生物可降解材料的研究现状
生物降解塑料的发展现状及应用前景探究
生物降解塑料的发展现状及应用前景探究摘要:白色污染是环境污染的重要元凶之一,可降解塑料是解决白色污染最直接的手段。
可降解塑料包括生物降解塑料、水降解塑料、光/生物降解塑料等。
为深入了解生物降解塑料的应用及价值,文章研究生物降解塑料的发展历程,并对其未来发展进行展望,一方面推动生物降解塑料的应用,另一方面了解可降解塑料使用规模,为相关人士提供参考。
关键词:生物降解塑料;发展现状;应用前景塑料是现代化工业及人类生活最重要的基础材料之一,由于传统塑料不可降解,可对环境造成可持续性损害,因此可降解塑料的研发及应用成为各国关注的热点课题。
生物降解塑料是可降解塑料的一种,据初步统计,2021年全球生物降解塑料消费量达到1200kt左右,涉及众多行业。
由此可见,生物降解塑料得到极为广泛的应用,成为健康有序地推动产业发展的重点,研究生物降解塑料的发展历程也成为学术界的核心话题之一。
1、生物可降解塑料的发展现状生物降解塑料依照程度划分可分为部分降解、完全降解两种。
部分降解包括淀粉基塑料,完全降解塑料包括聚丙交酯塑料、石油基可降解塑料等。
1.1 PLA聚丙交酯塑料即PLA,通过乳酸直接缩聚制备法制备时成品分子质量较低,适用场景相对受限。
对此,有学者对制备工艺进行优化,即先用乳酸制备丙交酯,随后在催化作用下进行开环聚合,制备分子量约为700000的聚丙交酯塑料。
乳酸分子含有手性碳原子、光学异构体,所以聚丙交酯也可称为聚左旋乳酸。
聚左旋乳酸为部分结晶性聚合物,具有质地硬的特点。
相比传统塑料,聚丙交酯没有毒害作用,和生物相容性良好,并且透明度高,满足塑料制品的使用需求。
202等国。
美国企聚丙交酯生产企业以NatureWorks为主,是全球最大的聚丙交酯生产商,产能约为每年180000吨。
我国聚丙交酯生核心生产企业坐落在浙江,浙江海正生物材料集团产能约65000吨。
目前,我国兴起了大量的聚丙交酯生产企业,并着力研发新型生物可降解塑料,如山东同邦、浙江友诚、安徽丰源泰富等。
生物可降解塑料的应用研究现状及发展方向
生物可降解塑料的应用研究现状及发展方向首先,生物可降解塑料的应用研究现状主要体现在以下几个方面:1.食品包装材料:由于生物可降解塑料对食品具有良好的保护和存储性能,因此被广泛应用于食品包装领域。
如聚乳酸(PLA)被用于制作食品容器、餐具、薄膜等。
2.农业用途:生物可降解塑料在农业领域的应用主要涉及覆盖膜、育苗盘、农膜等。
这些材料具有保温、保湿、抑草、透气等特点,并且能够降解为有机肥料,不会对土壤造成污染。
3.医疗领域:生物可降解塑料在医疗器械、缝线和医药包装中得到广泛应用。
例如,聚己内酯(PCL)被用于制作可降解的缝合线,可以在人体内慢慢降解,避免了二次手术的不便。
4.一次性用品:生物可降解塑料在一次性用品领域得到广泛应用,如餐具、塑料袋等。
这些塑料制品一旦被丢弃,能够较快地降解成环境友好的物质,减少对环境造成的污染。
其次,生物可降解塑料的发展方向如下:1.提高塑料的韧性:当前生物可降解塑料在力学性能方面仍然存在挑战,比如抗拉强度低、韧性不足等问题。
因此,研究人员将致力于改善塑料的力学性能,提高其应用的范围和可行性。
2.提高生物降解速度:当前生物可降解塑料的降解速度在自然环境下较慢,有些甚至需要数年才能完全降解。
未来的研究方向是开发新的降解菌株,设计可降解塑料的结构和添加降解助剂,以提高降解的速率。
3.提高生产效率和降低成本:生物可降解塑料的生产成本较高,限制了其大规模应用。
解决这一问题的关键是开发高效的生物合成工艺,并利用廉价的原料进行生产。
4.探索新的应用领域:除了食品包装、农业和医疗领域之外,生物可降解塑料还可以在其他领域得到应用。
例如,汽车工业、建筑材料、纺织品等。
未来的研究应该重点发展这些新的应用领域,进一步推动生物可降解塑料的发展和应用。
总之,生物可降解塑料的应用研究现状已经取得了一定的进展,但仍然面临一些挑战。
通过提高塑料的力学性能、降解速度,降低生产成本等方面的研究,可以进一步推动生物可降解塑料的应用,并促进可持续发展。
生物可降解塑料的应用研究现状和发展方向汇总
生物可降解塑料的应用研究现状和发展方向汇总生物可降解塑料是指由可再生生物质或微生物合成的塑料,具有优良的可降解性能,能够在自然环境中被微生物分解并最终转化为二氧化碳和水。
与传统塑料相比,生物可降解塑料具有较低的能耗、较少的污染,具有更好的环境友好性和可持续性。
以下是对生物可降解塑料的应用、研究现状和发展方向的汇总:应用领域:1.包装领域:生物可降解塑料可用于食品包装袋、一次性餐具等,符合环保和卫生要求。
2.农业领域:生物可降解塑料可以应用于农膜、肥料包装袋等,可以有效减少农业用塑料的污染。
3.医疗领域:生物可降解塑料可用于医疗器械、医疗包装等,不仅具有良好的安全性,还可以降低医疗废弃物的处理难度。
4.纺织领域:生物可降解塑料纤维可用于制造纺织品,具有抗菌性和温感性能,且易于降解。
5.3D打印领域:生物可降解塑料可应用于3D打印材料,可以减少废弃物产生,降低对环境的影响。
研究现状:1.材料种类丰富:目前已经研发出多种生物可降解塑料,包括聚乳酸(PLA)、混酯(PHA)、聚酯淀粉酯(PBS)等,可以根据具体需求选择不同的材料。
2.性能改进:研究人员正在努力改善生物可降解塑料的力学性能、氧气透过性、水分敏感性等方面的问题,以提高其实际应用性能。
3.复合材料:将生物可降解塑料与其他材料进行复合,可以获得具有更好性能的材料,如生物降解塑料与木材粉末的复合材料等。
4.微生物合成:通过微生物发酵合成生物可降解塑料,不仅可以减少对化石能源的依赖,还可以提高材料的可持续性。
发展方向:1.实现规模化生产:目前,生物可降解塑料的生产成本相对较高,规模化生产仍然是一个挑战。
未来的发展方向是降低生产成本,提高生产效率,使其能够替代传统塑料。
