污水处理技术篇:超滤膜水处理技术
超滤膜分离技术:高效净化水质与液体
超滤膜分离技术:高效净化水质与液体超滤膜是一种应用广泛的膜分离技术,能够有效净化水质和液体。
其原理是通过孔径比传统滤膜更小的膜孔,将溶质、杂质和悬浮颗粒从液体中分离出来,从而实现水质净化和液体精细分离的目的。
超滤膜的孔径一般在0.001~0.1微米之间,远小于常规的微滤膜,因此能够更有效地过滤水中的杂质和微小颗粒。
通过超滤膜处理后的水质,不仅可以去除悬浮物、胶体、菌类和病原微生物等,还能够保留水中的有益矿物质和微量元素,将水处理成透明、清洁、安全的饮用水。
超滤膜可以应用于多个领域,例如工业用水处理、生活饮用水净化、食品加工、药品工艺中溶剂的回收等。
在工业用水处理方面,超滤膜可以高效地去除水中的悬浮颗粒、有机物、重金属离子和微生物等,使废水得到有效处理和回收利用,减少环境污染。
在生活饮用水净化方面,超滤膜能够去除水中的异味、味道、色度和杂质等,提供健康、安全的饮用水。
超滤膜分离技术具有高效、节能、环保的特点。
首先,超滤膜的分离效率非常高,可以去除水中的颗粒物和有机物质,使水质更加纯净;其次,超滤膜的工作原理是物理过滤,不需要化学药剂的添加,节省了化学处理费用;同时,超滤膜分离过程中不会产生废物和副产物,不会对环境造成污染。
超滤膜的使用和维护也相对简单。
首先,需要对超滤膜进行适当的预处理,例如去除大颗粒物、沉淀物和氧化物等,以防止超滤膜堵塞;其次,在使用过程中需要定期清洗和维护超滤膜,以保证其工作效率和寿命。
此外,超滤膜的材质和结构可以根据具体的应用需求进行选择和设计,以达到更好的分离效果。
综上所述,超滤膜分离技术是一种高效净化水质和液体的技术手段。
其能够去除水中的杂质和微小颗粒,提供纯净、清洁、安全的水资源,广泛应用于工业和生活领域。
超滤膜分离技术具有高效、节能、环保的特点,使用和维护相对简单。
未来随着技术的进一步发展,超滤膜分离技术有望在水资源利用和环境保护中发挥更大的作用。
超滤膜分离技术是一种通过膜孔尺寸筛选和阻隔的分离方法。
UF污水处理工艺
UF污水处理工艺一、概述UF(Ultrafiltration)是一种常用的污水处理工艺,通过使用超滤膜来去除污水中的悬浮物、胶体、细菌和病毒等弱小颗粒,从而达到净化水质的目的。
本文将详细介绍UF污水处理工艺的原理、设备、操作流程以及处理效果等方面的内容。
二、原理UF污水处理工艺主要利用超滤膜的微孔作用,将水中的悬浮物、胶体、细菌和病毒等弱小颗粒截留在膜表面,从而实现水的净化。
超滤膜的孔径通常在0.01-0.1微米之间,比普通过滤器的孔径要小得多,能够有效地去除弱小颗粒。
三、设备UF污水处理工艺所需的设备主要包括超滤膜组件、反冲洗系统、泵站、管道系统、控制系统等。
超滤膜组件是核心设备,通常由多个超滤膜单元组成,可根据处理规模的不同进行扩展。
反冲洗系统用于清洗超滤膜,以保证其长期稳定运行。
泵站和管道系统用于输送污水和处理后的水。
控制系统则用于监控和调节整个处理过程。
四、操作流程UF污水处理工艺的操作流程普通包括进水、预处理、超滤、反冲洗和出水等步骤。
1. 进水:将待处理的污水通过泵站输送至处理系统。
2. 预处理:对进水进行预处理,主要包括调节pH值、添加混凝剂、除磷、除氮等工序,以提高后续超滤的效果。
3. 超滤:将经过预处理的污水通过超滤膜组件,超滤膜的微孔截留污水中的弱小颗粒,产生净水。
4. 反冲洗:当超滤膜表面阻塞或者通量降低时,需要进行反冲洗操作,清洗膜面上的污垢,以恢复膜的通量。
5. 出水:经过超滤处理后的水称为产水,产水具有较高的水质,可用于灌溉、工业用水等领域。
五、处理效果UF污水处理工艺具有较好的处理效果,可有效去除污水中的悬浮物、胶体、细菌和病毒等弱小颗粒,使水质得到显著改善。
处理后的水质符合国家相关标准,可满足不同领域的用水需求。
六、应用领域UF污水处理工艺广泛应用于城市污水处理厂、工业废水处理厂、农村污水处理等领域。
在城市污水处理厂中,UF工艺常用于二次处理工序,能够有效去除二次沉淀工艺无法去除的弱小颗粒,提高出水水质。
污水处理中的超滤技术及应用案例
污水处理中的超滤技术及应用案例污水处理是一种重要的环境保护技术,可以有效地减少污染物的排放和对水资源的浪费。
超滤技术作为一种常用的污水处理方法,在过去的几十年中取得了显著的发展。
本文将介绍超滤技术的原理、应用领域以及相关的应用案例。
一、超滤技术的原理1. 滤膜孔隙尺寸:超滤技术通过特定尺寸的滤膜,将污水中的悬浮颗粒、胶体物质和高分子有机物截留在滤膜表面,使洁净水从膜孔中通过,从而实现污水的过滤和分离。
2. 滤膜材料:常见的超滤膜有聚酯、聚丙烯、聚氨酯等材料,具有良好的耐腐蚀性、抗压强度和稳定性,适用于不同水质的处理。
3. 操作压力:超滤技术通常需要一定的操作压力,以推动污水通过滤膜孔隙,增加水的透过速率。
二、超滤技术的应用领域1. 生活污水处理:超滤技术可以有效地去除生活污水中的悬浮物、微生物和有机物,生产出清澈透明的再生水,可以用于灌溉、环境景观和其他非饮用用途。
2. 工业废水处理:超滤技术在工业领域的应用非常广泛,可以去除含有悬浮颗粒、有机物和油污的废水,减少对环境的污染,达到排放标准。
3. 饮用水净化:超滤技术可以去除饮用水中的微生物、颜色、浑浊物和异味物质,提供清洁健康的饮水。
4. 海水淡化:超滤技术在海水淡化中起着重要作用,可以通过滤膜截留海水中的盐分和杂质,生产出高品质的淡水。
三、超滤技术的应用案例1. 北京奥运会水上项目场馆污水处理厂:借助超滤技术,该污水处理厂成功地将奥运会期间的场馆污水进行了处理和再利用,达到了重新使用的水质要求。
2. 上海露天游泳场馆水质净化工程:该项目采用超滤技术对露天游泳场馆的循环水进行处理,有效去除悬浮颗粒和微生物,提供清洁、透明的游泳水。
3. 污水处理车载装置:超滤技术在移动污水处理领域应用得越来越广泛,一些移动污水处理车辆配备了超滤装置,可以在不同地点对污水进行即时处理,方便实用。
总结:超滤技术是一种高效、环保的污水处理方法,具有广泛的应用。
随着技术的不断创新和发展,超滤技术在水处理领域将发挥越来越重要的作用,带来更清洁、可持续的水资源利用。
