(八年级下册数学)(期末压轴题汇编)

合集下载

初二下学期数学期末综合压轴题100题锦集

初二下学期数学期末综合压轴题100题锦集

初二下学期数学期末综合压轴题100题锦集1.△ABC是等边三角形,D是射线BC上的一个动点(与点B、C 不重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,交射线AC于点F,连接BE.(1)如图E 13.1,当点D在线段BC上运动时.①求证:△AEB≌△ADC;②探究四边形BCFE是怎样特殊的四边形?并说明理由;(2)如AFDFDCE图(备用图)图13.113.2,当点D在BC的延长线上运动时,请直接写出(1)中的两个结论是否仍图然成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCFE是菱形?并说明理由.,B60°,BC2.点O是AC的2.如图,在Rt△ABC中,ACB90°中点,过点O的直线l与AB边相交于点D.过点C作CE∥AB交直线l于点E,设AOD=.(1)当等于多少度时,四边形EDBC是等腰梯形?并求此时AD的长;EDBC90°(2)当时,判断四边形是否为菱形,并说明理由.-1)3.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,,且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;..(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?若存在,请求出点Q的坐标,若不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以 OP、OQ为邻边的平行四边形OPCQ,设点Q的横坐标为n,求平行四边形OPCQ周长(周长用n 的代数式表示),并写出其最小值...第3题图14.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是 ,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.AAF第3题图2D EG C BC B4.例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N.求证:AM=MN.思路点拨:取的AB中点P,连结PM易证△APM ≌△MCQ从而AM=MN.问题解决: (1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.①填空:当∠AMN = °时,AM=MN;②证明①的结论.(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)第5题图2 第5题图3 第5题图15.如图①,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.6.如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y的图象上,点P(m,n)是函数y k(k0,x0)xk(k0,x0)的图象上异于B的任意一点,过点Px分别作x轴、),轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为s1,求s2;(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为.s2写出.s2与m的函数关系式,并标明m的取值范围.7.在直角坐标系xoy中,将面积为3的直角三角形AGO沿直线y=x翻折,得到三角形CHO,连接AC,已知反比例函数y k x0的图象过A、C两点,如图①. x(1)k的值是 .(2)在直线y=x图象上任取一点D,作AB⊥AD,AC⊥CB,线段OD交AC于点F,交AB于点E, P为直线OD上一动点,连接PB、PC、CE.㈠如图②,已知点A的横坐标为1,当四边形AECD为正方形时,求三角形PBC的面积. ㈡如图③,若已知四边形PEBC为菱形,求证四边形PBCD是平行四边形.㈢若D、P两点均在直线y=x上运动,当ADC=60°,且三角形PBC的周长最小时,请直接写出三角形PBC与四边形ABCD的面积之比.8.(1)如图6,点E,F,M,N分别是菱形ABCD四条边上的点,若AE=BF=CM=DN,求证:四边形EFMN是平行四边形.(2)如图7,当E,F,M,N分别是菱形ABCD四条边的中点时,试判断四边形EFMN的形状,并说明理由.9、如图,在四边形ABFC中,∠ACB=90,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。

人教版八年级下册数学期末压轴题专题训练(含答案)

人教版八年级下册数学期末压轴题专题训练(含答案)

人教版八年级下册数学期末压轴题专题训练1.如图,已知长方形的边AD =8,AB =4,动点M 从点A 出发,以每秒2个单位长度的速度沿A →D →A 的路径匀速运动,同时,动点N 从点C 出发,沿C →B 方向以每秒1个单位长度的速度匀速运动,当其中一个动点到达终点时,另一点也随之停止运动,设运动时间为t 秒.(1)如(图一),当运动时间为1秒时,求MN 的长度;(2)当0≤t ≤4时,直接写出AMN 为直角三角形时的运动时间t 的值; (3)如(图二),当4<t <8时,判断AMN 的形状,并说明理由.2.(1)感知:如图①,在正方形ABCD 中,E 为边AB 上一点(点E 不与点AB 重合),连接DE ,过点A 作AF DE ⊥,交BC 于点F ,证明:DE AF =.(2)探究:如图②,在正方形ABCD 中,E ,F 分别为边AB ,CD 上的点(点E ,F 不与正方形的顶点重合),连接EF ,作EF 的垂线分别交边AD ,BC 于点G ,H ,垂足为O .若E 为AB 中点,1DF =,4AB =,求GH 的长.(3)应用:如图③,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE CF =,BF ,AE 相交于点G .若3AB =,图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则ABG 的面积为______,ABG 的周长为______.3.如图.菱形ABCD的对角线AC,BD交于点O.尺规作图:过点A作直线BC的垂线(不写作法和证明,保留作图痕迹).该垂线与BC交于点E,F为AD边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE与OF的数量关系,并证明你的猜想.4.图1、图2分别是65的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1中画一个以线段AB为一边的菱形(非正方形),所画菱形各顶点必须在小正方形的顶点上.(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形各顶点必须在小正方形的顶点上,且所画等腰三角形的面积为52.5.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.⊥,垂6.如图,在ABCD中,E,F分别为AD,BC的中点,AG BD⊥,CH BD足分别为G,H,连接EG,EH,FG,FH.(1)求证:四边形GEHF是平行四边形;BC=,当BD=______时,GEHF是矩形.(2)若2AB=,37.如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于E.(1)发现:如图1,连接CE,则△BCE的形状是_______________,∠CDB=____________°;(2)探索:如图2,点P为线段AC上一个动点,当点P在CD之间运动时,连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ,即△BPQ是等边三角形;思路:在线段BD上截取点H,使DH=DP,得等边△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易证△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等边三角形.试判断线段DQ、DP、AD之间的关系,并说明理由;(3)类比:如图3,当点P在AD之间运动时连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ.①试判断△BPQ的形状,并说明理由;②若AD=2,设AP=x,DQ=y,请直接写出y与x之间的函数关系式.8.下面是小东设计的“作平行四边形ABCD,使∠B=45°,AB=2cm,BC=3cm”的作图过程.作法:如图,①画∠B=45°;②在∠B的两边上分别截取BA=2cm,BC=3cm.③以点A为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧相交于点D;则四边形ABCD为所求的平行四边形.根据小东设计的作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴四边形ABCD为所求的平行四边形()(填推理的依据).9.如图,已知菱形ABCD中,分别以C、D为圆心,大于1CD的长为半径作弧,两弧2分别相交于M、N两点,直线MN交CD于点F,交对角线AC于点E,连接BE、DE.(1)求证:BE=CE;(2)若∠ABC=72°,求∠ABE的度数.10.如图,四边形ABCD是一个正方形,E、F分别在AD、DC边上,且DE=CF,AF、BE交于O点,请说出线段AF和BE的关系,并证明你的结论.11.如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)在网格中画出平行四边形ABCD;(2)线段AC的长为,CD的长为,AD的长为,△ACD为三角形,平行四边形ABCD的面积为.12.两个不全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图(1),△DEF 沿线段AB 向右平移(D 点在线段AB 内移动),连接DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积;(2)如图(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.13.如图,长方形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且G 点在长方形ABCD 内部,延长BG 交DC 于点F .(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB 的值.14.在正方形ABCD 中,点E 是CD 边上任意一点.连接AE ,过点B 作BF ⊥AE 于F .交AD 于H .(1)如图1,过点D 作DG ⊥AE 于G ,求证:△AFB ≌△DGA ;(2)如图2,点E 为CD 的中点,连接DF ,求证:FH +FE ;(3)如图3,AB =1,连接EH ,点P 为EH 的中点,在点E 从点D 运动到点C 的过程中,点P 随之运动,请直接写出点P 运动的路径长.15.已知如图,四边形ABCD 是平行四边形.(1)尺规作图:作∠ABC 的角平分线交CD 的延长线于E ,交AD 于F (不写作法和证明,但要保留作图痕迹).(2)请在(1)的情况下,求证:DE =DF .16.如图,在Rt ABC ∆中,90ACB ∠=︒,CD 是斜边AB 上的中线,1AC CD ==,求直角边BC 的长.17.如图:正方形ABCD 中,点E 、F 分别在边BC 、CD 上,BE =CF ,连接AE ,BF 交于点O ,点M 为AB 中点,连接OM ,求证:12OM AB =.18.如图,在四边形ABCD 中,90ABD ACD ∠=∠=︒,E ,F 分别是BC 、AD 的中点.(1)若10AD =,求BF 的长; (2)求证:EF BC ⊥.19.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.(1)求证:BG =CE ; (2)求证:CE ⊥BG ; (3)求:∠AME 的度数.20.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE//AB交DF 的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC ,求AB的长.21.如图,△ABC中,∠C=90°.(1)尺规作图:作边BC的垂直平分线,与边BC,AB分别交于点D和点E;(保留作图痕迹,不要求写作法)(2)若点E是边AB的中点,AC=BE,求证:△ACE是等边三角形.22.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,四边形ABCD 是平行四边形.(1)尺规作图(不写作法,保留作图痕迹);作出ABC ∠的角平分线BE ,交AD 于点E ;在线段BC 上截取BF BA =,连接EF ;(2)在(1)所作图中,请判断四边形ABFE 的形状,并说明理由.24.如图,矩形ABCD 中,E 、F 分别为边AD 和BC 上的点,BE =DF ,求证:DE =BF .25.已知:在ABC 中,90BAC ∠=︒,AB AC =,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图①,当点D 在线段BC 上时, ①求证:ABD △≌ACF ; ②ACF ∠的大小=______°;③若8BC =,2CD =,则CF 的长=______;(2)如图②,当点D 在线段BC 的延长线上时,其它条件不变,则CF 、BC 、CD 三条线段之间的关系是:CF =______;其它条件不变:①CF、BC、CD三条线段之间的关系是:CF ______;△的形状,并说明②若连接正方形的对角线AE、DF,交点为O,连接OC,探究AOC理由.26.已知:如图,▱ABCD中,延长BC至点E,使CE=BC,连接AE交CD于点O.(1)求证:CO=DO;(2)取AB中点F,连接CF,△COE满足什么条件时,四边形AFCO是正方形?请说明理由.参考答案:1.解:过点N作NR⊥AD于R.∵四边形ABCD是矩形,∴∠C=∠D=∠DRN=90°,∴四边形CDRN是矩形,∴RN=CD=4,CN=DR=1,∵AM=2,AD=8,∴RM=AD-AM-DR=8-2-1=5,∵∠MRN=90°,∴MN=(2)解:当0≤t≤4时,如果AM=BN,则△AMN是直角三角形,∴2t=8-t,∴t=83,当t=4时,点M与D重合,点N位于BC的中点,此时△AMN是等腰直角三角形,综上所述,当△AMN是直角三角形时,t的值为83或4.(3)解:∵当t=4时,△AMN是等腰直角三角形,∵点M的运动速度大于点N的运动速度,且M,N同时到达终点,即点M在点N的右侧,∴当4<t<8时,△AMN是锐角三角形.2.证明:∵四边形ABCD是正方形,∴AD AB =,90DAE ABF ∠=∠=︒,∵AF DE ⊥,∴90DAF BAF ∠+∠=︒,90DAF ADE ∠+∠=︒, ∴ADE BAF ∠=∠,在DAE △和ABF 中,ADE BAF AD AB DAE ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DAE △≌ABF (ASA ),∴DE AF =.探究:解:分别过点A 、D 作AN GH ∥,DM EF ∥,分别交BC 、AB 于点N 、M ,如图②所示:∵四边形ABCD 是正方形,∴AB CD ∥,AB CD =,90DAB B ∠=∠=︒,∴四边形DMEF 是平行四边形,∴1ME DF ==,DM EF =, ∵AN GH ∥,GH EF ⊥,∴DM GH ⊥,同理,四边形AGHN 是平行四边形,∴GH AN =,∵DM EF ∥,GH EF ⊥,∴AN DM ⊥,∴90DAN ADM ∠+∠=︒,∵90DAN BAN ∠+∠=︒,∴ADM BAN ∠=∠,在ADM △和BAN 中,90ADM BAN AD AB DAM ABN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADM △≌BAN (ASA ),∴DM AN =,∴EF GH DM AN ===,∵E 为AB 中点,∴122AE AB ==, ∴211AM AE ME =-=-=,∴DM ==∴GH =应用:解:∵AB =3,∴S 正方形ABCD =3×3=9,∵阴影部分的面积与正方形ABCD 的面积之比为2:3,∴阴影部分的面积为:23×9=6, ∴空白部分的面积为:9﹣6=3,在△ABE 和△BCF 中,90BECF ABE BCF AB BC ,∴△ABE ≌△BCF (SAS ),∴∠BEA =∠BFC ,S △ABG =S 四边形CEGF ,∴S △ABG =12×3=32,∠FBC +∠BEA =90°, ∴∠BGE =90°,∴∠AGB =90°,设AG =a ,BG =b , 则12ab =32, ∴2ab =6,∵a 2+b 2=AB 2=32,∴a 2+2ab +b 2=32+6=15,即(a +b )2=15,而0,a b +>∴a +bBG +AG∴△ABG, 故答案为:323. 3.解:所作图形如图所示:结论:CE =OF .理由:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC ,AD ∥BC ,∵AE ⊥BC ,OF ⊥AD ,∴AE ⊥AD ,∴∠AEC =∠DAE =∠AOD =∠DFO =90°,∴∠EAC +∠DAO =90°,∠FDO +∠DAO =90°,∴∠CAE =∠ODF ,∵OD =2AO ,AC =2AO ,∴AC =OD ,在△AEC 和△DFO 中,AEC DFO CAE ODF AC DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△DFO (AAS ),∴CE =OF .4.解:所画菱形如图所示;(答案不唯一)(2)解根据勾股定理,AB = 所画等腰三角形的面积为52, ∴作以线段AB 为直角边的等腰直角三角形即可,所画三角形如图所示.5.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB CD ∥,OB =OD ,OA =OC ,∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴12BE OB =,12DF OD =, ∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF(SAS).(2)解:当AC =2AB 时,可使四边形EGCF 为矩形;理由如下:∵△ABE ≌△CDF ,∴∠AEB =∠CFD ,∴∠AEO =∠CFO ,∴AE CF ∥,∵EA =EG ,OA =OC ,∴EO 是△AGC 的中位线,∴EO GC ∥,∴四边形EGCF 是平行四边形,∵AC =2AB ,AC =2AO ,∴AB =AO ,∵E 是OB 的中点,∴AE ⊥OB ,∴∠OEG =90°,∴平行四边形EGCF 是矩形.6.解:∵AG BD ⊥于G ,∴90AGD ∠=︒.∵在Rt AGD 中,E 为AD 的中点, ∴12EG ED AD ==,同理12HF BF BC ==. ∵在ABCD 中,AD BC =,∴EG FH =.∵在EGD 中,EG ED =,∴EDG EGD ∠=∠,同理在BFH △中,HBF FHB ∠=∠.∵在ABCD 中,AD BC ∥,∴EDG HBF ∠=∠.∴EGD FHB ∠=∠.∴EG FH ∥.又∵EG FH =,∴四边形GEHF 是平行四边形.(2)连接EF ,则EF =AB =CD =2,若四边形GEHF 是矩形,则EF =GH =2,在RtAGD 和Rt ΔCHB 中,41AGD CHB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ΔAGD ≅ΔCHB (AAS ),∴DG =BH ;∴DG -GH =BH -GH ,即BG =DH ,设BG =DH =x ,在Rt △ABG 中,AG 2=AB 2-BG 2=4-x 2,在Rt △AGD 中,AG 2=AD 2-DG 2=9-DG 2=9-(2+x )2,∴4-x 2=9-(2+x )2,解得x =14, ∴BD =BG +GH +HD =14+2+1452= . 7.解:如图1,∵在Rt △ABC 中,∠ACB =90°,∠A =30°,∴∠ABC =60°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =12∠ABC =30°,∴∠ABD =∠A ,∠CDB =90°-∠CBD =60°,∴AD =BD ,又DE ⊥AB ,∴AE =BE =12AB ,又∠ACB =90°,∴CE =12AB =BE ,又∠ABC =60°,∴△BCE 是等边三角形,故答案为:等边三角形,60;(2)解:AD =DQ +DP ,理由为:在线段BD 上截取点H ,使DH =DP ,如图2,∵∠CDB =60°,∴△DPH 为等边三角形,∴DP =PH ,∠DPH =∠DHP =60°,又∠BPQ =60°,∴∠DPQ +∠QPH =∠HPB +∠QPH =60°,∠BHP =120°,∴∠DPQ =∠HPB ,∵∠A =30°,DE ⊥AB ,∴∠QDP =∠A +∠AED =30°+90°=120°,∴∠QDP =∠BHP ,在△PDQ ≌△PHB 中, DPQ HPB PD PHQDP BHP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PDQ ≌△PHB (ASA ),∴DQ =BH ,PQ =PB ,∵AD =BD ,∠BPQ =60°,∴△BPQ 为等边三角形,AD =BD =BH +DH =DQ +DP ,即AD =DQ +DP ;(3)解:①△BPQ 为等边三角形,理由为:延长BD 至F ,使DF =DP ,连接PF ,设DQ 和BP 相交于O ,如图3, ∵∠PDF =∠CDB =60°,∴△PDF 为等边三角形,∴PF =DP ,∠F =∠PDF =∠DPF =60°,∵∠A =30°,DE ⊥AB ,∴∠PDQ =90°-∠A =60°,∴∠F =∠PDQ =60°,∵∠DPF +∠DPB =∠BPQ +∠DPB ,又∠BPQ =60°,∴∠BPF =∠QPD ,在△PBF 和△PQD 中,F PDQ PF DPBPF QPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PBF ≌△PQD (ASA ),∴PB =PQ ,BF =DQ ,又∠BPQ =60°,∴△BPQ 为等边三角形;②∵ DF =DP ,BF =DQ ,AD =BD ,∴DQ =BF =BD +DF =AD +DP ,∵AD =2, AP =x ,DQ =y ,∴y =2+2-x ,即y =-x +4.8.(1)补全图形如下,.(2)∵AB =CD ,CB =AD∴四边形ABCD 为所求的平行四边形(两组对边分别相等的四边形是平行四边形). 故答案为:CD ,AD ,两组对边分别相等的四边形是平行四边形.9.证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ACB =∠ACD ,在△ECB 和△ECD 中,CE CE ECB ECD CB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ECB ≌△ECD (SAS ),∴BE =DE ,由作图可知,MN 垂直平分线段CD ,∴EC =ED ,∴BE =CE .(2)解:∵BA =BC ,∠ABC =72°,∴∠BAC =∠BCA =12(180°﹣72°)=54°,∵EB =EC ,∴∠EBC =∠ECB =54°,∴∠ABE =∠ABC ﹣∠EBC =18°.10.解:AF⊥BE,AF=BE,证明如下:证明:∵正方形ABCD∴AB=AD=DC,∠D=∠BAD=90°∵CF=DE∴AE=AD-DE,DF=DC-CF∴AE=DF在△AEB和△AFD中AB=AD, ∠D=∠BAD, AE=DF∴△ABE≌△DAF(SAS)∴∠ABE=∠F AD,AF=BE∵∠BAD=90°∴∠ABE+∠AEB=90°∴∠F AD +∠AEB=90°∴∠AOE=90°,AF⊥BE.∴AF=BE,AF⊥BE.11.解:如图所示:平行四边形ABCD即为所求;(2)解:AC,CD =,5=AD ,∴222AC CD AD += ,∴△ACD 是直角三角形,∴平行四边形ABCD 的面积为122102ACD S=⨯ . 12.解:过点C 作CG AE ⊥,垂足是点G .由题可知,//CF AE ,CF AD BE ==,则四边形CDBF 是梯形.在直角ABC ∆中,90ACB ∠=︒,60A ∠=︒,1AC =,22AB AC ∴==, 在直角ACG ∆中,90CGA ∠=︒,60A ∠=︒,1AC =,30ACG ∴∠=︒,1111222AG AC ==⨯=,CG ∴=.()()111122222CDBF S CE DB CG AD DB CG AB CG ∴=+⋅=+⋅=⋅=⨯=梯形; (2)证明:四边形CDBF 是菱形. 理由如下:在直角ABC ∆中,D 是AB 的中点,AD DB CD ∴==,由(1)CF AD =,CF DB CD ∴==,又//CF AE ,∴四边形CDBF 是平行四边形.CD BD =,∴四边形CDBF 是菱形.13.证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC =.∴AD BC ==(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n==. 14.证明:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°∵DG ⊥AE ,BF ⊥AE∴∠AFB =∠DGA =90°∵∠F AB +∠DAG =90°,∠DAG +∠ADG =90°∴∠BAF =∠ADG在△AFB 和△DGA 中∵AFB DGABAF ADG AB AD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFB≌△DGA(AAS).(2)证明:如图2,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J由题意知∠BAH=∠ADE=90°,AB=AD=CD∵BF⊥AE∴∠AFB=90°∵∠DAE+∠EAB=90°,∠EAB+∠ABH=90°∴∠DAE=∠ABH在△ABH和△DAE中∵BAH ADE AB ADABH DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABH≌△DAE(ASA)∴AH=DE∵点E为CD的中点∴DE=EC=12CD∴AH=DH∴DE=DH∵DJ⊥BJ,DK⊥AE∴∠J=∠DKE=∠KFJ=90°∴四边形DKFJ是矩形∴∠JDK =∠ADC =90°∴∠JDH =∠KDE在△DJH 和△DKE 中∵J DKE JDH KDE DH DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DJH ≌△DKE (AAS )∴DJ =DK ,JH =EK∴四边形DKFJ 是正方形∴FK =FJ =DK =DJ∴DFFJ2FJ =∴FH +FE =FJ ﹣HJ +FK +KE =2FJDF .(3)解:如图3,取AD 的中点Q ,连接PQ ,延长QP 交CD 于R ,过点P 作PT ⊥CD 于T ,PK ⊥AD 于K ,设PT =b由(2)得△ABH ≌△DAE (ASA )∴AH =DE∵∠EDH =90°,点P 为EH 的中点∴PD =12EH =PH =PE∵PK ⊥DH ,PT ⊥DE∴∠PKD=∠KDT=∠PTD=90°∴四边形PTDK是矩形∴PT=DK=b,PK=DT∵PH=PD=PE,PK⊥DH,PT⊥DE ∴PT是△DEH的中位线∴DH=2DK=2b,DE=2DT∴AH=DE=1﹣2b∴PK=12DE=12﹣b,QK=DQ﹣DK=12﹣b∴PK=QK∵∠PKQ=90°∴△PKQ是等腰直角三角形∴∠KQP=45°∴点P在线段QR上运动,△DQR是等腰直角三角形∴QR DQ∴点P.15.解:(1)尺规作图如下:(2)四边形ABCD是平行四边形,,AB CE AD BC∴,,ABE E CBE DFE∴∠=∠∠=∠,BE平分ABC∠,ABE CBE∴∠=∠,E DFE ∴∠=∠,DE DF ∴=.16.解:在Rt △ABC 中,CD 是斜边AB 上的中线, ∴AB =2CD =2,由勾股定理得,BC . 17.证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°,又BE =CF ,∴△ABE ≌△BCF (SAS ).∴∠BAE =∠CBF .∵∠ABO +∠CBF =90°,∴∠ABO +∠BAO =90°,即∠AOB =90°. 在Rt △ABO 中,M 点是斜边AB 中点, ∴12OM AB =. 18.(1) 解: 90ABD ∠=︒, F 为AD 的中点,10,AD = 1 5.2BFAD (2) 证明:如图,连接,CF90ABD ACD ∠=∠=︒, F 是AD 的中点,11,,22CF AD BF AD ,CF BF ∴=E 是BC 的中点,.EF BC19.解:证明:在正方形ABDE 和ACFG 中,AB AE =,AC AG =,90BAE CAG ∠=∠=︒, BAE BAC CAG BAC ∴∠+∠=∠+∠,即CAE BAG ∠=∠,在ABG ∆和AEC ∆中,{AB AECAE BAG AC AG=∠=∠=,()ABG AEC SAS ∴∆≅∆,BG CE ∴=;(2)解:证明:设BG 、CE 相交于点N ,ABG AEC ∆≅∆,ACE AGB ∴∠=∠,9090180NCF NGF ACF AGF ∠+∠=∠+∠=︒+︒=︒,360()360(18090)90CNG NCF NGF F ∴∠=︒-∠+∠+∠=︒-︒+︒=︒, BG CE ∴⊥;(3)解:过A 作BG,CE 的垂线段交于点P ,Q ,ABG AEC ∆≅∆,,ABP AEQ AB AE ∴∠=∠=,90APB AQE ∠=∠=︒,()ΔΔABP AEQ AAS ∴≅,∴=AP AQ ,AM ∴是角平分线,45AMC ∴∠=︒,135AME .20.证明:∵AB //CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G ,∵∠CAB =45°,∴AG CG =,在△ACG 中,∠AGC =90°,∴222AG CG AC +=,∵AC=∴CG=AG=1,∵∠B=30°,∴12CG BC=,∴2BC=,在Rt△BCG中,BG==,∴1AB AG BG=+=.21.解:如图所示,直线DE即为所求;,(2)证明:∵∠ACB=90°,点E是边AB的中点,∴AE=BE=CE=12 AB,∵AC=BE,∴AC=AE=CE,∴△ACE是等边三角形.22.证明:E是AD的中点,AE DE∴=,//AF BC∴,FAE BDE∴∠=∠,AFE DBE∠=∠.在AFE∆和DBE∆中,FAE BDEAFE DBE AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆,AF BD ∴=.AF DC =,BD DC ∴=.即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:AF DC =,//AF DC ,∴四边形ADCF 是平行四边形,AB AC =,BD DC =,AD BC ∴⊥即90ADC ∠=︒,∴平行四边形ADCF 是矩形.23.(1)如图所示,BE 就是所求的ABC ∠的角平分线.BF BA =,(2)四边形ABFE 为菱形.理由如下:∵BE 是ABC ∠的平分线,∴∠ABE =∠FBE∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠EBF ,∴∠ABE =∠AEB∴AB =AE∵BF BA =∴AE =BF∴四边形ABFE 为平行四边形,∵BF BA =,∴四边形ABFE 为菱形.24.证明:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠D =90°,在Rt △ABE 和Rt △CDF 中,BE CF AB CD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴DE =BF .25.(1)①证明:∵四边形ADEF 是正方形,∴AD AF =,90DAF ∠=︒,∵90BAC ∠=︒,∴BAD CAF ∠=∠,在ABD △和ACF 中,{AB ACBAD CAF AD AF=∠=∠=,∴ABD △≌ACF (SAS ).②∵ABD △≌ACF ,∴ABD ACF ∠=∠,∵90BAC ∠=︒,AB AC =,∴45ABD ACB ∠=∠=︒,∴45ACF ∠=︒.故答案为:45.③∵ABD △≌ACF ,∴=CF BD ,∵826BD BC CD =-=-=.∴CF =6,故答案为:6.(2)(2)CF BC CD =+,由(1)同理可证ABD △≌ACF 得:CF BD BC CD ==+. 故答案为:BC CD +.(3)(3)①由(1)同理可证ABD △≌ACF 得:CF BD CD BC ==-. 故答案为:CD BC -.②AOC △为等腰三角形,理由如下:∵90BAC ∠=︒,AB AC =,∴18045135ABD ∠=︒-︒=︒,∵四边形ADEF 是正方形,∴AD AF =,90DAF ∠=︒,∴BAD CAF ∠=∠,同理可证BAD ≌CAF ,∴135ACF ABD ∠=∠=︒,∴90FCD ACF ACB ∠=∠-∠=︒,∴FCD 为直角三角形,∵正方形ADEF 中,O 为DF 的中点, ∴12OC DF =,12OA AE =,AE DF =, ∴OC OA =,∴AOC △是等腰三角形.26.证明:∵四边形ABCD 是平行四边形,∴AD=BC,AD//BC,∴∠DAE=∠E,∵CE=BC,∴CE=AD,又∵∠AOD=∠COE,∴△AOD≌△EOC(AAS),∴CO=DO;(2)解:当CO=EO,∠COE=90°时,四边形AOCF是正方形;理由如下:∵CO=DO,∴CO=1CD,2又∵F是AB的中点,∴AF=1AB,2∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴AF=CO,AF//CO,∴四边形AFCO是平行四边形,∵△AOD≌△EOC,∴AO=EO,∵CO=EO,∴AO=CO,∴平行四边形AFCO是菱形,∵∠COE=90°,∴菱形AFCO是正方形.。