2.提高性能稳定性:目前生物可降解塑料在高温、高湿等环境下的稳定性较差,需要进一步提高其热稳定性、湿热稳定性等性能。
3.新材料开发:继续开发新的生物可降解原料和新型生物可降解塑料,以满足不同领域的需求。
生物可降解塑料塑料的最新研究现状
⽣物可降解塑料塑料的最新研究现状⽣物可降解塑料的研究现状摘要:⽣物可降解材料因其具有可降解的特性越来越受到⼈们的关注。
本⽂主要介绍⽣物可降解塑料的应⽤背景,塑料的最新研究及其成果。
其中可降解塑料包括淀粉基⾼分⼦材料、聚乳酸和PHB。
关键词:⽣物可降解塑料⽩⾊污染淀粉基材料聚乳酸PHB现代材料包括⾦属材料、⽆机⾮⾦属材料和⾼分⼦材料作为现代⽂明三⼤⽀柱(能然、材料、信息)之⼀在⼈类的⽣产活动中起着越来越重要的作⽤。
[1]传统的⾼分⼦塑料在给国民经济带来快速发展,⼈民⽣活带来巨⼤改变的同时也给⼈类的⽣存环境带来了巨⼤的破坏。
当今社会“⽩⾊污染”的问题变得越来越受关注。
这类塑料由于在⾃然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草⽊⼀样被⽣物降解,还常常引起动物误⾷,并造成⼟壤环境恶化。
塑料制品在⾷品⾏业中⼴泛使⽤,⾼温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗⼊到⾷物中,会对⼈的肝脏、肾脏及中枢神经系统造成损害。
塑料的⼤量使⽤必然会带来如何处理废弃塑料的难题。
传统的塑料处理⽅法主要包括直接填埋、焚烧、⾼温炼油等⽅法。
这些处理⽅法不仅对环境造成破坏,同时也对⼈类健康构成巨⼤威胁。
⽯油、天然⽓等能然已⾯临危机,以⽯油为原料的塑料⽣产将受到很⼤的阻⼒。
为了减少废弃塑料对环境的污染和缓解能然危机,多年来⼈们努⼒开发⽣物可降解材料,⽤以替代普通塑料。
⽣物可降解塑料是指⼀类由⾃然界存在的微⽣物如细菌、霉菌(真菌)和藻类的作⽤⽽引起降解的塑料。
理想的⽣物降解塑料是⼀种具有优良的使⽤性能、废弃后可被环境微⽣物完全分解、最终被⽆机化⽽成为⾃然界中碳素循环的⼀个组成部分的⾼分⼦材料。
⽣物降解过程主要分为三个阶段:(1)⾼分⼦材料表⾯被微⽣物粘附;(2)微⽣物在⾼分⼦表⾯分泌的酶作⽤下,通过⽔解和氧化等反应将⾼分⼦断裂成相对分⼦量较低的⼩分⼦化合物;(3)微⽣物吸收或消化⼩分⼦化合物,经过代谢最终形成⼆氧化碳和⽔。
生物降解塑料的发展现状
生物降解塑料的发展现状随着环保意识的不断提高,塑料污染问题成为了现代社会的一大难题。
传统的塑料制品通常采用石化原料,难以降解,对环境造成了严重的影响。
为此,科学家们一直在探索新型的生物降解塑料。
生物降解塑料,也称为可降解塑料,指的是在自然环境中能够被微生物完全分解的塑料。
与传统的塑料制品不同,生物降解塑料具有良好的环保性能,且不会对环境造成污染。
目前,生物降解塑料已经成为全球环保领域的一个研究热点。
一、生物降解塑料的分类生物降解塑料按照来源可以分为三大类:植物来源、动物来源、微生物合成。
1、植物来源植物来源的生物降解塑料主要从淀粉类和纤维类制品中提取原料制备而成。
淀粉类生物降解塑料是以玉米、木薯或其他淀粉质材料为原料生产的,具有优秀的生物降解性能,并且其可生产成本相比其他生物降解塑料较低。
纤维类生物降解塑料则采用棉、麻、草等植物纤维为原料制成,具有良好的生物降解性能,但是在工业化生产上还存在一定的技术难点。
2、动物来源与植物来源的原料不同,动物来源的生物降解塑料以动物骨骼、蹄、角等无害原料为材料,通过一系列生物发酵、浸出、精制等工艺制成。
这些生物降解塑料具有优秀的可降解性能和高强度,广泛应用于医疗、食品、包装等领域。
3、微生物合成微生物合成的生物降解塑料是使用微生物发酵法合成的,是目前生物降解塑料的新兴领域。
微生物合成的生物降解塑料因为采用微生物发酵法制成,相较于其他生物降解塑料,其制备工艺更为复杂,成本相对较高,但是其生物降解性能极佳,能够在自然环境中快速分解,不会造成环境污染。
二、生物降解塑料的应用前景生物降解塑料不仅可以代替传统的塑料制品,还可以在农业生产、医疗、包装等领域产生广泛应用。
在农业生产方面,生物降解塑料可以制作成农膜、果膜等农业材料,具有良好的降解性能,不会对土壤造成二次污染。
在医疗器械方面,生物降解塑料可以用来制作医用注射器、培养皿等,具有较高的生物安全性能,能够减少污染源。
生物材料的研究现状与应用
生物材料的研究现状与应用生物材料是指那些适合用于医学和生物学领域的材料。
它具有生物相容性、生物可降解性、生物活性、生物仿生和生物组织相似性等特殊特点。
生物材料的研究与发展,已经成为当今科技领域中重要的课题之一。
本文将探讨生物材料的研究现状和应用。
第一部分:生物材料的研究现状生物材料的研究一直是一个热门的领域。
随着生物科技的不断发展,生物材料的应用范围也越来越广泛。
目前,生物材料的研究主要包括以下几个方面:1.仿生材料仿生材料是生物材料的一种,主要是通过对天然生物材料的研究,模仿其结构和性质,制造出与之相似的人造材料。
仿生材料在医学上的应用非常广泛,例如人工关节、人工器官等等。
2.生物活性材料生物活性材料是指那些可以在生物体内发挥化学和生物学活性的材料。
生物活性材料的应用范围很广,这些材料可以用于制造人造器官、骨粉、药物释放和生物传感器等。
3.生物可降解材料生物可降解材料是指那些可以在人体内被分解和吸收的材料。
这种材料在体内不会留下任何残留物,不会对人体造成危害。
生物可降解材料的应用非常广泛,例如制造缝合线、骨钉、人工皮肤等。
第二部分:生物材料的应用生物材料的应用范围很广泛,主要应用于以下几个方面:1.医疗领域生物材料在医疗领域的应用非常广泛。
例如,生物材料可以用于制造人工关节、植入物、人造器官等等。
生物材料还可以用于治疗各种疾病,例如心脏病、骨质疏松症等等。
2.牙科领域生物材料在牙科领域的应用范围也很广泛。
例如,生物材料可以用于制造人工牙齿、人工牙龈、修复牙齿等等。
3.食品工业生物材料在食品工业中的应用属于比较新兴的领域。