环境工程水处理中超滤膜技术的应用
环境工程水处理中超滤膜技术的应用摘要:现如今,水资源匮乏现象引起了国家的高度重视。
而超滤膜技术在水资源处理中的有效运用能够大幅度提升水资源的处理质量,在环境友好型社会的建立过程中占有发挥着重要作用。
基于此,本文主要分析了环境工程水处理中超滤膜技术的应用。
关键词:生态环境;水资源处理;超滤膜技术引言超滤膜技术这种深度改善水资源的水处理技术在我国环境保护工程的未来发展建设过程中将具有十分广阔的应用前景,随着现代科学技术的不断发展和创新,超滤膜技术在未来城市饮用水处理中将能够得到更优的改善,为人们的日常生活提供更加优质的水净化服务1超滤膜技术的基本概念1.1超滤技术用于分离液体中的溶质与溶液的过滤技术主要是通过转化压力为推动力,推动液体穿过滤膜,将溶质分隔在膜的一侧、溶液分隔在膜的另一侧,膜技术包括微滤、超滤、纳滤和反渗透,这四种膜分离技术可以将不同体积的溶质分离开来。
四种滤膜有着各自的分离范围,从上到下,滤膜孔径越来越小,其中超滤膜的孔径大致在微滤和纳滤之间,且有一定的范围重叠。
1.2超滤原理超滤又称作超过滤,其工作原理与日常生活中漏勺的使用原理类似。
超滤就是创造出一张只有水分子结构能通过而其他杂质分子无法通过的膜状物,从而通过筛选的作用把有害物质有效过滤出来。
随着科学技术的不断进步,超滤膜的膜面也由原本的单面膜增加到了多面膜,超滤技术的过滤水平也因此得到有效提升[1]。
1.3微透过原理超滤膜的表面附有500万个过滤分子,而这些分子的体积却只有0.002μm3。
在水资源的处理过程中,超滤膜表面的分子会阻止污染物质经过,因而能保证经过超滤膜的物质纯净、无害,而这种工作原理又被称为微透过原理。
并且超滤膜的膜布本身就能对水中的有害物质进行过滤,加之过滤分子,形成了双重的过滤效果,使得水资源的利用性得到有效提升。
1.4超滤膜材料现代技术的发展使得超滤膜的膜材料选择变得非常丰富,一般来说超滤膜制膜材料会选用有机高分子材料,包括纤维素酯类、聚砜类、聚烯烃类、氟材料、聚氯乙烯几大类,这些材料都有着柔韧性和亲水性,使用稳定,成本适中;而近几年来开发的新型制膜材料利用了无机材料,包括陶瓷、玻璃、氧化铝、氧化锆和金属等,这些材料耐高温、不易老化、可再生性强,不过因为还在实验室研究阶段,暂未投入商品化生产。
工艺方法——超滤膜技术
工艺方法——超滤膜技术工艺简介1、超滤膜技术的原理超滤膜技术是指在溶液在自身压力作用下,利用滤膜的筛分穿透特性,使水中的低分子溶质穿透滤膜,高分子溶质被滤膜截留,无法穿透滤膜,从而实现污水处理的一项物理处理技术,超滤膜水处理技术不仅可以像传统水处理技术一样,将水中的悬浮颗粒物、杂质过滤,对于水中的细菌、病毒、微生物等物质也有着很明显的处理效果。
因此超滤膜技术在环境工程水处理中的应用就是当前比较重要的一种污水处理方式,其能够明显提升污水净化效益,在很多水资源的处理净化中都能够具备理想的适用性。
2、超滤膜技术的特征超滤膜技术是目前最新的一种水体处理技术,其技术上的先进性和原理上的优先性使得其不同于普通的水体处理技术,与其他水体处理技术相比也具有各种优势。
首先就是超滤膜技术稳定性良好,耐热性能也不差,在过滤完毕之后,所产生的水体之中杂质所剩也非常少,其次就是通过超滤膜技术能够达到的水质过滤质量高,在过滤的过程之中,不太需要混凝剂的作用,就可以将水体之中的悬浮物有效的去除,从而实现高质量的水体过滤。
最后就是超滤膜技术不仅仅效率高、效果好,其成本也是非常的低廉,这是由于其原理和超滤膜本身组成材质导致的,与此同时的是超滤膜技术目前还属于婴幼儿状态,还具有非常大的成长空间,能够进一步的提升和改造,以后超滤膜技术的优势会越来越大。
3、环保工程水处理过程中超滤膜技术的应用(1)电泳漆废水国外超滤技术的较大规模应用开始于70年代,当时就是主要用于电泳涂漆工业。
废水中的漆料是使用漆料总量的10%-50%,采用超滤技术处理电泳漆废水不仅可以减少漆的损失和回用废水,而且可以使有害无机盐透过超滤膜从而提高了电泳漆的比电阻,调节和控制、漆液的组成,保证电泳涂漆的正常运行。
国内一些汽车厂、电泳漆行业也采用超滤技术。
北京某汽车厂原排放电泳漆废水量为200m3/d,工件带出漆液量19.13L/h,经用超滤法处理后,保证了电泳槽漆液的电阻率大于500Ω/cm,维持了电泳漆的固体含量稳定,对电泳漆的截留率为97%-98%,排水量降到5m3/d,节省了大量补充的去离子水。
水处理超滤膜过滤技术原理详细说明
水处理超滤膜过滤技术原理详细说明超滤是一种与膜孔径大小相关的筛分过程,膜的材质在超滤工作中是至关重要的,不同的材料材质显示的特性也是不同的,像亲水性、成孔性、材料来源广泛、稳定,这些都是衡量材质适不适合自己需求的指标特性。
一、水处理超滤膜过滤原理阐述超滤膜组件采用先进的内压式膜分离技术,在常温和低压下进行分离,它具有能耗低、过滤精度高、产水量大、抗污能力强等优点,可有效滤除水中的细菌、胶体、悬浮物、铁锈、大分子有机物等有害物质。
二、uf超滤膜系统特点采用内装高强度高韧性的改性聚丙烯中空纤维膜的系列超滤元件,不断丝、通量大、抗污染性,运行时无需进行化学分散洗,通过反冲就可以恢复通量。
各组件水力负荷均匀、无死角,在反冲洗和化学清洗时污染物更易排出。
适应各种水质,产水清澈透明,SDI稳定小于等于3,优于反渗透系统的进水要求。
设备紧凑、占地面积小、模块化设计便于扩充、全自动运行,免维护工作。
三、应用领域过滤经生化处理后的城市污水达到杂用水回用标准,工业废水深度处理回用、自来水、地下水、地表水的除菌、除浊、净化、大型反渗透系统的前级预处理、海水淡化前级预处理,工业冷却水的净化回用。
目前,超滤膜元件主要使用的材质有大概有聚砜、聚丙烯腈、聚偏氟乙烯、聚氯乙烯和无机材料。
主要应用于分离、浓缩、纯化生物制品、医药制品以及食品工业中、还用于血液处理、废水处理和超纯水制备中的终端处理装置。
浅谈UF超滤膜技术在酿造行业中的应用优势超滤膜是最早开发的高分子分离膜之一,在60年代超滤装置就实现了工业化。
现如今成熟的超滤膜技术在工业领域应用十分广泛,已成为新型化工单元操作。
成熟的超滤技术在酿造行业中发挥着浓缩、分离、提纯、除菌等重要作用。
