.k≤-214或k≥1 C.-5≤k≤98D.k≤-5或k≥98【答案】B【分析】根据抛物线有交点,则-x2+kx+k-54=0有实数根,得出k≤-5或k≥1,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.。
二次函数经典难题(含精解)
二次函数经典难题(含精解)一.选择题(共1小题)1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6二.填空题(共12小题)2.作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C1所对应的函数解析式是_________.3.抛物线关于原点对称的抛物线解析式为_________.4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是_________.5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为_________.6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_________.7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B(4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是_________.8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a=_________;若抛物线与x轴有两个交点,则a的范围是_________.9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a=_________.10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是_________.11.若抛物线的顶点在x轴上方,则m的值是_________.12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C也在该抛物线上,则a•c的值是_________.13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为_________.三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标_________;(2)阴影部分的面积S=_________;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式_________,伴随直线的解析式_________;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是_________;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.20.如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.22.已知抛物线的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式.23.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x 轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.24.已知一抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣(a>0).(Ⅰ)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标;(Ⅱ)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),当a在什么范围内取值时,ON+BM的值为常数?当a在什么范围内取值时,ON﹣BM的值为常数?(Ⅲ)若点P(t,t)在抛物线上,则称点P为抛物线的不动点.将这条抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线y=x﹣上,请说明理由.25.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A 在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.26.如图,抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.27.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的解析式;(2)若点C(﹣3,b)在该抛物线上,求S△ABC的值.28.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标及c的值;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD 的形状.29.如果抛物线m的顶点在抛物线n上,同时抛物线n的顶点在抛物线m上,那么我们就称抛物线m与n为交融抛物线.(1)已知抛物线a:y=x2﹣2x+1.判断下列抛物线b:y=x2﹣2x+2,c:y=﹣x2+4x﹣3与已知抛物线a是否为交融抛物线?并说明理由;(2)在直线y=2上有一动点P(t,2),将抛物线a:y=x2﹣2x+1绕点P(t,2)旋转180°得到抛物线l,若抛物线a与l为交融抛物线,求抛物线l的解析式;(3)M为抛物线a;y=x2﹣2x+1的顶点,Q为抛物线a的交融抛物线的顶点,是否存在以MQ为斜边的等腰直角三角形MQS,使其直角顶点S在y轴上?若存在,求出点S的坐标;若不存在,请说明理由;(4)通过以上问题的探究解决,相信你对交融抛物线的概念及性质有了一定的认识,请你提出一个有关交融抛物线的问题.30.如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=﹣x2+bx+c 经过A、C两点,点B是抛物线与x轴的另一个交点,当x=﹣时,y取最大值.(1)求抛物线和直线的解析式;(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;(3)直线y=x+a与(1)中所求的抛物线交于点M、N,两点,问:①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=)参考答案与试题解析一.选择题(共1小题)1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6考点:二次函数图象与几何变换.分析:根据题目意思,求出A和B的坐标,再求三角形的面积则可.解答:解:当x=0时,y=3,所以A的坐标是(0,3),y=x2﹣2x+3=(x﹣1)2+2,把它绕顶点P旋转180°得到一个新的抛物线是y=﹣(x﹣1)2+2=﹣x2+2x+1,x=0时,y=1,所以B的坐标是(0,1),P的坐标是(1,2),△PAB的面积=×2×(3﹣2)=1.故选A.点评:本题考查了抛物线与坐标轴交点的求法,和考查抛物线将一般式转化顶点式的能力,难度较大.二.填空题(共12小题)2.作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C1所对应的函数解析式是y=﹣2(x﹣1)2+2.考点:二次函数图象与几何变换.专题:应用题.分析:根据题意易得抛物线C的顶点,进而可得到抛物线B的坐标,根据顶点式及平移前后二次项的系数不变可得抛物线B的解析式,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C1所对应的函数表达式.解答:解:根据题意易得抛物线C的顶点为(﹣1,﹣1),∵是向左平移2个单位,向上平移1个单位得到抛物线C的,∴抛物线B的坐标为(1,﹣2),可设抛物线B的坐标为y=2(x﹣h)2+k,代入得:y=2(x﹣1)2﹣2,易得抛物线A的二次项系数为﹣2,顶点坐标为(1,2),∴抛物线A的解析式为y=﹣2(x﹣1)2+2,故答案为y=﹣2(x﹣1)2+2.点评:本题主要考查了讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可,关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数,难度适中.3.抛物线关于原点对称的抛物线解析式为.