压轴题05:分式与分式方程综合专练20题(解析版)八年级数学下学期期末精选题汇编(北师大版)

压轴题05:分式与分式方程综合专练20题(解析版)八年级数学下学期期末精选题汇编(北师大版)

压轴题05:分式与分式方程综合专练20题(解析版)一、单选题1.若关于x的方程3133x axx x++=--有正整数解,且关于y的不等式组252510ya y-⎧<⎪⎨⎪--≤⎩至少有两个奇数解,则满足条件的整数a有()个A.0B.1C.2D.3【答案】D【分析】分式方程去分母转化为整式方程,表示出正整数方程的解,代入检验确定出a的值,再表示出不等式组的解集,由解集至少有两个奇数解确定出整数a的值,求出之和即可.【详解】解:31 33x axx x++= --解得:6 xa =∴方程有正整数解且63a≠即2a≠∴136 a=、、解不等式组252510ya y-⎧<⎪⎨⎪--≤⎩解得1521yy a⎧<⎪⎨⎪≥-⎩关于y的不等式组至少有两个奇数解∴15a-≤∴6a≤∴满足条件得整数a有3个,故选:D.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.若关于x的分式方程61xx-=3+1axx-的解为整数,且一次函数y=(10﹣a)x+a的图象不经过第四象限,则符合题意的整数a的个数为()A.1B.2C.3D.4【答案】C【分析】根据题意求得满足条件的a 的值,从而可以得到满足条件的所有整数a 的个数.【详解】解:∴一次函数y =(10﹣a )x +a 的图象不经过第四象限,∴1000a a ->⎧⎨≥⎩, 解得010a ≤<, 由分式方程61x x -=3+1ax x -得,x =33a -, ∴分式方程61x x -=3+1ax x -的解为整数,且x≠1, ∴a =0,2,4,∴符合题意的整数a 的个数3个,故选:C .【点睛】本题主要考查分式方程的解和一次函数的图象及性质,掌握一次函数的图象及性质以及正确的解分式方程是解题的关键.3.若整数a 使得关于x 的不等式组341242()x x x a x +⎧+>⎪⎨⎪-≤-⎩的解集为2x <-,且关于y 的分式方程2311a y y y -=+++的解为负数,则所有符合条件的整数a 的和为( )A .0B .-3C .-5D .-8【答案】D【分析】先解不等式组中的两个不等式,由不等式组的解集可得5,a ≥- 再解分式方程,由分式方程的解为负数可得:a <5, 且3,a ≠ 结合a 为整数,从而可得答案.【详解】 解:341242()x x x a x +⎧+>⎪⎨⎪-≤-⎩①②由∴得:22x +>34+x , x <2,-由∴得:324,x a ≤+24,3a x +∴≤ 又由不等式组的解集为2x <-,242,3a +∴≥- 246,a ∴+≥-5,a ∴≥-2311a y y y -=+++ 233,a y y ∴=-++5,2a y -∴= 方程2311a y y y -=+++的解为负数, 52a -∴<0, a ∴<5,由10,y +≠1,y ∴≠-51,2a -∴≠- 3,a ∴≠综上:5a -≤<5且3,a ≠由a 为整数,5a ∴=-或4a =±或3a =-或2a =±或1a =±或0a =,则所有符合条件的整数a 的和为:8.-故选:.D【点睛】本题考查的是由一元一次不等式组的解集求解参数的取值范围,分式方程的负数解问题,掌握以上知识是解题的关键.4.若整数a 使得关于x 的分式方程2x x -+12a x+-=2的解为非负数,且一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限,则所有符合条件的a 的和为( )A .﹣3B .2C .1D .4【答案】D【分析】先求出方程的解x =3﹣a ≥0,求出a ≤3,根据分式方程的分母x ﹣2≠0求出a ≠1,根据一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限求出﹣(a +3)<0且a +2>0,求出a >﹣2,再求出答案即可.【详解】 解:2x x -+12a x+-=2, 方程两边乘以x ﹣2得:x ﹣a ﹣1=2x ﹣4,解得:x =3﹣a ,∴关于x 的分式方程2x x -+12a x +-=2的解为非负数, ∴3﹣a ≥0,解得:a ≤3,∴一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限,∴﹣(a +3)<0且a +2>0,解得:a >﹣2,∴﹣2<a ≤3,∴分式方程的分母x ﹣2≠0,∴x =3﹣a ≠2,即a ≠1,∴a 为整数,∴a 为﹣1,0,2,3,和为﹣1+0+2+3=4,故选:D .【点睛】本题考查了解分式方程,一次函数的图象和性质,解一元一次不等式等知识点,能灵活运用知识点进行计算是解此题的关键.5.在ABC 中,AE 、BF 、CP 分别在边BC 、CA 、AB 上的高线,已知AE 、BF 、CP 相交于一点D ,且2019AD BD CD DE DF DP ++=,则AD BD CD DE DF DP⋅⋅的值等于( )A .2019B .2020C .2021D .2022 【答案】C【分析】设BDC S a ,ADC S b ,ABD S c ,则AD b c DE a +=,BD a c DF b +=,cD DP C a b +=,然后对所求式子变形整理,整体代入计算即可.【详解】解:设BDC S a ,ADC S b ,ABD S c , 则ADC ABD ADC ABD BDE DEC BDE DEC S S S S S S S S AD b c DE a+====++, 同理可得:BD a c DF b +=,c D DP C a b +=, ∴2019a c a b b c b c a +++++=, ∴AD BD CD DE DF DP ⋅⋅ b c a c a b a b c+++=⋅⋅ ()()()b c a c a b abc+++= 222222a b a c abc ac ab abc b c bc abc+++++++= ()()()()ac a c ab a c ab b c bc b c abc abc++++++=+ a c a c b c b c b c c a++++=+++ 2a c a b b c b c a+++=+++ 20192=+2021=,故选:C .【点睛】本题考查了三角形的面积计算,分式的混合运算,正确化简所求式子是解题的关键.6.若数a 使关于x 的不等式组36222()4x x x a x +⎧<+⎪⎨⎪-+⎩的解集为x <﹣2,且使关于y 的分式方1311--=-++y a y y 的解为负数,则符合条件的所有整数a 的个数为( )A .4B .5C .6D .7【答案】C【分析】表示出不等式组的解集,由不等式组的解集为x <﹣2确定出a 的范围,再由分式方程的解为负数以及分式有意义的条件求出满足题意整数a 的值,进而求出符合条件的a 的个数.【详解】 解:解不等式组36222()4x x x a x +⎧<+⎪⎨⎪-+⎩,得:224x x a <-⎧⎨+⎩, 由不等式组的解集为x <﹣2,得到2a +4≥﹣2,解得:a ≥﹣3; 分式方程1311--=-++y a y y 去分母得:1﹣y ﹣a =﹣3(y +1), 解得:y =42a -, 由分式方程的解为负数以及分式有意义的条件,得412402a a -⎧≠-⎪⎪⎨-⎪<⎪⎩, 解得:a <4且a ≠2;∴﹣3≤a <4且a ≠2,∴a =﹣3,﹣2,﹣1,0,1,3,∴符合条件的所有整数a 的个数为6个;故选:C .【点睛】此题主要考查分式方程与不等式组的求解运用,解题的关键是熟知分式方程与不等式组的解法.7.若关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解,关于y 的分式方程13244ay y y -+=---有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5【答案】B【分析】先解不等式组,由不等式组有解,可得a <4,再解分式方程,当2a ≠且1a ≠时,分式方程的解为:4,2y a =--再由,y a 为整数,分类讨论可得答案. 【详解】解:()3222x x a x x ⎧-->-⎪⎨+<⎪⎩①② 由∴得:36x x -+>2,-2x ∴->8,- x <4,由∴得:a x +<2,x x >,a关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解, a ∴<4, 13244ay y y -+=---, ()1324,ay y ∴--=--24,ay y ∴-=-()24,a y ∴-=-当2a =时,方程无解,则2,a ≠44,22y a a -∴==--- 检验:40,y -≠440,2a ∴--≠- 44,2a ∴≠-- 21,a ∴-≠-1,a ∴≠,y a 为整数,21a ∴-=± 或22a -=±或24,a -=±3a ∴=或1a =或4a =或0a =或6a =或2,a =-a ∴<4, 2,a ≠1,a ≠∴ 3a =或0a =或 2.a =-经检验:3a =或0a =或2a =-符合题意,()302 1.∴++-=故选:.B本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.8.若关于x 的不等式组52(+)11231x x a ⎧>⎪⎨⎪-<⎩无解,且关于y 的分式方程34122y a y y ++=--有非负整数解,则满足条件的所有整数a 的和为( )A .8B .10C .16D .18 【答案】C【分析】先由不等式组无解,求解8a ≤,再求解分式方程的解22a y +=,由方程的解为非负整数,求解2a ≥-且2a ≠,再逐一确定a 的值,从而可得答案. 【详解】 解:52+11{231x x a ⎛⎫> ⎪⎝⎭-<①②由∴得:2511x +>,∴3x >,由∴得:31x a <+, ∴13x a <+, ∴关于x 的不等式组52+11{231x x a ⎛⎫> ⎪⎝⎭-<无解, ∴1+33a ≤, ∴19a +≤,∴8a ≤, ∴34122y a y y++=--, ∴()342y a y -+=-, ∴22a y +=, ∴20y -≠, ∴222a +≠,∴关于y 的分式方程34122y a y y++=--有非负整数解, ∴202a +≥, ∴2a ≥-, ∴22a +为整数, ∴2a =-或0a =或4a =或6a =或8a =.∴2046816-++++=.故选:C .【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,熟练掌握解不等式组的方法和解分式方程是解题关键,解题时要注意分式方程的解得到y ≠2这一隐含条件.二、填空题9.若223411a a a ++-为不超过3的整数,则整数=a ______. 【答案】0或-1或-3【分析】 先将223411a a a ++-整理得到4331a +≤-,根据题意即可确定a 的值. 【详解】 解:22341(3+1)(1)313(1)4431(1)(1)111a a a a a a a a a a a a ++++-+====+-+----, 因为223411a a a ++-为不超过3的整数, ∴4331a +≤-,且431a +-为整数, ∴ 401a ≤-, 因为a 为整数,所以符合条件的a=0或-1或-3,故答案为:0或-1或-3.【点睛】 本题主要考查了分式的化简,解题的关键是将将223411a a a ++-整理得到431a +-.10.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩,有且仅有四个整数解,且使关于y 的分式方程2222a y y+=--有非负数解,则所有满足条件的整数a 的值之和是________________. 【答案】1【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出−4<a≤3,再解分式方程2222a y y+=--,根据分式方程有非负数解,得到a≥−2且a≠2,进而得到满足条件的整数a 的值之和.【详解】 解不等式组2122274x x x a -⎧≤-+⎪⎨⎪+>-⎩①②,由∴得,x≤3;由∴得,x >47a +-; ∴不等式组有且仅有四个整数解, ∴−1≤47a +-<0, ∴−4<a≤3, 解分式方程2222a y y+=--,可得y =12(a +2), 又∴分式方程有非负数解,∴y≥0,且y≠2, 即12(a +2)≥0,12(a +2)≠2,解得a≥−2且a≠2,∴−2≤a≤3,且a≠2,∴满足条件的整数a 的值为−2,−1,0,1,3,∴满足条件的整数a 的值之和是1.故答案为:1.【点睛】本题主要考查了分式方程的解,解题时注意:使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.11.2022年北京冬奥会正在火热举办中,冰雪项目中高质量的“人造雪”受到人们的广泛关注,它的生产实际上是一个科学技术难题:要首先通过过滤装置将自然水过滤成纯净的水,接着用制冰装置将纯净的水制成片状的纯冰,再通过碎冰装置把已经造好的纯冰粉碎成粉末,最后,通过把粉末状的冰晶和空气等原料混合加工成“人造雪”.现有若干千克自然水和100千克纯冰,准备将它们加工成人造雪,共8名技术人员,分为甲、乙两组同时工作,甲组负责自然水提纯后加工成纯冰,乙组负责将纯冰加工成人造雪.已知甲组人员每人每小时可将10千克自然水加工成5千克纯冰,乙组人员每人每小时可将10千克纯冰加工成20千克人造雪(不考虑冰雪融化及其他损耗);若加工t 小时后,纯冰质量与人造雪的质量之比为1:8;又加工了几个小时后,自然水全部使用完;接着继续将所有纯冰都加工成人造雪,一共加工产生了700千克人造雪;当自然水正好全部使用完,此时纯冰质量与人造雪质量之比为______. 【答案】1:12##112【分析】设有x 人在甲组,则有(8-x )在乙组,根据纯冰质量与人造雪的质量之比为1:8,列出方程()():20158010018:8t tx t x ⎡⎤+=⎣⎦--,从而()4017t x t-=,根据,x t 都为正整数(<8x ),且40不能被7整除,从而得出x =5,于是得出共加工了8小时,乙组为3人,然后根据将所有纯冰都加工成人造雪,一共加工产生了700千克人造雪,得出自然水正好全部使用完时,纯冰质量和人造雪质量,即可求出答案. 【详解】解:设有x 人在甲组,则有(8-x )在乙组, t 小时后,有纯冰的质量为:()5100108tx t x +--51008010tx t tx =+-+ 1580100tx t =-+(千克)有人造雪的质量为()208t x -千克根据题意可得:()():20158010018:8t tx t x ⎡⎤+=⎣⎦-- ()()815801002108t x tx t ⎡⎤⨯=--+⨯⎣⎦12064080016020tx t t tx -+=- 140800800tx t =-()4017t x t-=,x t 都为正整数(<8x ),且40不能被7整除,∴40能被t整除,t-1能被7整除;∴t=8,x=5.∴ 8-x =3,因此甲组有5人,乙组有3人.生产700千克人造雪需要纯冰的质量为:7002010350÷⨯= (千克),原有纯冰100千克, ∴自然水加工而成的纯冰的质量为:350100250-= (千克),∴甲组生产纯冰的总时间为:2505510÷÷=(小时),自然水用完时,乙组共生产的人造雪的质量为10320600⨯⨯=(千克),此时还剩下的纯冰的质量为:100250600201050+-÷⨯=(千克), ∴此时纯冰与人造雪的质量比为:150:6001:1212==故答案为:1:12或112【点睛】本题主要考查了列方程解应用题,根据题意找出题目中的等量关系列出方程是解题的关键.12.某知名服装品牌在北碚共有A 、B 、C 三个实体店.由于疫情的影响,第一季度A 、B 、C 三店的营业额之比为3:4:5,随着疫情得到有效的控制和缓解,预计第二季度这三个店的总营业额会增加,其中B店增加的营业额占总增加的营业额的27,第二季度B 店的营业额占总营业额的413,为了使A 店与C 店在第二季度的营业额之比为5∴4,则第二季度A 店增加的营业额与第二季度总营业额的比值为______________. 【答案】726【分析】设第一季度A 、B 、C 三店的营业额分别为34,5x x x ,,第二季度A 店、C 店的营业额为5y 、4y ,根据题意求得y 与x 的关系2y x =,第二季度B 店的营业额4y ,第二季度总营业额为13y ,则第二季度A 店增加的营业额与第二季度总营业额的比值为5313y xy-,即可求解. 【详解】解:∴第一季度A 、B 、C 三店的营业额之比为3:4:5∴设第一季度A 、B 、C 三店的营业额分别为34,5x x x ,∴第二季度A 店与C 店在第二季度的营业额之比为5∴4∴设第二季度A 店、C 店的营业额为5y 、4y ,B 店的营业额为z ∴第二季度B 店的营业额占总营业额的413, ∴45413z y y z =++,解得4z y =∴第二季度总营业额为13y∴B店增加的营业额占总增加的营业额的2 7∴44213127y xy x-=-,解得2y x=第二季度A店增加的营业额与第二季度总营业额的比值为537 1326 y xy-=【点睛】此题考查了分式方程的应用,理解题意设合适的未知数,弄清楚题中的等量关系是解题的关键.13.随着我国疫情的有效控制,各地打造了众多春游景点供市民休闲娱乐.某区特别打造了多彩植物园、亲子游乐园、劳动体验园吸引游客.3月份多彩植物园、亲子游乐园、劳动体验园接待游客数量之比为3:3:4.为增加游客数量,该地区通过发抖音、转发朋友圈等多种方式加大宣传力度,预计4月份三个园区接待的游客总人数在3月份的基础上会增加.但因为多彩植物园中部分花期已过,多彩植物园的游客人数在3月份的基础上将减少13.这样4月份,多彩植物园接待的游客总人数占三个园区接待游客总人数的17,而亲子游乐园、劳动体验园4月份接待游客人数之比将达到3:2,则亲子游乐园新增的人数与4月份这三个园区的总人数之比是___________【答案】3 10【分析】设3月多彩植物园、亲子游乐园、劳动体验园接待游客数量分别为3a,3a,4a,求出4月多彩植物园的人数,得到4月接待总人数,设4月亲子游乐园人数为m,根据4月亲子游乐园、劳动体验园4月份接待游客人数之比将达到3:2,得到365m a=,再根据题意求出比值.【详解】解:设3月多彩植物园、亲子游乐园、劳动体验园接待游客数量分别为3a,3a,4a,则4月多彩植物园的游客人数为3a(1-13)=2a,∴4月接待总人数为2a÷17=14a,∴4月亲子游乐园、劳动体验园接待游客数量为12a,设4月亲子游乐园人数为m,则劳动体验园人数为12a-m,由题意可得:3 122ma m=-,解得:365m a =,∴4月亲子游乐园新增的人数与4月份这三个园区的总人数之比为:363514a a a-=310, 故答案为:310. 【点睛】本题考查了分式方程的实际应用,题干较长,解题时要细心认真读题,理清题中的条件,用字母表示出相关量,再进行运算.14.今年是脱贫攻坚关键年,大学生小赵利用电商平台帮助家乡售卖当地土特产。