生物材料可以用于制造各种食品添加剂、增稠剂、乳化剂等等。
4.环境保护生物材料在环境保护领域也具有重要的应用价值。
例如,生物材料可以用于制造生物淀粉袋,以替代塑料袋,从而达到环境保护的目的。
5.工业领域生物材料在工业领域的应用也非常广泛。
例如,生物材料可以用于制造各种塑料、合成纤维等等。
生物可降解材料的研究现状
生物降解材料的研究现状摘要:介绍了生物降解材料和光降解材料的研究背景、研究内容、研究成果和应用现状。
分析了其产品对环境的改善和不足,提出了对其降低成本、提高性能和扩大应用范围的建议。
关键词:生物降解材料;光降解材料;塑料;成本;环境近年来,塑料生产技术有了很大的发展,塑料已经渗透到人们生产和生活的各个领域,与水泥、钢铁和木材并称四大工业材料。
由于塑料本身具有质量轻,耐腐蚀和易于成型加工等优点,使其成为人们不可或缺的材料。
然而现在塑料的使用却面临巨大的挑战。
在自然界中塑料很难降解,使用后产生大量固体废弃物。
目前在处理这些塑料垃圾时大部分采用焚烧和掩埋的方法,但都未能解决污染问题,例如焚烧后产生的一些有毒气体反而进一步导致了污染的扩散;塑料掩埋地下需要近300 年才能够完全降解。
另外石油,天然气等能源都已经面临枯竭的危机,全世界的石油储量大约只能再用40 多年,以石油为原料的塑料生产受到很大的阻力。
为了减轻废旧塑料对环境的污染和缓解能源危机,多年来人们尝试开发可降解塑料,用以代替普通塑料制品。
随着可生物降解塑料技术的发展,聚乳酸(PLA) 、生物聚酯等生物降解材料的逐渐成熟,将推进塑料制品可生物降解化,为减少废旧塑料制品带来的污染,并为最终实现资源和环境的可持续性发展找到出路。
目前可降解塑料的研制开发十分活跃,并部分进入工业化生产,但从总体上看,当前降解仍处于有待于对技术进行更深入研究、提高性能、降低成本、拓宽用途并逐渐推向市场的阶段。
本文对生物可降解材料的发展和应用现状进行了简介,并指出其不足。
1 目前各国生物课可降解塑料的应用现状生物降解塑料[1]不仅在生产过程中有节能减排效果,而且在使用过程也具有环境友好的特征。
普通聚烯烃塑料的合成会排放大量CO2 等尾气及污染物,而塑料制品大量使用,尤其是农用薄膜和包装材料又造成了日益严重的白色污染。
但生物降解塑料则不然,其原料来源是可以再生的农作物,农作物在生长过程中通过光合作用可以吸收CO2 放出氧气,其制品废弃物可以在掩埋堆肥条件下完全降解成水和CO2 ,无污染物产生。
生物可降解材料PBAT_的生产现状及其研究进展
第53卷第3期 辽 宁 化 工 Vol.53,No. 3 2024年3月 Liaoning Chemical Industry March,2024基金项目: 2023年八师中青年科技创新领军人才项目(项目编号:2023RC06)。
收稿日期: 2023-05-06生物可降解材料PBAT 的生产现状及其研究进展王祖芳,黄东,王明亮(新疆天业(集团)有限公司,新疆 石河子 832000)摘 要:阐述了目前生物可降解材料PBAT 的合成工艺技术特点、技术来源、产业化现状及改性研究进展,指出了生物可降解材料PBAT 生产技术的未来发展方向。
关 键 词:工艺技术;生产现状;共聚改性;共混改性中图分类号:TQ201 文献标识码: A 文章编号: 1004-0935(2024)03-0416-07塑料自发明以来,由于其在强度、性能与功能以及使用方便等方面的优势,在包装、农业、 建筑、机械及社会各个方面被大量使用,人类已经离不开它。
但由于对废弃传统塑料制品的不规范处理、缺少合理回收使用技术、以及长时间的堆积,形成了日益严重的“白色污染”问题,它严重影响了人类的生活环境、粮食安全和可持续发展。
国家和各省市相继出台了相关法律法规,将限制和淘汰使用不可降解塑料制品提上了具体日程,以解决废旧塑料带来的“白色污染”、“海洋微塑料污染”等全球性环境问题,与此同时,政府已采取一系列措施,鼓励开发、生产和推广生物降解材料。
聚对苯二甲酸-己二酸丁二醇酯(以下简称“PBAT”)是一类长链脂肪族-芳香族共聚酯聚合物材料,由脂肪族的己二酸(AA)、短芳香族对苯二甲酸(PTA)和1,4-丁二醇(BDO)经酯化缩聚而成。
主要融合了脂肪族制品的“柔韧性”和芳香族产品的“刚性”,有较好的断裂伸长率和延展性,以及良好的抗冲击能力和热稳定性[1-4]。
由于酯键存在于分子中,有生物的可降解性,易于被大自然中动植物体内的各种细菌或酶所分解,形成了二氧化碳和水分,因此,应用前景广阔。
生物可降解材料的研究现状及其应用前景
生物可降解材料的研究现状及其应用前景随着人类对于环保意识的增强,对于新型材料的需求也越来越大。
在这样的情况下,生物可降解材料成为了一个备受研究和关注的领域。
生物可降解材料的研究范围涉及材料科学、化学、生物学等多个学科,可以广泛应用于包装、医疗、土壤保护等众多领域,因此具有非常广阔的应用前景。
一、生物可降解材料的定义及研究现状生物可降解材料是指在生物介质(如土壤、水体和生物体内)中能够被微生物、酶类或其他生物降解的材料。
它们由许多天然或合成的高分子材料组成,如淀粉、蛋白质、聚乳酸等,具有良好的生物可降解性和可再制品性,因此它们对于环境的影响比传统的塑料更小。
目前,生物可降解材料正在得到越来越多的关注和研究。
在研发方面,目前有许多类型的生物可降解材料,如淀粉基、聚乳酸、聚己内酯等。
这些材料主要通过基于植物、动物及微生物转化的生化反应来降解,并且在其降解的过程中,不会产生对环境有害的毒素和污染物。
此外,生物可降解材料还具有良好的物理、化学以及工艺特性,可以适用于一系列的产品和工业应用。
二、生物可降解材料的应用前景1. 包装与餐具随着社会的不断发展,各种包装和餐具的消耗量不断增加,尤其是一次性塑料制品对环境造成的危害也越来越受到人们的关注。
而生物可降解材料作为一种替代品,具有良好的性质,并且与传统塑料一样具有廉价性以及良好的耐久性。