考点:二次函数图象与几何变换.分析:根据关于原点对称的点的坐标特点进行解答即可.解答:解:∵关于原点对称的点的横纵坐标互为相反数,∴抛物线y=﹣x2+x+2关于原点对称的抛物线的解析式为:﹣y=﹣(﹣x)2+(﹣x)+2,即y=x2+x﹣2.故答案为:y=x2+x﹣2.点评:本题考查的是二次函数的图象与几何变换,熟知关于原点对称的点的坐标特点是解答此题的关键.4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是y=﹣x2﹣1.考点:二次函数图象与几何变换.分析:根据关于原点对称的两点的横坐标纵坐标都互为相反数求则可.解答:解:根据题意,﹣y=(﹣x)2+1,得到y=﹣x2﹣1.故旋转后的抛物线解析式是y=﹣x2﹣1.点评:考查根据二次函数的图象的变换求抛物线的解析式.5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为5﹣5.考点:二次函数综合题.分析:首先建立平面坐标系:过点G作GM⊥x轴于点M,进而得出抛物线解析式,进而表示出G点坐标,再利用FG+MG=10,进而求出即可.解答:解:如图建立平面坐标系:过点G作GM⊥x轴于点M,设抛物线解析式为:y=ax2,∵正方形ABCD边长为10,∴B点坐标为:(5,﹣10),将B点代入y=ax2,则﹣10=25a,解得:a=﹣,设G点坐标为:(a,﹣a2),则GF=2a,∴MG=10﹣GF,即a2=10﹣2a,整理的:a2+5a﹣25=0,解得:a1=,a2=(不合题意舍去),∴正方形EFGH的边长FG=2a=5﹣5.故答案为:5﹣5.点评:此题主要考查了二次函数的综合应用以及一元二次方程的解法,根据正方形的性质以及抛物线上点的坐标性质得出等式是解题关键.6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为.考点:列表法与树状图法;抛物线与x轴的交点.分析:由系数a、b、c为绝对值不大于1的整数,可得系数a、b、c为:0,1,﹣1;然后根据题意画树状图,由树状图求得所有等可能的结果与该抛物线的“抛物线三角形”是等腰直角三角形的情况,再利用概率公式即可求得答案.解答:解:∵系数a、b、c为绝对值不大于1的整数,∴系数a、b、c为:0,1,﹣1;画树状图得:∵共有18种等可能的结果,该抛物线的“抛物线三角形”是等腰直角三角形的有:(1,0,﹣1),(﹣1,0,1),∴该抛物线的“抛物线三角形”是等腰直角三角形的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率与二次函数的性质.注意用到的知识点为:概率=所求情况数与总情况数之比.7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B(4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是﹣<a<0或0<a <.考点:二次函数的性质.专题:压轴题.分析:根据点A、B的坐标求出OA、OB的长,再求出△ACO和△CBO相似,根据相似三角形对应边成比例列式求出OC的长,再根据二次函数的对称性求出对称轴,设对称轴与直线BC相交于P,与x轴交于Q,利用∠ABC的正切值求出点P到x轴的距离PQ,设抛物线的交点式解析式y=a(x+1)(x﹣4),整理求出顶点坐标,再根据抛物线的顶点在△ABC的内部分两种情况列式求出a的取值范围即可.解答:解:∵点A(﹣1,0),B(4,0),∴OA=1,OB=4,易得△ACO∽△CBO,∴=,即=,解得OC=2,∵抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),∴对称轴为直线x==,设对称轴与直线BC相交于P,与x轴交于Q,则BQ=4﹣=2.5,tan∠ABC==,即=,解得PQ=,设抛物线的解析式为y=a(x+1)(x﹣4),则y=a(x2﹣3x﹣4)=a(x﹣)2﹣a,当点C在y轴正半轴时,0<﹣a<,解得﹣<a<0,当点C在y轴负半轴时,﹣<﹣a<0,解得0<a<,所以,a的取值范围是﹣<a<0或0<a<.故答案为:﹣<a<0或0<a<.点评:本题考查了二次函数的性质,相似三角形的判定与性质,把二次函数的解析式用交点式形式表示更加简便,注意要分点C在y正半轴和负半轴两种情况讨论.8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a=9;若抛物线与x轴有两个交点,则a的范围是a<9.考点:抛物线与x轴的交点.分析:顶点在x轴上即抛物线与x轴只有一个交点,则判别式等于0,若抛物线与x轴有两个交点,则△>0,据此即可求解.解答:解:△=36﹣4a,则定点在x轴上,则36﹣4a=0,解得:a=9;抛物线与x轴有两个交点,则36﹣4a>0,解得:a<9.故答案是:9;a<9.点评:本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,与x轴有一个交点;如果△<0,与x轴无交点.9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a=2.考点:待定系数法求二次函数解析式.专题:压轴题.分析:根据抛物线顶点的纵坐标等于2,列出方程,求出a的值,注意要有意义.解答:解:因为抛物线的顶点坐标为(﹣,)所以=2解得:a1=2,a2=﹣1又因为要有意义则a≥0所以a=2.点评:此题考查了学生的综合应用能力,解题时要注意别漏条件,特别是一些隐含条件,比如:中a≥0.10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是4.考点:二次函数的性质.分析:根据抛物线顶点的横坐标等于2,列出方程,求出a的值,注意要有意义.解答:解:因为抛物线的顶点坐标为(﹣,),所以﹣=2,解得:a1=4,a2=﹣4,又因为要有意义,则a≥0,所以a=4.故答案为4.点评:此题考查了学生的综合应用能力,解题时要注意别漏条件,特别是一些隐含条件,比如:中a≥0.11.若抛物线的顶点在x轴上方,则m的值是2.考点:二次函数的性质;二次函数的定义.专题:计算题.分析:先列出关于m的等式,再根据抛物线的顶点在x轴上方,求得m,所以只需令顶点纵坐标大于0即可.解答:解:∵是抛物线,∴m2﹣2=2,解得m=±2,∵抛物线的顶点在x轴上方.∴0﹣8(m+2)<0,∴m>﹣2,∴m=2.故答案为:2.点评:本题考查了二次函数的定义和性质,将函数与一元二次方程结合起来,有一定的综合性.12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C也在该抛物线上,则a•c的值是﹣2.考点:二次函数的性质;正方形的性质.分析:抛物线y=ax2+c的顶点B点坐标为(0,c),由四边形ABCO是正方形,则C点坐标为标为(﹣,),代入抛物线即可解答.解答:解:∵抛物线y=ax2+c的顶点B点坐标为(0,c),四边形ABCO是正方形,∴∠COB=90°,CO=BC,∴△COB是等腰直角三角形,∴C点横纵坐标绝对值相等,且等于BO长度一半,∴C点坐标为(﹣,),将点C代入抛物线方程中得ac=﹣2.故答案为:﹣2点评:本题将几何图形与抛物线结合了起来,同学们要找出线段之间的关系,进而求得问题的答案.13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为10.考点:二次函数图象上点的坐标特征.专题:整体思想.分析:把点(2,5)代入抛物线求出2a+b的值,然后整体代入进行计算即可得解.解答:解:∵抛物线y=ax2+bx﹣1经过点(2,5),∴4a+2b﹣1=5,∴2a+b=3,∴6a+3b+1=3(2a+b)+1=3×3+1=10.故答案为:10.点评:本题考查了二次函数图象上点的坐标特征,把点的坐标代入函数解析式求出a、b的关系式是解题的关键,主要利用了整体思想.三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:利用关于x轴对称的点的坐标为横坐标不变,纵坐标互为相反数解答即可.解答:解:抛物线C2与抛物线C1关于x轴对称,横坐标不变,纵坐标互为相反数,即﹣y=2x2﹣4x+5,因此所求抛物线C2的解析式是y=﹣2x2+4x﹣5.点评:利用轴对称变换的特点可以解答.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:先求出抛物线C1的顶点坐标,再根据对称性求出抛物线C2的顶点坐标,然后根据旋转的性质写出抛物线C2的顶点式形式解析式,再把抛物线C1的顶点坐标代入进行即可得解.