填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题【答案】145【详解】解:如图以DAB V 和FAQ △中:DA =∴()SAS DAB FAQ V V ≌,【答案】①②③④⑤⑥【详解】解:如图,过点∵四边形ABCD 是正方形,∴A C D ÐÐÐ==∴AEB EBC ÐÐ=∵FEB EBC ÐÐ=∴AEB BEF ÐÐ=5.如图,已知在△ABC中,AB 作平行四边形MCNB,连接MN【答案】24 5【详解】如图,设MN、BC交于点6.如图,在平面直角坐标系xoyAB AD为边作使2DP AP=,以,【答案】49【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB//CD∴∠E=∠DAE,又∵AE平分∠BAD,【答案】①④⑤【详解】解:∵四边形ABCD ∴AB CD =,AD BC =.设点P 到AB ,BC ,CD ,DA【答案】()453,【详解】解:从正方形的观点考虑,右下角对应的横坐标为1时,共有右下角对应的横坐标为2时,共有右下角对应的横坐标为3时,共有右下角对应的横坐标为4时,共有【答案】10 21【详解】解:设1A,2A,3A【答案】(10112-,10112)【详解】解:∵过点(1,0)作∴1A (1,2),把2y =代入y x =-得2x =-,即把2x =-代入2y x =得4y =-,即同理可得4A (4,4-),5A (32),…直线21y kx k =+-与直线(1)2y k x k =+++那么,COD ABDC S S =V 四边形【答案】22n+【详解】解:对于直线y=x+1∵A0B1∥x轴,∴B1的纵坐标为将y=1代入1122y x=+中得:∴A0B1=1=20,∵A1B1∥y轴,∴A1的横坐标为【答案】404432æöç÷èø【详解】解:∵直线1l :112y x =-+与直线2l :332y x =-+与y 轴交于点B ,∴AB 2\=,112BC AB ==,∵BC ⊥AB ,∴()1,3C -,∴四边形PECF 是矩形,∴PC=EF,∴PA=EF,故②正确;∵BD 是正方形ABCD 的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD 是等腰直角三角形,故①正确;在△PAB 和△PCB 中,AB CB ABP CBP BP BP ìïÐÐíïî=== , ∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF 中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确;∵点P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD ,只有∠BAP=22.5°时,AD=PD ,故③错误,故答案为①②④.38.如图,在矩形ABCD 中,5AB =,12BC =,P 是矩形ABCD 内一点,沿PA 、PB 、PC 、PD 把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】 30 26【详解】如解图①,过点P 作PE AB ^于点E ,延长EP 交CD 于点F ,∵四边形ABCD 是矩形,∴90ABC BCD Ð=Ð=°,5CD AB ==.∴四边形EBCF 是矩形.∴EF BC =.又∵12BC =,故答案为:30,26.39.如图,在△ABC 中,Ð,90BAC Ð=°,点A 为(3P 、A 、C 为顶点的三角形和△全等,则P 点坐标为___________【答案】(6)2-,或(81),或则90AOB AMP Ð=Ð=°,在AOB V 和V AMP 中,AOB OAB AB ÐìïÐíïî∴(AAS)AOB AMP V V ≌,∴3AM AO ==,2MP OB == ,∴此时点P 的坐标为(6)2-,;②如图,过点C 作CP AC ^,使CP AB =,则(HL)ABC CPA V V ≌.过P 作PF x ^轴于F ,过点C 作CE x ^轴于点E ,作CD y ^轴于点D .∵90OBA OAB Ð+Ð=°,90EAC OAB Ð+Ð=°,∴OBA EAC Ð=Ð.又∵90BOA AEC Ð=Ð=°,AB AC =,∴(AAS)BOA AEC V V ≌,∴3OD CE OA ===,2AE OB ==,∴5CD OE ==.∵CD x ∥轴,∴DCA FAC Ð=Ð.∵45BCA PAC Ð=Ð=°,∴DCA BCA FAC PAC Ð-Ð=Ð-Ð,即DCB FAP Ð=Ð.又∵90CDB AFP Ð=Ð=°,CB AP =,∴(AAS)CDB AFP V V ≌,∴321PF BD OD OB ==-=-=,5AF CD ==,∴358OF OA AF =+=+=,∴此时点P 的坐标为(81),;③如图,作CP AC ^,使CP AB =,连接BP ,则(SAS)ABC CPA V V ≌,∵90BAC PCA Ð=Ð=°,且CP AB = ,∴四边形ABPC 是矩形,∴90AB BP ABP =Ð=°, ,即90ABO PBM Ð+Ð=°,过点P 作PM y ^轴,则90BPM PBM Ð+Ð=°,∴ABO BPM Ð=Ð,在△AOB 和△BMP 中,AOB BMP ABO BPM AB BP Ð=ÐìïÐ=Ðíï=î,∴()AOB BMP AAS V V ≌,∴3BM OA ==,2PM OB == ,∴此时点P 的坐标为(25),;④当点P 与点B 重合时,点P 的坐标为(0)2,.综上可知,点P 的坐标为(6)2-,或(81),或(25),或(0)2,.。

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案八年级下册数学期末压轴题1.在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.1) 证明四边形ABCD是平行四边形;2) 若AB=3cm,BC=5cm,AE=1/3 AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,使△BEP为等腰三角形?2.△XXX的XXX在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与XXX重合,且DF=EF.1) 观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;2) 将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△XXX能否通过旋转重合?请证明你的猜想.3.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.1) 观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;2) 当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;3) 当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)4.图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.1) 操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连结AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;2) 操作:若将图1中的△C′DE绕点C按顺时针方向任意旋转一个角度,连结AD,BE,如图3;在图3中,线段BE 与AD之间具有怎样的大小关系?证明你的结论;3) 根据上面的操作过程,请你猜想当为多少度时,线段AD的长度最大?是多少?当为多少度时,线段AD的长度最小?是多少?(不要求证明)之间的数量关系,并说明理由;2)证明你所得到的猜想;3)若平行四边形ABCD的周长为20且a+b+c+d=10求平行四边形ABCD的面积.5、在△ACB和△AED中,已知AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE。

【压轴题】初二数学下期末试题带答案

【压轴题】初二数学下期末试题带答案

【压轴题】初二数学下期末试题带答案一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C3.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( ) A .90万元 B .450万元 C .3万元 D .15万元4.对于函数y =2x +1下列结论不正确是( ) A .它的图象必过点(1,3) B .它的图象经过一、二、三象限 C .当x >12时,y >0 D .y 值随x 值的增大而增大5.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差6.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .87.函数的自变量取值范围是( ) A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠08.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .29.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-210.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限11.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)12.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等二、填空题13.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.14.如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=o ,则E ∠=___o .15.在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.16.函数1y x =-的自变量x 的取值范围是 . 17.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

八年级数学压轴题 期末复习试卷中考真题汇编[解析版]

八年级数学压轴题 期末复习试卷中考真题汇编[解析版]

八年级数学压轴题 期末复习试卷中考真题汇编[解析版]一、压轴题1.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由. 2.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度;②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度;(2)如图③,在△ABC 中,AC=BC ,∠ACB 是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,AE=CD ,BD 与EC 的延长线交于点F ,若∠ACB=α,求∠BFE 的大小.(用含α的代数式表示).3.如图,在平面直角坐标系中,直线y =﹣34x+m 分别与x 轴、y 轴交于点B 、A .其中B点坐标为(12,0),直线y=38x与直线AB相交于点C.(1)求点A的坐标.(2)求△BOC的面积.(3)点D为直线AB上的一个动点,过点D作y轴的平行线DE,DE与直线OC交于点E (点D与点E不重合).设点D的横坐标为t,线段DE长度为d.①求d与t的函数解析式(写出自变量的取值范围).②当动点D在线段AC上运动时,以DE为边在DE的左侧作正方形DEPQ,若以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点时,请直接写出t的取值范围.4.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.5.问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.6.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补. (1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK =∠HPK ,作PQ 平分∠EPK ,求∠HPQ 的度数.7.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________. (2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明) 8.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.9.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________;(2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)10.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”; ②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值; ②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.11.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)12.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .(1)求证:DG =BC ;(2)F 是AB 边上的动点,当F 点在什么位置时,FD ∥BG ;说明理由.(3)在(2)的条件下,连结AE 交FD 于H ,FH 与HD 长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)5y x =+;(2)223)PB 的长为定值52【解析】 【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+. 当0y =时,5x =-. 当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=. 解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON∠+∠+∠=︒.90AOB∠=︒.90AOM BON∴∠+∠=︒.90AOM OAM∠+∠=︒.BON OAM∴∠=∠.在AMO∆与OBN∆中,90BON OAMAMO BNOOA OB∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS∴∆≅∆.22BN OM∴==..(3)如图所示:过点E作EG y⊥轴于G点.AEB∆为等腰直角三角形,AB EB∴=90ABO EBG∠+∠=︒.EG BG⊥,90GEB EBG∴∠+∠=︒.ABO GEB∴∠=∠.AOB EBG∴∆≅∆.5BG AO∴==,OB EG=OBF∆为等腰直角三角形,OB BF∴=BF EG∴=.BFP GEP∴∆≅∆.1522BP GP BG∴===.【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB,求OM,用勾股定理求AB,再证AMO OBN∆≅∆,构造AOB EBG∆≅∆,求BG,再证BFP GEP∆≅∆.2.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.3.(1)点A坐标为(0,9);(2)△BOC的面积=18;(3)①当t<8时,d=﹣9 8t+9,当t>8时,d=98t﹣9;②12≤t≤1或7617≤t≤8017.【解析】【分析】(1)将点B坐标代入解析式可求直线AB解析式,即可求点A坐标;(2)联立方程组可求点C坐标,即可求解;(3)由题意列出不等式组,可求解.【详解】解:(1)∵直线y=﹣34x+m与y轴交于点B(12,0),∴0=﹣34×12+m,∴m=9,∴直线AB的解析式为:y=﹣34x+9,当x=0时,y=9,∴点A坐标为(0,9);(2)由题意可得:38394y xy x⎧=⎪⎪⎨⎪=+⎪⎩,解得:83 xy=⎧⎨=⎩,∴点C(8,3),∴△BOC的面积=12×12×3=18;(3)①如图,∵点D的横坐标为t,∴点D(t,﹣34t+9),点E(t,38t),当t<8时,d=﹣34t+9﹣38t=﹣98t+9,当t>8时,d=38t+34t﹣9=98t﹣9;②∵以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,∴12≤t≤1或919829918t tt t⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩,∴12≤t≤1或7617≤t≤8017.【点睛】本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.4.(1)4;2;(0,4);(2)125m=或285m=;(3)存在.Q点坐标为()45,4-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形.(3)存在.此时Q 点坐标为()-,()4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.5.(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【解析】【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠ADB =∠CEA =90°∵∠BAC =90°∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°∴∠CAE =∠ABD∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD ,∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC ,∴∠ABD=∠CAE ,在△ABD 和△CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABD ≌△CAE (AAS )∴AE=BD ,AD=CE ,∴DE=AD+AE=BD+CE ;(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F ,由(1)可知,△AEC ≌△CFB ,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B 的坐标为B (1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.6.(1)AB ∥CD ,理由见解析;(2)证明见解析;(3)45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°, ∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF 与∠EFD 的角平分线交于点P ,∴1()902FEP EFP BEF EFD ︒∠+∠=∠+∠= ∴∠EPF =90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)∵∠PHK =∠HPK ,∴∠PKG =2∠HPK .又∵GH ⊥EG ,∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,∴∠EPK =180°﹣∠KPG =90°+2∠HPK .∵PQ 平分∠EPK , ∴1452QPK EPK HPK ︒∠=∠=+∠, ∴∠HPQ =∠QPK ﹣∠HPK =45°.答:∠HPQ 的度数为45°.【点睛】 本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.7.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.8.(1)y=43x+2;(2)(103,10);(3)存在, P 坐标为(6,6)或(6,+2)或(6,).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610bk b =⎧⎨+=⎩, 解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)设P (m ,10),则PB=PB′=m ,如图2,∵OB′=OB=10,OA=6,∴AB′=22OB OA '-=8,∴B′C=10-8=2,∵PC=6-m ,∴m 2=22+(6-m )2,解得m=103 则此时点P 的坐标是(103,10); (3)存在,理由为:若△BDP 为等腰三角形,分三种情况考虑:如图3,①当BD=BP 1=OB-OD=10-2=8,在Rt △BCP 1中,BP 1=8,BC=6,根据勾股定理得:CP 1228627-=∴AP 17P 1(6,7);②当BP 2=DP 2时,此时P 2(6,6);③当DB=DP 3=8时,在Rt △DEP 3中,DE=6,根据勾股定理得:P 3228627-∴AP 3=AE+EP 37,即P 3(6,7+2),综上,满足题意的P 坐标为(6,6)或(6,7+2)或(6,7).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.9.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.10.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上,所以BF=OA,所以OF=OB-OF=3 3k +点3(3,3)Ck-+,如图2, -1<Cy≤2,即:-1<33k+≤2,则334k-≤<-.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.11.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH 3,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.12.(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【解析】【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.。