超滤与传统制备工艺相比,具有安全无二次污染、操作简单、生产成本较低、还能使成品酒质具有较好的芳香度及清澈度等优势被越来越多的行业所应用。
超滤膜工艺原理一般认为超滤的分离机理为筛孔分离过程, 在静压差为推动力的作用下, 原料液中溶剂及小溶质粒子从高压的料液侧被透过膜到低压侧, 而大分子杂质被膜所阻挡,使过滤后的溶液中浓度增大。
污水处置技术篇超滤膜水处置技术
污水处置技术篇:超滤膜水处置技术北极星节能环保招聘网讯:超滤膜一般是指不对称多孔膜,表面孔径在20~50 nm,可截留分子质量范围较宽,从数千到数十万u。
一般以为,超滤是一种筛孔分离进程,其中溶剂和小分子溶质透过膜被搜集,而大分子溶质被膜截留成为浓缩液。
超滤技术是一种低能耗、无相变的物理分离进程,它具有高效节能、无污染、操作方便和用途普遍等长处。
目前,超滤膜不仅普遍应用于分离、浓缩、纯化生物制品,提纯医药制品和食物工业等领域,而且在饮用水处置、废水处置、超纯水制备和血液处置中也发挥着庞大的作用。
由于膜的截留作用,膜很容易受到污染,使膜的通透性下降,从而致使分离效率降低且影响膜的利用寿命。
因此膜污染是制约超滤膜应用的重要原因之一。
笔者结合国内外有关超滤膜污染的最新研究进展对影响膜污染的因素进行了综述,并对此后超滤膜污染的研究方向进行了探讨。
更多水处置招聘请关注北极星节能环保招聘网1 引发膜污染的物质不同水中含有不同的污染性物质,因此其对膜的污染也有所不同。
研究表明,引发膜污染的物质主要有无机物、有机物、悬浮物和细菌等。
无机物仅在无机离子的作用下,污染物对超滤膜的影响并非十分明显,但由于分离液体的复杂性,当其中存在有机物时,有机物和无机物之间的彼此作用会对膜造成污染。
研究发现,无机离子易被有机物联结,使无机物和有机物的形态发生转变,从而加重膜污染。
Y. J. Chang 等在用中空纤维超滤膜处置天然原水时发现,沉积在膜表面的物质多为铝、硅、钙和铁等物质。
其以为溶解性有机物发挥了“黏合剂”的作用,将无机离子和膜表面连接起来。
S. 等进行了腐殖酸对纳滤膜膜通量影响的研究,发现钙离子存在下,可加速膜通量的下降。
研究者以为,腐殖酸首先吸附或沉积在膜表面,然后钙离子将溶液和膜表面粘连,从而将溶液和膜表面的腐殖酸连接起来,加速了膜通量的下降。
M. Kabsch-Korbutowicz 等在对含腐殖酸和钙盐的溶液进行超滤实验时发现,增加钙离子浓度,会使腐殖酸收缩并与金属离子生成络合体而阻塞膜孔。
污水处理中的超滤技术与设备
更换耗材
定期更换耗材,如滤芯、膜组件等, 确保设备持续高效运行。
记录与报告
建立维护记录和报告制度,对设备维 护情况进行跟踪和管理。
06
实际案例分析
案例一:某城市污水处理厂超滤技术应用
总结词
高效稳定、低能耗、出水质量高
详细描述
某城市污水处理厂采用超滤技术,实现了对污水中悬浮物、有机物、细菌、病 毒等污染物的有效去除。该技术具有高效稳定、低能耗、出水质量高等优点, 为城市污水处理提供了新的解决方案。
低能耗
相较于其他过滤技术,超滤技 术的能耗较低,运行成本较低 。
易于自动化
超滤技术可以实现自动化操作 ,降低人工干预,提高处理效 率。
适用于各种水源
超滤技术适用于各种水源的处 理,包括生活污水、工业废水
等。
技术局限性
膜污染问题
超滤过程中,膜表面容易沉积污染物,导致膜通 量下降,需要定期清洗或更换膜组件。
生活污水处理
生活污水中含有大量的有机物和悬浮 物,超滤技术可以有效去除这些污染 物,提高水质。
处理流程
预处理
去除污水中的大颗粒物和悬浮物,为后续的超滤处理做准备。
超滤膜过滤
利用超滤膜的过滤作用,将污水中的小颗粒物、有机物、微生物等 物质分离出来。
清洗和维护
定期对超滤膜进行清洗和维护,保证其过滤效果和使用寿命。
污水处理中的超滤技术与设备
汇报人:可编辑 2024-01-04
• 超滤技术简介 • 超滤设备介绍 • 超滤技术在污水处理中的应用 • 超滤技术的优缺点分析 • 超滤设备的选型与维护 • 实际案例分析源自1超滤技术简介技术定义
定义
超滤技术是一种膜分离技术,利 用具有孔径大小不同的超滤膜, 在压力作用下实现物质的分离和 纯化。
超滤膜技术原理、特点及应用详解
超滤膜技术原理、特点及应用详解超滤膜是最早开发的高分子膜之一,是一种额定孔径范围为0.001~0.02微米的微孔过滤膜。
在膜的一侧施加适当压力,溶液中的溶剂以及一部分分子量较低的溶质从超滤膜的微小孔隙中穿透到膜的另一边,而分子量较高的溶质或一些乳化胶束团被截留,从而达到过滤分离的效果。
在水处理领域,超滤膜技术相对于其他过滤技术来说,过滤杂质的效率更高,其过滤精度可达99.99%,能有效去除水中的绝大部分有害物质;并且使用很少或不使用化学药剂,有效避免水质受到二次污染,因此处理后的水质更好。
从操作层面来说,基于超滤膜技术的过滤系统自动化程度高,运行简单可靠,只有开、关两种操作。
由于超滤膜的材料化学稳定性强,抗酸碱腐蚀,耐高温,因此可以高温杀菌消毒,适用性很广。
1、超滤膜技术原理及特点(1)技术原理超滤膜技术是一种膜透过分离技术,其滤过能力介于纳滤和微滤之间,其工作原理是:在溶液通过一种半透膜的时候,在压力的作用下,溶剂和溶质中的小分子物质可通过滤膜到达膜的另一侧,而溶质中的大分子物质和胶体则由于无法通过滤膜孔洞而被拦截下来,随着溶液不断流过,膜上被拦截的物质也越来越多,因此要想实现超滤作用就得对溶剂施加更大的压力,与此同时在膜的表面形成的物质也展现出一定的化学特性,对于一些污染物也具有截留和分解的作用,从而实现水的净化。
随着大分子物质不断高集在膜表面滤过的速度不断降低,出现“浓度极化”的现象,为使超滤能够持续有效地进行,实际工作中常使用搅排式超滤装置来消除”浓度极化”的现象。
(2)超滤膜技术的特点相对于其他水处理技术而言,超滤膜技术具有很多无可比拟的优势:第一,超滤膜化学稳定性高,可耐高温、耐酸、耐碱,因此对进水水质要求不高,通用性强;第二,超滤膜技术原理简单,容易实现自动化运转,节约劳动力,且操作简便、易于维护,运行安全稳定;第三,超滤膜技术属于物理方法,在水处理过程中并不需加任何化学药剂,因此可有效的防止水体的出现二次污染的情况;第四,超滤膜技术效率高,处理水量大,尤其是对污染较小的城市饮用水处理,展现出极高的作效率;2、超滤膜技术在环保工程水处理中的应用(1)城市饮用水净化随看社会的发展,人们对饮用水安全要求越来越高,但与此同时我国城市用水源地的污染也日益严重,直接取水的水质越来越无法满足饮用水的标准,因此必需要对城市饮用水进行净化。
