最新随机过程通过线性系统分析

合集下载

第3章 随机过程的线性变换_3.1 3.2 3.3

第3章  随机过程的线性变换_3.1 3.2 3.3



即随机过程经过线性变换后,其输出的数 学期望等于输入的数学期望通过线性变换 后的结果。
7
3.1 变换的基本概念和基本定理
证明(利用大数定理) 设第i次试验得样本函数xi(t),输出端yi(t)

yi (t ) L[ xi (t )]
Y(t)的样本均值
1 Y ( t ) [ y1 ( t ) y2 ( t ) yn ( t )] n 1 { L[ x1 ( t )] L[ x2 ( t )] L[ xn ( t )]} n 1 L{ [ x1 ( t ) x2 ( t ) xn ( t )]} n L{ X ( t )}
RY ( t1 , t 2 ) Lt1 [ RXY ( t1 , t 2 )] h( t1 ) RXY ( t1 , t 2 )

综合二式得
RY (t1 , t2 ) h(t1 ) RXY (t1 , t2 )=h(t1 ) h(t 2 ) RX (t1 , t 2 )
同理可证 RYX (t1 , t2 ) h(t1 ) RX (t1 , t 2 ) RY (t1 , t2 ) h(t 2 ) RXY (t1 , t 2 )
25
3.2 随机过程通过线性系统分析
解 令输入为δ(t),则冲激响应为 dh( t ) h( t ) ( t ) dt 可解得 t
h( t ) e
U (t )
由于系统为因果系统,所以输出Y(t)的均值 为 t t mY ( t ) h( t ) m X ( t )U ( t ) e d (1 e ) 0

证明 因为 X ( t1 )Y ( t ) X (t1 ) L[ X (t )] L[ X (t1 ) X ( t )]

第4章 随机历程通过线性系统分析

第4章 随机历程通过线性系统分析

(3)时不变线性系统的传输函数
由 y(t) h(t) x(t) 有:
Y () H () X ()
X () 、Y () 、 H () 分别为 x(t) 、 y(t) 、 h(t) 的付里叶变换。
称 H () 为系统的传输函数。
4.2 随机过程通过线性系统
基本假设:系统输入 X (t) 是随机过程,系统输出Y (t) 也是随机过程。
性。
4.1 线性系统的基本理论
1.系统的物理表示 系统的物理示意图如图 1。 2.线性系统
x1 (t) 、 x2 (t) 是系统的两个输入,若:
L[1x1 (t) 2 x2 (t)] 1L[x1 (t)] 2 L[x2 (t)]
则称系统 L[] 为线性系统。
3.时不变系统

这一表达在形式上具有方便性,但在计算上较困难。 2、 输出均值
随机过程难以把握,应用的重点是随机过程的均值与相关。
定理: mY (t) h45
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

通信原理 3-5平稳随机过程通过线性系统

通信原理 3-5平稳随机过程通过线性系统

输出o(t)的统计特性
2
第3章 随机过程
1.输出过程o(t)的均值 对下式两边取统计平均:
0 (t ) h( ) i (t )d

得到
E[ 0 (t )] E

h( ) iFra bibliotek(t )d
h( )E[i (t )]d
H ( ) (1 e jT ). j 2 cos
所以
2
T
2
e
j
t
2
. j
pY ( ) H ( ) p X ( ) 2(1 cos T ). 2 p X ( )
8
R0 (t1 , t1 ) E[ 0 (t1 ) 0 (t1 )] E


R0 (t1 , t1 )


h( ) i (t1 )d h( ) i (t1 )d





h( )h( ) E[ i (t1 ) i (t1 )]dd

设输入过程是平稳的 ,则有
E[ i (t )] E[ i (t )] a
E[ 0 (t )] a h( )d a H (0)


式中,H(0)是线性系统在 f = 0处的频率响应,因此输出 过程的均值和时间无关。
3
第3章 随机过程
2. 输出过程o(t)的自相关函数:


0 (t ) lim
由于已假设i(t)是高斯型的,所以上式右端的每一项
在任一时刻上都是一个高斯随机变量。因此,输出过程
k 0
(t
k 0 i

随机过程通过线性系统59页PPT

随机过程通过线性系统59页PPT
随机过程通过线性系统

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力来的。 ——马 克罗维 乌斯

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

5随机过程通过线性系统

5随机过程通过线性系统

计算机与信息技术学院设计性实验报告一、 实验目的1、 了解随机信号自身的特性,包括均值(数学期望)、均方值、方差、相关函数、概率密度、频谱及功率谱密度等。

2、 研究随机信号通过线性系统后的均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度有何变化,分析线性系统受随机信号激励后的响应。