中学数学八年级下册 期末压轴题(含答案)

中学数学八年级下册  期末压轴题(含答案)

八年级下册期末压轴题一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是;②在图1中利用“等积变形”可得S正方形ADEC=;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=,则有S正方形ADEC=;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△≌△,则有=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.3.(2020春•海淀区校级期末)∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).(1)如图,若OA=1,OP=,依题意补全图形;(2)若OP=,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围.(要写过程)4.(2019•都江堰市模拟)定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M 向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M 始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.5.(2020春•海淀区校级期末)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD 的数量关系.6.(2019春•朝阳区期末)对于平面直角坐标系xOy中的图形M和点P(点P在M内部或M上),给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M 的和谐点.已知点A(﹣4,3),B(﹣4,﹣3),C(4,﹣3),D(4,3).(1)在点P₁(﹣2,1),P2(﹣1,0),P3(3,3)中,矩形ABCD的和谐点是;(2)如果直线y=上存在矩形ABCD的和谐点P,直接写出点P的横坐标t的取值范围;(3)如果直线y=上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点(含端点)都是矩形ABCD的和谐点,且EF,直接写出b的取值范围.7.(2017春•昌平区期末)(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.①如果AD=4,BD=9,那么CD=;②如果以CD的长为边长作一个正方形,其面积为S1,以BD,AD的长为邻边长作一个矩形,其面积为S2,则S1S2(填“>”、“=”或“<”).(2)基于上述思考,小泽进行了如下探究:①如图2,点C在线段AB上,正方形FGBC,ACDE和EDMN,其面积比为1:4:4,连接AF,AM,求证AF⊥AM;②如图3,点C在线段AB上,点D是线段CF的黄金分割点,正方形ACDE和矩形CBGF的面积相等,连接AF交ED于点M,连接BF交ED延长线于点N,当CF=a时,直接写出线段MN的长为.8.(2018春•浉河区期末)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.(1)在点P(1,2),Q(2,﹣2),N(,﹣1)中,是“垂点”的点为;(2)点M(﹣4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG 的边上存在“垂点”时,GE的最小值为.9.(2018春•丰台区期末)如图,菱形ABCD中,∠BAD=60°,过点D作DE⊥AD交对角线AC于点E,连接BE,取BE的中点F,连接DF.(1)请你根据题意补全图形;(2)请用等式表示线段DF、AE、BC之间的数量关系,并证明.10.(2018春•丰台区期末)在平面直角坐标系xOy中,M为直线l:x=a上一点,N是直线l外一点,且直线MN与x轴不平行,若MN为某个矩形的对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为直线l的“伴随矩形”.如图为直线l的“伴随矩形”的示意图.(1)已知点A在直线l:x=2上,点B的坐标为(3,﹣2)①若点A的纵坐标为0,则以AB为对角线的直线l的“伴随矩形”的面积是;②若以AB为对角线的直线l的“伴随矩形”是正方形,求直线AB的表达;(2)点P在直线l:x=m上,且点P的纵坐标为4,若在以点(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)为顶点的四边形上存在一点Q,使得以PQ为对角线的直线l的“伴随矩形”为正方形,直接写出m的取值范围.11.(2019春•海淀区期末)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.12.(2019春•海淀区期末)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.13.(2017春•西城区期末)如图所示,在平面直角坐标系xOy中,B,C两点的坐标分别为B(4,0),C(4,4),CD⊥y轴于点D,直线l经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出∠CFB=45°,从而证明结论.思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN 为矩形,从而证明结论.…请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为,(2)①补全图形,②直线BF与直线l的位置关系是,③证明:14.(2017春•西城区期末)如图,在由边长都为1个单位长度的小正方形组成的6×6正方形网格中,点A,B,P都在格点上请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:条件1:点P到四边形的两个顶点的距离相等;条件2:点P在四边形的内部或其边上;条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个▱ABCD,使点P在所画四边形的内部;(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.15.(2017春•西城区期末)如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m,n)在第一象限内(m<2≤a),在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点,作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由≌△,及B(m,n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.16.(2019春•西城区期末)四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC,过点C作FC⊥CE,且CF=CE.连接AE、AF,M是AF的中点,作射线DM 交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求∠EAC与∠ADN 的和的度数.17.(2019春•西城区期末)如图1,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设AP =xcm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1)画函数y1的图象①按表中自变量的值进行取点、画图、测量,得到了y1与x的几组对应值:x/cm00.51 1.52 2.53 3.54y1/cm 1.120.50.71 1.12 1.58 2.06 2.55 3.04②在图2所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象;(2)画函数y2的图象,在同一坐标系中,画出函数y2的图象;(3)根据画出的函数y1的图象、函数y2的图象,解决问题①函数y1的最小值是;②函数y1的图象与函数y2的图象的交点表示的含义是;③若PE=PC,AP的长约为cm18.(2019春•西城区期末)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K (﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN 与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.19.(2019春•大兴区期末)有这样一个问题:探究函数y=+1的图象与性质.小东根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣112345…y…393m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.20.(2019春•大兴区期末)如图1,四边形ABCD是平行四边形,A,B是直线l上的两点,点B关于AD的对称点为M,连接CM交AD于F点.(1)若∠ABC=90°,如图1,①依题意补全图形;②判断MF与FC的数量关系是;(2)如图2,当∠ABC=135°时,AM,CD的延长线相交于点E,取ME的中点H,连结HF.用等式表示线段CE与AF的数量关系,并证明.21.(2019春•大兴区期末)在平面直角坐标系xOy中,记y与x的函数y=a(x﹣m)2+n (m≠0,n≠0)的图象为图形G,已知图形G与y轴交于点A,当x=m时,函数y=a (x﹣m)2+n有最小(或最大)值n,点B的坐标为(m,n),点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,且对角线AC,BD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.(1)如图1,若函数y=(x﹣2)2+1的图象记为图形G,求图形G的伴随直线的表达式;(2)如图2,若图形G的伴随直线的表达式是y=x﹣3,且伴随四边形的面积为12,求y与x的函数y=a(x﹣m)2+n(m>0,n<0)的表达式;(3)如图3,若图形G的伴随直线是y=﹣2x+4,且伴随四边形ABCD是矩形,求点B 的坐标.22.(2019春•石景山区期末)正方形ABCD中,点P是直线AC上的一个动点,连接BP,将线段BP绕点B顺时针旋转90°得到线段BE,连接CE.(1)如图1,若点P在线段AC上,①直接写出∠ACE的度数为°;②求证:P A2+PC2=2PB2;(2)如图2,若点P在CA的延长线上,P A=1,PB=,①依题意补全图2;②直接写出线段AC的长度为.23.(2020春•浦东新区期末)在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.24.(2016春•无锡期末)已知:如图1,在平面直角坐标中,A(12,0),B(6,6),点C 为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在图1中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在图1中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A 时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.25.(2019春•东城区期末)有这样一个问题:探究函数y=﹣3的图象与性质.小亮根据学习函数的经验,对y=﹣3的图象与性质进行了探究下面是小亮的探究过程,请补充完整:(1)函数y=3中自变量x的取值范围是(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣4﹣5﹣7m﹣1﹣2﹣﹣…求m的值;(1)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.26.(2019春•东城区期末)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD 外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)27.(2019春•东城区期末)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形.当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(﹣1,1),P3(3,2)中,原点正方形的友好点是;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)一次函数y=﹣x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.28.(2019春•昌平区期末)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.0 1.0 2.0 3.0 4.0 4.5 4.14 4.5 5.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为时,BP=CP.29.(2019春•昌平区期末)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为.30.(2019春•昌平区期末)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(﹣4,﹣4),E(5,﹣),其中是平面直角坐标系中的巧点的是;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.31.(2019春•延庆区期末)已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.32.(2019春•延庆区期末)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+2的4分函数为:当x≤4时,y[4]=3x+2;当x>4时,y[4]=﹣3x﹣2.(1)如果y=x+1的﹣1分函数为y[﹣1],①当x=4时,y[﹣1];当y[﹣1]=﹣3时,x=.②求双曲线y=与y[﹣1]的图象的交点坐标;(2)如果y=﹣x+2的0分函数为y[0],正比例函数y=kx(k≠0)与y=﹣x+2的0分函数y[0]的图象无交点时,直接写出k的取值范围.33.(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.34.(2017春•西城区校级期末)某学习小组有a个男生,b个女生,其中a和b同时满足以下三个条件:①男生人数不少于女生人数;②a,b是一元二次方程mx2﹣(3m+8)x+24=0的两个实数根;③男生和女生的总人数不超过10人.请根据以上信息,回答下面两个问题:(1)求整数m的值?(2)若T=ma+b,求T的所有可能的值?35.(2017春•西城区校级期末)设p,q都是实数,且p<q.我们规定:如果变量x的取值范围为p≤x≤q,则把实数L=q﹣p叫做变量x的取值宽度.如果反比例函数y=在p ≤x≤q的函数值y的取值宽度与自变量x的取值宽度相等,则称此函数在p≤x≤q上具有“等宽性”.例如:函数y=的函数值y的取值范围为≤y≤2,故而函数y=具有“等宽性”.(1)下列函数哪些函数具有“等宽性”:(填序号)①y=(1≤x≤2);②y=﹣(﹣2≤x≤﹣1);③y=﹣(1≤x≤6);④y=﹣(﹣4≤x≤﹣1);(2)已知函数y=﹣在a≤x≤﹣1上具有“等宽性”,求a的值;(3)已知直线y=kx+b与函数y=﹣交于A(x1,y1)、B(x2,y2)两点,且函数y=﹣在x1≤x≤x2上具有“等宽性”,则k=.36.(2018春•海淀区期末)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数,DE与CP的数量关系是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1﹣1所示,∠APE=°,用等式表示线段DE与CP之间的数量关系:;②当BP=BC时,如图1﹣2所示,①中的结论是否发生变化?直接写出你的结论:;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图2﹣1,2﹣2,通过观察、测量,发现:(1)中①的结论在一般情况下(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图2﹣1和图2﹣2中任选一个进行证明;若不成立,请说明理由.37.(2018春•海淀区期末)在平面直角坐标系xOy中,A(O,2),B(4,2),C(4,0).P 为矩形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分矩形ABCO为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA,则称P 为矩形ABCO的矩宽点.例如:下图中的为矩形ABCO的一个矩宽点.(1)在点D(,),E(2,1),F(,)中,矩形ABCO的矩宽点是;(2)若G(m,)为矩形ABCO的矩宽点,求m的值;(3)若一次函数y=k(x﹣2)﹣1(k≠0)的图象上存在矩形ABCO的矩宽点,则k的取值范围是.38.(2019春•曲阜市期末)如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.39.(2018春•朝阳区期末)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(﹣,0),B(0,2),C(﹣2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.40.(2018春•昌平区期末)如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)OP=,OQ=;(用含t的代数式表示)(2)当t=1时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.①求点D的坐标;②如果直线y=kx+b与直线AD平行,那么当直线y=kx+b与四边形P ABD有交点时,求b的取值范围.41.(2018春•昌平区期末)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.42.(2018春•西城区期末)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.43.(2018春•西城区期末)在△ABC中,M是BC边的中点.(1)如图1,BD,CE分别是△ABC的两条高,连接MD,ME,则MD与ME的数量关系是;若∠A=70°,则∠DME=°;(2)如图2,点D,E在∠BAC的外部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=30°,连接MD,ME.①判断(1)中MD与ME的数量关系是否仍然成立,并证明你的结论;②求∠DME的度数;(3)如图3,点D,E在∠BAC的内部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=α,连接MD,ME.直接写出∠DME的度数(用含α的式子表示).八年级下册期末压轴题参考答案与试题解析一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是平行四边形;②在图1中利用“等积变形”可得S正方形ADEC=S四边形AMNC;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=S四边形QATH,则有S正方形ADEC=S四边形QATH;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△ADM≌△ABC,则有AM=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.【分析】根据平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型即可解决问题;【解答】解:(1)∵四边形ACED是正方形,∴AC∥MN,∵AM∥CN,∴四边形AMNC是平行四边形,∴S正方形ADEC=S平行四边形AMNC,∵AD=AC,∠D=∠ACB,∠DAC=∠MAB,∴∠DAM=∠CAB,∴△ADM≌△ACB,∴AM=AB=AQ,∴图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′,∴S四边形QACC′=S四边形QATH,则有S正方形ADEC=S四边形QATH,∴同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ;故答案为平行四边形,S四边形AMNC,S四边形QATH,S四边形QATH;(2)由(1)可知:△ADM≌△ACB,∴AM=AB=AQ,故答案为ADM,ACB,AM;【点评】本题考查平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考创新题目.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN 逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证。

八年级下学期数学期末综合训练题(压轴题)

八年级下学期数学期末综合训练题(压轴题)

八年级下学期期末综合训练题(压轴题)1、如图1,平面直角坐标系中,点P(3a+10,5a -6)在直线y=x 上。

PA ⊥PO 交y 轴正半轴于A 点. (1)求P 点的坐标;(2)在x 轴负半轴上取一点B ,使OB=PA ,求∠OBP ;(3)如图2,M 从A 点出发,以m 个单位/秒的速度沿y 轴向O 点运动(O 为终点),N 点从O 点出发,以2个单位/秒的速度沿x 轴正方向运动,两点同时开始运动,且同时停止运动.是否存在一个m 的值,使OM+ON 为定值?若存在,请求出m 的值;若不存在,请说明理由.2.如图,直线y= -x+k 交x 轴于B ,交y 轴于A ,OC ⊥AB 于C(-2,-2). (1)求A 点的坐标; (2)直线AD 交OC 于D ,交x 轴于E ,过B 作BF ⊥直线AD 于F ,若OD=OE ,求BFAE;3、如图,P 为x 轴上B 点左侧任一点,以AP 为边作等腰直角三角形APM ,其中PA=PM ,直线MB 交y 轴于Q .当P 在x 轴上运动时,下列结论:①BM-PM 的值不变;②线段OQ 的长度不变,其中有且只有一个结论是正确的,请你作出选择,并证明求值.4.(满分10分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1。

1万元。

工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成,在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?5.(满分10分)在△ACD中,点P是CD的中点。

分别以AC,AD为边在△ACD外作直角三角形ABC和ADE,∠ABC=∠AED=90 ,∠BAC=∠DAE,连结PB,PE(1)如图1,分别取AC,AD的中点M,N,连结PM,PN,BM,EN,若∠BAC=30 ,则△PMB和△PNE的面积为。

八年级下册数学期末压轴题汇总(含解析)

八年级下册数学期末压轴题汇总(含解析)

(近三年)长春市八年级下数学期末压轴题(23.24题)长春市绿园区2020.7八下数学期末试题:24.(10分)如图,在矩形ABCD 中,AB=4,BC=10,E 、F 分别为BC 、AD 的中点,点P 从点A 出发,以每秒2个单位长度的速度沿AD 向终点D 速运动,作PQ ⊥BC 于Q ,当点P 不与点F 重合时,设四边形PQEF 的面积为S ,点P 的运动时间为t(秒)(1)当点P 与点D 重合时,求t 的值(2)用含t 的代数式表示线段PF (3)求S 与t 之间的函数关系式(4)当四边形PQEF 的对角线互相垂直时,直接写出的值24.(12分)如图,在平面直角坐标系中,A(-2,1),B(1,1).直线y =kx +3与y 轴相交于点C(1)在平面直角坐标系中标记出点C 的位置(2)当直线y =kx +3与直线y =2x 平行时,k 的值为;(3)当直线y =kx +3恰好经过点A 时,求直线y =kx +3的函数关系式;(4)当直线y =kx +3与线段AB 有公共点时,直接写出k 的取值范围。

B A PFDQE C01234-1-2-3-4xyAB -2-3-41234-1答案:23.(1)由题意,得2t =10(1分)t =5(2分)(2)当0≤t <25时,PF =5-2t 当25<t ≤5时,PF =2t -5(5分)(3)当0≤t <25时,S =20-8t当25<t ≤5时,S =8t -20(8分)(4)t =21或t =29(10分)评分说明:第(2)问写成PF =∣5-2t ∣或PF=∣2t -5∣扣1分第(2)间写成当0≤t ≤25一时,PF =5-2t 当25<t ≤5时,PF =2t -5不扣分第(2)、(3)问两个关系式各1分,取值范围共1分24.(1)点C 标记在(0,3)的位置(2分)(2)2(4分)(3)把(-2,1)代入y =kx +3得1=-2k +3(6分)解,得k =1(8分)∴y =x +3(10分)(4)k ≤-2或k ≥1(12分)评分说明:第(1)问只要位置标记正确即可给分长春市朝阳区2020.7数学八下期末试题23.(10分)如图在Rt ∆ABC 中∠C =90º,过点A 作线段AD 平行射线BC ,AB=10,BC=6,AD=15。

2024八年级下册期末压轴题集训(原卷版)

2024八年级下册期末压轴题集训(原卷版)