解答:解:∵y=(x+1)2﹣2的顶点坐标为(﹣1,﹣2),∴绕点P(t,2)旋转180゜得到抛物线C2的顶点坐标为(2t+1,6),∴抛物线C2的解析式为y=﹣(x﹣2t﹣1)2+6,∵抛物线C1的顶点在抛物线C2上,∴﹣(﹣1﹣2t﹣1)2+6=﹣2,解得t1=3,t2=﹣5,∴抛物线C2的解析式为y=﹣(x﹣7)2+6或y=﹣(x+9)2+6.点评:本题考查了二次函数图象与几何变换,难度较大,求出旋转后的抛物线C2的顶点坐标是解题的关键,也是本题的难点.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标(1,2);(2)阴影部分的面积S=2;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.考点:二次函数图象与几何变换.分析:直接应用二次函数的知识解决问题.解答:解:(1)读图找到最高点的坐标即可.故抛物线y2的顶点坐标为(1,2);(2分)(2)把阴影部分进行平移,可得到阴影部分的面积即为图中两个方格的面积=1×2=2;(6分)(3)由题意可得:抛物线y3的顶点与抛物线y2的顶点关于原点O成中心对称.所以抛物线y3的顶点坐标为(﹣1,﹣2),于是可设抛物线y3的解析式为:y=a(x+1)2﹣2.由对称性得a=1,所以y3=(x+1)2﹣2.(10分)点评:考查二次函数的相关知识,考查学生基础知识的同时还考查了识图能力.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式y=﹣2x2+1,伴随直线的解析式y=﹣2x+1;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是y=x2﹣2x﹣3;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)先根据抛物线的解析式求出其顶点P和抛物线与y轴的交点M的坐标.然后根据M的坐标用顶点式二次函数通式设伴随抛物线的解析式然后将P点的坐标代入抛物线的解析式中即可求出伴随抛物线的解析式.根据M,P两点的坐标即可求出直线PM 的解析式;(2)由题意可知:伴随抛物线的顶点坐标是抛物线与y轴交点坐标,伴随抛物线与伴随直线的交点(与y轴交点除外)是抛物线的顶点,据此可求出抛物线的解析式;(3)方法同(1);(4)本题要考虑的a、b、c满足的条件有:抛物线和伴随抛物线都与x轴有两个交点,因此△>0,①由于抛物线L中,x2>x1>0,因此抛物线的对称轴x>0,两根的积大于0.②根据两抛物线的解析式分别求出AB、CD的长,根据AB=CD可得出另一个需满足的条件…③综合这三种情况即可得出所求的a、b、c需满足的条件.解答:解:(1)y=﹣2x2+1,y=﹣2x+1;(2)将y=﹣x2﹣3和y=﹣x﹣3组成方程组得,,解得,或.则原抛物线的顶点坐标为(1,﹣4),与y轴的交点坐标为(0,﹣3).设原函数解析式为y=n(x﹣1)2﹣4,将(0,﹣3)代入y=n(x﹣1)2﹣4得,﹣3=n (0﹣1)2﹣4,解得,n=1,则原函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.(3)∵伴随抛物线的顶点是(0,c),∵设它的解析式为y=m(x﹣0)2+c(m≠0),∵此抛物线过P(﹣,),∴=m•(﹣)2+c,解得m=﹣a,∴伴随抛物线解析式为y=﹣ax2+c;设伴随直线解析式为y=kx+c(k≠0),P(﹣,)在此直线上,∴,∴k=,∴伴随直线解析式为y=x+c;(4)∵抛物线L与x轴有两交点,∴△1=b2﹣4ac>0,∴b2>4ac;∵x2>x1>0,∴x2+x1=﹣>0,x1•x2=>0,∴ab<0,ac>0.对于伴随抛物线有y=﹣ax2+c,有△2=0﹣(﹣4ac)=4ac>0,由﹣ax2+c=0,得x=±.∴C(﹣,0),D(,0),CD=2,又AB=x2﹣x1====,∵AB=CD,则有:2=,即b2=8ac,综合b2=8ac,b2﹣4ac>0,ab<0,ac>0可得a、b、c需满足的条件为:b2=8ac且ab<0(或b2=8ac且bc<0).点本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系.评:18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.考点:抛物线与x轴的交点;二次函数图象与几何变换.专题:计算题.分析:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据抛物线与x轴的交点的距离公式得到=2,解得m=3b﹣3a2,则平移所得抛物线的解析式为y=x2+2ax+4b﹣3a2;(2)先确定y=x2+2ax+b的顶点坐标为(﹣a,b﹣a2),由于通过(1)中所得抛物线与x轴的两个交点,则可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),然后把(﹣a,b﹣a2)代入可求出t=.解答:解:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据题意得=2,解得m=3b﹣3a2,所以平移所得抛物线的解析式为y=x2+2ax+b+3b﹣3a2=x2+2ax+4b﹣3a2;(2)y=x2+2ax+b=(x+a)2+b﹣a2,其顶点坐标为(﹣a,b﹣a2),∵新抛物线的表达式过抛物线y=x2+2ax+4b﹣3a2与x轴两交点,∴可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),把(﹣a,b﹣a2)代入得b﹣a2=t(a2﹣2a2+4b﹣3a2),解得t=,所以新抛物线的表达式过抛物线y=x2+ax+b﹣a2.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P 的坐标.考点:二次函数综合题;点的坐标;待定系数法求二次函数解析式;旋转的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)先连接AB,根据A点是抛物线C的顶点,且C交x轴于O、B,得出AO=AB,再根据∠AOB=60°,得出△ABO是等边三角形,再过A作AE⊥x轴于E,在Rt△OAE 中,求出OD、AE的值,即可求出顶点A的坐标,最后设抛物线C的解析式,求出a的值,从而得出抛物线C的解析式;(2)先过A作AE⊥OB于E,根据题意得出OE=OB=2,再根据直线OA的解析式为y=x,得出AE=OE=2,求出点A的坐标,再将A、B、O的坐标代入y=ax2+bx+c (a<0)中,求出a的值,得出抛物线C的解析式,再根据抛物线C、C′关于原点对称,从而得出抛物线C′的解析式;(3)先作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由(2)知,抛物线C′的顶点为A′(﹣2,﹣2),得出A′B的中点M的坐标,再作MH⊥x轴于H,得出△MHN∽△BHM,则MH2=HN•HB,求出N点的坐标,再根据直线l过点M(1,﹣1)、N(,0),得出直线l的解析式,求出x的值,再根据抛物线C上存在两点使得PB=PA',从而得出P1,P2坐标,再根据抛物线C′上也存在两点使得PB=PA',得出P3,P4的坐标,即可求出答案.解答:解:(1)连接AB.∵A点是抛物线C的顶点,且抛物线C交x轴于O、B,∴AO=AB,又∵∠AOB=60°,∴△ABO是等边三角形,过A作AD⊥x轴于D,在Rt△OAD中,∴OD=2,AD=,∴顶点A的坐标为(2,)设抛物线C的解析式为(a≠0),将O(0,0)的坐标代入,求得:a=,∴抛物线C的解析式为.(2)过A作AE⊥OB于E,∵抛物线C:y=ax2+bx+c(a<0)过原点和B(4,0),顶点为A,∴OE=OB=2,又∵直线OA的解析式为y=x,∴AE=OE=2,∴点A的坐标为(2,2),将A、B、O的坐标代入y=ax2+bx+c(a<0)中,∴a=,∴抛物线C的解析式为,又∵抛物线C、C′关于原点对称,∴抛物线C′的解析式为;(3)作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由前可知,抛物线C′的顶点为A′(﹣2,﹣2),故A′B的中点M的坐标为(1,﹣1).作MH⊥x轴于H,∴△MHN∽△BHM,则MH2=HN•HB,即12=(1﹣n)(4﹣1),∴,即N点的坐标为(,0).∵直线l过点M(1,﹣1)、N(,0),∴直线l的解析式为y=﹣3x+2,,解得.∴在抛物线C上存在两点使得PB=PA',其坐标分别为P1(,),P2(,);解得,.∴在抛物线C′上也存在两点使得PB=PA',其坐标分别为P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).∴点P的坐标是:P1(,),P2(,),P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).。