3、 掌握线性系统的设计与仿真 4、 掌握随机信号的分析方法。

二、 实验仪器或设备装有MATLAB 软件的电脑一台三、 总体设计(设计原理、设计方案及流程等)线性动态系统分析的中心问题是给定一个输入信号求输出响应。

在确定信号输入的情况下,输出响应都有一个明确的表达式。

而对于随机信号而言,要想得到输出响应的确定表达是可能的。

然而,一个随机信号可以方便的通过其均值方差、相关函数、频谱及功率谱密度等特性来加以描述。

我们在这里研究的问题是如何根据线性系统输入随机信号的统计特性及线性系统的特性,确定线性系统输出的统计特性。

当输入离散信号为双侧平稳随机信号时,信号经过线性系统后的统计特性: 输出过程的均值为:其中ym 是信号经线性系统后的均值,x m 是输入信号的均值。

输出过程的自相关函数为)(*)()(*)(*)()(m h m R m h m h m R m R xy x y -=-=线性系统输出的自相关是输入的自相关同系统冲击响应的自相关的卷积。

输出过程的互相关函数为)(*)()(m R m h m R x xy =输出信号的均方值(平均功率)为;)()()()]([002j k R j h k h n Y E k j x -=∑∑∞=∞=输出的均值为常数,输出自相关函数只是m 的函数。

输出信号的功率谱密度:频域分析:)(|)(|)(2ωωωx y S H S =实验系统框图如图线性系统:输入信号)(sin sin sin )(321t n t t t t x +++=ωωω,其中:1ω、2ω、3ω为1KHz 、2KHz 、3KHz ,幅值为1v ,n(t)为高斯白噪声。

实验三 随机信号通过线性时不变系统

实验三 随机信号通过线性时不变系统

实验三 随机信号通过线性系统的分析一、实验目的1 模拟产生特定相关函数的连续随机序列或者离散的随机序列,考察其特性。

2 模拟高斯白噪声环境下信号通过系统的问题,实现低通滤波。

3 掌握系统输出信号的数字特征和功率谱密度的求解。

二、实验设备1计算机2 Matlab 软件三、实验原理随机信号通过线性系统分析的中心问题是:给定系统的输入函数(或统计特性:均值和 自相关函数)和线性系统的特性,求输出函数。

如下图所示,H 为线性变换,信号X (t )为系统输入, Y (t )为系统的输出,它也是随机信号。

图3.1 随机信号通过系统的示意图并且满足: H [X (t )] = Y (t )在时域:若X(t)时域平稳,系统冲激响应为h(t),则系统输入和输出的关系为:()()*()()()()()Y t X t h t X h t d h X t d ττττττ∞∞-∞-∞==-=-⎰⎰ 输出期望:∑∞===0m XY )m (h m )]t (Y [E m 输出的自相关函数:)(h )(h )(R )(R X Y τ*τ-*τ=τ输出平均功率:⎰⎰∞∞-∞∞--=τdvdu )u (h )v (h )u v (R )(R X Y 互相关:)()()()()(ττσσσττh R d h R R X X XY *=-=⎰∞∞-在频域:输入与输出的关系:)(H )(X )(Y ωω=ω输出的功率谱:2X X Y )(H )(S )(H )(H )(S )(S ωω=ωω-ω=ω功率谱:)(H )(S )(S X XY ωω=ω四、实验内容与步骤1已知平稳随机过程X(n)的相关函数为:5),()(22==σδσm m R ; 线性系统的单位冲击响应为111,0,)(+-=≥=实验者学号后两位r k r k h k 。

编写程序求:1)输入信号的功率谱密度、期望、方差、平均功率;2)利用时域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;3)利用频域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;4)利用频域分析法或时域分析法求解输入输出的互相关函数、互功率谱密度。