2024八年级下册期末压轴题集训一(原卷版)1、我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微”.请你利用“数形结合”的思想解决以下问题.如图1,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达);(2)请依据(1)得到的公式计算:(2+1)(22+1)(24+1)(28+1)+1;(3)请用(1)中的公式证明任意两个相邻奇数的平方差必是8的倍数.2、如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AC,AB上,AD=AE,连接DE,BD,点F,P,G别为DE,BD,BC的中点.(1)线段PF与PG的数量关系是,位置关系是;(2)把△ADE绕点A顺时针方向旋转到图2的位置,连接PF,PG,FG,判断△FPG的形状,并说明理由;(3)若AD=3,AB=7,△ADE绕点A在平面内旋转过程中,请直接写出△FPG的面积取得最大值时BD的长.3、经调研发现,目前市场上有A,B两种类型的笔记本比较畅销.某超市计划最多投入6900元购进A,B两种类型的笔记本共500本,其中B型笔记本的进货单价比A型笔记本的进货单价多3元;用2400元购进A型笔记本与用3000元购进B型笔记本的数量相同.(1)求A,B两种类型笔记本的进货单价;(2)若A型笔记本每本的售价定为16元,B型笔记本每本的售价定为20元,该超市计划购进A型笔记本m本,两种类型的笔记本全部销售后可获利润为y元.①请直接写出y与m之间的函数关系式为:;②该超市如何进货才能获得最大利润?最大利润是多少元?4、在等边△ABC中,AB=6,点D是射线CB上一点,连接AD.(1)如图1,当点D在线段CB上时,在线段AC上取一点E,使得CE=BD,求证:AD=BE;(2)如图2,当点D在CB延长线上时,将线段AD绕点A逆时针旋转角度θ(0°<θ<180°)得到线段AF,连接BF,CF.①当AF位于∠BAC内部,且∠DAF恰好被AB平分时,若BD=2,求CF的长度;②如图3,当θ=120°时,记线段BF与线段AC的交点为G,猜想DC与AG的数量关系,并说明理由.5、如图,已知函数y1=﹣x+b,y2=mx﹣1,其中y1的图象经过点(3,0).(1)当y1>0时,x的取值范围是;(2)当x>2时,对于x的每一个值,都有y1<y2,求m的取值范围;(3)若m=1,,求A、B的值.6、如图,△ABC是等边三角形,,点F是∠BAC的平分线上一动点,将线段AF绕点A顺时针方向旋转60°得到AE,连接CF、EF.(1)尺规作图:在AF的上方找点D,使得DE⊥AF且DE=AC;(2)在(1)的条件下,连接CD、DF.①求证:AE+CD>AC;②求证:△CDF是等边三角形;③当△DEF是等腰三角形时,求AF的长度?7、【探索发现】“旋转”是一种重要的图形变换,图形旋转过程中蕴含着众多数学规律,以图形旋转为依托构建的解题方法是解决几何问题的常用方法.如图1,在正方形ABCD中,点E在AD上,点F在CD上,∠EBF=45°.某同学进行如下探索:第一步:将△ABE绕点B顺时针旋转90°,得到△CBG,且F、C、G三点共线;第二步:证明△BEF≌△BGF;第三步:得到∠AEB和∠FEB的大小关系,以及AE、CF、EF之间的数量关系;请完成第二步的证明,并写出第三步的结论.【问题解决】如图2,在正方形ABCD中,点P在AD上,且不与A、D重合,将△ABP绕点B顺时针旋转,旋转角度小于90°,得到△A'BP',当P、A′、P′三点共线时,这三点所在直线与CD交于点Q,要求使用无刻度的直尺与圆规找到Q点位置,某同学做法如下:连接AC,与BP交于点O,以O为圆心,OB为半径画圆弧,与CD相交于一点,该点即为所求的点Q.请证明该同学的做法.(前面【探索发现】中的结论可直接使用,无需再次证明)【拓展运用】如图3,在边长为2的正方形ABCD中,点P在AD上,BP与AC交于点O,过点O作BP的垂线,交AB于点M,交CD于点N,设AP+AB=x(2≤x≤4),AM=y,直接写出y关于x的函数表达式.8、如图1,四边形ABCD为正方形,E为对角线AC上一点,连接DE,BE.(1)求证:BE=DE;(2)如图2,过点E作EF⊥DE,交边BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②若正方形ABCD的边长为9,CG=3,求正方形DEFG的边长.9、【探究发现】如图①,已知矩形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F.求证:四边形AFCE是菱形;(2)【类比应用】如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若AB=3,BC=4,求四边形ABFE的周长;(3)【拓展延伸】如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若,BC=4,∠C=45°,求EF的长.10、阅读材料:在数轴上,x=2表示一个点;在平面直角坐标系中,x=2表示一条直线;以二元一次方程x+y=2的所有解为坐标的点组成的图形就是一次函数y=﹣x+2的图象,它也是一条直线.如图1,在平面直角坐标系中,不等式x≤2表示一个平面区域,即直线x=2及其左侧的部分;如图2,不等式y≤﹣x+2也表示一个平面区域,即直线y=﹣x+2及其下方的部分.请根据以上材料回答问题:(1)图3阴影部分(含边界)表示的是(填写不等式)表示的平面区域;(2)如图4,请求出表示阴影部分平面区域(含边界)的不等式组;(3)如图5,点A在x轴上,点B的坐标为(0,1),且∠ABO=60°,点P为△ABO内部一点(含边界),过点P分别作PC⊥OA,PD⊥AB,PE⊥BO,垂足分别为C,D,E,若PC≤PE≤PD,则所有点P组成的平面区域的面积为.11、【课本重现】已知:如图1,D,E分别是等边△ABC的两边AB,AC上的点,且AD=CE.若BE,CD交于点F,则∠EFD=°;【迁移拓展】如图2,已知点D是等边△ABC的AB边上一点,点E是AC延长线上一点,若AD=CE,连接ED,EB.求证:ED=EB;【拓展延伸】如图3,若点D,E分别是等边三角形ABC的边BA,AC延长线上一点,且连接DE,以DE为边向右侧作等边△DEF,连接AF,求△ADF的面积.12、【综合与实践】生活中,我们所见到的地面、墙面、服装面料等,上面的图案常常是由一种或几种形状相同的图形拼接而成的.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的镶嵌.(1)如图1,在▱ABCD中,AB=2,AD=3,∠BAD=60°,图2右侧的阴影部分可以看成是左侧阴影部分沿射线AD方向平移而成,其中,平移的距离是.同理,再进行一次切割平移,可得图3,即图4可以看成由平行四边形经过两次切割平移而成.我们可以用若干个如图4所示的图形,平面镶嵌成如图5的图形,则图5的面积是.(2)小明家浴室装修,在墙中央留下了如图6所示的空白,经测量可以按图7所示,全部用边长为1的正三角形瓷砖镶嵌.小明调查后发现:一块边长为1的正三角形瓷砖比一块边长为1的正六边形瓷砖便宜40元;用500元购买正三角形瓷砖与用2500元购买正六边形瓷砖的数量相等.①请问两种瓷砖每块各多少元?②小明对比两种瓷砖的价格后发现:用若干块边长为1的正三角形瓷砖和边长为1的正六边形瓷砖一起镶嵌总费用会更少,按小明的想法,将空白处全部镶嵌完,购买瓷砖最少需要元.13、在等腰Rt△ABC中,∠ABC=90°,点D是射线AB上的动点,AE垂直于直线CD于点E,交直线BC于点F.(1)【探索发现】如图①,若点D在AB的延长线上,点E在线段CD上时,请猜想CF,BD,AB之间的数量关系为;(2)【拓展提升】如图②,若点D在线段AB上(不与点A,B重合),试猜想CF,BD,AB之间的数量关系,并说明理由;(3)【灵活应用】当AB=3,时,直接写出线段BD的长为.14、如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(﹣2,﹣1).(1)将△ABC向上平移6个单位得到△A1B1C1,画出△A1B1C1;(2)以(0,﹣1)为对称中心,画出△ABC关于该点对称的△A2B2C2;(3)经探究发现,△A1B1C1和△A2B2C2成中心对称,则对称中心坐标为;(4)已知点P为x轴上不同于O、D的动点,当P A+PC=时,∠OPC=∠DP A.15、问题情境:在学习《图形的平移和旋转》时,数学兴趣小组遇到这样一个问题:如图1,点D为等边△ABC的边BC上一点,将线段AD绕点A逆时针旋转60°得到线段AE,连接CE.(1)【猜想证明】试猜想BD与CE的数量关系,并加以证明;(2)【探究应用】如图2,点D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到线段AE,连接CE,若B、D、E三点共线,求证:EB平分∠AEC;(3)【拓展提升】如图3,若△ABC是边长为2的等边三角形,点D是线段BC上的动点,将线段AD绕点D顺时针旋转60°得到线段DE,连接CE.点D在运动过程中,△DEC的周长最小值=(直接写答案).。

2020-2021学年人教版八年级数学下册期末复习(一次函数压轴题)

2020-2021学年人教版八年级数学下册期末复习(一次函数压轴题)

人教版2020-2021年八年级下册期末复习(一次函数压轴题)一.解答题(共15小题)1.在平面直角坐标系中,A (0,8),点B 是直线y =x ﹣8与x 轴的交点.(1)写出点B 的坐标( , );(2)点C 是x 轴正半轴上一动点,且不与点B 重合,∠ACD =90°,且CD 交直线y =x ﹣8于D 点,求证:AC =CD ;(3)在第(2)问的条件下,连接AD ,点E 是AD 的中点,当点C 在x 轴正半轴上运动时,点E 随之而运动,点E 到BD 的距离是否为定值?若为定值,求出这个值,若不是定值,请说明理由.2.已知,如图:在正方形OABC 中,A (0,1),B (1,1),C (1,0),D 为OB 延长线上的一动点,以AD 为一边在直线AD 下方作正方形ADEF ,AF 交OC 于点G .(1)若S △AOD =1,求D 点的坐标;(2)①求证:点E 始终落在x 轴上;②若S 四边形ABCG =a •S △ABE ,1<a <2,利用a 表示此时直线AF 的解析式.3.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (0,4)、B (﹣2,0)、C (23,0),点D 是边AC 上的一点,DE ⊥BC 于点E .点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称.连接DF ,EF .设点D 的横坐标为m ,EF 2为l ,请解决下列问题:(1)若一次函数的图象经过A 、C 两点,则此一次函数的表达式为 ;(2)若以EF 为边长的正方形面积为S ,请你求出S 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值;(3)△BEF 能否成为直角三角形.若能,求出m 的值;若不能,说明理由.4.如图,在平面直角坐标系中,一次函数12x 512-y +=的图象交x 轴、y 轴于A 、B 两点,以AB 为边在直线右侧作正方形ABCD ,连接BD ,过点C 作CF ⊥x 轴于点F ,交BD 于点E ,连接AE .(1)求线段AB 的长;(2)求点C 的坐标(3)求证:AD 平分∠EAF ;(4)求△AEF 的周长5.如图1,已知直线y =kx +1交x 轴于点A 、交y 轴于点B ,且OA :OB =4:3.(1)求直线AB 的解析式(2)如图2,直线y =31x +2与x 轴、y 轴分别交于点C 、D ,与直线AB 交于点P . ①若点E 在线段P A 上且满足S △CDE =S △CDO ,求点E 的坐标;②若点M是位于点B上方的y轴上一点,点Q在直线AB上,点N为第一象限内直线CD上一动点,是否存在点N,使得以点B、M、N、Q为顶点的四边形是菱形?若存在,求出点N坐标;若不存在,请说明理由.6.如图,直线y=﹣x+1与y轴、x轴分别交于A、B两点,点C在线段AB上从A向B运动,另一动点P从B出发,沿直线x=1运动,记AC的长为t,P的坐标为(1,b),分析此图后,对下列问题作出探究:(1)当t=且b=时,△AOC≌△BCP;(2)当OC与CP垂直时,①判断线段OC和CP的数量关系?并证明你得到的结论;②试写出b关于t的函数关系式和变量t的取值范围.③求出当△PBC为等腰三角形时点P的坐标.7.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+6分别交x轴,y轴于点A,B,已知点A的坐标为(6,0).(1)求k的值;(2)点C是线段OA上一点(不与点O,A重合),点D是OB的延长线上一点,连接CD交AB于点E,且CE=DE,设OC的长为t,BD的长为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E 作EF ⊥CD 交y 轴于点F ,点G 在线段DE 上,且EG =EF ,连接BG 并延长交FE 的延长线于点H ,若BF =d 43-29,求点E 的坐标.8.平面直角坐标系中,O 为坐标原点,直线b x 3y +=交y 轴于A ,x 轴于B ,S △AOB =83.(1)求b 的值;(2)点C 为射线BA 上一动点,连接OC ,以C 为边作等边△OCD ,点D 在OC 的右侧,求点D 的纵坐标;(3)在(2)的条件下,连接AD 、BD ,△BOC 的面积是△ACD 的面积的2倍,M 是x 轴上一点,连接DM ,若∠DMB ﹣∠DBM =90°,求点M 坐标.9.如图1,在矩形ABCD 中,动点P 沿着边AB 从点A 运动到点B ,同时动点Q 沿着边BC ,CD 从点B 运动到点D ,它们同时到达终点,若点Q 的运动路程x 与线段BP 的长y 满足y =8x 74-+,BD 与PQ 交于点E . (1)求AB ,BC 的长. (2)如图2,当点Q 在CD 上时,求DE BE . (3)将矩形沿着PQ 折叠,点B 的对应点为点F ,连接EF ,当EF 所在直线与△BCD的一边垂直时,求BP的长.10.平面直角坐标系中,设一次函数y=(2a﹣1)x+3﹣b的图象是直线l1.(1)如果把l1向下平移2个单位后得到直线y=3x+1,求a,b的值;(2)当直线l1过点(m,6﹣b)和点(m+3,4a﹣7)时,且﹣3<b<12,求a的取值范围;(3)点P(﹣2n+3,3n﹣1)在直线l2上运动,直线l2与直线l1无交点,求a、b所需满足的条件.11.如图,在平面直角坐标系中,直线y=kx+b与x轴,y轴分别相交于点A(4,0),点B(0,3),点C是线段OB的中点,动点P从点B开始以每秒1个单位长度的速度沿路线B→A向终点A匀速运动,设运动的时间为t秒,连接CP.(1)求直线AB的函数解析式;(2)请直接写出点P的坐标;(用含t的代数式表示)(3)①当S△BCP:S四边形AOCP=1:4时,求t的值;②将△BCP沿CP翻折,使点B落在点B′处,当PB′平行于坐标轴时,请直接写出t的值.12.如图1,在平面直角坐标系xOy中,直线l:y=mx+m(m>1)与x轴、y轴分别交于A、B两点,点Q为x轴上一动点.(1)若OB=2OA,求直线l的解析式;(2)在(1)的条件下,若∠QBA =45°,求满足条件的点Q 的坐标;(3)如图2,在x 轴的负半轴上是否存在点Q ,使得以BQ 为边作正方形BQMN 时,点M 恰好落在直线l 上,且正方形BQMN 的面积被x 轴分成了1:2的两部分?若存在,请求出点Q 的坐标,若不存在,请说明理由.13.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)经过点A (6,0)和点B (0,9),其图象与直线y =x 43交于点C .(1)求一次函数y =kx +b (k ≠0)的表达式;(2)点P 是线段OA 上的一个动点(点P 不与点O ,A 重合),过点P 作平行于y 轴的直线l ,分别交直线AB ,OC 于点M ,N ,设点P 的横坐标为m .①线段PM 的长为 ;(用含m 的代数式表示)②当点P ,M ,N 三点中有一个点是另两个点构成线段的中点时,请直接写出m 的值; ③直线l 上有一点Q ,当∠PQA 与∠AOC 互余,且△PQA 的周长为227时,请直接写出点Q 的坐标.14.如图1,已知直线y =﹣2x +2与y 轴、x 轴分别交于A 、B 两点,以B 为直角顶点在第一象限内作等腰Rt △ABC .(1)A ( );B ( );(2)求BC 所在直线的函数关系式;(3)如图2,直线BC 交y 轴于点D ,在直线BC 上取一点E ,使AE =AC ,AE 与x 轴相交于点F .①求证:BD =ED ;②在直线AE 上是否存在一点P ,使△ABP 的面积等于△ABD 的面积?若存在,直接写出点P 的坐标;若不存在,说明理由.15.在平面直角坐标系中,直线y =32x ﹣6与x 轴交于点A ,与y 轴交于点B ,点D 在直线AB 上,点D 的横坐标为3,点C (﹣6,0),动点F 从C 出发,沿x 轴正方向运动,速度为每秒1个单位长度,到达终点A 停止运动,设运动时间为t (t >0).(1)如图1①求点A 、B 的坐标;②当t =3时,求证DF =DA . (2)过点B 作BE ∥OA ,当BE =ED 时,连接ED 并延长交x 轴于点Q①点Q 的坐标为 ;②当∠FDE =3∠QFD 时,t 的值为 .。

压轴题:一元一次不等式及不等式组综合专练20题(解析版)八年级数学下学期期末精选题汇编(北师大版)

压轴题:一元一次不等式及不等式组综合专练20题(解析版)八年级数学下学期期末精选题汇编(北师大版)