(易错题精选)初中数学二次函数真题汇编附答案解析
(易错题精选)初中数学二次函数真题汇编附答案解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
人教中考数学 二次函数 培优 易错 难题练习(含答案)含详细答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.【详解】(1)将C (0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.2.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
初中数学《二次函数》十大题型汇编含解析
二次函数【十大题型】【题型1 辨别二次函数】 (1)【题型2 由二次函数的定义求字母的值】 (3)【题型3 由二次函数的定义求字母的取值范围】 (4)【题型4 二次函数的一般形式】 (6)【题型5 求二次函数的值】 (7)【题型6 判断函数关系】 (9)【题型7 列二次函数关系式(几何图形)】 (11)【题型8 列二次函数关系式(增长率)】 (14)【题型9 列二次函数关系式(循环)】 (15)【题型10 列二次函数关系式(销售)】 (16)知识点1:二次函数的定义一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【题型1 辨别二次函数】【例1】(23-24九年级上·江西南昌·阶段练习)下列函数解析式中,yy一定是xx的二次函数的是()A.yy=2aaxx2B.yy=2xx+aa2C.yy=2xx2−1D.yy=xx2+1xx【答案】C【分析】本题考查二次函数的识别,形如yy=aaxx2+bbxx+cc(aa≠0)的函数是二次函数,根据定义逐一判断即可得到答案.【详解】解:A,当aa=0时,yy=2aaxx2=0,不是二次函数,不合题意;B,yy=2xx+aa2,yy是xx的一次函数,不合题意;C,yy=2xx2−1,yy一定是xx的二次函数,符合题意;D,yy=xx2+1xx中含有分式,不是二次函数,不合题意;故选C.【变式1-1】(23-24九年级上·安徽安庆·阶段练习)下列函数是二次函数的是()A.yy=2xx−1B.yy=√xx2−1C.yy=xx2−1D.yy=12xx【答案】C【分析】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如yy=aaxx2+bbxx+cc (aa、b、c为常数,aa≠0)的函数叫二次函数.根据二次函数的定义逐个判断即可.【详解】解:A、函数yy=2xx−1是一次函数,不是二次函数,故本选项不符合题意;B、函数yy=√xx2−1根号内含有x,不是二次函数,故本选项不符合题意;C、函数yy=xx2−1是二次函数,故本选项符合题意;D、函数yy=12xx分母中含有x,不是二次函数,故本选项不符合题意.故选:C.【变式1-2】(23-24九年级下·江苏·专题练习)下列函数关系式中,二次函数的个数有()(1)yy=3(xx−1)2+1;(2)yy=1xx2−xx;(3)SS=3−2tt2;(4)yy=xx4+2xx2−1;(5)yy=3xx(2−xx)+3xx2;(6)yy=mmxx2+8.A.1个B.2个C.3个D.4个【答案】B【分析】本题考查了二次函数的定义,一般地,形如yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的函数叫做二次函数.判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】解:(1)yy=3(xx−1)2+1是二次函数,故符合题意;(2)yy=1xx2−xx,不是二次函数,故不符合题意;(3)SS=3−2tt2是二次函数,故符合题意;(4)yy=xx4+2xx2−1不是二次函数,故不符合题意;(5)yy=3xx(2−xx)+3xx2=6xx不是二次函数,故不符合题意;(6)yy=mmxx2+8,不确定m是否为0,不一定是二次函数,故不符合题意;综上所述,二次函数有2个.故选:B.【变式1-3】(23-24九年级上·湖南长沙·期末)下列函数①yy=5xx−5;②yy=3xx2−1;③yy=4xx3−3xx2;④yy=2xx2−2xx+1;⑤yy=1xx2.其中是二次函数的是.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①yy=5xx−5为一次函数;②yy=3xx2−1为二次函数;③yy=4xx3−3xx3自变量次数为3,不是二次函数;④yy=2xx2−2xx+1为二次函数;⑤yy=1xx2函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.【题型2 由二次函数的定义求字母的值】【例2】(23-24九年级下·广东东莞·期中)已知函数yy=(mm−1)xx mm2+1是二次函数,则mm=.【答案】−1【分析】根据定义得:形如yy=aaxx2+bbxx+cc(aa、bb、cc是常数,且aa≠0)的函数是二次函数,列方程可求得答案.【详解】解:依题意得:mm2+1=2且mm−1≠0,解得mm=−1.故答案为:−1.【点睛】本题考查了二次函数的定义.注意:二次函数yy=aaxx2+bbxx+cc中,aa是常数,本题关键点为aa≠0.【变式2-1】(23-24九年级上·江苏扬州·阶段练习)如果yy=2xx|mm|+3xx−1是关于xx的二次函数,则mm=.【答案】±2【分析】本题主要考查了二次函数的定义,直接利用二次函数的定义得出答案.【详解】解:∵yy=2xx|mm|+3xx−1是关于x的二次函数,∴|mm|=2,解得:mm=±2.故答案为:±2.【变式2-2】(23-24九年级上·湖北·周测)如果函数yy=(kk−1)xx kk2−kk+2+kkxx−1是关于x的二次函数,则kk=.【答案】0【分析】本题考查了二次函数的定义.根据二次函数的定义得到kk−1≠0且kk2−kk+2=2,然后解不等式和方程即可得到k的值.【详解】解:根据题意,得kk−1≠0且kk2−kk+2=2,解得kk=0.故答案为:0.【变式2-3】(23-24九年级下·广东广州·期末)如果yy=(kk−3)xx�kk-1�+xx−3是二次函数,佳佳求出k的值为3,敏敏求出k的值为-1,她们俩中求得结果正确的是.【答案】敏敏【分析】本题考查了二次函数的定义,由定义得|kk−1|=2,kk−3≠0,即可求解;理解定义:“一般地,形如yy=aaxx2+bbxx+cc(a、b、c是常数,aa≠0)的函数叫做二次函数.” 是解题的关键.【详解】解:∵yy=(kk−3)xx�kk-1�+xx−3是二次函数,∴|kk−1|=2,解得kk1=3,kk2=−1,又∵kk−3≠0,即kk≠3,∴kk=−1,故敏敏正确.【题型3 由二次函数的定义求字母的取值范围】【例3】(23-24九年级上·上海嘉定·期末)如果函数yy=(kk−1)xx2+kkxx−1(kk是常数)是二次函数,那么kk的取值范围是.【答案】kk≠1【分析】根据:“形如yy=aaxx2+bbxx+cc(aa≠0),这样的函数叫做二次函数”,得到kk−1≠0,即可.【详解】解:由题意,得:kk−1≠0,∴kk≠1;故答案为:kk≠1.【变式3-1】(23-24九年级上·浙江嘉兴·开学考试)已知函数yy=(mm2−mm)xx2+(mm−1)xx−2(m为常数).(1)若这个函数是关于x的一次函数,求m的值.(2)若这个函数是关于x的二次函数,求m的取值范围.【答案】(1)mm=0;(2)mm≠1且mm≠0.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【详解】(1)解:依题意mm2−mm=0且mm−1≠0,所以mm=0;(2)解:依题意mm2−mm≠0,所以mm≠1且mm≠0.【点睛】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,属于中考常考题型.【变式3-2】(23-24九年级上·广东江门·阶段练习)已知关于xx的二次函数yy=(aa2−1)xx2+xx−2,则aa的取值范围是()A.aa≠1B.aa≠−1C.aa≠±1D.为任意实数【答案】C【分析】根据二次函数定义可得aa2−1≠0,解出答案即可.【详解】因为关于xx的二次函数yy=(aa2−1)xx2+xx−2,∴aa2−1≠0,解得:aa≠±1.故选:C.【点睛】本题考查的是二次函数yy=aaxx2+bbxx+cc(aa≠0)概念,熟练掌握二次函数定义是解题关键.【变式3-3】(23-24九年级下·四川遂宁·期中)已知函数yy=(mm2-2)xx2+(mm+√2)xx+8.若这个函数是二次函数,求mm的取值范围【答案】mm≠√2且mm≠-√2【分析】根据二次函数的定义,即可得不等式mm2-2≠0,解不等式即可求得.【详解】解:∵函数yy=(mm2-2)xx2+(mm+√2)xx+8是二次函数,∴mm2-2≠0,解得mm≠±√2,故答案为:mm≠√2且mm≠-√2.【点睛】本题考查了二次函数的定义,熟练掌握和运用二次函数的定义是解决本题的关键.【题型4 二次函数的一般形式】【例4】(23-24九年级上·四川南充·阶段练习)二次函数yy=xx2−3xx+5的二次项是,一次项系数是,常数项是.【答案】xx2−3 5【分析】根据二次函数的定义判断即可。