环保工程水处理过程中超滤膜技术的运用
环保工程水处理过程中超滤膜技术的运用
随着人们对环保要求的提高和水资源的日益紧张,环保工程水处理越来越受到关注。
超滤膜技术作为环保工程水处理中的一种新兴技术,具有过滤效果好、工艺简单、可重复利用等优点,因此被广泛应用于制备高纯水、废水回收以及海水淡化等领域。
超滤膜(Ultrafiltration Membrane,UF膜)是一种孔径大小在0.001-0.1微米之间的微孔膜材料,它的过程利用了高压差使水分子透过UF膜,而大分子有机物、微生物、胶体等难以通过,从而达到了分离杂质的目的。
在制备高纯水中,超滤膜技术可以有效的去除水中的有机物、胶体、细菌等杂质,提高水的纯度,进一步提高水质标准,主要用于微电子行业、制药工业、食品饮料行业等领域。
制备高纯水的超滤膜水处理工艺会有中空纤维膜超滤、平板膜超滤等几种方式,其中中空纤维膜超滤工艺简单,效果好,因此被广泛应用。
在废水回收处理中,超滤膜技术可以将废水中的有机物、胶体、悬浮物、重金属等杂质去除,达到回收废水的目的,提高了水资源利用率,减少了环境污染。
此外,超滤膜技术还可以与其他膜技术结合使用,如微滤膜、反渗透膜等,形成膜组合处理工艺,可以更好的提高回收率和水质。
在海水淡化中,超滤膜技术也是一种重要的处理方式。
海水淡化中,超滤膜通常被用作预处理工艺,能够有效地去除海水中的有机物、胶体等颗粒状污染物,降低了水中颗粒物的含量,提高了海水淡化膜的使用寿命。
污水处理中的超滤技术应用
污水处理中的超滤技术应用超滤技术是一种在污水处理中广泛应用的方法,它能够有效地去除污水中的悬浮固体、胶体物质、病原微生物和一些重金属离子等污染物,提高水质的净化效果。
本文将探讨超滤技术在污水处理中的应用,并介绍其原理、特点以及未来的发展趋势。
一、超滤技术的原理超滤技术是利用特定孔径的滤膜来分离和去除污水中的不同颗粒物质。
滤膜孔径通常在0.001至0.1微米之间,这使得超滤膜能够有效阻隔污水中的微粒、胶体和大分子有机物,同时保留水分子和小分子有机物。
通过超滤技术处理后的水质清澈透明,悬浮固体和胶体物质几乎被完全去除。
二、超滤技术的应用领域1. 市政污水处理:超滤技术在城市污水处理厂中得到广泛应用。
它可以取代传统的混凝-沉淀-过滤工艺,实现对污水的高效净化和回用,降低处理成本。
2. 工业废水处理:许多工业过程中产生的废水含有高浓度的悬浮固体、颗粒物和有机物。
超滤技术能够有效地从工业废水中去除这些污染物,减少对环境的影响。
3. 饮用水净化:超滤技术可以用于处理地下水、湖泊水和河水等水源,去除其中的有机物、微生物和微小颗粒,使其符合饮用水卫生标准。
4. 海水淡化:超滤技术能够过滤海水中的盐分和悬浮固体,实现海水淡化,提供淡水资源。
三、超滤技术的特点1. 高效:超滤技术能够高效地去除污水中的污染物,处理后的水质稳定可靠,不受季节、天气等因素的影响。
2. 无化学药剂:超滤过程不需要添加化学药剂,避免了对水源的二次污染,降低了运行成本。
3. 操作简便:超滤设备结构简单紧凑,操作方便,无需复杂的控制和管理。
4. 可持续发展:通过超滤技术处理后的污水可以实现资源的回收和再利用,提高水资源的可持续利用率。
四、超滤技术的未来发展趋势随着科技的不断进步和工程实践的深入,超滤技术在污水处理领域有着广阔的应用前景。
未来的发展趋势主要有以下几个方面:1. 改进滤材和滤膜:研究和开发更高效、更稳定的滤材和滤膜,提高超滤设备的处理能力和寿命。
超滤膜技术在水处理的应用阐述
超滤膜技术在水处理的应用阐述一、超滤技术处理废水的基本原理超滤(UltraFiltration ,简称UF)是溶液在压力作用下,溶剂与部分低分子量溶质穿过膜上微孔到达膜的另一侧,而高分子溶质或其它乳化胶束团被截留,实现从溶液中分离的目的。
它的分离机理主要是靠物理的筛分作用。
超滤分离时是在对料液施加一定压力后,高分子物质、胶体物质因膜表面及微孔的一次吸附,在孔内被阻塞而截留及膜表面的机械筛分作用等三种方式被超滤膜阻止,而水和低分子物质通过膜。
超滤膜比微滤膜孔径小,在0.7~7 kg/cm2 的压力下,可用于分离直径小于10μm 的分子和微粒[1]。
它主要应用于生活污水、含油废水、纸浆废水、染料废水等废水处理。
超滤材料大多数是有机高分子膜,目前无机膜材料也开始制备和应用。
二、超滤膜技术在水处理中的应用1.含油废水的处理含油废水存在的状态分三种:浮油、分散油、乳化油。
前两种较容易处理,可采用机械分离、凝聚沉淀、活性炭吸附等技术处理,使油分降到很低。
但乳化油含有表面活性劑和起同样作用的有机物,油分以微米级大小的离子存在于水中,重力分离和粗粒化法都比较困难,而采用超滤膜技术,它使水和低分子有机物透过膜,在除油的同时去除COD及BOD,从而实现油水分离。
如,油田含油废水中通常油量为100~1000mg/L,超过国家排放标准(<10mg/L),故排放前采用先进的高效衡压浅层气浮技术和中空纤维膜分离技术进行了分离,在操作压力为0.1MPa、污水温度40℃时,膜的透水速度可达60~120L/(m2·h),出水中含油量为痕迹,悬浮物固体含量平均值为0. 32mg/ L,悬浮物粒径中值平均值为0. 82μm,完全达到了特低渗透油田回注水的水质标准。
2.造纸废水的处理超滤膜技术应用于造纸废水中,主要是对某些成分进行浓缩并回收,而透过的水又重新返回工艺中使用。
一般,造纸废水膜分离技术研究主要包括:回收副产品,发展木素综合利用;制浆废液的预浓缩;去除漂白废水中的有毒物质等。
超滤膜技术在环境工程水处理中的应用