压轴题02:一元一次不等式及不等式组综合专练20题(解析版)一、单选题1.已知关于x 的不等式组100x x a ->⎧⎨-≤⎩,有以下说法: ①如果它的解集是1<x ≤4,那么a =4;①当a =1时,它无解;①如果它的整数解只有2,3,4,那么4≤a <5;①如果它有解,那么a ≥2.其中说法正确的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】分别求出每个不等式的解集,再根据各结论中a 的取值情况逐一判断即可.【详解】解:由x ﹣1>0得x >1,由x ﹣a ≤0得x ≤a ,①如果它的解集是1<x ≤4,那么a =4,此结论正确;①当a =1时,它无解,此结论正确;①如果它的整数解只有2,3,4,那么4≤a <5,此结论正确;①如果它有解,那么a >1,此结论错误;故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,例如:[][]1.5122==,,则满足等式的正整数的个数为() A .2B .3C .12D .16【答案】D【分析】利用不等式[x ]≤x 即可求出满足条件的n 的值.【详解】 解:若2n ,3n ,6n 有一个不是整数, 则22n n ⎡⎤⎢⎥⎣⎦<或者33n n ⎡⎤⎢⎥⎣⎦<或者66n n ⎡⎤⎢⎥⎣⎦<, ∴][][236236n n n n n n n ⎡⎤++++=⎢⎥⎣⎦<, ∴2n ,3n ,6n 都是整数,即n 是2,3,6的公倍数,且n <100, ∴n 的值为6,12,18,24,......96,共有16个,故选:D .【点睛】本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x ]≤x <[x ]+1式子的应用,这个式子在取整中经常用到.3.定义,图象与x 轴有两个交点的函数y =24()24()x x m x x m -+≥⎧⎨+<⎩叫做关于直线x =m 的对称函数,它与x 轴负半轴交点记为A ,与x 轴正半轴交点记为B 例如:如图:直线l :x =1,关于直线l 的对称函数y =24(1)24(1)x x x x -+≥⎧⎨+<⎩与该直线l 交于点C ,当直线y =x 与关于直线x =m 的对称函数有两个交点时,则m 的取值范围是( )A .0≤m ≤43B .-2<m ≤43C .-2<m ≤2D .-4<m <0【答案】B【分析】 根据定义x 轴上存在,A B 即可求得22m -<<,根据题意联立,24,y x y x =⎧⎨=+⎩,24,y x y x =⎧⎨=-+⎩即可求得m 的范围,结合定义所求范围即可求解 【详解】①一次函数图象与x 轴最多只有一个交点,且关于m 的对称函数()24,24()x x m y x x m ⎧-+≥=⎨+<⎩,与x 轴有两个交点, ①组成该对称函数的两个一次函数图象的部分图象都与x 轴有交点.①240x ±+=解得2x =或2-①22m -<<.①直线y =x 与关于直线x =m 的对称函数有两个交点,①直线y =x 分别与直线24()y x x m =-+≥和24()y x x m =+<各有一个交点.对于直线y =x 与直线24()y x x m =+<,联立可得,24,y x y x =⎧⎨=+⎩解得4,4x y =-⎧⎨=-⎩, ①直线y =x 与直线24()y x x m =+<必有一交点(4,4)--.对于直线y =x 与直线24()y x x m =-+≥,联立可得,24,y x y x =⎧⎨=-+⎩解得4,343x y ⎧=⎪⎪⎨⎪=⎪⎩, ①22m -<<, ①43x =必须在x m ≥的范围之内才能保证直线y =x 与直线24()y x x m =-+≥有交点. ①43m ≤. ①423m -<≤. ①m 的取值范围是423m -<≤. 故选B【点睛】本题考查了新定义,两直线交点问题,一次函数的性质,掌握一次函数的性质,数形结合是解题的关键.4.如图,长方形ABKL ,延CD 第一次翻折,第二次延ED 翻折,第三次延CD 翻折,这样继续下去,当第五次翻折时,点A 和点B 都落在①CDE =α内部(不包含边界),则α的取值值范围是( )A .3645α︒<≤B .3036α︒<≤C .3645α︒≤<D .3036α︒<<【答案】D【分析】 利用翻折前后角度总和不变,由折叠的性质列代数式求解即可;【详解】解:第一次翻折后2a +①BDE =180°,第二次翻折后3a +①BDC =180°,第三次翻折后4a +①BDE =180°,第四次翻折后5a +①BDC =180°,若能进行第五次翻折,则①BDC ≥0,即180°-5a ≥0,a ≤36°,若不能进行第六次翻折,则①BDC ≤a ,即180°-5a ≤a ,a ≥30°,当a =36°时,点B 落在CD 上,当a =30°时,点B 落在ED 上,①30°<a <36°,故选:D ;【点睛】本题考查了图形的规律,折叠的性质,一元一次不等式的应用;掌握折叠前后角度的变化规律是解题关键.5.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩ 只有5个整数解,则a 的取值范围是( ) A .1162a -<<-B .1162a -≤<-C .1162a -<≤-D .1162a -≤≤- 【答案】C【分析】先解x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩,然后根据整数解的个数确定a 的不等式组,解出取值范围即可. 【详解】 解:不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩, 解得:2032x x a <⎧⎨>-⎩, 不等式组只有5个整数解,即解只能是15x =,16,17,18,19,a ∴的取值范围是:32143215a a -≥⎧⎨-<⎩, 解得:1162a -<≤-. 故选:C .【点睛】 本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解的个数确定关于a 的不等式组.6.若实数a 使得关于x 的不等式组52232x a x x x +≤-⎧⎪⎨--<⎪⎩有且只有2个整数解,且使得关于x 的一次函数()15y a x a =+-+不过第四象限,则符合条件的所有整数a 的和为( )A .7B .9C .12D .14【答案】C【分析】先解不等式组,根据不等式组的解只有2个整数解,列出关于a 的不等式,求出此时a 的取值范围;再根据一次函数的图像不过第四象限,列出关于a 的不等式组,再次求出a 的取值范围,两项综合求出a 最终的取值范围,则问题得解.【详解】 52232x a x x x +≤-⎧⎪⎨--<⎪⎩①② 解不等式①得:24a x +≥, 解不等式①得:4<x ,不等式有解,则解为:244a x +≤<, ①不等式组有两个整数解,则这两个整数解为3,2, ①2124a +≤<,解得26a ≤<; ①一次函数()15y a x a =+-+不过第四象限,①则有1050a a +⎧⎨-+≥⎩>,解得15a -≤<; 综上:25a ≤<①a 的整数值有:3,4,5,则其和为:3+4+5=12,故选:C .【点睛】本题考查了解不等式组和一次函数的图像的性质,根据不等式组只有两个整数解和函数不过第四象限等条件求出a 的取值范围是解答本题的关键.7.对于实数,a b ,定义符号{},min a b 其意义为:当a b ≥时,{},min a b b =;当a b <时,{},min a b a =.例如:21{},1min -=-,若关于x 的函数2{}1,3y min x x =--+,则该函数的最大值是( )A .1B .43C .53D .2【答案】C【分析】根据定义先列不等式:213x x --+和213x x --+,确定其{21y min x =-,3}x -+对应的函数,画图象可知其最大值.【详解】解:由题意得:213y x y x =-⎧⎨=-+⎩,解得:4353x y ⎧=⎪⎪⎨⎪=⎪⎩, 当213x x --+时,43x, ∴当43x 时,{21y min x =-,3}3x x -+=-+,由图象可知:此时该函数的最大值为53; 当213x x --+时,43x, ∴当43x 时,{21y min x =-,3}21x x -+=-, 由图象可知:此时该函数的最大值为53; 综上所述,{21y min x =-,3}x -+的最大值是当43x =所对应的y 的值, 如图所示,当43x =时,53y =,故选:C【点睛】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.8.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组【答案】D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤.所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.二、填空题9.重庆云阳巴阳镇精准化发展枇杷产业切实带动低收入农户增收,成为一大“亮点”——“万亩枇杷,醉美巴阳”成为了重庆云阳的一大名片.今年5月又是一个丰收季,全镇枇杷种植面积达1万余亩,种植了“普通”、“白肉”、“大五星”三个品种的枇杷,其中6000亩用于村民集体采摘,其余部分用于游客自助采摘.这6000亩中种植“白肉”枇杷的面积是“普通”枇杷面积的2倍,“大五星”枇杷面积不超过“白肉”枇杷面积的1.2倍,种植“白肉”的面积不超过2300亩,现在正值采摘季节,若干村民进行采摘,每人每天可以采摘“普通”枇杷1.8亩,或“白肉”枇杷1.2亩,或“大五星”枇杷2亩,这6000亩枇杷预计20天采摘完,则需要村民_______人参与采摘.【答案】191人【分析】设“普通”枇杷面积x 亩,则“白肉”枇杷面积为2x 亩,“大五星”枇杷面积为()60003x -亩,有m 人采摘,采摘“普通”枇杷a 天, “白肉”枇杷为b 天,“大五星”枇杷为()20a b --天,先求解x 的范围,再用含m 的代数式表示x ,再解不等式组即可得到答案.【详解】解:设“普通”枇杷面积x 亩,则“白肉”枇杷面积为2x 亩,“大五星”枇杷面积为()60003x -亩,有m 人采摘,采摘“普通”枇杷a 天, “白肉”枇杷为b 天,“大五星”枇杷为()20a b --天,根据题意得:600032 1.222300x x x -≤⨯⎧⎨≤⎩ 解得:100001150,9x ≤≤同时可得:()1.81.2222060003am x bm xm a b x ⎧=⎪=⎨⎪--=-⎩55,,93am x bm x ∴== 101040224060003,93m ma mb m x x x ∴--=--=- 整理得:36054000,13m x -=∴ 10000360540001150,913m -≤≤ 1300003605400014950,9m ∴≤-≤ 616000360689509m ∴≤≤, 1019190191,8136m ∴≤≤ m 为正整数,∴ 191.m =故答案为:191.【点睛】本题考查不等式组的实际应用,解题的关键是仔细阅读找出题中的等量关系与不等关系列方程与不等式组.10.某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.【答案】购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖【分析】设购买x 块彩色地砖,购买单色地砖y 块,进而由题意得到2x <y <3x ,再根据总费用为1500元,且x 、y 均为正整数,将y 用x 的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x 块彩色地砖,购买单色地砖y 块,则2x <y <3x ,25x +15y =1500, ①1500255100(1)153x y x , 又已知有:23xy x ,①510033510023x x x x ⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x , 又x 为正整数,且30021.414,30027.311,①x =22,23,24,25,26,27;由(1)式中,x y ,均为正整数,①x 必须是3的倍数,①24x =或27x =,当24x =时,单色砖的块数为15002425=6015; 当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖.【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况.11.春暖花开,又到了踏青赏花的好季节,某植物园决定在今年4月份购进一批花苗:绣球花苗、蔷薇花苗、铁线莲花苗和月季花苗.已知每株绣球花苗的价格是每株蔷薇花苗价格的12,每株月季花苗的价格是每株铁线莲花苗价格的3倍.另外,购进的绣球花苗数量是铁线莲花苗数量的2倍,蔷薇花苗的数量是月季花苗数量的3倍,且铁线莲花苗和蔷薇花苗的总数量不超过600株.已知一株绣球花苗和一株铁线莲花苗的价格之和为30元,最后,购进绣球花苗和蔷薇花苗的总费用比铁线莲花苗和月季花苗的总费用多14400元,则今年4月用于购进铁线莲花苗和月季花苗的总费用的最大值为______元.【答案】7200.【分析】根据题意可设蔷薇花苗价格为x 元,每株铁线莲花苗价格为y 元,则绣球花苗价格为12x 元,月季花苗为3y 元,根据已知关系列出不等关系3600a b +,表示购进铁线莲花苗和月季花苗的总费用,利用不等关系求解.【详解】解:设每株蔷薇花苗价格为x 元,每株铁线莲花苗价格为y 元,则绣球花苗价格为12x 元,月季花苗为3y 元,由题意得,1302x y +=①,设购进铁线莲花苗数量为a ,月季花苗数量为b ,则绣球花苗为2a ,蔷薇花苗为3b , 由题意可知,3600a b +,1231440032x a x b a y b y ⨯+⨯-=⋅+⨯, 整理得(3)()14400a b x y +-=,3600a b +, 24x y ∴-①,由①得602x y =-代入①得,60224y y --,解得12y ,用于购进铁线莲花苗和月季花苗的总费用为,3(3)ay by a b y +=+,3600a b +,12y ,∴用于购进铁线莲花苗和月季花苗的总费用的最大值为600127200⨯=(元),故答案为:7200. 【点睛】本题以购买的最大费用为背景考查了一元一次不等式的应用,关键根据数量关系表示未知量,然后根据不等关系求解.12.小李和小张大学毕业后准备合伙开一家工作室创业.他们在某写字楼租了一间空高为3米的房间作办公地点(如图),准备装修后开始办公.小李和小张分别提出两套装修方案(如表格).其中,每平方米木地板的装修费用与每平方米木质吊顶的装修费用之和等于每平方米复合材料墙面的装修费用;每平方米地砖的装修费用与每平方米乳胶漆的装修费用之和等于每平方米木质墙面的装修费用,以上各项装修单价均为整数.每平方米木地板、木质墙面、木质吊顶的装修费用之和不少于600元;每平方米复合材料墙面比木质墙面的装修费用多,且差价不大于90元,不少于80元.经测算,小李方案的总装修费用比小张方案的总装修费用多1260元.若x ,y 均为整数,且满足y<x<2y ,则小张的方案装修总费用最少为________元.【答案】234041401260y y +- 【分析】设每平方米木地板a 元,木制吊顶b 元,地砖m 元,乳胶漆n 元,则复合材料墙面()a b +元,木质墙面m n 元,根据题意列出不等式组,得到340345a b m n +≥⎧⎨+≥⎩,根据“小李方案的总装修费用比小张方案的总装修费用多1260元”列式即可求解. 【详解】解:设每平方米木地板a 元,木制吊顶b 元,地砖m 元,乳胶漆n 元, 则复合材料墙面()a b +元,木质墙面m n 元,根据题意可得6008090a b m n a b m n +++≥⎧⎨≤+--≤⎩,解得340345a b m n +≥⎧⎨+≥⎩,小李的总花费()()()()()2336xya xyb m n y x xy a b m n x y ++++=++++, 小张的总花费()()()()()2336xym xyn a b y x xy m n a b x y ++++=++++, ①()()()()()()661260xy a b m n x y xy m n a b x y ++++-+-++=, ①2y x y <<,①()()()61260xy a b m n x y ++++-()23406345126034041401260y y y y y y ≥⋅⨯+⨯+-=+-, 故答案为:234041401260y y +-. 【点睛】本题考查不等式组的实际应用,根据题意列出不等式是解题的关键.13.如图,设BAC θ∠=(090θ︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.从点1A开始,用等长的小棒依次向右摆放,其中12A A为第一根小棒,且11223341AA A A A A A A====⋅⋅⋅=,若只能摆放4根小棒,则θ的范围为________.【答案】18°≤θ<22.5°.【分析】根据等边对等角可得①BAC=①AA2A1,①A2A1A3=①A2A3A1,①A3A2A4=①A3A4A2,再根据三角形的一个外角等于与它不相邻的两个内角的和可得θ1=2θ,θ2=3θ,θ3=4θ,求出第三根小木棒构成的三角形,然后根据三角形的内角和定理和外角性质列出不等式组求解即可.【详解】解:如图,①小木棒长度都相等,①①BAC=①AA2A1,①A2A1A3=①A2A3A1,①A3A2A4=①A3A4A2,由三角形外角性质得,θ1=2θ,θ2=3θ,θ3=4θ;①只能摆放4根小木棒,①490 590θθ︒︒⎧<⎨≥⎩,解得18°≤θ<22.5°.故答案为:18°≤θ<22.5°.【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,也考查了一元一次不等式组的应用,列出不等式组是解题的关键.14.若不等式231x x x a-+++-≥对一切数x都成立,则a的取值范围是________.【答案】5a ≤ 【分析】要使不等式231x x x a -+++-≥对一切数x 都成立,则a 需小于等于231x x x -+++-的最小值,再分3x <-、31x -≤<、12x ≤<和2x ≥四种情况,分别化简绝对值求出最小值即可得.【详解】要使不等式231x x x a -+++-≥对一切数x 都成立,则a 需小于等于231x x x -+++-的最小值, 由题意,分以下四种情况: (1)当3x <-时,2312313x x x x x x x -+++-=---+-=-,此时39x ->; (2)当31x -≤<时,2312316x x x x x x x -+++-=-+++-=-,此时569x <-≤; (3)当12x ≤<时,2312314x x x x x x x -+++-=-+++-=+,此时546x ≤+<; (4)当2x ≥时,2312313x x x x x x x -+++-=-+++-=,此时36x ≥;综上,231x x x -+++-的最小值为5, 则5a ≤, 故答案为:5a ≤. 【点睛】本题考查了化简绝对值、一元一次不等式组等知识点,将问题转化为求231x x x -+++-的最小值是解题关键.15.已知非负实数x y 、、z 满足123234x y z ---==,记23M x y z =++.则M 的最大值减去最小值的差为________. 【答案】283. 【分析】 设123234x y z k ---===,将x y 、、z 用k 表示出来,由x y 、、z 均为非负实数得关于k 的不等式组,求出k 取值范围,再将23M x y z =++转化为k 的代数式,由k 的范围即可确定M 的最大值和最小值,从而即可求差. 【详解】 设123234x y z k ---===, ①21x k =+,23y k =-,43z k =+, ①0x ≥,0y ≥,0z ≥,①210230430k k k +≥⎧⎪-≥⎨⎪+≥⎩, 解不等式组得1223k -≤≤,①23M x y z =++,①()()()21238142343M k k k k =+++=+-+, ①58108143k ≤+≤,即58103M ≤≤, M 的最大值为583,最小值为10, M 的最大值减去最小值的差58281033=-=, 故答案为:283. 【点睛】本题主要考查了不等式的性质的应用,解题关键是设比例式值为k ,通过已知确定k 的取值范围. 三、解答题16.商店销售10台A 型和20台B 型电脑的利润为40000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. ①求y 关于x 的函数关系式:①该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调()0100m m <<元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1)A 100元,B 150元;(2)①5015000y x =-+;①A 34台,B 66台;(3)当050m <<时,A 34台B 66台;当50m =时,A 34~70内均可;当50100m <<时,A 70台B 30台 【分析】(1)设每台A 型加湿器和B 型加湿器的销售利润分别为a 元,b 元,然后根据题意列出二元一次方程组解答即可;(2)①据题意得即可确定y 关于x 的函数关系式,利用A 型利润与B 型利润即可求出总利润y 与x 的关系,并确定x 的范围即可;①根据一次函数的增减性,解答即可;(3)根据题意列出函数数关系式,分以下三种情况①0<m<50,①m=50,① 50 <m < 100时,m-50 >0结合函数的性质,进行求解即可. 【详解】(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,根据题意得:1020400020103500a b a b +=⎧⎨+=⎩ 解得=100150a b ⎧⎨=⎩ 答:每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①设购进A 型电脑x 台,每台A 型电脑的销售利润为100元,A 型电脑销售利润为100x 元, 每台B 型电脑的销售利润为150元,B 型电脑销售利润为()150100x -元()100150100y x x =+-,即这100台电脑的销售总利润为:5015000y x =-+;1002x x -≤,解得1333x ≥.且x 为正整数,150********y x x ⎛⎫=-+≥ ⎪⎝⎭,其中x 为正整数,①5015000y x =-+中,k=500-<,y ∴随x 的增大而减小.x 为正整数,1333x ≥ ①当34x =时,y 取得最大值,此时10066x -=.答:商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大; (3)根据题意得()()100150100y m x x =++-,即()5015000y m x =-+,其中133703x ≤≤,且x 为正整数.①当050m <<时,k=500m -<,y ∴随x 的增大而减小,①当34x =时,y 取得最大值,即商店购进34台A 型电脑和66台B 型电脑才能获得最大利润; ①当50m =时,k=500m -=,15000y ∴=,即商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;①当50 <m < 100时,k=500m ->,y ∴随x 的增大而增大.①当70x =时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润. 【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,掌握一次函数的增减性是解答本题的关键.17.某市A ,B 两个蔬菜基地得知黄岗C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点,从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨. (1)请填写下表,用含x 的代数式填空,结果要化简:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元()0m >,其余线路的运费不变,试讨论总运费最小的调动方案.【答案】(1)()240x -,()40x -,()300x -;(2)29200w x =+;A →C :200吨,A →D : 0吨,B →C :40吨,B →D :260吨;(3)2m =时,在40240x ≤≤的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案为:A →C :0吨,A →D : 200吨,B →C :240吨,B →D :60吨; 【分析】(1)根据题意,从A 处调运到C 处的数量为(240-x )t ;从A 处调往D 处的数量为[200-(240-x )]t ;则从B 调运到D 处的数量为(300-x )t ;(2)根据调运总费用等于四种调运单价乘以对应的吨数的积的和,易得w 与x 的函数关系,根据调运的数量非负即可不等式组,求得x 的范围,从而可求得总费用的最小的调运方案;(3)由题意可得w 与x 的关系式,根据x 的取值范围不同而有不同的解,分情况讨论:当0<m <2时;当m =2时;当2<m <15时,根据一次函数的性质即可解决. 【详解】 (1)填表如下:故答案为:()240x -,()40x -,()300x -;(2)w 与x 之间的函数关系为:()()()202402540151830029200w x x x x x =-+-++-=+ 由题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩ ①40240x ≤≤①在29200w x =+中,20> ①w 随x 的增大而增大 ①当40x =时,总运费最小此时调运方案为:(3)由题意得()()()()2024025401518300w x x m x x =-+-+-+- 即()29200w m x =-+,其中40240x ≤≤ ①02m <<,(2)中调运方案总费用最小;2m =时,在40240x ≤≤的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案如下:【点睛】本题是一次函数在实际问题中的应用,具有较强的综合性与较大的难度.它考查了一次函数的性质,求一次函数的解析式,解一元一次方程组等知识,用到分类讨论思想.18.如图,在长方形ABCD 中,AB =4,AD =2.P 是BC 的中点,点Q 从点A 出发,以每秒1个单位长度的速度沿A →D →C →B →A 的方向终点A 运动,设点Q 运动的时间为x 秒. (1)点Q 在运动的路线上和点C 之间的距离为1时,x = 秒. (2)若①DPQ 的面积为S ,用含x 的代数式表示S (0≤x <7).(3)若点Q 从A 出发3秒后,点M 以每秒3个单位长度的速度沿A →B →C →D 的方向运动,M 点运动到达D 点后立即沿着原路原速返回到A 点.当M 与Q 在运动的路线上相距不超过2时,请直接写出相应x 的取值范围.【答案】(1)5或7;(2)42(02)11(26)2212(67)x x S x x x x -≤<⎧⎪⎪=-<≤⎨⎪-<<⎪⎩,(3)45x ≤≤或79x ≤≤或1012x ≤≤.【分析】(1)根据题意,点Q 与点C 的距离为1,设Q 运动的路程为a ,则61a -=,根据速度为1,进而求得时间x ;(2)分三种情况讨论,①点Q 在AD 边上运动;①点Q 在CD 边上运动;①点Q 在BC 边上运动;根据情形写出①DPQ 的面积即可;(3)分三种情形讨论,①M 点未到达D 点时,①M 点原路原速返回时,根据情形分相遇和追及问题写出路程差不超过2时,①当M 点回到点A ,当M 与Q 在运动的路线上相距不超过2时,列出不等式组求解即可,注意两点运动的总时间会影响取值范围,即M 点先停止运动. 【详解】 (1)4,2AB AD ==,∴246AD DC +=+=,设Q 运动的路程为a ,依题意则,61a -=, 解得5a =或7a =,速度为每秒1个单位长度,515x ∴=÷=或者717x =÷=,故答案为:5或7;(2)速度为每秒1个单位长度,Q 运动的时间为x 秒. ∴点Q 的路程为1x x ,①点Q 在AD 边上运动;2,4AD CD BC ===,∴2DQ DA AQ x =-=-,11(2)422S DQ DC x ∴=⨯=⨯-⨯42x =-(02x ≤<),①点Q 在CD 边上运动;P 是BC 的中点,112PC BC ∴==,2DQ x AD x =-=-,111(2)11222S DQ CP x x =⨯=-⨯=-(26x <≤), ①点Q 在CP 边上运动,6PQ t AD DC t =--=-,11(6)421222S PQ CD x x ∴=⨯=-⨯=-(67x <<), 综合①①①得:42(02)11(26)2212(67)x x S x x x x -≤<⎧⎪⎪=-<≤⎨⎪-<<⎪⎩,(3)速度为每秒1个单位长度,Q 运动的时间为x秒.∴点Q 的路程为1x x ,设M 的运动时间为t ,根据题意,Q 从A 出发3秒后,M 才出发,则3t x =-,即3x t =+,M 的路程为3t ,Q 点的路程为3t +,42410DC BC AB ++=++=,∴M 点全路程所用时间为2010233⨯÷=秒, 则Q 点的全路程所用时间为12112÷=秒,分三种情形讨论,①M 点未到达D 点时,Q 点出发3秒后,,M Q 共同完成的路程为39AD DC BC AB +++-=根据题意,当M 与Q 在运动的路线上相距不超过2时,则,9(33)2t t -++≤,即9(33)2(33)92t t t t -++≤⎧⎨++-≤⎩, 解得12t ≤≤,45x ∴≤≤,①M 点原路原速返回时,根据题意,当M 与Q 在运动的路线上相距不超过2时,则,(310)2t t --≤,即(310)2(310)2t t t t --≤⎧⎨--≤⎩,解得46t ≤≤,79x ∴≤≤.①当M 点回到点A ,根据题意,当M 与Q 在运动的路线上相距不超过2时,则1012x ≤≤; 综合①①①可得x 的取值范围为45x ≤≤或79x ≤≤或1012x ≤≤.【点睛】本题考查了动点问题,路程问题,一元一次不等式的应用,弄清动点运动的方向和路程是解题的关键. 19.在平面直角坐标系xOy 中,对于M 、N 两点给出如下定义:若点M 到x 、y 轴的距离中的最大值等于点N 到x 、y 轴的距离中的最大值,则称M 、N 两点互为“等距点”,例如:点P (2,2)与Q (-2,-1)到x 轴、y 轴的距离中的最大值都等于2,它们互为“等距点”.已知点A 的坐标为(1,3).(1)在点B (5,3)、C (﹣3,1)、D (﹣2,﹣2)中,点 与点A 互为“等距点”(2)已知直线l :4y kx k =--① 若k =1,点E 在直线l 上,且点E 与点A 互为“等距点”,求点E 的坐标;①若直线l 上存在点F ,使得点F 与点A 互为“等距点”,求k 的取值范围(直接写出结果).【答案】(1)C ;(2)①(2,3)E -或(3,2)-;① 12k ≥或14k ≤-. 【分析】(1)根据新定义“等距点”的定义即可求解; (2)①k=1可得5y x =- 设,5E m m -(), 讨论353m m =-=或 即可,①设(),4F f kf k --,根据点F与点A 互为“等距点”,分两种情况讨论即可:343f kf k ⎧=⎪⎨--≤⎪⎩和343f kf k ⎧≤⎪⎨--=⎪⎩. 【详解】解:(1)①点A (1,3)到x 、y 轴的距离中最大值为3,点C (﹣3,1)到x 、y 轴的距离中最大值为3,①与A 点是“等距点”的点是C .(2)①①直线l :4y kx k =--当k=1时,5y x =- ,①点A (1,3)到x 、y 轴的距离中最大值为3,点E 到点A 互为“等距点”,点E 到坐标轴的最大距离为3,设,5Em m -() , ①EM m =,5EN m =- ①353m m ⎧=⎪⎨-≤⎪⎩或35=3m m ⎧≤⎪⎨-⎪⎩解得:3m =或=2m当3m =时,52m -=-,点E (3,﹣ 2),当=2m 时,53m -=-,点E (2,﹣3),故点E (3,﹣ 2)或E (2,﹣3),① 点F 在直线l :4y kx k =--上,设(),4F f kf k --, ①343f kf k ⎧=⎪⎨--≤⎪⎩①②或343f kf k ⎧≤⎪⎨--=⎪⎩③④ 由①得到:3f =±,当3f =时,243k -≤,解得1722k ≤≤, 当3f =-时,443k --≤,解得7144k -≤≤-, 由①得到:43kf k --=±,当43kf k --=,即7k f k+=时,则73k k +≤, 解得72k ≥或74k ≤-, 当43kf k --=-,即1k f k+=时,则13k k +≤, 解得12k ≥或14k ≤-, 综上所述:12k ≥或14k ≤-. 【点睛】本题考查新定义的应用和点坐标到坐标轴之间的距离,涉及到一元一次不等式,解题的关键是正确理解题意,学会利用分类讨论的思想.20.在平面直角坐标系中,若P 、Q 两点的坐标分别为()11,P x y 和()22,Q x y ,则定12x x -和12y y -中较小的一个(若它们相等,则任取其中一个)为P 、Q 两点的“直角距离小分量”,记为min (,)d P Q .例如:(2,3),(0,2)P Q -,因为12122,0,|20|2x x x x =-=-=--=;12123,2,|32|1y y y y ==-=-=,而|32||20|-<--,所以min (,)|32|1d P Q =-=.(1)请直接写出()3,2A -和()1,1B -的直角距离小分量()min ,d A B =_________;(2)点D 是坐标轴上的一点,它与点()3,1C -的直角距离小分量()min ,2d C D =,求出点D 的坐标; (3)若点(1,22)M m m +-满足以下条件:a )点M 在第一象限;b )点M 与点()5,0N 的直角距离小分量()min ,2d M N <c )45MON ∠>︒,O 为坐标原点.请写出满足条件的整点(横纵坐标都为整数的点)M 的坐标_______.【答案】(1)3;(2)(0,1)D 或(0,3)D -;(3)(5,6)M 或(6,8)【分析】(1)根据新概念求得即可;(2)分两种情况,根据“直角距离小分量”的定义得出即可;(3)根据题意得出10220m m +>⎧⎨->⎩,解出m 的取值范围,再由45MON ∠>︒可推导出2211OM m K m -=>+,解出m 的取值范围,根据横纵坐标都为整数的点取m 的值即可.【详解】解:(1)(3,2)A -,(1,1)B -,|31|4∴+=>|21|3--=,()min ,3d A B ∴=;故答案为3;(2)点D 是坐标轴上的一点,若D 在x 轴上,设(a,0)D ,由于|01|12+=<与题意矛盾,故点D 是在y 轴上的一点,|1|2b ∴+=,解得:1b =或3-,(0,1)D ∴或(0,3)D -;(3)由题意得:10220m m +>⎧⎨->⎩, 解得1m , |15||4|,|220|2|1|m m m m +-=---=-,∴[]222(4)2(1)312m m m ---=-+, 当12m <<时,()min ,2|1|2d M N m =-<,解得:02m <<,当2m ≥时,()min ,|4|2d M N m =-<,解得:26m <<,m ∴的取值范围是:02m <<或26m <<,45MON ∠>︒恰好为OM l 的倾斜角,1OM K ∴>,2211OM m K m -=>+, 解得:1m <-或3m >综上:m 的取值范围是:36m <<,横纵坐标都为整数,4m ∴=和5,(5,6)M ∴或(6,8),故答案为:(5,6)M 或(6,8).【点睛】本题考查了坐标与图形的性质,解一元一次不等式组,解题的关键是根据新概念列出不等式组.。