目前,一些电子商务、快递以及物流企业已经开始使用可降解的包装袋或盒子,生物可降解材料对于避免塑料垃圾的污染和有效利用资源具有重要的意义。
此外,可降解的餐具也成为了可降解材料的一个重要应用领域。
2. 医疗保健生物可降解材料在医疗保健领域也有着广泛的应用。
首先,由于可降解材料对人体无害,医疗器械的工业生产可以更加安全有效。
其次,在医学领域,可降解材料可以作为生物支架应用于肝脏、心脏等组织的修复或替换,并且有着良好的耐受性。
3. 土壤保护由于传统的塑料不可降解,地球上的垃圾问题愈发严重。
生物可降解高分子材料的研究现状及发展前景-范本模板
生物可降解高分子材料的研究现状及发展前景张鹏高材1102摘要:本文论述了生物可降解高分子材料的研究现状,并对生物降解高分子材料的降解机理、影响因素及其在医学、农业和其他领域的应用前景进行了探讨。
关键词:生物可降解高分子材料、降解机理、影响因素、应用前景、研究现状1.前言随着大量高分子材料在各个领域的使用,废弃高分子材料对环境的污染有着日益加剧的趋势。
塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废塑料所造成的白色污染已成为世界性的公害.目前,处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。
生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程,这种方法简洁有效,而且对环境的保护有积极的作用。
同时,随着高新技术的发展,生物降解高分子材料也满足了医学和农业及其他方面的需求,成为近年来研究的热点。
2.高分子生物降解机理理想的生物降解高分子材料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳元素循环的一个组成部分的高分子材料。
跟据高分子的性质和所处的环境条件,高分子生物降解有两种不同的机理。
第一种是生物或非生物水解而后发生生物同化吸收,称为水解-生物降解。
这是杂链高分子如纤维素、淀粉及脂肪族聚酯生物降解的主要过程。
通常过氧化反应对这类高分子降解发挥辅助作用,光氧化反应可加速水解-生物降解。
水解-生物降解高分子适用于生物医用材料、化妆品及个人卫生用品的处理而不适用于农用薄膜或包装薄膜的降解。
第二种机理是过氧化反应而后伴随小分子产物的生物同化吸收,称为氧化—生物降解,这种机理尤其适用于碳链高分子。
非生物过氧化反应及随后的生物降解反应可通过所用的合适抗氧剂得到严格控制.3。
可降解塑料的研究现状及发展趋势
可降解塑料的研究现状及发展趋势一、本文概述随着全球经济的快速发展和人口规模的不断扩大,塑料制品的需求和应用日益广泛,但这也导致了严重的环境问题,特别是塑料垃圾的难以降解和长期积累。
为此,可降解塑料作为一种环保替代材料,其研究和应用逐渐受到全球科研界和工业界的重视。
本文旨在全面梳理可降解塑料的研究现状,探讨其发展趋势,以期为塑料工业的可持续发展和环境保护提供理论支持和实践指导。
文章将首先介绍可降解塑料的定义和分类,然后分析当前可降解塑料的主要研究领域和进展情况,包括生物降解塑料、光降解塑料、热降解塑料等。
在此基础上,文章将探讨可降解塑料的发展趋势,包括技术创新、成本降低、应用领域拓展等方面,并预测未来可能的发展方向。
文章还将对可降解塑料在环境保护和可持续发展中的作用进行评估和展望。
二、可降解塑料的研究现状近年来,随着全球环境问题的日益严重,可降解塑料的研究与开发已经成为全球科研和产业界关注的热点。
可降解塑料,作为一种能在自然环境中逐渐分解的塑料材料,对于减少白色污染、保护生态环境具有重要意义。
目前,可降解塑料的研究主要集中在生物降解塑料和光降解塑料两大类。
生物降解塑料主要利用微生物的作用,在自然条件下通过酶的作用实现降解,如聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)等。
这些材料具有良好的生物相容性和生物降解性,被广泛应用于包装、农业、医疗等领域。
然而,生物降解塑料的生产成本较高,降解速度受环境因素影响较大,限制了其广泛应用。
光降解塑料则是在光照条件下,通过光敏剂的作用使塑料逐渐分解。
这类材料如聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)等,在紫外线的照射下能发生光解反应,从而实现降解。
光降解塑料具有降解速度快、环境友好等特点,但光敏剂的成本较高,且降解过程中可能产生有害物质,因此在实际应用中仍需进一步改进。
除了上述两种可降解塑料外,还有一些新型的可降解塑料材料正在研究中,如聚氨基酸、聚酯酰胺等。
生物可降解镁合金的发展现状与展望
生物可降解镁合金的发展现状与展望
生物可降解镁合金是一种具有良好生物相容性和降解性能的金属材料,具有广泛的应用前景。
目前,生物可降解镁合金的研究和应用已有一定发展,但仍面临一些挑战。
生物可降解镁合金的研究主要集中在材料的合成和表征方面。
研究人员通过调整合金中元素的种类和含量,控制其降解速率和机制,提高材料的力学性能和生物相容性。
此外,研究人员还致力于改善镁合金的表面性能,如提高其耐腐蚀性和降解均匀性。
其次,生物可降解镁合金在医疗领域具有广泛的应用前景。
镁具有良好的生物相容性和降解性能,可用于制备生物可降解支架、骨接合器和螺钉等器械,用于骨折修复和骨缺损修复。
此外,镁合金还可制备成人工骨骼和关节等替代品,应用于人体仿生学和生物医学工程。
然而,生物可降解镁合金目前还存在一些问题和挑战。
首先,镁合金的降解速率还不够理想,需要在降解速率和力学性能之间做出平衡。
其次,镁合金的耐腐蚀性和降解均匀性仍需改善,以提高其在体内的稳定性和可控性。
此外,对于金属离子的释放和降解产物的生物安全性还需要进一步研究。
展望未来,生物可降解镁合金研究的重点将放在材料的合成、表征和应用方面。
研究人员将继续优化合金组成和加工方法,以提高材料的降解性能和力学性能。