超滤膜技术在环境工程水处理中的应用郭晓煜摘㊀要:随着科技的不断发展,水处理技术也得到了进步㊂在环境工程水处理过程中,利用超滤膜技术,能够有效地提高对污水处理的效率,促进了对水资源的循环利用㊂首先,对传统的水处理技术和超滤膜技术进行说明,并对超滤膜技术在环境工程水处理中存在的问题进行论述,其次,对超滤膜技术在环境工程水处理的运用和优化进行探讨,以供读者参考㊂关键词:超滤膜技术;环境工程;水处理技术;技术配置一㊁引言传统的水处理技术存在二次污染的缺陷,如今已经不能满足对水处理的需求㊂随着超滤膜技术的广泛运用,水处理效果得到了明显的改善㊂因此,对超滤膜技术进行合理运用,可以有效地处理水污染问题㊂二㊁传统的水处理技术和超滤膜技术(一)传统的水处理技术传统的水处理技术是对水资源进行简单净化,除去水资源中的悬浮颗粒㊂同时,由于传统的水处理技术需要使用消毒剂,会造成水资源的二次污染,降低了水处理的效果㊂(二)超滤膜技术超滤膜技术通过运用微孔原理将水资源中的杂质和颗粒进行过速分离,达到了对水资源净化的目的,保证了水资源的清洁和安全㊂同时,该水处理过程利用膜两侧的压力差来分离水和污染物,能够有效地减少水资源中的杂质,并且整个水处理过程无污染㊂因此,超滤膜技术在海水淡化㊁电镀工业废水和油质废水净化领域得到了广泛运用㊂三㊁超滤膜技术在环境工程水处理中存在的问题(一)污染处理问题运用超滤膜技术对水资源进行净化,污水中的细菌会吸附在膜的表面,减低了对水资源净化的效果㊂此外,在对膜进行清洁时,使用的化学试剂也会对水资源造成污染,甚至出现水污染加剧的现象㊂(二)能耗节约问题超滤膜技术通过膜两侧的压力差来实现对水资源的净化,因此在使用过程中需要企业提供足够的能源,会造成能源消耗的问题㊂企业应当结合水资源净化的实际需求,选择合适的超滤膜组合㊂(三)技术配置存在的不足之处运用超滤膜技术对水资源进行净化,需要合理地使用各项技术,才能够提高水处理的经济效益㊂企业结合水资源的特点,运用超滤膜技术时需要合理的选用其他技术,提高水资源处理的效果㊂但在超滤膜技术的实际运用过程中,存在超滤膜技术组合不合理,增加了水处理的成本㊂四㊁超滤膜技术在环境程水处理的运用(一)日常水资源处理随着工业的不断发展,水污染的问题日益加剧㊂水污染不仅会给环境造成污染,同时也会造成水资源匮乏㊂因此,水资源的净化和人们的发展有着紧密的联系㊂通过合理运用超滤膜技术对水资源进行净化,能够给人们的生活提供更多客源使用的水资源㊂(二)电镀工业废水处理工厂的种类和数量不断增多,造成的工业废水也越来越多㊂其中,电镀工业废水不仅含有重金属离子,同时含有各类对环境造成污染的酸碱类物质㊂利用传统的水处理技术处理电镀工业废水,企业对废水处理的成本投入大,且容易造成二次污染㊂通过运用超滤膜技术,不仅可以有效减低处理电镀工业废水的成本,同时能够提高电镀工业废水处理的效果㊂(三)油质废水净化处理运用超滤膜技术净化油质废水,需要结合油质废水的实际成分,选择合理的油质废水净化技术㊂例如,油质废水中存在浮油,首先应当对油质废水进行过滤,除去油质废水中的浮油,之后在运用超滤膜技术处理油质废水中的其他杂质,提高油质废水净化处理的效果㊂五㊁超滤膜技术在环境工程水处理过程中的优化(一)提升超滤膜技术组合使用的合理性提高超滤膜技术对水资源的处理效果,可以设计组合的形式更好的发挥超滤膜技术的作用,例如,对于水资源中的大颗粒杂质,可以使用活性炭进行吸附处理,提高超滤膜技术组合的整体效果㊂(二)避免存在超滤膜污染的情况为了减低水资源中的有害物质对膜造成污染,在运用超滤膜技术时,应当对水资源中的成分进行分析,结合水资源中的有害物质制订相应的防治方案,确保对膜的污染降到最低㊂(三)增强对于超滤膜新型技术的开发研究运用超滤膜技术净化水资源,水资源中的有害物质会对膜造成污染,因此对膜的清洗工作也成为超滤膜技术运用的重要内容㊂为了提高超滤膜技术运用的效率,可以对超滤膜技术使用的膜进行开发研究,同时改善化学清洗流程,提高对水资源净化的效果㊂(四)积极地引进优秀的专业技术人才水处理企业应当积极地引进优秀的专业技术人才,提高超滤膜技术的运用效果㊂由于超滤膜技术的运用目前处于发展阶段,水处理企业对超滤膜技术研究缺乏人才㊂因此,水处理企业应当引进国外先进的技术,培养更多的超滤膜研究的人才,改善超滤膜技术运用的水平㊂六㊁结语综上所述,超滤膜技术可以为我们提供更多可以使用的水资源㊂针对超滤膜技术运用过程中存在的问题,水处理企业可以提升超滤膜技术组合使用的合理性,减少有害物资对膜的污染,增强对于超滤膜新型技术的开发研究,加大对相关技术人才的培养,确保水处理处于良好的发展状态㊂参考文献:[1]王端鑫.超滤膜技术在环境工程水处理中的应用探讨[J].环境与发展,2019,31(12):81-82.[2]刘志强.超滤膜技术在环境水处理中的应用[J].化工管理,2019(36):117-118.[3]凌梅.超滤膜技术在环境工程水处理中的应用[J].河南建材,2019(6):212,214.作者简介:郭晓煜,南京环美科技股份有限公司㊂251。
污水处理中的超滤技术应用
需要定期维护和清洗
超滤膜组件需要定期进行清洗和维护 ,以确保系统的正常运行和延长使用 寿命。
05
超滤技术的发展趋势与未 来展望
ห้องสมุดไป่ตู้术发展趋势
高效能化
智能化
超滤技术正朝着提高处理效率的方向 发展,通过改进膜材料和膜组件,提 高膜通量和抗污染性能,以满足大规 模污水处理的需求。
借助传感器、自动化控制等智能技术 ,实现超滤系统的智能化运行,提高 运行稳定性和降低人工干预。
超滤技术不使用化学药剂,减少了对环境 的二次污染,符合绿色环保理念。
局限性
膜污染问题
超滤技术在应用过程中,膜组件容易 受到悬浮物、有机物等杂质的影响, 产生膜污染,影响过滤性能。
高昂的设备成本
超滤膜组件作为核心部件,其制造成 本较高,导致整个超滤系统的初期投 资较大。
对水质变化的适应性有限
超滤技术对于水质变化适应性相对较 弱,当进水水质波动较大时,可能会 导致过滤性能下降。
提高出水水质,满足日益严格的环保要求。
02
提高污水处理效率
超滤技术具有较高的过滤精度和过滤速率,能够大幅提高污水处理效率
,降低能耗和运营成本。
03
促进污水处理资源化
超滤技术可以将处理后的污水进行回用,如用于农业灌溉、工业冷却、
城市绿化等领域,实现水资源的循环利用,缓解水资源短缺的问题。
02
超滤技术基本原理
城市污水处理
城市污水深度处理
超滤技术可用于城市污水深度处理,通过超滤膜的过滤作用 ,去除污水中的悬浮物、有机物、氨氮、磷等有害物质,提 高水质指标,使处理后的水达到排放标准或回用标准。