八下数学压轴题精选

八下数学压轴题精选

八下压轴题精选一.解答题(共20小题)1.如图,在△ABC中,AB=AC=a,BC=b,且2a>b,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.(1)在图(1)中,D是BC边上的中点,计算DE+DF和BG的长(用a,b表示),并判断DE+DF与BG的关系.(2)在图(2)中,D是线段BC上的任意一点,DE+DF与BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明)2.如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB 的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.3.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.4.如图,AB、CD交于点E,AD=AE,CB=CE,F、G、H分别是DE、BE、AC的中点.(1)求证:AF⊥DE;(2)求证:FH=GH.5.阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?6.如图,将△ABC绕顶点A逆时针旋转一角度,使点D落在BC边上,得到△ADE,此时恰好AB∥DE,已知∠E=35°,求∠DAC的度数.7.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.8.将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB 与A′B′相交于点O.(1)求证:△BCE≌△B′CF;(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.9.图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于M.(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.10.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.11.如图(a),两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)将图(a)中的△OAB绕点O顺时针旋转90°角,在图(b)中作出旋转后的△OAB(保留作图痕迹,不写作法,不证明);(2)在图(a)中,你发现线段AC,BD的数量关系是,直线AC,BD相交成度角;(3)将图(a)中的△OAB绕点O顺时针旋转一个锐角,得到图(c),这时(2)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.12.已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.13.如图,在平行四边形ABCD中,过点B作BE∥AC,在BG上取点E,连接DE 交AC的延长线于点F.(1)求证:DF=EF;(2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长.14.如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.15.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.16.如图,已知▱ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作DC的垂线,分别交AE、AB于点M、N.(1)若M为AG中点,且DM=2,求DE的长;(2)求证:AB=CF+DM.17.几何证明(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:FG=(AB+BC+AC).(2)若BD、CE分别是△ABC的内角平分线,其余条件不变(如图1),线段FG 与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.18.如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.19.如图,在四边形ABCD中,AD<BC,对角线AC、BD相交于O点,AC=BD,∠ACB=∠DBC.(1)求证:四边形ABCD为等腰梯形.(2)若E为AB上一点,延长DC至F,使CF=BE,连接EF交BC于G,请判断G 点是否为EF中点,并说明理由.20.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.。

2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)

2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)

2021年人教版数学八年级下册期末《压轴题专项》复习卷1.如图,点A的坐标是(-2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.2.阅读下面材料:我们知道一次函数y=kx+b(k≠0,k、b是常数)的图象是一条直线,到高中学习时,直线通常写成Ax+By+C=0(A≠0,A、B、C是常数)的形式,点P(x0,y0)到直线Ax+By+C=0的距离可用公式d=计算.例如:求点P(3,4)到直线y=﹣2x+5的距离.根据以上材料解答下列问题:(1)求点Q(﹣2,2)到直线3x﹣y+7=0的距离;(2)如图,直线y=﹣x沿y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.3.已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.(1)求证:OE=OF.(2)在点E、F的运动过程中,连结AF.设线段AE、OE、OF、AF所形成的图形面积为S.探究:①S的大小是否会随着运动时间为t的变化而变化?若会变化,试求出S与t的函数关系式;若不会变化,请说明理由.②连结EF,当运动时间为t为何值时,△OEF的面积恰好等于的S.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为;(3)在x轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.5.将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.6.如图,已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M.(1)求a的值及AM的长(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标.(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD 的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.7.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC 上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=0.75x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M 的坐标.8.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x ﹣2与x轴、y轴分别交于点E、F.(1)求:①点D的坐标;②经过点D,且与直线FC平行的直线的函数表达式;(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.9.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.10.如图,直线y=2x+m(m>0)与x轴交于点A(-2,0)直线y=-x+n(n>0)与x轴、y轴分别交于B、C 两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,直接写出点E的坐标.11.如图,直线l:交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是, BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由。

八年级下册数学期末压轴题专辑(含解析,)

八年级下册数学期末压轴题专辑(含解析,)

八年级下册数学期末压轴题专辑(含解析)1.如图,ON 为∠AOB 中的一条射线,点P 在边OA 上,PH ⊥OB 于H ,交ON 于点Q ,PM ∥OB 交ON 于点M, MD ⊥OB 于点D ,QR ∥OB 交MD 于点R ,连结PR 交QM 于点S 。

(1)求证:四边形PQRM 为矩形; (2)若OP=12PR ,试探究∠AOB 与∠BON 的数量关系,并说明理由。

(1)证明:∵PH ⊥OB ,MD ⊥OB ,∴PH ∥MD ,∵PM ∥OB ,QR ∥OB ,∴PM ∥QR ,∴四边形PQRM 是平行四边形, ∵PH ⊥OB ,∴∠PHO=90°,∵PM ∥OB ,∴∠MPQ=∠PHO=90°,∴四边形PQRM 为矩形; (2)∠AOB=3∠BON .理由如下: ∵四边形PQRM 为矩形,∴PS=SR=SQ=12PR ,∴∠SQR=∠SRQ , 又∵OP=12PR ,∴OP=PS ,∴∠POS=∠PSO , ∵QR ∥OB ,∴∠SQR=∠BON ,在△SQR 中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON ,∴∠POS=2∠BON , ∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON ,即∠AOB=3∠BON . 2.如图,矩形OABC 在平面直角坐标系内(O 为坐标原点),点A 在x 轴上,点C 在y 轴上,点B 的坐标分别为( ,点E 是BC 的中点,点H 在OA 上,且AH=12,过点H 且平行于y 轴的HG 与EB 交于点G ,现将矩形折叠,使顶点C 落在HG 上,并与HG 上的点D 重合,折痕为EF ,点F 为折痕与y 轴的交点。

(1)求∠CEF 的度数和点D 的坐标; (2)求折痕EF 所在直线的函数表达式;(3)若点P 在直线EF 上,当△PFD 为等腰三角形时,试问满足条件的点P 有几个?请求出点P 的坐标,并写出解答过程。

(八年级下册数学)(期末压轴题汇编)

(八年级下册数学)(期末压轴题汇编)

20XX年八年级下册数学期末压轴题汇编1.如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(3,4)一次函数23y x b=-+的图象与边OCAB分别交于点D、E,并且满足OD= BE.点M是线段DE上的一个动点.(1)求b的值;(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设点N是x轴上方的平面内的一点,当四边形OM DN是菱形时,求点N的坐标;2.如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q,⑴求证:PA=PQ;⑵用等式表示PB2、PD2、AQ2之间的数量关系,并证明;⑶点P从点B出发,沿BD方向移动,若移动的路径长为2,则AQ的中点M移动的路径为---------------;(直接写出答案)3.已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC= 4(如图1);(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P 、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由,若不变,求出线段FH的长度;4.如图,在四边形ABCD 中,AD ∥BC ,∠B=90°,AD=6,BC=9,动点P 从D 点出发沿DA 以每秒1个单位的速度向A 点运动,动点Q 从B 点出发沿BC 以每秒3个单位的速度向C 点运动.两点同时出发,当Q 点到达C 点时,点P 随之停止运动.设点P 运动的时间为t 秒;(1)求t 的取值范围;(2)求t 为何值时,PQ 与CD 相等?5.已知:四边形ABCD 是正方形,E 是AB 边上一点,连接DE ,过点D 作DF ⊥DE 交BC 的延长线于点F ,连接EF .(1)如图1,求证:DE =DF ;(2)若点D 关于直线EF 的对称点为H ,连接CH ,过点H 作PH ⊥CH 交直线AB 于点P ;①在图2中依题意补全图形; ②求证:E 为AP 的中点;(3)如图3,连接AC 交EF 于点M ,求2AM AB AE+的值;6.如图,在平面直角坐标系xOy 中,直线l 与x 轴交于点A (4-,0),与y 轴的正半轴交于点B .点C 在直线1=-+y x 上,且CA ⊥x 轴于点A ;(1)求点C 的坐标; (2)若点D 是OA 的中点,点E 是y 轴上一个动点,当EC +ED 最小时,求此时点E 的坐标;(3)若点A 恰好在BC 的垂直平分线上,点F 在x 轴上,且△ABF 是以AB 为腰的等腰三角形,请直接写出所有满足条件的点F 的坐标;7.把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;8有一项工作,由甲、乙合作完成,工作一段时间后,甲改进了技术,提高了工作效率.设甲的工作量为y甲(件),乙的工作量为y乙(件),甲、乙合作完成的工作量为y(件),工作时间为x(时),y与x之间的部分函数图象如图①所示,y乙与x之间的部分函数图象如图②所示;(1)分别求出甲2小时、6小时的工作量;(2)当0≤x≤6时,在图②中画出y甲与x的函数图象,并求出y甲与x之间的函数关系式;(3)求工作几小时,甲、乙完成的工作量相等;(4)若6小时后,甲保持第6小时的工作效率,乙改进了技术,提高了工作效率,当x=8时,甲、乙之间的工作量相差30件,求乙提高工作效率后平均每小时做多少件;9.如图,在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于点F,以CF为邻边作平行四边形ECFG;(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数;。

浙教版八年级(下)数学期末特殊平行四边形压轴题专项汇编(3)(含详解)

浙教版八年级(下)数学期末特殊平行四边形压轴题专项汇编(3)(含详解)