人教中考数学 二次函数 培优 易错 难题练习(含答案)及详细答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).【解析】试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可;(3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,∵直线BC 经过B (4,0),C (0,3), 设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩解得:343k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +,∵PE ⊥x 轴,PE ∥OC , ∴∠BDE=∠BCO , ∵∠BDE=∠PDF , ∴∠PDF=∠BCO , ∵∠PFD=∠BOC=90°, ∴△PFD ∽△BOC ,∴=PED PDBOC BC的周长的周长,由(1)得:OC=3,OB=4,BC=5, 故△BOC 的周长=12,∴2334125m mL -+=,即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD , ∴∠PCQ=∠CPD , ∴∠PCD=∠CPD , ∴CD=PD , ∴CD=DP=PQ=QC , ∴四边形CDPQ 是菱形, 过D 作DG ⊥y 轴于点G , 设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|,∵PD=CD , ∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.如图,直线AB 和抛物线的交点是A (0,﹣3),B (5,9),已知抛物线的顶点D 的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5222±0)或(9710,0);(3)752【解析】【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论:①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m ,即点C 坐标为:(,0)或(﹣,0);②当AB =BC 时,则:(5﹣m )2+92=132,解得:m =5±,即:点C 坐标为(5+,0)或(5﹣0);③当AC =BC 时,则:5﹣m )2+92=(m )2+(﹣3)2,解得:m =9710,则点C 坐标为(9710,0).综上所述:存在,点C 的坐标为:(,0)或(5±0)或(9710,0); (3)过点P 作y 轴的平行线交AB 于点H .设直线AB 的表达式为y =kx ﹣3,把点B 坐标代入上式,9=5k ﹣3,则k 125=,故函数的表达式为:y 125=x ﹣3,设点P 坐标为(m ,125m 2485-m ﹣3),则点H 坐标为(m ,125m ﹣3),S △PAB 12=•PH •x B 52=(125-m 2+12m )=-6m 2+30m =25756()22m --+,当m =52时,S △PAB 取得最大值为:752. 答:△PAB 的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=, 解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n>0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积; (2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3, ∴a=m-∴A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3, ∴m 2=, ∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−. 考点:二次函数综合题.5.如图1,在平面直角坐标系中,直线122y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =++经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点, ①连接BC 、CD 、BD ,设BD 交直线AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2.求:12S S 的最大值;②如图2,是否存在点D ,使得∠DCA =2∠BAC ?若存在,直接写出点D 的坐标,若不存在,说明理由. 【答案】(1)213222y x x =--+;(2)①当2a =-时,12S S 的最大值是45;②点D的坐标是(2,3)- 【解析】 【分析】(1)根据题意得到A (-4,0),C (0,2)代入y=-12x 2+bx+c ,于是得到结论;(2)①如图,令y=0,解方程得到x1=-4,x2=1,求得B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,根据相似三角形的性质即可得到结论;②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点P,求得P(-32,0),得到PA=PC=PB=52,过D作x轴的平行线交y轴于R,交AC的延线于G,∠DCF=2∠BAC=∠DGC+∠CDG,解直角三角形即可得到结论.【详解】解:(1)根据题意得A(-4,0),C(0,2),∵抛物线y=-12x2+bx+c经过A.C两点,∴1016422b cc⎧-⨯-+⎪⎨⎪⎩==,∴3b=-2c=2⎧⎪⎨⎪⎩,抛物线解析式为:213222y x x=--+ ;(2)①令0y=,∴2132022x x--+=解得:14x=- ,21x=∴B(1,0)过点D作DM x⊥轴交AC于M,过点B作BN x⊥轴交AC于点N,∴DM∥BN∴DME BNE∆∆∽∴12S DE DMS BE BN==设:213222D a a a⎛⎫--+⎪⎝⎭,∴122M a a⎛⎫+⎪⎝⎭,∵()10B,∴51,2N⎛⎫⎪⎝⎭∴()22121214225552a aS DMaS BN--===-++∴当2a=-时,12SS的最大值是45;②∵A(-4,0),B(1,0),C(0,2),∴AC=25,BC=5,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(-32,0),∴PA=PC=PB=52,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=43,过D作x轴的平行线交y轴于R,交AC的延长线于G,如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=12,即RC:DR=12,令D (a ,-12a 2-32a+2), ∴DR=-a ,RC=-12a 2-32a , ∴(-12a 2-32a ):(-a )=1:2, ∴a 1=0(舍去),a 2=-2,∴x D =-2,∴-12a 2-32a+2=3, ∴点D 的坐标是()2,3-【点睛】本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.6.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.7.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数关系.(1)试求y 与x 之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【答案】(1)y10000x80000=-+(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解析】解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:5k b300006k b20000+=⎧⎨+=⎩,解得:k10000b80000=-⎧⎨=⎩。