景观水治理
超滤技术还可用于景观水治理,通过超滤膜的过滤作用,去 除景观水中的杂质和有害物质,改善水质,使景观水体保持 清澈透明。
污水处理中的超滤与微滤膜技术介绍
02
超滤与微滤膜技术基础知识
超滤膜技术定义
定义
超滤膜技术是一种利用半透膜,在压 力作用下实现物质分离的膜过滤技术 。
工作原理
超滤膜的孔径范围在1-100纳米之间 ,能够截留溶液中的悬浮颗粒、胶体 、细菌、病毒等物质,使小于孔径的 溶剂和小分子物质透过,从而达到分 离和净化目的。
微滤膜技术定义
定义
未来研究方向
膜污染机理和控制
深入研究膜污染的形成 机理和影响因素,探索 有效的膜污染控制方法 和技术,提高膜过滤的
稳定性和持久性。
节能降耗优化
针对超滤与微滤膜技术 的能耗问题,开展节能 降耗优化研究,降低污 水处理过程中的能源消
耗,提高能效比。
智能化决策支持
结合人工智能和大数据 技术,开发智能化的决 策支持系统,为超滤与 微滤膜技术的优化运行 提供科学依据和指导。
应用范围比较
工业废水处理
超滤膜在处理工业废水方面应用广泛,如电镀、造纸、印 染等行业的废水处理,而微滤膜在工业废水处理中的应用 相对较少。
饮用水处理
超滤膜在饮用水处理中主要用于去除细菌、病毒等微生物 ,提高水质,而微滤膜则主要用于过滤较大颗粒的悬浮物 和杂质。
海水淡化
超滤膜在海水淡化中应用广泛,可用于预处理和反渗透系 统的前处理,而微滤膜在海水淡化中的应用相对较少。
05
超滤与微滤膜技术在污水处 理中的比较
处理效果比较
过滤精度
微生物去除
超滤膜的过滤精度更高,能够去除更 小的颗粒和微生物,而微滤膜主要用 于去除较大颗粒的悬浮物和杂质。
超滤膜能够去除细菌、病毒等微生物 ,而微滤膜则主要用于过滤较大的微 生物和悬浮物。
去除有机物和无机物
环保工程水处理过程中的超滤膜技术应用
环保工程水处理过程中的超滤膜技术应用一、超滤膜技术的基本原理超滤膜技术是一种利用膜分离原理进行水处理的技术。
其基本原理是利用膜孔的大小,将水中的悬浮固体、胶体颗粒和高分子物质等截留在膜表面,而将水分子和溶解在水中的小分子物质通过膜孔,实现固液分离的目的。
超滤膜通常采用微孔膜,其孔径一般在0.01~0.1微米之间,可以有效地去除水中的微生物、病毒和有机物质,达到净化水质的效果。
二、超滤膜技术的应用领域1. 饮用水处理超滤膜技术可以用于饮用水处理厂的预处理,去除水中的浊度、胶体颗粒、微生物和有机物质,提高水质的卫生安全性。
超滤膜技术还可以用于去除水中的异味和色度,改善水的口感和透明度。
2. 工业废水处理在工业生产中,会产生大量的废水,其中含有大量的重金属离子、有机物质和高浓度的污染物。
超滤膜技术可以高效地将废水中的有害物质和污染物截留,使废水经过处理后达到排放标准,减少对环境的污染。
3. 农村生活污水处理在农村地区,建立生活污水处理系统已成为一项紧迫的任务。
超滤膜技术适用于农村地区的小型污水处理厂,可以将居民生活污水中的有机物质、微生物和氮磷等营养物质有效去除,实现生活污水的资源化利用。
4. 海水淡化随着淡水资源的日益减少,海水淡化技术成为解决淡水短缺问题的重要手段。
超滤膜技术可用于海水淡化厂的预处理和产水后的二次处理,帮助提高淡水产量和质量。
5. 污水再生利用超滤膜技术可以将污水中的有机物质、微生物和胶体颗粒去除,使污水处理后的水质达到国家标准,可以再生利用于农田灌溉、工业生产和生活用水等领域。
三、超滤膜技术的发展趋势1. 技术不断创新随着纳米技术、生物技术和材料科学的不断发展,超滤膜技术的膜材料和制备工艺不断更新换代。
新型膜材料的应用,使超滤膜技术在水处理中的应用效果更加显著,降低了能耗和成本。
2. 多膜组合技术近年来,多膜组合技术成为超滤膜技术发展的趋势之一。
通过在超滤膜系统中采用不同孔径和材质的膜组合,可以提高系统的密闭性和截留率,有效降低系统的运行成本。
环保工程水处理过程中的超滤膜技术应用
环保工程水处理过程中的超滤膜技术应用超滤膜技术是在水处理工程中广泛应用的一种分离技术,其具有过滤效率高、操作简便等优点。
超滤膜技术主要是利用高分子材料制成的膜,通过膜孔径大小的筛选作用,将水中的溶质、有机物、胶体颗粒等分离出来,从而达到获得清洁水的目的。
本文主要探讨超滤膜技术在环保工程水处理过程中的应用。
1. 污水处理超滤膜技术常用于城市污水、工业废水处理过程中。
在水处理过程中,将污水先经过生物处理、沉淀等工艺处理,再通过超滤膜进行深度过滤。
通过超滤膜可以有效地将污水中的细菌、胶体颗粒等高分子物质去除,达到净化水质的目的。
在自来水净化处理过程中,超滤膜技术可用于深度过滤。
这种过滤方式可以有效地去除自来水中的悬浮颗粒、胶体物质、有机物质,从而获得高品质的饮用水。
一般情况下,超滤膜技术都是在混合沉淀、活性炭吸附、微滤等工艺处理后进行的,以提高超滤膜的使用寿命和过滤效率。
3. 工业生产中的应用在工业生产中,超滤膜技术也具有广泛的应用。
比如在食品加工、制药等行业中,超滤膜技术可以用于物质分离、分级等工艺过程,以达到制品调理、提纯等目的。
在电子、半导体等行业中,超滤膜技术可以用于水质净化和废水处理中。
此外,还可应用于纺织、造纸、印染、皮革等工业中。
超滤膜技术的特点1. 过滤效率高。
超滤膜的孔径一般在0.1~0.01微米,具有优异的筛选性能,能有效地过滤一些细小颗粒物质和溶剂,从而使水质得到有效的提升。
2. 操作简便。
与传统物理化学处理技术相比,超滤膜技术操作比较简便,只需要一些基本的仪器设备和操作技能,就能够进行生产。
3. 维护成本低。
超滤膜采用的是化学惰性材料,具有高耐腐蚀性和耐磨性,使用寿命较长。
而且,超滤膜的使用成本也相对较低,大大降低了水处理成本。
总之,随着社会的不断发展和水资源的日益紧缺,超滤膜技术在水处理工程中的应用范围也日益扩大,将为环保事业发展作出积极贡献。
超滤膜技术在水处理中的应用
超滤膜技术在水处理中的应用
超滤膜技术在水处理中的应用非常广泛。
以下是一些主要的应用领域:
1. 饮用水处理:超滤膜能够有效地去除水中的悬浮固体、细菌、病毒和微生物等,从而提供清洁安全的饮用水。