随机过程通过线性系统

随机过程通过线性系统
随机过程通过线性系统
▪ 频域: 若 h(t)dt 物理可实现,且x(t)有界,则有:
Y ( ) H ( )X ( ) 。 所以对于确定信号,总可以用数学式或列表形式给定其 时域的描述,或用变换的方式给出其“频域”的表述,而且 对于其通过线性时不变系统的表述为:
x(t)
X ()
h(t )
H ( )
e
H ( ) 2 d
0
H ( 0 ) 2
e
o
0
o
e 表示:系统对噪声功率谱的选择性。
线性系统的通频带宽与等效噪声带宽 e 的关系
线性系统通频带的一般定义:系统频率特性曲线半功
率点的通频带宽 (也称为三分贝带宽)。其表示系
统对有用信号的选择性。
因为 ,e 都取决于系统的传输函数H ( ),
E[Y (t )] m X h( )d m X H (0) ,其中 h( )d H (0)
➢ 输出过程的均值=输入过程的均值×H(0)≡常数。
2. 系统输出Y(t) 的自相关函数:
RY (t, t ) E[Y (t )Y (t )]
h( )h( )E[ X (t )X (t )]dd
3.输入X(t) 与输出Y(t) 的互相关函数和互谱密度
RXY ( ) RX 1Y1 ( ) RX 1Y2 ( ) RX 2Y1 ( ) RX2Y 2 ( )
G XY ( ) G X 1Y1 ( ) G X 1Y2 ( ) G X 2Y1 ( ) G X2Y 2 ( )
四、白噪声通过线性系统
RXY ( ) RX ( ) h( ) (N 0 / 2) ( ) h( ) (N 0 / 2)h( )
即有
h( )
2 N0
RXY ( )

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

第三章 随机信号通过线性系统分析

第三章 随机信号通过线性系统分析

第三章 随机信号通过线性系统的分析本章主要内容: ● 线性系统的基本理论● 随机信号通过连续时间系统的分析 ● 随机信号通过离散时间系统的分析 ● 色噪声的产生与白化滤波器 ● 等效噪声带宽 ● 解析过程● 窄带随机过程基本概念● 窄带高斯过程包络与相位的概率密度 ● 窄带高斯过程包络平方的概率密度3.1随机信号通过连续时间系统的分析在给定系统的条件下,输出信号的某个统计特性只取决于输入信号的相应的统计特性。

分析方法:卷积积分法;频域法。

3.1.1、时域分析法1、输出表达式(零状态响应,因果系统) 输入为随机信号)(t X 某个实验结果的一个样本函数),(ζt x ,则输出),(ζt y 为:对于所有的ζ,输出为一族样本函数构成随机过程Y(t):2. 输出的均值:)(*)()(t h t m t m X Y =证明:3.系统输入与输出之间的互相关函数)(*),(),(22121t h t t R t t R X XY = )(*),(),(12121t h t t R t t R X YX =证明:4、系统输出的自相关函数已知输入随机信号的自相关函数,求系统输出端的自相关函数。

显然,有:5、系统输出的高阶距输出n阶矩的一般表达式为注意:上面的分析方法是零状态响应的一般分析方法。

它既适用于输入是平稳随机信号的情况,也适用于输入是非平稳的情况。

3.1.2、系统输出的平稳性及其统计特性的计算1、双侧随机信号在这种情况下,系统输出响应在t=0时已处于稳态。

(1)若输入X(t)是宽平稳的,则系统输出Y(t)也是宽平稳的,且输入与输出联合宽平稳。

那么由于假定连续系统是稳定的,所以由于输出的均值是常数,而输出的相关函数只是 的函数,且输出均方值有界。

所以,输出随机过程为宽平稳的。

可总结如下:输出均值:输入与输出间的互相关函数为输出的自相关函数为输出的均方值即输出总平均功率为若用卷积的形式,则可分别写为(2)若输入X(t)是严平稳的,则输出Y(t)也是严平稳的。

第4章 随机信号通过线性系统的分析

第4章 随机信号通过线性系统的分析

)
即: RXY (t1,t2 ) = RX (t1,t2 ) ∗ h (t2 )
同理可得 RYX (t1,t2 ) = RX (t1,t2 ) ∗ h (t1 )
比较 RX (t1, t2 ) , RY (t1,t2 ) , RXY (t1,t2 ) 和 RYX (t1, t2 ) ,则有
RY (t1,t2 ) = h (t1 ) ∗ RXY (t1,t2 ) = h (t2 ) ∗ RYX (t1,t2 )
4-3
《随机信号分析基础》第四章:随机信号通过线性系统的分析
第4页 共9页
RX (t1, t2 ) h (t1 ) RYX (t1, t2 ) h(t2) RY (t1,t2 )
RX (t1, t2 ) h (t2 ) RXY (t1, t2 ) h (t1 ) RY (t1,t2 )
若输入 X (t) 为平稳随机信号,则输出信号Y (t) 与输入信号 X (t) 之间的关系为:
即 GY (ω) =| H (ω) |2 ⋅GX (ω)
∫ ∫ 系统输出的平均功率
PY
=
1 2π
∞ −∞
GY