同时,研究人员还将在降解速率和生物相容性之间寻找更好的平衡点,并深入研究金属离子的释放和降解产物的生物安全性。
此外,生物可降解镁合金的应用领域将进一步拓展,包括骨折、骨缺损修复以及人体仿生学和生物医学工程等。
生物材料的可降解性研究
生物材料的可降解性研究近年来,随着人们对环境保护和可持续发展的关注不断增加,研究生物材料的可降解性逐渐成为科学界和工业界的焦点。
生物材料的可降解性指的是在特定的条件下,生物材料能够被微生物、酶或其他生物介导的过程降解成无毒的物质,从而减少对环境的污染和危害。
本文将探讨生物材料的可降解性的研究进展、技术应用和未来发展趋势。
一、生物材料的可降解性研究进展1. 可降解聚合物材料可降解聚合物材料是目前研究的重点之一。
这些材料可以通过调整聚合物结构和添加特定的降解剂来实现可降解性。
例如,聚乳酸和聚羟基磷酸酯等聚合物,在体内能够被水解酶降解,并最终转化为水和二氧化碳。
此外,还有一些天然聚合物材料,如明胶和壳聚糖,它们也具有良好的可降解性。
2. 生物降解金属材料除了可降解聚合物材料,生物降解金属材料也备受关注。
这些金属材料包括镁合金、铁基材料等,它们可以在生物体内迅速降解并释放出对细胞生长有益的金属离子。
这种材料在医疗领域有着广泛的应用,如生物降解支架和植入性器械等。
二、生物材料的可降解性技术应用1. 医疗领域应用生物材料的可降解性在医疗领域有着广泛的应用潜力。
可降解的支架材料可以替代传统的金属支架,用于心脏病患者的血管重建或支架植入。
同时,可降解的缝线材料可以用于外科手术中,避免了再次手术去除缝线的必要。
此外,可降解的药物传递系统也可以用于控制药物的释放,提高药物的疗效。
2. 环境保护应用生物材料的可降解性可以帮助减少对环境的污染和危害。
例如,可降解的塑料袋、食品包装等可以减少垃圾填埋和焚烧带来的环境问题。
另外,可降解的农膜可以代替传统的塑料农膜使用,减少农业活动对土壤和水资源的污染。
这些应用有助于构建可持续的生态环境。
三、生物材料的可降解性研究的未来发展趋势1. 研发新型生物材料目前的研究主要集中在可降解聚合物材料和生物降解金属材料上,但还存在着许多应用领域需要更多新型材料的开发。
例如,可降解陶瓷材料在骨科修复和植入领域有着广阔的应用前景。
生物降解材料的研究现状及前景
生物降解材料的研究现状及前景生物降解材料是指通过微生物作用、光、热等能量激发下降解为水、二氧化碳、有机肥等可循环的物质的材料,其降解产品无毒无害、可以被环境接受,因而被广泛应用于包装、农业、环保等领域。
然而,目前市场上的生物降解材料质量参差不齐,降解时间不确定,所以如何提升生物降解材料的品质和性能,是当前的一个热点问题。
本文从生物降解材料的定义、发展、现状、问题以及前景等方面进行深入探讨。
一、生物降解材料的定义和发展生物降解材料是一种生物资源进行再生利用的材料,以生物为基础,经过高科技能力的加工,制成符合人们对材料性能和功能要求的降解材料。
其研发是对生态环境可持续发展的主动响应和主动探索,是以人为本、以环保为原则的绿色科技。
生物降解材料主要来源于植物、动物和微生物等生物资源,与传统材料相比,拥有更广阔的应用前景。
生物降解材料的发展始于20世纪70年代,最早的应用场景为农业、林业等领域,用于绿化土壤、废弃物处理等方面。
20世纪80年代末,随着环保意识的不断提高,在工业、包装等领域的应用逐渐增加,在当时的工业界,竞相推出环保型产品的壮观景象随处可见。
“生物可降解”“环保型”成为了那个时期商家竞相传播的标语。
随着生物技术的快速发展,生物降解材料的研究迅速快速增加,纸张、食品包装、医疗用品、农膜等不同种类的生物降解材料得到广泛的研究和应用。
二、生物降解材料的现状及问题当前市场上的生物降解材料虽然数量庞大,但品质和性能参差不齐,主要表现为降解速度过慢、性质不稳定、易分解、易老化、强度不足等问题。
降解速度过慢是影响生物降解材料大规模应用的关键问题之一,其核心原因是高分子量和分子不充分互相联系。
生物降解材料中的淀粉、菜籽酸、壳聚糖等物质虽具有良好的生物可降解性,但其分子量过大、分子间的络合结构过牢固,导致降解速度缓慢。
部分生物降解材料虽然具有一定的稳定性,但使用环境的不同依旧会导致材料性质的不同水平变化,从而影响其使用寿命。
生物可降解材料的研究与应用前景
生物可降解材料的研究与应用前景一、绪论生物可降解材料是指在自然环境下,经过微生物的作用、光、热等条件的影响下,能被分解成无害的物质并成为自然界营养物质的材料。
因此,生物可降解材料是一种环保材料,已经被广泛应用于医药、食品包装、农业和生态建设等领域。
二、生物可降解材料的研究当今,人们对于环境问题的关注逐渐增加,环保材料的需求也越来越大,生物可降解材料成为了高优先级的研究方向。
其中,聚乳酸、聚己内酯等生物可降解高分子材料被广泛研究,特别是聚乳酸作为生物可降解塑料的代表,已经在医药、食品包装、纺织等领域得到了广泛应用。
另外,生物可降解聚合物材料的合成方法,也得到了广泛的关注。
三、生物可降解材料的应用生物可降解材料的应用领域非常广泛,以下为几个典型领域:1. 医药方面:生物可降解聚乳酸、聚内酯、聚羟基丁酸等材料,可用于制备缝合线、骨刺、骨钉等医疗器械,不仅具有良好的生物相容性和降解性能,而且不会污染人体和环境。
2. 食品包装方面:生物可降解材料在食品包装方面得到了广泛应用,可以制作餐具、餐盒、果蔬袋等。
其好处在于,食品包装可以在使用后变成肥料,而不会污染环境。
目前,国际上已经开始推广应用生物可降解材料作为食品包装材料。
3. 农业方面:生物可降解材料可作为农膜使用,该农膜在播种前可直接覆盖在土地上,削减了农业投入,提高了生产效率,又可以避免因使用传统塑料膜而造成的土地污染。
4. 环境保护方面:生物可降解材料相较于常规合成塑料,能很好地减少垃圾堆积,避免对生态环境的污染,降低环保成本。
四、生物可降解材料的应用前景生物可降解材料拥有广泛的应用领域,其应用前景也非常可观。