2. 工业水处理:超滤膜可应用于工业生产过程中的水质处理,如制药、电子、化工、食品和饮料等行业,用于去除悬浮颗粒、细菌和有机物等,以保证生产过程中用水的质量。
3. 污水处理:超滤膜是污水处理的关键技术之一,可将污水中的悬浮颗粒、有机物和微生物等去除,使其达到国家排放标准要求。
4. 海水淡化:超滤膜技术可以应用于海水淡化过程中,将海水通过超滤膜分离,去除其中的盐分和杂质,从而得到淡水。
5. 污泥脱水:在污水处理过程中,超滤膜可用于污泥脱水,通过过滤作用将污泥中的水分和固体分离,降低污泥的湿度,从而方便后续处理和处置。
总的来说,超滤膜技术在水处理中的应用可以提供高效、可靠的水质处理方法,帮助解决水污染和水资源短缺等问题。
超滤膜技术在环境工程水处理中的应用
超滤膜技术在环境工程水处理中的应用
超滤膜技术是一种高效的水处理技术,已经在环境工程中被广泛应用。
超滤膜技术主要是利用超滤膜的特殊过滤机制,将水中的颗粒物、有机物和微生物等物质与水分离,从而达到有效的水处理效果。
超滤膜技术的工作原理是通过超滤膜对待处理水进行过滤分离。
超滤膜是一种特殊的过滤器材,其孔径通常在0.01-0.1微米之间,能够将水中的大分子有机物、胶体、微生物和其他悬浮物分离出来,同时保留水中的矿物质、微营养物质等必要成分。
超滤膜通常分为有机膜和无机膜两种类型。
超滤膜技术在环境工程水处理中的应用非常广泛。
首先,超滤膜技术可以用于处理各种类型的水,包括自来水、河水、湖水、地下水和废水等。
其次,超滤膜技术可以有效地去除水中的悬浮物、胶体、病毒、细菌和有机物等杂质,提高水的质量。
此外,超滤膜技术还可以用于去除水中的重金属、色素、有机物和化学药品等。
超滤膜技术也可以应用于污水处理过程中。
传统的污水处理方法往往需要多个步骤,包括初级处理、二级处理和三级处理等。
而采用超滤膜技术,则可以将这些步骤简化成一个步骤,从而提高污水处理的效率。
超滤膜技术可以去除污水中的大部分悬浮物、有机物和微生物,从而将污水处理到符合国家及地方水质标准的要求。
总之,超滤膜技术是一种高效、环保、可行的水处理技术。
随着人们对环境质量和健康水平的日益重视,超滤膜技术将会在环境工程中得到更广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水处理技术篇:超滤膜水处理技术北极星节能环保招聘网讯:超滤膜通常是指不对称多孔膜,表面孔径在20~50 nm,可截留分子质量范围较宽,从数千到数十万u。
一般认为,超滤是一种筛孔分离过程,其中溶剂和小分子溶质透过膜被收集,而大分子溶质被膜截留成为浓缩液。
超滤技术是一种低能耗、无相变的物理分离过程,它具有高效节能、无污染、操作方便和用途广泛等优点。
目前,超滤膜不仅广泛应用于分离、浓缩、纯化生物制品,提纯医药制品和食品工业等领域,而且在饮用水处理、废水处理、超纯水制备以及血液处理中也发挥着巨大的作用。
由于膜的截留作用,膜很容易受到污染,使膜的通透性下降,从而导致分离效率降低且影响膜的使用寿命。
因此膜污染是制约超滤膜应用的重要原因之一。
笔者结合国内外有关超滤膜污染的最新研究进展对影响膜污染的因素进行了综述,并对今后超滤膜污染的研究方向进行了探讨。
更多水处理招聘请关注北极星节能环保招聘网1 引起膜污染的物质不同水中含有不同的污染性物质,因此其对膜的污染也有所差别。
研究表明,引起膜污染的物质主要有无机物、有机物、悬浮物和细菌等。
1.1 无机物仅在无机离子的作用下,污染物对超滤膜的影响并不十分明显,但由于分离液体的复杂性,当其中存在有机物时,有机物和无机物之间的相互作用会对膜造成污染。
研究发现,无机离子易被有机物联结,使无机物以及有机物的形态发生变化,从而加剧膜污染。
Y. J. Chang 等在用中空纤维超滤膜处理天然原水时发现,沉积在膜表面的物质多为铝、硅、钙和铁等物质。
其认为溶解性有机物发挥了“黏合剂”的作用,将无机离子和膜表面连接起来。
S. H.Yoon 等进行了腐殖酸对纳滤膜膜通量影响的研究,发现钙离子存在下,可加快膜通量的下降。
研究者认为,腐殖酸首先吸附或沉积在膜表面,然后钙离子将溶液和膜表面粘连,从而将溶液和膜表面的腐殖酸连接起来,加快了膜通量的下降。
M. Kabsch-Korbutowicz 等在对含腐殖酸以及钙盐的溶液进行超滤实验时发现,增加钙离子浓度,会使腐殖酸收缩并与金属离子生成络合体而阻塞膜孔。
1.2 悬浮物悬浮物主要包括泥沙、黏土、大分子有机物、微生物、化学沉淀物、细菌等,悬浮物的粒径大约为0.001~100 μm。
超滤时,大的悬浮物会沉积在膜表面,较小的悬浮物颗粒则滞留在膜孔中,更小的悬浮物颗粒在通过膜后会对后续的反渗透进一步造成影响。
当有机物与悬浮物质混合时,其膜通量比只存在有机物时高,且随着悬浮物的增加,膜通量下降的速度减缓,原因可能是悬浮物吸附了有机质,减小了有机物与膜直接接触的机会,从而降低了膜污染。
1.3 有机物有机物是造成膜污染的主要原因,有机物的溶解性、亲疏水性、分子质量等对膜的污染都有影响。
有关有机物的溶解性对膜污染的影响,国内外已有广泛的研究。
F. Rogella的研究表明,溶解性有机物是造成超滤膜污染的关键因素,特别是腐殖酸类有机物通过膜孔内部吸附以及膜表面拦截形成紧密的吸附层而使膜受到污染。
C. F. Lin 等通过研究也发现,腐殖酸类有机物是超滤膜的主要污染物,并且其羧基含量与膜污染成正比。
H. A. Mousa通过实验研究发现,实验初期腐殖酸首先在内孔中吸附,而引起孔道阻塞,然后在膜表面吸附形成滤饼层。
董秉直等在对黄浦江原水膜分离性能研究中发现,当浊度固定时,增加溶解性有机碳,会使膜过滤阻力迅速增加。
针对有机物分子质量对膜污染的影响,国内外研究者投入了大量的精力。
A. W. Zularisam 等的研究表明,有机物分子质量对膜污染有很大影响。
G. Crozes 等〔15〕的研究表明,小分子有机物尤其是粒径远小于膜孔径的有机物,是造成膜污染的主要因素。
金鹏康等的研究表明,有机物分子质量越小,膜表面污染越严重。
国内外关于有机物亲疏水性对膜污染的影响研究数不胜数。
A. W. Zularisam 等的研究表明,有机物的亲疏水性与膜污染之间有很大关系。
