新语音信号处理实验指导2015年秋
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《语音信号处理》
实验指导书
哈尔滨理工大学
自动化学院
电子信息科学与技术系
2014.10
语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。同时,语言也是人与机器之间进行通信的重要工具,它是一种理想的人机通信方式,因而可为信息处理系统建立良好的人机交互环境,进一步推动计算机和其他智能机器的应用,提高社会的信息化程度。语音信号处理是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。虽然从事这一领域研究的人员主要来自信号与信息处理及计算机应用等学科,但是它与语音学、语言学、声学、认知科学、生理学、心理学等许多学科也有非常密切的联系。
20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。
为了深入理解语音信号数字处理的基础理论、算法原理、研究方法和难点,根据数字语音信号处理教学大纲,结合课程建设的需求,我们编写了本实验指导书。
实验一 基于MATLAB 的语音信号时域特征分析
一、实验目的:
语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法,直接对语音信号的时域波形进行分析,提取的特征参数主要有语音的短时能量,短时平均过零率,短时自相关函数等。
本实验要求掌握时域特征分析原理,并利用已学知识,编写程序求解语音信号的短时过零率、短时能量、短时自相关特征,分析实验结果,并能掌握借助时域分析方法所求得的参数分析语音信号的基音周期及共振峰。
二、实验原理:
1.窗口的选择
通过对发声机理的认识,语音信号可以认为是短时平稳的。在5~50ms 的范围内,语音频谱特性和一些物理特性参数基本保持不变。我们将每个短时的语音称为一个分析帧。一般帧长取10~30ms 。我们采用一个长度有限的窗函数来截取语音信号形成分析帧。通常会采用矩形窗和汉明窗。
矩形窗的定义:一个N 点的矩形窗函数定义为如下:
公式1: 1 0() 0 n N w n ≤≤⎧=⎨⎩
其它, , hamming 窗的定义:一个N 点的hamming 窗函数定义为如下:
公式2:()0.540.46 cos 2π/1 0() 0 n N n N w n ⎧--≤≤⎡⎤⎪⎣⎦=⎨⎪⎩其它
, 2.短时能量
由于语音信号的能量随时间变化,清音和浊音之间的能量差别相当显著。因此对语音的短时能量进行分析,可以描述语音的这种特征变化情况。定义短时能量为: 公式3: )]()([ )]
()([)1(22∑∑--=+∞-∞=-=-=
n N n m m n m n w m x m n w m x E 特殊地,当采用矩形窗时,可简化为: 公式4: )()
1(2∑--==
n N n m n m x E
3.短时平均过零率
过零率可以反映信号的频谱特性。当离散时间信号相邻两个样点的正负号相异时,我们称之为“过零”,即此时信号的时间波形穿过了零电平的横轴。统计单位时间内样点值改变符号的次数具可以得到平均过零率。定义短时平均过零率:
公式5:
)()()()()()sgn sgn 1sgn sgn 1*n m Z x m x m w n m x n x n w n +∞=-∞=---⎡⎤⎡⎤⎣⎦⎣⎦=--⎡⎤⎡⎤⎣⎦⎣⎦∑
在矩形窗的条件下,可以简化为:
公式6:
)[]()[]∑
--=-=n N n m n m x m x N Z )1(|1-sgn sgn | 21
短时过零率可以粗略估计语音的频谱特性。由语音的产生模型可知,发浊音时,声带振动,尽管声道有多个共振峰,但由于声门波引起了频谱的高频衰落,因此浊音能量集中于3KZ 以下。而清音由于声带不振动,声道的某些部位阻塞气流产生类白噪声,多数能量集中在较高频率上。高频率对应着高过零率,低频率对应着低过零率,那么过零率与语音的清浊音就存在着对应关系。 4.短时自相关函数 自相关函数用于衡量信号自身时间波形的相似性。清音和浊音的发声机理不同,因而在波形上也存在着较大的差异。浊音的时间波形呈现出一定的周期性,波形之间相似性较好;清音的时间波形呈现出随机噪声的特性,样点间的相似性较差。因此,我们用短时自相关函数来测定语音的相似特性。短时自相关函数定义为:
公式7: ()()()()() n m R k x m w n m x m k w n k m +∞
=-∞=
-+--∑ 令:'m n m =+,并且()()w m w m '-=,可以得到:
()()()()()10 N k
n m R k x n m w m x n m k w k m --=''=++++⎡⎤⎡⎤⎣⎦⎣⎦∑
三、实验内容:
(1) 用Matlab 绘出图1.1——这两种窗函数在帧长N=50时的时域波形。
(2) 用Matlab 绘出图1.2——这两种窗函数的频率响应幅度特性。这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性。