随着环保意识的普及和环保法规的加强,生物可降解材料的需求必将进一步增加。
特别是在食品包装领域的应用前景非常广阔,在未来的发展中势必会取得更加广泛的应用。
总之,生物可降解材料是一种具有很强环保性的材料,应用前景非常广阔。
当前,生物可降解材料的应用已经得到了广泛的关注,相信随着科技的不断进步和环保意识的不断提高,其应用前景将会更加广泛。
浅谈生物可降解高分子材料的研究与发展
浅谈生物可降解高分子材料的研究与发展生物可降解高分子材料是一种能够在自然环境中被微生物降解而不会对环境造成污染的新型材料。
随着人们对环境保护意识的提高,生物可降解高分子材料的研究与发展备受关注。
本文将从生物可降解高分子材料的定义、特点、研究现状以及发展前景等方面进行浅谈。
二、生物可降解高分子材料的特点1. 可降解性:生物可降解高分子材料可以在自然环境中被微生物降解,不会对环境造成污染,符合环保要求。
2. 天然原料:生物可降解高分子材料通常以天然物质为原料,制备工艺简单,成本低廉。
3. 可塑性:生物可降解高分子材料具有一定的可塑性,可以根据需要进行成型加工,适用于各种场合的使用。
三、生物可降解高分子材料的研究现状目前,生物可降解高分子材料的研究正在逐渐深入,包括材料的原料选择、制备工艺、性能测试等方面。
在原料选择方面,研究人员正致力于寻找更多的天然原料,以满足不同需求的生物可降解高分子材料的制备。
在制备工艺方面,研究人员也在不断寻求新的技术手段,以提高生物可降解高分子材料的制备效率和品质。
在性能测试方面,研究人员重点关注生物可降解高分子材料的力学性能、热性能、降解速度等指标,以确保其在实际应用中的可靠性和稳定性。
四、生物可降解高分子材料的发展前景随着人们对环境保护意识的提高,生物可降解高分子材料的应用领域将会得到进一步拓展。
在食品包装领域,生物可降解高分子材料可以替代传统的塑料包装材料,减少对环境的影响;在医疗器械领域,生物可降解高分子材料可以用于制备可降解的缝线、支架等,减少对人体的刺激和排斥。
在垃圾处理领域,生物可降解高分子材料还可以用于制备生物降解袋,方便垃圾分类和处理。
生物可降解高分子材料有着广阔的应用前景,对环境保护和可持续发展具有积极的促进作用。
生物可降解高分子材料是一种环保、可持续发展的新型材料,其研究与发展备受关注。
在未来的发展中,我们可以预见,生物可降解高分子材料将会在各个领域得到广泛应用,为环保事业做出更大的贡献。
可降解生物医用材料研究现状与展望
可降解生物医用材料研究现状与展望作者:李君涛陈周煜来源:《新材料产业》2016年第01期生物医用材料,通常是指用于诊断与修复组织或器官等治疗疾病领域,对人体组织、器官及血液不产生影响与副作用的一类功能材料。
材料科学的发展,使得人体中除了大脑以及大多数内分泌器官外的其他组织器官都可找到替代品。
生物医用材料直接用于人体或与人体健康密切相关领域,因此对其应用范围与标准有严格的要求。
不可降解生物材料在植入人体后,如果长期存在于机体内会引起一系列的机体反应,需要持续外部服药进行免疫抵抗,有时还需要二次手术将其取出,无疑增加了病人的痛苦和医疗费用,同时还需控制因手术而产生的二次感染。
正因如此,可降解生物材料作为医疗领域新材料发展起来。
一、可降解生物医用材料的发展关于可降解生物医用材料的应用研究可追溯到1900年,Erwin Payr首次介绍了在塑料关节中使用镁金属进行关节定位与治疗的方法;1907年Lambotte利用纯镁板与镀金钢钉共同使用进行修复小腿骨折的研究,并发现了镁元素存在可降解性;1949年研究学者首次发表了关于生物医用高分子材料的展望性论文;2001年研究学者首次发表了利用可降解纯铁支架进行动物植入实验的论文。
生物材料发展历程大致经历的3个阶段见表1所示。
如今可降解生物医用材料的发展呈不断上升趋势,各种新型可降解生物材料如雨后春笋般破土而出,可降解生物医用材料所带来的社会经济效益也日益增加。
加大可降解生物医用材料的深入研究,对于战胜危害人类的重大疾病,保障人们生命健康意义非凡。
二、可降解生物医用材料的分类与用途目前,可降解生物医用材料的种类很多,主要分为可降解医用高分子材料、生物陶瓷材料、可降解医用金属材料以及可降解医用复合材料等。
可降解医用高分子材料又可分成天然和合成高分子材料。
天然高分子材料通常是天然高分子经过简单加工后得到的材料,主要有胶原、丝蛋白、纤维素、壳聚糖及天然高分子的衍生物等;合成高分子材料则是通过控制反应条件,产生结构重复性高的材料,主要有聚氨酯、聚酯、聚乳酸及其他医用合成塑料和橡胶等材料。
生物可降解材料研究现状及进展
2019•01行他动忠当代化工研究 $ Chenmical I ntermediate ^生物可降解材料研究现状及进展*郭钟晟(太原市知达常青藤中学校山西030000)摘要:本文综述了各类可生物降解材料的特点和降解特性,综合对比了不同材料的性能和合成路径及该领域的研究进展。
为未来的人们 的研究提供了建议和参考。
关键词:降解材料;聚乳酸;聚乙交酯;P-嶙酸三钙;聚U -己内酯)中图分类号:T 文献标识码:AResearch Status and Progress of Biodegradable MaterialsGuo Zhongsheng(Taiyuan Zhi Da Chang Ivy Middle School,Shanxi,030000)Abstract'. The characteristics and degradation characteristics o f various biodegradable materials were reviewed in this paper, and the properties, synthesis routes and r esearch p rogress in this f ield w ere compared. It p rovides suggestions and r eferences f o r f uture research.Key words', degradable materials% polylactic acidi poly gfycolide;beta tricalcium p hosphate% poly (epsilon caprolactone)材料的发展史即为人类文明的发展史,人类社会的进 步离不开材料的使用和发展。