L. Fan等将有机物分离成强疏水性、弱疏水性、极性亲水性和中性亲水性有机物,并考察了其对膜污染的影响。
实验表明,中亲水性有机物是造成膜污染的主要因素。
Jixiang Yang 等的研究表明,引起膜污染的有机物主要是亲水性有机物。
但J. A. Nilson 等的研究却得到相反的结果,研究中发现,疏水性有机物是引起膜污染的主要因素,而亲水性有机物对膜通量的影响不大。
Y. Chen 等研究认为,引起膜通量快速下降的主要因素是大分子质量疏水性有机物。
综上所述,引起膜污染的主要原因是有机物,但是水中存在的钙离子等无机离子能加速有机物对膜的污染,而悬浮物的存在能减缓有机物对膜的污染。
因此要根据水中离子含量,综合考虑各种成分的相互作用,确定引起膜污染的主要因素,提出具有针对性的方案恢复膜通量。
2 膜类型对膜污染的影响膜技术应用的关键是筛选合适的膜材料,不同材料、结构和孔径的膜具有不同的处理效果、产水通量、产水水质和使用寿命。
膜材料的表面能、极性、荷电性、化学结构、亲疏水性等影响着膜污染。
目前的膜材料主要是聚偏氟乙烯、聚乙烯、聚砜、聚醚砜等。
A. Drews的研究表明,膜污染与超滤膜性质尤其是膜表面亲疏水性有很大关系。
亲水性好的膜材料抗污染能力强。
R. H. Sedath 等通过添加阴离子、表面活性剂及表面氟化等方式提高膜表面亲水性,使膜污染得到明显降低。
K. H. Choo 等通过含氟聚合物、聚砜及纤维素 3 种不同的膜材料,研究吸附在膜表面的物质的表面自由能的变化时发现,含氟聚合物的疏水性最小并且造成的膜污染最小。
Guojun Zhang 等在研究聚偏氟乙烯、聚丙烯腈和聚砜超滤膜处理污泥样品过程中的污染情况时发现,污染最严重的是表面粗糙和疏水性强的聚砜膜。
孔径分布窄的超滤膜的筛分作用较强,过滤性能优异,随着孔径的增加,膜通量会迅速提高,但是孔隙率增大,膜内吸附随之增强,膜污染加剧。
膜孔的曲折率越小,膜通量就会越大。
金康鹏等通过研究发现,孔径小的超滤膜容易形成滤饼层从而降低膜孔内污染。
由于污染物容易进入到孔径大的膜孔内部引起内孔污染,因此相对于孔径小的超滤膜,孔径大的超滤膜膜表面的污染物较少。
3 操作条件对膜污染的影响超滤分离过程中操作压差、操作时间、操作温度、膜面流速等操作条件对超滤膜污染的影响不容忽视。
适当的操作压力、较大的线流速能减缓滤饼层的形成,控制流体稳定性和在次临界流量条件下运行均可减缓膜污染。
3.1 操作压差Xianghua Zhen 等的研究表明,在超滤分离过程中,未受污染的膜,浓差极化作用可忽略,膜通量与压力成正比;随着过滤过程的进行,膜表面滤饼层逐渐形成而引起膜污染,并且随压力的增大,膜通量的增加变慢。
沈飞等的研究表明,在低于临界压力的条件下进行超滤操作有利于减缓膜污染。
因此超滤时,应根据实验临界通量确定适宜的操作压差,以降低膜污染的速率。
3.2 操作时间在超滤分离过程中,随着运行时间的延长,在浓差极化等作用下,膜表面会形成污染层并且堵塞膜孔,导致膜通量下降。
因此需要根据水质状况、膜清洗状况等因素来确定运行周期的长短。
3.3 操作温度赵立合等的研究表明,温度变化会引起料液黏度改变,进而影响膜通量。
随着温度的升高,料液黏度下降,扩散系数增加,从而降低了浓差极化的影响,有利于膜通量的增加。
但是温度升高也会改变料液的其他性质,使料液中某些组分的溶解度下降,使污染加剧。
研究表明,改变温度会影响膜面以及膜孔与料液中污染物的相互作用,使膜通量发生改变。
3.4 膜面流速H. Ma 等的研究表明,适当的膜面流速可使凝胶层变薄,阻力下降,从而减小浓差极化的影响,使膜通量提高。
当膜面流速超过临界值后,浓差极化作用显著,剪切力增大,使得污染物变形而被挤入膜孔导致膜通量降低。
改变料液的流动状态有助于提高膜的分离效率,因此应根据实际情况确定合适的膜面流速,有效地减弱浓差极化作用,提高膜的抗污染能力,从而提高膜分离效率同时延长膜的寿命。
4 膜污染机理关于膜的污染机理目前研究中尚没有统一的理论,但普遍认为,从微观上膜污染是在范德华力以及双电层作用下的大分子污染物和膜表面以及大分子溶质间相互作用的结果。
在范德华力和双电层的作用下,与膜表面带电性相同的污染物对膜的污染小,而带电性与膜表面相反的污染物对膜的污染严重。
从宏观上讲,浓差极化使得某些溶质在膜表面的浓度超过其溶解度;同时水中微粒、胶体离子或溶质分子与膜发生物理化学作用,使膜的透水量下降。
滤饼层是大量微粒在膜表面逐渐累积而形成的覆盖在膜表面的污染层,其会增加透过阻力,降低膜通量。
膜的吸附是污染物与膜微观作用的结果,是造成膜污染的关键。
膜孔堵塞是由于污染物在膜表面或膜孔内吸附或沉积造成的,其结果使膜孔窄化,导致膜通量下降。
张国俊等的研究表明,超滤除杂有3 种形式:(1)在膜表面的机械截留;(2)在膜孔中停留;(3)在膜表面及膜孔内吸附。
膜污染是由无机物沉淀、有机物吸附、颗粒物沉淀和微生物黏附生长及其相互作用引起的。
L. Seminario 等的研究表明,膜孔堵塞是由于污染物沉积在膜的表面及吸附于膜孔内部引起的。
N. Mugnier 等在研究中发现,超滤膜清洗后仍有部分污染物存在,可能是由于污染物和内孔间存在相互作用而无法完全清除。
钟冬平等通过研究发现,膜污染主要是由浓差极化、膜孔滤饼层形成引起的可逆污染和阻塞、吸附引起的不可逆污染。
5 展望超滤膜分离技术具有操作方便、节能、无相变、易实现规模化等优点,但膜易污染、通量易降低、操作弹性小的特点制约了膜的工业应用。
因此应从以下几个方面进行研究:(1)深入研究污染物之间的相互作用,完善膜污染机理,确定不同污染物对不同膜的污染程度,为选膜和确定合理的操作条件提供理论依据。
(2) 强化具有针对性及实用性且能够工业化的预处理的研究,找到更高效的预处理手段,减缓膜污染。
优化操作条件,针对污染物的特性研究廉价高效的清洗技术和清洗剂。
(3)改善现有膜材料,研究出强度高、亲水性强、抗菌、抗氧化、易清洗、寿命长的新型超滤膜。
有污水需要处理的单位,如需了解完整污水处理方案或报价,可以通过污水宝发布方案报价海选公告;全国几千家环保公司供您选择,污水宝资深工程师团队帮您寻找最省钱的污水处理方案,货比三家花最少的钱将污水处理达标。