浙教版八年级(下)数学期末特殊平行四边形压轴题专项汇编(3)(含详解)1.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.2.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.3.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF 是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=2MN,求AB2、BC2、CD2、AD2之间的关系.4.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.5.已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.(1)若点G在点B的右边.试探索:EH﹣BG的值是否为定值,若是,请求出定值;若不是,请说明理由.(2)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数.6.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.7.已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD 的边AB、BC、DA上.(1)如图1,四边形EFGH 为正方形,AE =2,求GC 的长.(2)如图2,四边形EFGH 为菱形,设BF =x ,△GFC 的面积为S ,且S 与x 满足函数关系S =621x .在自变量x 的取值范围内,是否存在x ,使菱形EFGH 的面积最大?若存在,求x 的值,若不存在,请说明理由.8.如图,正方形ABCD 的对角线相交于点O ,∠CAB 的平分线分别交BD 、BC 于E 、F ,作BH ⊥AF 于点H ,分别交AC 、CD 于点G 、P ,连接GE 、GF . (1)求证:△OAE ≌△OBG .(2)试问:四边形BFGE 是否为菱形?若是,请证明;若不是,请说明理由.9.已知,如图,O 为正方形对角线的交点,BE 平分∠DBC ,交DC 于点E ,延长BC 到点F ,使CF =CE ,连接DF ,交BE 的延长线于点G ,连接OG . (1)求证:△BCE ≌△DCF .(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8﹣42,求正方形ABCD的面积?10.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过A作AN⊥MB交MB的延长线于点N,请求出线段CM与BN的数量关系.参考答案与解析1.(1)证明:取AB的中点H,连接EH;如图1所示∵四边形ABCD是正方形,AE⊥EF;∴∠1+∠AEB =90°,∠2+∠AEB =90° ∴∠1=∠2,∵BH =BE ,∠BHE =45°,且∠FCG =45°, ∴∠AHE =∠ECF =135°,AH =CE , 在△AHE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ECF AHE CEAH 21, ∴△AHE ≌△ECF (ASA ), ∴AE =EF ;(2)解:AE =EF 成立,理由如下:如图2,延长BA 到M ,使AM =CE , ∵∠AEF =90°, ∴∠FEG +∠AEB =90°. ∵∠BAE +∠AEB =90°, ∴∠BAE =∠FEG , ∴∠MAE =∠CEF . ∵AB =BC , ∴AB +AM =BC +CE , 即BM =BE . ∴∠M =45°, ∴∠M =∠FCE . 在△AME 与△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ECF M CEAM CEF MAE , ∴△AME ≌△ECF (ASA ), ∴AE =EF .2.(1)证明:能.理由如下:在△DFC 中,∠DFC =90°,∠C =30°,DC =4t , ∴DF =2t , 又∵AE =2t , ∴AE =DF ,∵AB ⊥BC ,DF ⊥BC , ∴AE ∥DF , 又∵AE =DF ,∴四边形AEFD 为平行四边形, 当AE =AD 时,四边形AEFD 为菱形,即60﹣4t =2t ,解得t =10.∴当t =10秒时,四边形AEFD 为菱形.(2)①当∠DEF =90°时,由(1)知四边形AEFD 为平行四边形, ∴EF ∥AD ,∴∠ADE =∠DEF =90°, ∵∠A =60°, ∴∠AED =30°, ∴AD=21AE =t , 又AD =60﹣4t ,即60﹣4t =t ,解得t =12;②当∠EDF =90°时,四边形EBFD 为矩形,在Rt △AED 中∠A =60°,则∠ADE =30°, ∴AD =2AE ,即60﹣4t =4t ,解得t=215. ③若∠EFD =90°,则E 与B 重合,D 与A 重合,此种情况不存在. 综上所述,当t=215或12秒时,△DEF 为直角三角形.3.(1)证明:∵四边形ABCD 是正方形, ∴AB =BC ∠A =∠ABC =90°, ∴∠EAF +∠EBC =90°, ∵BE ⊥CF ,∴∠EBC +∠BCF =90°, ∴∠EBF =∠BCF , ∴△ABE ≌△BCF , ∴BE =CF ,∴四边形BCEF 是准矩形;(2)解:连接AN 、DN ,过点C 作CE ∥BD ,过点B 作BE ∥DC , 则四边形BECD 为平行四边形,连接DE ,则D 、N 、E 三点共线,过点B 作BF ⊥CE 于F ,过点D 作DG ⊥EC 交EC 延长线于点G ,如图2所示: ∵四边形BECD 为平行四边形, ∴BE =DC ,BE ∥DC ,ED =2DN , ∴∠BEF =∠DCG , 在△BEF 和△DCG 中,⎪⎩=DC BE ∴△BEF ≌△DCG (AAS ), ∴BF =DG ,EF =CG ,在Rt △BFC 中,BC 2=BF 2+FC 2=BF 2+(EC ﹣EF )2,在Rt △DEG 中,DE 2=DG 2+EG 2=DG 2+(EC +CG )2=BF 2+(EC +EF )2, ∴BC 2+DE 2=2BF 2+2EC 2+2EF 2=2(BF 2+EF 2)+2EC 2=2BE 2+2EC 2=2BD 2+2CD 2, ∴BC 2+4DN 2=2BD 2+2CD 2,∴DN 2=41(2BD 2+2CD 2﹣BC 2) 同理:AN 2=41(2AB 2+2AC 2﹣BC 2),MN 2=41(2AN 2+2DN 2﹣AD 2)=41(BD 2+CD 221-BC 2+AB 2+AC 221-BC 2﹣AD 2)=41(AC 2+CD 221-BC 2+AB 2+AC 221-BC 2﹣AD 2)21=AC 2+41(AB 2+CD 2﹣BC 2﹣AD 2),∵AC 2=MN ,∴MN 221=AC 2, ∴MN 2=MN 2+41(AB 2+CD 2﹣BC 2﹣AD 2),即:41(AB 2+CD 2﹣BC 2﹣AD 2)=0,∴AB 2+CD 2=BC 2+AD 2.4.(1)证明:∵四边形ABDI 、四边形BCFE 、四边形ACHG 都是正方形, ∴AC =AG ,AB =BD ,BC =BE ,∠GAC =∠EBC =∠DBA =90°. ∴∠ABC =∠EBD (同为∠EBA 的余角). 在△BDE 和△BAC 中,⎪BE⎩=BC∴△BDE≌△BAC(SAS),(2)①解:∵△BDE≌△BAC,∠ADB=45°,∴∠EDA=α﹣45°,∵∠DAG=360°﹣45°﹣90°﹣α=225°﹣α,②证明:∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)解:结论:当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.理由:由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,=AB.∴AD2又∵四边形ACHG是正方形,∴AC=AG,=AB.∴AC2=AB时,四边形ADEG是正方形.∴当∠BAC=135°且AC25.解:(1)EH﹣BG的值是定值,∵EH⊥AB,∴∠GHE=90°,∴∠GEH+∠EGH=90°,又∠AGD+∠EGH=90°,∴∠GEH=∠AGD,∵四边形ABCD与四边形DGEF都是正方形,∴∠DAG=90°,DG=GE,∴∠DAG=∠GHE,在△DAG和△GHE中,⎪DG⎩=GE∴△DAG≌△GHE(AAS);∴AG=EH,又AG=AB+BG,AB=4,∴EH=AB+BG,∴EH﹣BG=AB=4;(2)(I)当点G在点B的左侧时,如图1,同(1)可证得:△DAG≌△GHE,∴GH=DA=AB,EH=AG,∴BH=AG=EH,又∠GHE=90°,∴△BHE是等腰直角三角形,∴∠EBH=45°;(II)如图2,当点G在点B的右侧时,由△DAG≌△GHE.∴GH=DA=AB,EH=AG,∴AG=BH,又EH=AG,∴EH=HB,又∠GHE=90°,∴△BHE是等腰直角三角形,∴∠EBH=45°;(III)当点G与点B重合时,如图3,同理△DAG≌△GHE,∴GH=DA=AB,EH=AG=AB,∴△GHE(即△BHE)是等腰直角三角形,∴∠EBH=45°综上,在G点的整个运动(点G与点A重合除外)过程中,∠EBH都等于45°.6.解:(1)∵MN∥BC,∴∠3=∠2,又∵CF平分∠GCO,∴∠1=∠2,∴∠1=∠3,∴FO=CO,同理:EO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,∴四边形AECF 是平行四边形,由(1)可知,FO =CO ,∴AO =CO =EO =FO ,∴AO +CO =EO +FO ,即AC =EF ,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.∵由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,∵MN ∥BC ,∴∠AOE =∠ACB∵∠ACB =90°,∴∠AOE =90°,∴AC ⊥EF ,∴四边形AECF 是正方形.7.解:(1)如图1,过点G 作GM ⊥BC ,垂足为M .由矩形ABCD 可知:∠A =∠B =90°,由正方形EFGH 可知:∠HEF =90°,EH =EF ,∴∠1+∠2=90°,又∠1+∠3=90°,∴∠3=∠2,∴△AEH ≌△BFE .∴BF =AE =2,同理可证:△MGF ≌△BFE ,∴GM =BF =2,FM =BE =8﹣2=6,∴CM =BC ﹣BF ﹣FM =12﹣2﹣6=4,在Rt △CMG 中,由勾股定理得:CG=524222=+;(2)如图2,过点G 作GM ⊥BC ,垂足为M ,连接HF ,由矩形ABCD 得:AD ∥BC ,∴∠AHF =∠HFM ,由菱形EFGH 得:EH ∥FG ,EH =FG ,∴∠EHF =∠HFM ,∴∠AHE =∠GFM ,又∠A =∠M =90°,EH =FG ,∴△MGF ≌△AEH ,∴GM =AE ,又 BF =x ,∴S △GFC 21=FC•GM 21=(12﹣x )•GM =621-x , ∴GM =1,∴AE =GM =1,BE =8﹣1=7,∵H 在边AD 上,∴菱形边长EH 的最大值14511222=+=,即EH =EF 145=, 此时BF =x ()6496181452==--=, ∴0≤x ≤64,∵EH =EF ,由勾股定理得:AH 2222248171x x EH +=-+=-=,∴S 菱形EFGH =BM •AB ﹣2⨯⨯217x ﹣2248121x +⨯⨯⨯=8(x +FM )﹣7x ﹣FM =x +7248x +, ∴当x 最大时,菱形EFGH 的面积最大,即当x =64时,菱形EFGH 的面积最大.8.(1)证明:∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°.∵BH ⊥AF ,∴∠AHG =∠AHB =90°,∴∠GAH +∠AGH =90°=∠OBG +∠AGH ,∴∠GAH =∠OBG ,即∠OAE =∠OBG .在△OAE 与△OBG 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BOG AOE OBOA OBG OAE , ∴△OAE ≌△OBG (ASA );(2)解:四边形BFGE 为菱形;理由如下:在△AHG 与△AHB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠AHB AHG AHAH BAH GAH , ∴△AHG ≌△AHB (ASA ),∴GH =BH ,∴AF 是线段BG 的垂直平分线,∴EG =EB ,FG =FB .∵∠BEF =∠BAE +∠ABE =67.5°,∠BFE =90°﹣∠BAF =67.5°, ∴∠BEF =∠BFE ,∴EB =FB ,∴EG =EB =FB =FG ,∴四边形BFGE 是菱形;9.(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =∠DCF =90°,在△BCE 和△DCF 中,⎪⎩⎪⎨⎧=∠=∠=CF CE DCF BCE DC BC ,∴△BCE ≌△DCF (SAS );(2)OG ∥BF 且OG=21BF , 理由:如图,∵BD 是正方形ABCD 的对角线,∴∠CDB =∠CBD =45°,∵BE 平分∠DBC ,∴∠2=∠3=21∠CBD =22.5°, 由(1)知,△BCE ≌△DCF ,∴∠CDF =∠3=22.5°,∴∠BDF =∠CDB +∠CDF =67.5°,∴∠F =180°﹣∠CBD ﹣∠BDF =67.5°=∠BDF ,∴BD =BF ,而BE 是∠CBD 的平分线,∴DG =GF ,∵O 为正方形ABCD 的中心,∴DO =OB ,∴OG 是△DBF 的中位线,∴OG ∥BF 且OG=21BF ; (3)设BC =x ,则DC =x ,BD=2x ,由(2)知△BGD ≌△BGF , ∴BF =BD ,∴CF =(2-1)x ,∵DF 2=DC 2+CF 2,∴x 2+[(2-1)x ]2=8﹣42,解得x 2=2,∴正方形ABCD 的面积是2.10.解:(1)AG =EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB =BE ,∠ABG =90°,AB =BC ,∠ABC =90°,在△ABG 和△BEC 中,⎪⎩⎪⎨⎧=∠=∠=BC BA EBC ABC BE BG ,∴△ABG ≌△BEC (SAS ),∴CE =AG ,∠BCE =∠BAG ,延长CE 交AG 于点M ,∴∠BEC =∠AEM ,∴∠ABC =∠AME =90°,∴AG =EC ,AG ⊥EC ;(2)∠EMB 的度数不发生变化,∠EMB 的度数为45°理由为: 过B 作BP ⊥EC ,BH ⊥AM ,在△ABG 和△CEB 中,⎪⎩⎪⎨⎧=∠=∠=EB BG EBC ABG BC AB ,∴△ABG ≌△CEB (SAS ),∴S △ABG =S △EBC ,AG =EC ,∴21EC •BP=21AG •BH , ∴BP =BH ,∴MB 为∠EMG 的平分线,∵∠AMC =∠ABC =90°,∴∠EMB=21∠EMG=21×90°=45°;(3)CM=2BN ,理由为:在NA 上截取NQ =NB ,连接BQ , ∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN =45°,∠N =90°,∴△AMN 为等腰直角三角形,即AN =MN ,∴MN ﹣BN =AN ﹣NQ ,即AQ =BM ,∵∠MBC +∠ABN =90°,∠BAN +∠ABN =90°,∴∠MBC =∠BAN ,在△ABQ 和△BCM 中,⎪⎩⎪⎨⎧=∠=∠=BCAB MBC BAN BMAQ ,∴△ABQ ≌△BCM (SAS ),∴CM =BQ ,则CM=2BN .故答案为:CM=2BN。

八年级下册数学期末压轴题(含答案)

八年级下册数学期末压轴题(含答案)

八年级数学下册期末压轴题练习(含答案)一、填空题:1.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ 的最小值为 .2.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.3.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AE PQ的周长取最小值时,四边形AEPQ 的面积是.4.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A.点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化; (3)∠PBH=450 ; (4)BP=BH.其中正确的命题是.5.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.二、综合题:6. (1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.7.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.8.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是 cm2.9.一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.10.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.参考答案1.答案为:3.3.答案为:4.5.2.答案为:7;解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF 中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.4.答案为:(1)(2)(3).5.答案为:2;解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,6. (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…∴AB=12.∴S梯形ABCD=0.5(AD+BC)•AB=0.5×(6+12)×12=108.即梯形ABCD的面积为108.…7.解:(1)①∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E 点旋转到DA的延长线上,∴AE=AG,AB=AD,∠EAB=∠GAD,∴△ABE≌△ADG(SAS),∴△ABE的面积=△ADG的面积;②作GH⊥DA交DA的延长线于H,如图2,∴∠AHG=90°,∵E点旋转到CB的延长线上,∴∠ABE=90°,∠HAB=90°,∴∠GAH=∠EAB,在△AHG和△AEB中,∴△AHG≌△AEB,∴GH=BE,∵△ABE的面积=0.5EB•AB,△ADG的面积=0.5GH•AD,∴△ABE的面积=△ADG的面积;(2)结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如图3,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,∴△AHG≌△AEP(AAS),∴GH=BP,∵△ABP的面积=0.5EP•AB,△ADG的面积=0.5GH•AD,∴△ABP的面积=△ADG的面积;(3)∵AB=5cm,BC=3cm,∴AC==4cm,∴△ABC的面积=0.5×3×4=6(cm2);根据(2)中的结论得到阴影部分的面积和的最大值=△ABC的面积的3倍=18cm2.故答案为相等;相等;18.8.解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为0.25a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为0.5a,面积为0.25a2,周长为2a.(3)猜想:重叠部分的面积为0.25a2.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G 设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=0.5a又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=0.5a×0.5a =0.25a2,∴阴影部分的面积是0.25a2.9.(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2。

八年级下压轴 50题(含答案及解析)

八年级下压轴 50题(含答案及解析)
②当AB=AE=2,∠B=60°时,将四边形ABCE向右平移a(a>0)个单位后,恰有两个顶点落在反比例函数y= 的图象上,求k的值.
29.如图1,在平面直角坐标系中,直线y=﹣ x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.
10.(1)如图①,两个正方形的边长均为3,求三角形DBF的面积.
①当t=秒时,以A、P、E、D、为顶点可以构成平行四边形.
②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
23.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣ x+b过点C.
13.如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF= ∠B.
(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;
(2)求证:BF=EF﹣EM.
14.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年八年级下册数学期末压轴题汇编
1.如图,矩形OABC 的顶点A 、C 分别在x 、y 的正半轴上,点B 的坐标为(3,4)一次函数23
y x b =-
+的图象与边OC
AB 分别交于点D 、E ,并且满足OD= BE.点M 是线段DE 上的一个动点.
(1) 求b 的值; (2)连结OM ,若三角形ODM 的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标;
(3)设点N 是x 轴上方的平面内的一点,当四边形OM DN 是菱形时,求点N 的坐标;
2.如图,正方形ABCD 中,P 为BD 上一动点,过点P 作PQ ⊥AP 交CD 边于点Q ,
⑴求证:PA=PQ ;⑵用等式表示PB 2、PD 2、AQ 2之间的数量关系,并证明;
⑶点P 从点B 出发,沿BD 方向移动,若移动的路径长为2,则AQ 的中点M 移动的路径为---------------; (直接写出答案)
3.已知矩形ABCD 的一条边AD=8,E 是BC 边上的一点,将矩形ABCD 沿折痕AE 折叠,使得顶点B 落在CD 边上的点P 处,PC= 4(如图1);
(1)求AB 的长;
(2)擦去折痕AE ,连结PB ,设M 是线段PA 的一个动点(点M 与点P 、A 不重合).N 是AB 沿长线上的一个动点,并且满足PM=BN.过点M 作MH ⊥PB ,垂足为H ,连结MN 交PB 于点F(如图2). ①若M 是PA 的中点,求MH 的长;
②试问当点M 、N 在移动过程中,线段FH 的长度是否发生变化?若变化,说明理由,若不变,求出线段FH 的长度;
4.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=6,BC=9,动点P从D点出发沿DA以每秒1个单位的速度向A点运动,动点Q从B点出发沿BC以每秒3个单位的速度向C点运动.两点同时出发,当Q点到达C点时,点P随之停止运动.设点P运动的时间为t秒;
(1)求t的取值范围;
(2)求t为何值时,PQ与CD相等?
5.已知:四边形ABCD是正方形,E是AB边上一点,连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF.
(1)如图1,求证:DE=DF;
(2)若点D关于直线EF的对称点为H,连接CH,过点H作PH⊥CH交直线AB于点P;
①在图2中依题意补全图形;②求证:E为AP的中点;
的值;
(3)如图3,连接AC交EF于点M,求2AM
AB AE
6.如图,在平面直角坐标系xOy 中,直线l 与x 轴交于点A (4-,0),与y 轴的正半轴交于点B .点
C 在直线1=-+y x
上,且CA ⊥x 轴于点A ;
(1)求点C 的坐标; (2)若点D 是OA 的中点,点E 是y 轴上一个动点,当EC +ED 最小时,求此时点E 的坐标;
(3)若点A 恰好在BC 的垂直平分线上,点F 在x 轴上,且△ABF 是以AB 为腰的等腰三角形,请直接写出所有满足条件的点F 的坐标;
7.把一个含45°角的直角三角板BEF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形
的顶点B 重合,
联结DF ,点M ,N 分别为DF ,EF 的中点,联结MA ,MN . (1)如图1,点E ,F 分别在正方形的边CB ,AB 上,请判断MA ,MN 的数量关系和位置关系,直接写出结论; (2)如图2,点E ,F 分别在正方形的边CB ,AB 的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由;
B F N
M
E C D A
F
C B E M N
A D
图1 图2
8有一项工作,由甲、乙合作完成,工作一段时间后,甲改进了技术,提高了工作效率.设甲的工作量为y甲(件),乙的工作量为y乙(件),甲、乙合作完成的工作量为y(件),工作时间为x(时),y 与x之间的部分函数图象如图①所示,y乙与x之间的部分函数图象如图②所示;
(1)分别求出甲2小时、6小时的工作量;
(2)当0≤x≤6时,在图②中画出y甲与x的函数图象,并求出y甲与x之间的函数关系式;
(3)求工作几小时,甲、乙完成的工作量相等;
(4)若6小时后,甲保持第6小时的工作效率,乙改进了技术,提高了工作效率,当x=8时,甲、乙之间的工作量相差30件,求乙提高工作效率后平均每小时做多少件;
9.如图,在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于点F,以CF为邻边作平行四边形ECFG;(1)如图1,证明平行四边形ECFG为菱形;
(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;
(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数;。

相关文档
最新文档