材料包含了无机非金属材料、金属材料和高分子材料三大类,已经成为现代文明三大支柱 (能源、材料、信息)之一。
生物可降解塑料的应用研究现状及发展方向
生物可降解塑料的应用、研究现状及发展方向关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料绪论半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。
但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。
有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。
因此,解决这个问题已成为环境保护方面的当务之急。
一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。
为了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。
进行填埋处理时占地多,且使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。
不可降解的大众塑料塑料对地球的危害:(1)两百年才能腐烂。
塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。
(2)降解塑料难降解。
市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物降解材料的研究现状摘要:介绍了生物降解材料和光降解材料的研究背景、研究内容、研究成果和应用现状。
分析了其产品对环境的改善和不足,提出了对其降低成本、提高性能和扩大应用范围的建议。
关键词:生物降解材料;光降解材料;塑料;成本;环境近年来,塑料生产技术有了很大的发展,塑料已经渗透到人们生产和生活的各个领域,与水泥、钢铁和木材并称四大工业材料。
由于塑料本身具有质量轻,耐腐蚀和易于成型加工等优点,使其成为人们不可或缺的材料。
然而现在塑料的使用却面临巨大的挑战。
在自然界中塑料很难降解,使用后产生大量固体废弃物。
目前在处理这些塑料垃圾时大部分采用焚烧和掩埋的方法,但都未能解决污染问题,例如焚烧后产生的一些有毒气体反而进一步导致了污染的扩散;塑料掩埋地下需要近300 年才能够完全降解。
另外石油,天然气等能源都已经面临枯竭的危机,全世界的石油储量大约只能再用40 多年,以石油为原料的塑料生产受到很大的阻力。
为了减轻废旧塑料对环境的污染和缓解能源危机,多年来人们尝试开发可降解塑料,用以代替普通塑料制品。
随着可生物降解塑料技术的发展,聚乳酸(PLA) 、生物聚酯等生物降解材料的逐渐成熟,将推进塑料制品可生物降解化,为减少废旧塑料制品带来的污染,并为最终实现资源和环境的可持续性发展找到出路。
目前可降解塑料的研制开发十分活跃,并部分进入工业化生产,但从总体上看,当前降解仍处于有待于对技术进行更深入研究、提高性能、降低成本、拓宽用途并逐渐推向市场的阶段。
本文对生物可降解材料的发展和应用现状进行了简介,并指出其不足。
1 目前各国生物课可降解塑料的应用现状生物降解塑料[1]不仅在生产过程中有节能减排效果,而且在使用过程也具有环境友好的特征。
普通聚烯烃塑料的合成会排放大量CO2 等尾气及污染物,而塑料制品大量使用,尤其是农用薄膜和包装材料又造成了日益严重的白色污染。
但生物降解塑料则不然,其原料来源是可以再生的农作物,农作物在生长过程中通过光合作用可以吸收CO2 放出氧气,其制品废弃物可以在掩埋堆肥条件下完全降解成水和CO2 ,无污染物产生。
我国已成功开发的新型降解塑料------二氧化碳塑料[2],是以工业废弃CO2 和烃为原料共聚而制成,其中CO2 含量为31 %~50 %。
与普通塑料相比,CO2 塑料不仅利用工业废气CO2变废为宝,有效减少温室效应,而且对烃及上游原料石油的消耗也大大减少。
近年来,用转基因植物生产生物降解塑料的研究已经取得很大进展。
随着重组DNA 技术的发展,未来用转基因植物生产生物降解塑料的商业化,必将促进生物降解塑料的广泛应用,进一步节约石油资源,减轻环境压力。
因此,生物降解塑料产业规模不断扩大的过程,其实就是CO2 减排的过程,可逐渐消除困扰全世界多年的温室效应和白色污染两大难题,促进人类、经济与环境和谐发展。
现生产降解塑料的主要国家有美国、意大利、德国、加拿大、日本、中国等。
美国是开发降解塑料的主要国家之一,如有专门的塑料降解研究联合体(PDRC) 、生物/ 环境降解塑料研究会(BEOPS) 等,其宗旨在于进行有关降解材料合成、加工工艺、降解试验、测试技术和方法标准体系的建立。
近年日本相继成立了生物降解塑料研究会、生物降解塑料实用化检讨委员会,日本通产省已将生物降解塑料作为继金属材料、无机材料、高分子材料之后的“第四类新材料”。
欧洲Bhre-Eurae对生物降解塑料建立了完善的降解评价体系。
意大利政府立法将于2010年禁用非生物可降解塑料袋。
生物降解塑料应用瓶颈正在打破。
虽然从全球范围内看,几年前就形成了生物降解塑料热,但由于可生物降解塑料价格相对高昂、某些性能指标与传统塑料还有一定差距,其市场接受度还不是很高。
价格高是生物塑料推广难的最主要原因,尤其是在国际油价相对比较低的时候,传统塑料的价格优势非常明显。
现在,国际油价长时间徘徊在百美元以上,传统塑料的价格优势正在逐渐缩小,寻找石油路线合成塑料替代品,尤其是可循环利用的无污染材料的工作变得更为迫切,这就为生物塑料提供了一个有利的市场支撑条件。