(专题精选)初中数学二次函数难题汇编含答案
【详解】
A.由图象可知:a<0,c>0,
∴ac<0,故 A 错误;
B.由对称轴可知:x= b <0, 2a
∴b<0,故 B 错误;
C.由对称轴可知:x= b =﹣1, 2a
∴b=2a,
∵x=1 时,y=0,
D.a+b+c=0
∴a+b+c=0, ∴c=﹣3a, ∴a+c=a﹣3a=﹣2a>0,故 C 错误; 故选 D. 【点睛】 本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.
∵x1+x2= 2 ,x1x2=﹣1, a
∴|x1﹣x2|=2
1 1 >2, a2
∴B 正确;
二次函数 y=ax2+bx+c(a>0)的对称轴 x=﹣ b = 1 , 2a a
当 a>0 时,不能判定 x< 1 时,y 随 x 的增大而减小; 10
∴C 错误;
∵﹣1<m<n<0,a>0,
∴m+n<0, 2 >0, a
故选 A.
2.如图,抛物线 y=ax2+bx+c(a≠0)与 x 轴交于点 A(1,0),对称轴为直线 x=﹣1,当 y>0 时,x 的取值范围是( )
A.﹣1<x<1
B.﹣3<x<﹣1
C.x<1
D.﹣3<x<1
【答案】D
【解析】
【分析】
根据已知条件求出抛物线与 x 轴的另一个交点坐标,即可得到答案.
x ···
1 0 1 3 ···
y ···
1 3 5 3 ···
下列结论错误的是( )
A. ac 0
B. 3 是关于 x 的方程 ax2 b 1 x c 0
最新初中数学二次函数难题汇编及解析
最新初中数学二次函数难题汇编及解析一、选择题1.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1, ∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y则2211100100y mm m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.3.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <0【答案】A【解析】【分析】【详解】 解:∵二次函数的图象开口向上,∴a >0.∵对称轴在y 轴的左边,∴b 2a-<0.∴b >0. ∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0. ∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,∵b >0,∴b=2﹣a >0.∴a <2.∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.4.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小即说法③错误0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.5.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.【详解】由题可知22b a-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c =,故可得4,0a b c -==①因为0c =,故①正确;②因为二次函数过点()()0,0,4,0,故②正确;③当1x =-时,函数值为0a b c -+<,故③正确;④由图可知,当04x <<时,0y <,故④正确;⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误;故选:D.【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.6.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <,0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.7.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位【答案】A【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A .【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.8.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.9.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .10.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3B 3C .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.11.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.12.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .12C .43D .45【答案】D【解析】【分析】 求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可.【详解】解:∵y =﹣x 2+4x ﹣k =﹣(x ﹣2)2+4﹣k ,∴顶点D(2,4﹣k),C(0,﹣k),∴OC =k ,∵△ABC 的面积=12AB•OC =12AB•k ,△ABD 的面积=12AB(4﹣k),△ABC 与△ABD 的面积比为1:4, ∴k =14(4﹣k), 解得:k =45. 故选:D .【点睛】 本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.13.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁 【答案】B【解析】【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得01442b c b c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x ∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得 1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩ ∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B .【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.14.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0, ∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫-⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确. 故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.15.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.16.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.17.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.18.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.19.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫-- ⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。
(专题精选)初中数学二次函数难题汇编及答案解析
【解析】
【分析】
原抛物线顶点坐标为( 0, 0),平移后抛物线顶点坐标为( -1, 2),由此确定平移办法.