)

=
1 2π
∞ −∞
H
(ω )
2
GX
(ω ) dω
有时 RY (τ ) 比较简单 PY = RY (0) = E ⎡⎣Y 2 (t )⎤⎦
4-4
《随机信号分析基础》第四章:随机信号通过线性系统的分析
《随机信号分析基础》第四章:随机信号通过线性系统的分析
第1页 共9页
第四章 随机信号通过线性系统的分析(4 课时)
研究的必要性:信息的载体=随机信号;信息系统=信息获取、变换、传输与处理 ⇒ 信息处

第三章 随机信号通过线性系统分析

第三章 随机信号通过线性系统分析
• 3.2.1 时域分析法
• • • • • 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 5、系统输出的高阶距
x (t ) ► 输入为随机信号X(t)的某个实验结果的一个样本函数,则输 出为:
y (t )

h ( ) x ( t ) d
2012-6-30 3
3.1 线性系统的基本理论
系统可分为: (1)线性系统:线性放大器、线性滤波器 (2)非线性系统:限幅器、平方律检波器 对于线性系统:已知系统特性和输入信号的统计特性,可以求出系统输 出信号的统计特性
2012-6-30
4
• 下面的分析线性系统是单输入单输出(响应)的、连续或离散时不变 的、物理可实现的稳定系统。
证明:已知系统输入随机信号的自相关函数,可以求出系统 输出端的自相关函数
R Y ( t1 , t 2 ) E [ Y ( t1 ) Y ( t 2 )] h ( t1 ) h ( t 2 ) R X ( t1 , t 2 )
R Y ( t1 , t 2 ) E [Y ( t1 )Y ( t 2 )]
R Y X ( t1 , t 2 ) R X ( t1 , t 2 ) * h ( t1 )
2012-6-30 17
3.2 随机信号通过连续时间系统的分析
证明:由于系统的输出是系统输入的作用结果,因此,系统 输入输出之间是相关的,系统输入输出相关函数为
R X Y ( t1 , t 2 ) R X ( t 1 , t 2 ) * h ( t 2 )
时不变线性系统
若输入信号x(t)时移时间C, 输出y(t)也只引起一个相同 的时移,即 y(t-C) = L[x(t-C)]

第三章 随机信号通过线性系统分析讲解

第三章 随机信号通过线性系统分析讲解

第三章 随机信号通过线性系统的分析本章主要内容:● 线性系统的基本理论● 随机信号通过连续时间系统的分析 ● 随机信号通过离散时间系统的分析 ● 色噪声的产生与白化滤波器 ● 等效噪声带宽 ● 解析过程● 窄带随机过程基本概念● 窄带高斯过程包络与相位的概率密度 ● 窄带高斯过程包络平方的概率密度3.1随机信号通过连续时间系统的分析在给定系统的条件下,输出信号的某个统计特性只取决于输入信号的相应的统计特性。

分析方法:卷积积分法;频域法。

3.1.1、时域分析法1、输出表达式(零状态响应,因果系统) 输入为随机信号)(t X 某个实验结果ζ的一个样本函数),(ζt x ,则输出),(ζt y 为:对于所有的ζ,输出为一族样本函数构成随机过程Y(t):2. 输出的均值:)(*)()(t h t m t m X Y =证明:3.系统输入与输出之间的互相关函数)(*),(),(22121t h t t R t t R X XY = )(*),(),(12121t h t t R t t R X YX =证明:4、系统输出的自相关函数已知输入随机信号的自相关函数,求系统输出端的自相关函数。

显然,有:5、系统输出的高阶距输出n阶矩的一般表达式为注意:上面的分析方法是零状态响应的一般分析方法。

它既适用于输入是平稳随机信号的情况,也适用于输入是非平稳的情况。

3.1.2、系统输出的平稳性及其统计特性的计算1、双侧随机信号在这种情况下,系统输出响应在t=0时已处于稳态。

(1)若输入X(t)是宽平稳的,则系统输出Y(t)也是宽平稳的,且输入与输出联合宽平稳。

那么由于假定连续系统是稳定的,所以由于输出的均值是常数,而输出的相关函数只是 的函数,且输出均方值有界。

所以,输出随机过程为宽平稳的。

可总结如下:输出均值:输入与输出间的互相关函数为输出的自相关函数为输出的均方值即输出总平均功率为若用卷积的形式,则可分别写为(2)若输入X(t)是严平稳的,则输出Y(t)也是严平稳的。