在推广的初始阶段,生物塑料很需要政策[3] 的支持。
一些发达国家采用的办法是,政府出面规定商场和超市必须采用经PLA 等生物塑料改性、具有可降解性能的塑料薄膜制品,这样的政府调节行为对推动生物塑料产业和相关的传统塑料/生物塑料改性及其制品加工业的良性发展是十分必要的。
2007 年3 月2 日,美国旧金山市议会通过了禁止超市、药店等零售商使用传统塑料袋的法案。
该法案规定,超市和药店等零售商只能向顾客提供纸袋、布袋或以玉米副产品为原料生产的可生物降解塑料袋,化工塑料袋被严格禁止。
该法案的实施就大大推动了生物塑料袋的应用推广速度。
为积极推动生物降解塑料、践行绿色奥运的理念,北京奥运会期间,在集中用餐地点有选择地使用了生物降解塑料餐具;在使用一次性餐具场所全部使用生物降解塑料餐具。
北京奥运村使用了800 多万个生物降解塑料袋,以解决传统塑料袋造成的环境污染问题。
这无疑将是我国大力推广生物塑料应用的一个良好开端。
2 生物可降解材料的研究现状2.1 产品分类塑料按其降解机理主要分为光降解塑料、生物降解塑料和光- 生物双降解塑料。
降解塑料按降解的环境条件分类,可分为非(或不完全) 生物降解塑料和全生物降解塑料两大类,包括光降解塑料、热氧化降解塑料、淀粉基部分生物降解塑料等。
2.2 光降解塑料[4],光降解塑料在日光照射下吸收紫外线后发生光引发作用,使键能减弱,长链分裂成较低分子量的碎片,聚合物的完整性受到破坏,物理性能下降。
较低分子量的碎片在空气中进一步发生氧化作用,产生自由基断链反应,降解成能被生物分解的低分子量化合物,最后被彻底氧化为CO2和H2O。
整个降解过程是由光降解和自由基断链氧化反应相结合的Norish反应[5]:碳基聚合物的光降解光降解塑料是在普通塑料如聚乙烯(PE) 、聚丙烯(PP)中加入光敏剂、热氧化剂、生物诱发剂(如淀粉) 等,使一次性塑料制品在完成使用寿命后,加速降解。
这些塑料袋的应用性能和价格接近普通塑料袋,而且其废弃物在光、热、微生物等环境条件下,也会发生质量劣化、力学性能下降或部分被微生物吞噬等,但不能在较短时间内完全降解成二氧化碳和水。
长期跟踪实验发现,塑料只要降解破碎成一定程度的小碎片或粉末,不但不会对植物的根系造成危害,还能够起到疏松土壤的作用。
2.2.1 合成型光降解材料[6]在高聚物中引入感光基使其具有光降解性,己工业化的有以下几种:(1)乙烯与一氧化碳共聚物本世纪年代美国杜邦公司开发了,即为光降解高分子材料的最早代表产品。
该共聚物中的羧基能吸收270~360mm的紫外光,即为光敏感基团。
用该共聚物制成的薄膜等产品己工业化生产。
(2)乙烯酮共聚物将乙烯酮引入聚合物主链中,可制成光降解高聚物。
与乙烯酮相似的单体还有含酮羧基的甲乙酮和苯乙烯酮等。
此类光降解材料也己实现了工业化生产。
比外以下聚合物均有光降解性:结晶度为20%~30%的间规1,2-聚丁二烯;氯乙烯和一氧化碳共聚物;苯乙烯、MMA和甲乙酮、苯基乙烯基酮、苯基丙基酮等的其中之一组成的共聚物。
2.2.2 添加型光降解材料将具有光增敏作用的助剂添加到高聚物中即可制备出光降解高分子材料。
具有光增敏作用的助剂较多,目前应用的有以下几种:过滤金属络合物、二茂铁、羧酸铁乙烯-CO共聚物(ECO)、甲基乙烯基酮等酮类化合物、苯乙烯-苯基乙烯基酮共聚物等。
我国在光降解高分子材料(主要是光降解塑料)方面的研究从80年代开始,主要集中在农用地膜的开发。
有10多个科研或生产企业在这一领域进行了开发研究,取得了可喜的成绩。
如长春应化所开发的光降解地膜,短寿命50~70,天衰变期两周,长寿命60~90天,衰变期4周,已在山东、山西、新疆等地进行应用试验;天津轻院合成的可控光降解剂加入中,制成的地膜也开展了应用试验;北京高分子材料科技开发公司与长春应化所合作,经过多年推广应用已取得较大成绩。
安徽农大开发成功的光降解银色薄膜获21届日内瓦国际展览会金奖。
上海塑料制品研究所研究开发的光降解塑料包装袋己商品化。
多年的研究结果表明,光降解地膜诱导期60天左右可确保增产效果;光降解地膜与普通地膜相比,土壤中有关化学元素含量差别不大,证明无化学污染;曝晒部分光降解地膜经过一季作物后可降解成小于44cm2碎片。
光降解地膜的主要问题是埋土部分降解不理想。
2.3 生物降解塑料[6][7]生物降解塑料是指在自然环境下通过微生物的生命活动能很快降解的高分子材料。
按其降解特性可分为完全生物降解塑料和生物破坏性塑料。
按其来源则可分为天然高分子材料、微生物合成材料、化学合成材料和掺混型材料等。
天然高分子型是利用淀粉、纤维素、甲壳质、蛋白质等天然高分子材料制备的生物降解材料。
这类物质来源丰富,可完全生物降解,而且产物安全无毒性,日益受到重视。
微生物合成高分子聚合物是由生物发酵方法制得的一类材料,主要包括微生物聚酯和微生物多糖,其中以前者研究较多。
化学合成型材料大多是在分子结构中引入酯基结构的脂肪族聚酯,在自然界中其酯基易被微生物或酶分解。
目前已开发的主要产品有聚乳酸、聚己内酯(PCL)、聚丁烯琥珀酸酯(PBS)等。
掺混型是将两种或两种以上的高分子共混聚合,其中至少有一种组分为生物可降解物,该组分多采用淀粉、纤维素等天然高分子,其中又以淀粉居多。
2.3.1 天然高分子型自然界中存在的纤维素、甲壳素和木质素等均属降解性天然高分子,这些高分子可被微生物完全降解。
但因纤维素存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求。
因此,它大多与其它高分子,如由甲壳质制得的脱乙酞基多糖等共混制得。
如日本以纤维素和脱乙酞基壳多糖进行复合,制得了生物降解塑料,采用流涎法制得的薄膜与普通的膜的强度相似,并可在个月后完全分解,盒状制品天可完全分解,但目前尚未工业化生产。
近年来,我国有不少单位利用从稻草、麦秸等草本植物中提取的纤维素为原。