【详解】 y=x2+2x+3=( x+1) 2+2,该抛物线的顶点坐标是(
-1, 2),抛物线 y=x2 的顶点坐标是( 0,
0), 则平移的方法可以是:将抛物线
y=x2 向左平移 1 个单位长度,再向上平移 2 个单位长度.
故选: A.
【点睛】
此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,
寻找平移方法.
4.方程
2
x
3x
1
0 的根可视为函数
y = x+ 3的图象与函数 y
标,则方程 x 3 2x 1 0 的实根 x0 所在的范围是( )
1 的图象交点的横坐
x
1 A. 0<x 0 <
4
1
1
B. <x 0 <
对称轴 x=﹣ = 1,故 b< 0, bc< 0,即可判断一次函数 y= x+bc 的图象 .
【详解】 ① 由 x= 2 时, y= 4a+2b+c,由图象知: y= 4a+2b+c< 0,故正确; ② 方程 ax2+bx+c=0 两根分别为 1, 3,都大于 0,故正确; ③ 当 x< 2 时,由图象知: y 随 x 的增大而减小,故错误;
3
2
故选 C.
【点睛】
此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析
其中的 “关键点 ”,还要善于分析各图象的变化趋势.
5.将抛物线 y x2 4x 3平移,使它平移后图象的顶点为
(易错题精选)初中数学二次函数难题汇编及答案解析
【分析】
设出原数,表示出新数,利用解方程和函数性质即可求解.
【详解】
解:设原数为m,则新数为 ,
设新数与原数的差为y
则 ,
易得,当m=0时,y=0,则A错误
∵
当 时,y有最大值.则B错误,D正确.
当y=21时, =21
解得 =30, =70,则C错误.
故答案选:D.
【点睛】
本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.
∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,
∴足球距离地面的最大高度为20.25m,故①错误,
∴抛物线的对称轴t=4.5,故②正确,
∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,
∵t=1.5时,y=11.25,故④错误,∴正确的有②③,
故选B.
11.如图是二次函数 的图象,有下面四个结论: ; ; ; ,其中正确的结论是
(易错题精选)初中数学二次函数难题汇编及答案解析
一、选择题
1.若二次函数y=x2﹣2x+2在自变量x满足m≤x≤m+1时的最小值为6,则m的值为( )
A. B.
C.1D.
【答案】B
【解析】
【分析】
由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.
【详解】
①由抛物线交y轴于负半轴,则c<0,故①错误;
②由抛物线的开口方向向上可推出a>0;
∵对称轴在y轴右侧,对称轴为x= >0,
又∵a>0,
∴b<0;
人教全国中考数学二次函数的综合中考真题汇总含答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 0),抛物线的对称轴为x 2)点P 的坐标为04);(3)2. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 33k +-2323k k --,∴11AM AN +323231k k --3232k -3(32(31)k k - =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学二次函数难题汇编及答案一、选择题1.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C 【解析】 【分析】根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决. 【详解】 由图象可得, a >0,b >0,c <0, ∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确, 当x =﹣1时,y =a ﹣b +c <0, 由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确,∵12b a ->-,a >0,得122b a >>,故③正确, 故选C . 【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则-2ba=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值 ∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误) 由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0 ∵1x ≠2x ∴a(x 1+x 2)+b=0 ∴x 1+x 2=2b aa a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.已知,二次函数y=ax 2+bx+a 2+b (a≠0)的图象为下列图象之一,则a 的值为( )A.-1 B.1 C.-3 D.-4【答案】A【解析】【分析】分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a2=3,由抛物线与x的交点坐标得到x2=-a,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a的值.【详解】解:若二次函数的图形为第一个,对称轴为y轴,则b=0,y=ax2+a2,其顶点坐标为(0,a2),而a2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y轴,则b=0,y=ax2+a2,a2=3,而当y=0时,x2=−a,所以−a=4,a=−4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=−1,y=0,则a−b+a2+b=0,所以a=−1;若二次函数的图形为第四个,令x=0,y=0,则a2+b=0①;令x=−2,y=0,则4a−2b+a2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax2+bx+c(a≠0)的图象与系数的关系:a>0,开口向上;a<0,开口向下;抛物线的对称轴为直线x=-;顶点坐标为(-,);也考查了点在抛物线上则点的坐标满足抛物线的解析式.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b =0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是()A.1 B.2 C.3 D.4【答案】D【解析】 【分析】根据二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定解答. 【详解】①由抛物线的对称轴可知:﹣>0,∴ab <0,∵抛物线与y 轴的交点在正半轴上, ∴c >0,∴abc <0,故①正确; ②∵﹣=1,∴b =﹣2a ,∴2a +b =0,故②正确.③∵(0,c )关于直线x =1的对称点为(2,c ), 而x =0时,y =c >0, ∴x =2时,y =c >0, ∴y =4a +2b +c >0,故③正确; ④由图象可知:△>0, ∴b 2﹣4ac >0,故②正确; 故选:D . 【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.5.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .2C .52D .3【答案】A 【解析】 【分析】根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可. 【详解】 ∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0), 即:AO=BO=3, ∴O 点为AB 的中点, 又∵圆心C 坐标为(0,4), ∴OC=4,∴BC 长度5=, ∵O 点为AB 的中点,E 点为AD 的中点, ∴OE 为△ABD 的中位线, 即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径, ∴BD 的最小值为4, ∴OE=12BD=2, 即OE 的最小值为2, 故选:A. 【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.6.方程2x 3x 10+-=的根可视为函数3yx 的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( )A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.7.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误; ∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误. 故答案选:D . 【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数by x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案. 【详解】∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号, ∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限, 反比例函数y=bx图象分布在第二、四象限, 故选D . 