随机信号通过线性系统

随机信号通过线性系统
• 3. 系统的稳定性与因果性 • 实际应用中的系统,其本身必定是稳定和可实现的,它们应该具有下面
两个共同特点。
上一页 下一页 返回
4.1 线性系统的基本性质
• 1)系统稳定性 • 如果一个线性时不变系统对任意有界输入的响应必然也是有界的,那
么,此系统是稳定的,由式有
• 若输入信号有界,则必存在某正常数M,
• 证明:
• 上式表明,线性系统输出的功率谱密度等于输入功率谱密度乘以系统 的功率传输函数。通过傅里叶反变换可得到线性系统输出的自相关函 数
上一页 下一页 返回
4.2 随机信号通过连续时间系统的分析
• 于是系统输出的均方值或平均功率可表示为 • 将输出信号互相关函数的卷积公式两边取傅里叶变换,有
上一页 下一页 返回
• 如果X (t)为平稳随机过程,则 • 其中H (0)为系统的传递函数在ω=0时的值。 • 2)系统输出的互相关函数
上一页 下一页 返回
4.2 随机信号通过连续时间系统的分析
• 线性系统的输出必定以某种方式依赖于输入,即输入与输出必定是相 关的,其相关性由输入与输出之间互相关函数描述。线性系统输入输 出之间的互相关函数为
• 线性系统既可以用冲激响应描述,也可以用系统传递函数描述,因此,随 机过程通过线性系统的常用分析方法也有两种:冲激响应法(时域分析 法)和频域分析法。
• 4.2.1 时域分析法
• 1. 系统的输出 • 假定随机信号X (t)输入某个(确知的)线性时不变系统h(t),由前面章节
可知X (t)是不确定的,它可以视为很多样本函数的集合,即x(t,ξi),其中ξi 表示它的某种可能结果,i=1,2,3,…,而每一个样本函数都是确知的,当 它输入系统h(t)时,可得出相应响应信号为

随机信号通过线性系统的分析.

随机信号通过线性系统的分析.

(6-83)
由于输入的是随机信号,输出一般也是随机信号。
1.输出的均值
输出序列的均值 my (n) 通过(6-83)式计算,即


my (n) EY (n) h(k)EX (n k) h(k)mx (n k)
k
k
(6-84)
若 X (n) 为平稳随机序列,则 mx (n) mx (n k) mx 为
(一)时域分析
设已知线性时不变离散系统的单位脉冲响应为
在 n 范围内输入随机序列 h(n) ,又设
Y (n) 是 X (n) 通过该系统的输出序列,则X输(n出) 随机 序列为 h(n) 与 X (n) 的卷积和,即

Y (n) h(n) X (n) h(k)X (n k) k
的,则系统输出也是广义平稳的。
3.输入与输出之间的互相关函数
根据互相关函数的定义,有
Rxy (t, t ) EX (t)Y (t )

E

X
(t)

h( 1 ) X (t



1
)d
1



h(
1
)EX
(t)
X
(t


1 )d 1
(6-86)
若X (n)为平稳随机序列,则有

Ryy (m)
h(k)h(i)Rxx (m k i)
k i
Rxx (m) h(m) h(m)
(6-87)
上式说明,输出随机信号Y(n) 的自相关函数只 与时间差m有关。实际上,对于线性时不变系 统而言,如果输入随机信号是平稳的,输出随 机信号也是平稳的,故其概率特性是时不变的, 自相关函数只与时间差有关。

