确定二次函数的表达式教案

合集下载

2.3 确定二次函数的表达式 第2课时(教案)-北师大版数九年级下册

2.3 确定二次函数的表达式 第2课时(教案)-北师大版数九年级下册

第2课时由三点确定二次函数的表达式1.经历确定二次函数表达式y=ax2+bx+c的过程,体会求二次函数表达式的思想方法.2.利用二次函数图象上的三个点的坐标,运用待定系数法确定二次函数表达式.1.经历确定二次函数表达式的过程,体会求二次函数表达式的方法,培养数学应用意识.2.在学习过程中体会学以致用,提高运用所学知识解决实际问题的能力.1.逐步培养学生观察、比较、分析、概括等逻辑思维能力.2.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【重点】利用二次函数图象上的三个点的坐标确定二次函数表达式.【难点】运用待定系数法,采用多种方法确定二次函数表达式.【教师准备】多媒体课件.【学生准备】复习待定系数法和三元一次方程组的解法.导入一:思考下面的问题:已知二次函数y=ax2+bx+c的图象经过(0,0),(1,2),(-1,-4)三点,那么你能利用上节课所学的知识求这个二次函数的表达式吗?【学生活动】分析题目中的已知条件,回忆利用待定系数法列二元一次方程组来求二次函数表达式的方法后,互相交流,得出无法解决的结论.[设计意图]通过问题的出示,让学生认识到运用原有的知识无法解决该问题,引起了学生的好奇心,激发了学生探究新知的欲望.导入二:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的B处安装一个喷头向外喷水,该喷泉喷出的最远距离,即地面点A距离点B所在的柱子的距离(OA的长度)是3m,李冰同学建立了如图所示的直角坐标系,得到该抛物线还经过(2,1),两点,你能根据李冰同学给出的数据求出此抛物线的表达式吗?师要求学生仔细观察,思考下面的问题:1.题目中给出了几个点的坐标?2.你能运用上节课的知识求该抛物线的表达式吗?3.应该把二次函数表达式设成什么形式?顶点式还是一般式?[设计意图]通过对喷泉这一情境的探究,使学生不但明确了本节课所要探究的知识,同时更加明确了与上节课知识的联系与区别,可谓一举两得.【引例】已知一个二次函数的图象经过(1,-1),(2,-4)和(0,4)三点,求这个二次函数的表达式.【学生活动】回忆上节课的做法,由学生独立解答,代表展示解题过程.解:∵抛物线经过(0,4),∴c=4.故可设二次函数的表达式为y=ax2+bx+4,把(1,-1),(2,-4)分别代入二次函数y=ax2+bx+4中,得解方程组,得∴这个二次函数的表达式为y=x2-6x+4.【想一想】知道了函数图象上的三个点的坐标,能不能直接用待定系数法设成y=ax2+bx+c进行解答.【师生活动】学生思考后,与同伴交流想法,再参与到小组的讨论中去.组长展示解答过程,师生共同订正.解:设所求的二次函数的表达式为y=ax2+bx+c,将三点(1,-1),(2,-4)和(0,4)分别代入表达式,得解这个方程组,得∴这个二次函数的表达式为y=x2-6x+4.【教师点评】通过上面的探究,可知如果已知二次函数y=ax2+bx+c的图象所经过的三个点,那么就可以确定这个二次函数的表达式.[设计意图]利用上节课所学的知识进行引入,既复习了旧知,又引出了新知,继而再接触本节课所学知识的解题方法,同时也为下面的例题做好了铺垫.(教材例2)已知二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标.〔解析〕由于(-1,10),(1,4),(2,7)三个点都不是特殊点,所以设所求的二次函数的表达式为y=ax2+bx+c,然后把三个点代入,得到三元一次方程组,进而解出a,b,c的值即可.【学生活动】学生先独立解答,然后同伴相互订正.课件出示解题过程(规范学生的解答步骤).解:设所求的二次函数的表达式为y=ax2+bx+c,将三点(-1,10),(1,4),(2,7)的坐标分别代入表达式,得解这个方程组,得所以所求二次函数的表达式为y=2x2-3x+5.因为y=2x2-3x+5=2+,所以二次函数图象的对称轴为直线x=,顶点坐标为.[设计意图]通过进一步探究,掌握了已知三点坐标确定二次函数表达式的方法,提高了解决问题的能力.[知识拓展]已知三点确定二次函数表达式的方法和步骤:利用待定系数法y=ax2+bx+c三元一次方程组a,b,c的值二次函数的表达式.课件出示:【议一议】一个二次函数的图象经过点A(0,1),B(1,2),C(2,1),你能确定这个二次函数的表达式吗?你有几种方法?与同伴进行交流.【师生活动】师要求学生仔细观察给出的三个点的特征,根据点的特征合理地选择解答方法.学生解答,师巡视发现学生不同的解法,并找解法不同的学生板演:解法1:∵二次函数图象与y轴的交点的纵坐标为1,∴c=1.设二次函数的表达式为y=ax2+bx+1,将点(1,2)和(2,1)分别代入y=ax2+bx+1,得解得∴二次函数的表达式为y=-x2+2x+1.解法2:由A(0,1),B(1,2),C(2,1)三个点的特征以及二次函数图象的对称性,可得点B(1,2)是函数图象的顶点坐标.∴二次函数的表达式为y=a(x-1)2+2,将点(0,1)代入y=a(x-1)2+2,得a=-1.