【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.10.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误 【答案】A 【解析】 【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误. 【详解】解:①∵顶点坐标为1,2m ⎛⎫⎪⎝⎭,12n <∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫-⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确;②把1,2m ⎛⎫⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++,∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-<⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确; 故选A . 【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.11.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( ) A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a【答案】C 【解析】 【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a ,x 1x 2=﹣1, ∴|x 1﹣x 2|=2211a>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a; ∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.12.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于()A .5B .453C .3D .4【答案】A【解析】【分析】【详解】 过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM . ∵OD=AD=3,DE ⊥OA ,∴OE=EA=12OA=2. 由勾股定理得:5设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE . ∴BF OF CM AM DE OE DE AE ==,x 2x 2255-,,解得:)52x 5BF ?x CM 22-==,. ∴5.故选A .13.已知二次函数223(0)y ax ax a a =--≠,关于此函数的图象及性质,下列结论中不一定成立的是( )A .该图象的顶点坐标为()1,4a -B .该图象与x 轴的交点为()()1,0,3,0-C .若该图象经过点()2,5-,则一定经过点()4,5D .当1x >时,y 随x 的增大而增大【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:y=a (x 2-2x-3)=a (x-3)(x+1)令y=0,∴x=3或x=-1,∴抛物线与x 轴的交点坐标为(3,0)与(-1,0),故B 成立;∴抛物线的对称轴为:x=1,令x=1代入y=ax 2-2ax-3a ,∴y=a-2a-3a=-4a ,∴顶点坐标为(1,-4a ),故A 成立;由于点(-2,5)与(4,5)关于直线x=1对称,∴若该图象经过点(-2,5),则一定经过点(4,5),故C 成立;当x >1,a >0时,y 随着x 的增大而增大,当x >1,a <0时,y 随着x 的增大而减少,故D 不一定成立;故选:D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.14.如图,四边形ABCD 是正方形,8AB =,AC 、BD 交于点O ,点P 、Q 分别是AB 、BD 上的动点,点P 的运动路径是AB BC →,点Q 的运动路径是BD ,两点的运动速度相同并且同时结束.若点P 的行程为x ,PBQ △的面积为y ,则y 关于x 的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】 分点P 在AB 边和BC 边上两种情况画出图形,分别求出y 关于x 的函数关系式,再结合其取值范围和图象的性质判断即可.【详解】解:当点P 在AB 边上,即08x ≤≤时,如图1,由题意得:AP=BQ=x ,∠ABD =45°,∴ BP =8-x ,过点Q 作QF ⊥AB 于点F ,则QF =2222BQ x =,则2122(8)22224y x x x x =-⋅=-+,此段抛物线的开口向下;当点P 在BC 边上,即882x <≤时,如图2,由题意得:BQ=x ,BP=x -8,∠CBD =45°, 过点Q 作QE ⊥BC 于点E ,则QE =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-,此段抛物线的开口向上. 故选A.【点睛】本题以正方形为依托,考查了动点问题的函数图象、正方形的性质、等腰直角三角形的性质和二次函数的图象等知识,分情况讨论、正确列出二次函数的关系式是解题的关键.15.如图,已知将抛物线21y x =-沿x 轴向上翻折与所得抛物线围成一个封闭区域(包括边界),在这个区域内有5个整点(点M 满足横、纵坐标都为整数,则把点M 叫做“整点”).现将抛物线()()2120y a x a =++<沿x 轴向下翻折,所得抛物线与原抛物线所围成的封闭区域内(包括边界)恰有11个整点,则a 的取值范围是( )A .1a ≤-B .12a ≤-C .112a -<≤D .112a -≤<- 【答案】D【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】解:∵ ()()2120y a x a =++<∴该抛物线开口向下,顶点(-1,2),对称轴是直线x=-1.∴点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)符合题意,此时x 轴.上的点(-2, 0)、(0, 0)也符合题意,将(0,1)代入()()2120y a x a =++<得到1=a+2.解得a=-1.将(1, 0)代入()()2120y a x a =++<得到0= 4a+2.解得a=1-2∵有11个整点,∴点(0,-1)、点(-2, -1)、点(-2,1)、点(0,1)也必须符合题意. 综上可知:当1-1a<-2≤ 时,点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)、点(-2, 0)、(0,0)、点(0,-1)、点(-2,-1)、点(-2,1)、点(0, 1),共有11个整点符合题意, 故选: D.【点睛】 本题考查了二次函数图象与系数的关系,抛物线与x 轴的交点的求法,利用图象解决问题是本题的关键.16.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ 底边AP 上的高保持不变1422APQ St t =⋅⋅=,函数图象为一次函数; 故选:D .【点睛】 本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.17.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .18.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3B 3C .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.19.如图1,△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A→C→B运动,点Q从点A出发以vcm/s的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示,有下列结论:①v=1;②sin B=13;③图象C2段的函数表达式为y=﹣13x2+103x;④△APQ面积的最大值为8,其中正确有()A.①②B.①②④C.①③④D.①②③④【答案】A【解析】【分析】①根据题意列出y=12AP•AQ•sin A,即可解答②根据图像可知PQ同时到达B,则AB=5,AC+CB=10,再代入即可③把sin B=13,代入解析式即可④根据题意可知当x=﹣522ba时,y最大=2512【详解】①当点P在AC上运动时,y=12AP•AQ•sin A=12×2x•vx=vx2,当x=1,y=12时,得v=1,故此选项正确;②由图象可知,PQ同时到达B,则AB=5,AC+CB=10,当P在BC上时y=12•x•(10﹣2x)•sin B,当x=4,y=43时,代入解得sin B=13,故此选项正确;③∵sin B=13,∴当P在BC上时y=12•x(10﹣2x)×13=﹣13x2+53x,∴图象C2段的函数表达式为y=﹣13x2+53x,故此选项不正确;④∵y=﹣13x2+53x,∴当x=﹣522ba时,y最大=2512,故此选项不正确;故选A.【点睛】此题考查了二次函数的运用,解题关键在于看图理解20.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位B.向上平移3个单位C.向右平移3个单位D.向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.。