第9章随机信号通过线性系统

第9章随机信号通过线性系统
定义 9.2-1

E[ X (t)] xf (x,t)dx mx (t)
当随机信号X(t)为(严格)平稳随机过程时,满足如下条件:
fn ( x1, x2,, xn;t1, t2,, tn ) fn ( x1, x2,, xn;t1 , t2 ,, tn )
第9章 随机信号通过线性系统
第9章 随机信号通过线性系统
9.0 引言 9.1 随机信号的概念 9.2 连续随机信号的统计特征 9.3 离散随机信号的统计特征 9.4 线性连续系统分析 9.5 线性离散系统分析 9.6 白噪声通过线性系统分析
第9章 随机信号通过线性系统
9.0 引 言
由于系统输入是随机信号,所以输出也是随机信号,一般 不能用显式表示。随机信号一般用统计特性描述,因此,随机 信号通过线性系统的分析问题通常是分析输入与输出的一、二 阶统计特征(或数字特征)之间的关系。
定义 9.2 - 7 随机信号X(t) 、Y(t)的互协方差函数定义为
Cxy (t1, t2 ) E{[X (t1) mx (t1)][Y (t2 ) my (t2 )]} E[ X (t1)Y (t2 )] mx (t1)E[Y (t2 )] my (t2 )E[ X (t1)] mx (t1)my (t2 ) E[ X (t1)Y (t2 )] mx (t1)my (t2 ) Rxy (t1, t2 ) mx (t1)my (t2 )
第9章 随机信号通过线性系统 如果Cxy(t1, t2)=0,则称随机信号X(t) 与Y(t)之间互不相关。 对于两个平稳随机信号而言,其互相关函数和互协方差 函数只与时间间隔τ=t2-t1有关,分别表示如下: 平稳随机信号X(t) 、Y(t)的互相关函数为

随机信号通过线性系统和非线性系统后会是什么样子的

随机信号通过线性系统和非线性系统后会是什么样子的

随机信号通过线性系统和非线性系统后会是什么样子的实验一随机信号通过线性系统和非线性系统后的特性测试1.实验目的⑴了解随机信号自身的特性,包括均值(数学期望)、方差、相关函数、频谱及功率谱密度等。

⑵研究随机信号通过线性系统和非线性系统后的均值方差、相关函数、频谱及功率谱密度有何变化,分析线性系统和非线性系统受随机信号激励后的响应。

⑶掌握随机信号的分析方法。

⒉实验原理⑴随机信号的分析方法在信号系统中,我们可以把信号分成两大类--确知信号和随机信号。

确知信号具有一定的变化规律,因而容易分析,而随机信号无确知的变化规律,需要用统计特性进行分析。

我们在这里引入了随机过程的概念。

所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程可分为平稳的和非平稳的、遍历的和非遍历的。

如果随机信号的统计特性不随时间的推移而变化,则随机信号是平稳的。

如果一个平稳的随机过程它的任意一个样本都具有相同的统计特性,则随机过程是遍历的。

我们下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,我们可以取随机过程的一个样本来描述随机过程的统计特性。

随机过程的统计特性一般采用随机过程的分部函数和概率密度来描述,它们能够对随机过程作完整的描述。

但是由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

以下算法都是一种估计算法,条件是N要足够大。

①随机过程的均值(数学期望):均值E[x(t)]表示集合平均值或数学期望值。

基于随机过程的各态历经性,可用时间间隔T内的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。

②随机过程的均方值:信号x(t)的均方值E[x2(t)](),或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

③随机信号的方差:信号x(t)的方差定义为:称为均方差或标准差。

第三章随机过程的线性变换NEW随机信号分析与处理

第三章随机过程的线性变换NEW随机信号分析与处理


h(k)mX(nk)
相关函数:
k
R X ( n 1 , n Y 2 ) E { X ( n 1 ) Y ( n 2 ) h } ( n 2 ) R X ( n 1 , n 2 )
R Y ( n 1 , n 2 ) h ( n 1 ) h ( n 2 ) R X ( n 1 , n 2 )

Y (t) X (t)h ()d h (t) X (t)
3.2随机过程通过线性系统分析
1. 冲击响应法
X(t)
h(t)
Y(t)

Y (t) X (t)h ()d h (t) X (t)
•均值

m Y (t) m X (t)h ()d h (t) m X (t)
G Y () H () G X (Y ) H * () G Y (X )
H * ( )H ( )G X ( )H ( )2 G X ( )
3.2随机过程通过线性系统分析
电路
R
C


C
R
L R
R L
H ()
1
1 jRC
jRC 1 jRC
R
R jL
X (n)
h(n)
Y (n)
系统描述 系统输出
பைடு நூலகம்
H() h(n)ejn n

H(z) h(n)zn n

Y(n) h(k)X(nk)h(n) X(n) k
3.3随机序列通过离散线性系统分析
1. 冲击响应法
X (n)
h(n)
Y (n)
均值: m Y ( n ) E { Y ( n ) } h ( n ) m X ( n )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档