∴二次函数的表达式为y=-(x-1)2+2,即y=-x2+2x+1.解法3:设二次函数的表达式为y=ax2+bx+c,将点(0,1),(1,2)和(2,1)分别代入y=ax2+bx+c,得解得∴二次函数的表达式为y=-x2+2x+1.【师生活动】通过两节课的探究,总结确定二次函数表达式的方法.【教师点评】二次函数表达式的确定方法:确定二次函数表达式待定系数法[设计意图]通过对“议一议”的探究,使学生进一步掌握了已知三个点的坐标确定二次函数表达式的步骤和方法,提高了学生一题多解的能力.1.已知三点确定二次函数表达式的方法和步骤.2.二次函数表达式的确定方法.1.一个二次函数,当x=0时,y=-5;当x=-1时,y=-4;当x=-2时,y=5.则这个二次函数的关系式是()A.y=4x2+3x-5B.y=2x2+x+5C.y=2x2-x+5D.y=2x2+x-5解析:设二次函数的关系式是y=ax2+bx+c(a≠0),∵当x=0时,y=-5,当x=-1时,y=-4,当x=-2时,y=5,∴解方程组,得∴二次函数的关系式为y=4x2+3x-5.故选A.2.过A(-1,0),B(3,0),C(1,2)三点的抛物线的顶点坐标是()A.(1,2)B.C.(-1,5)D.解析:设这个二次函数的解析式是y=ax2+bx+c,把(-1,0),(3,0),(1,2)分别代入,得解方程组,得所以该函数的解析式为y=-x2+x+,顶点坐标是(1,2).故选A.3.已知抛物线y=ax2+bx+c经过点(-1,10)和(2,7),且3a+2b=0,则该抛物线的解析式为.解析:根据题意,得解方程组,得所以该抛物线的解析式为y=2x2-3x+5.故填y=2x2-3x+5.4.已知一抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.解:(1)设这个抛物线的解析式为y=ax2+bx+c.由题意知抛物线经过A(-2,0),B(1,0),C(2,8)三点,可得解这个方程组,得∴所求抛物线的解析式为y=2x2+2x-4.(2)y=2x2+2x-4=2(x2+x-2)=2-,∴该抛物线的顶点坐标为.第2课时1.已知三点确定二次函数表达式的方法和步骤:利用待定系数法y=ax2+bx+c三元一次方程组a,b,c的值二次函数的表达式.2.二次函数表达式的确定方法:确定二次表达式待定系数法一、教材作业【必做题】1.教材第45页随堂练习.2.教材第45页习题2.7第1,2题.【选做题】教材第45页习题2.7第3题.二、课后作业【基础巩固】1.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是()A.y=2x2+x+2B.y=x2+3x+2C.y=x2-2x+3D.y=x2-3x+22.已知二次函数y=ax2+bx+c的图象经过点(1,-1),(2,-4),(0,4)三点,那么它的对称轴是直线()A.x=-3B.x=-1C.x=1D.x=33.已知抛物线y=ax2+bx+c的对称轴为直线x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为.4.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(-1,-6)两点,则a+c=.【能力提升】5.已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为()A.y=x2-4x-5B.y=-x2+4x-5C.y=x2+4x-5D.y=-x2-4x-56.已知二次函数的图象与x轴的两个交点A,B关于直线x=-1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为.7.已知二次函数y=ax2+bx+c的图象经过(0,-6),(1,0)和(-2,-6)三点.(1)求二次函数的解析式;(2)求二次函数图象的顶点坐标;(3)若点A(m-2n,-8mn-10)在此二次函数图象上,求m,n的值.8.如图所示,已知二次函数y=ax2+bx+c的图象经过A(-1,-1),B(0,2),C(1,3).(1)求二次函数的解析式;(2)画出二次函数的图象.9.(1)任选以下三个条件中的一个,求二次函数y=ax2+bx+c的解析式.①y随x变化的部分数值规律如下表:x-10123y03430②有序数对(-1,0),(1,4),(3,0)满足y=ax2+bx+c;③已知函数y=ax2+bx+c的图象的一部分(如图所示).(2)直接写出(1)中二次函数y=ax2+bx+c的三个性质.【拓展探究】10.如图①所示,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积(图②中阴影部分).【答案与解析】1.D (解析:这个二次函数的解析式是y =ax 2+bx +c ,把(1,0),(2,0)和(0,2)分别代入,得解方程组,得所以该函数的解析式是y =x 2-3x +2.故选D .)2.D (解析:二次函数的解析式为y =ax 2+bx +c ,把(1,-1),(2,-4),(0,4)分别代入表达式,得解方程组,得则二次函数的解析式为y =x 2-6x +4,所以它的对称轴是直线x =-=-=3.故选D .)3.y =-x 2+2x +(解析:根据题意,得解方程组,得所以该抛物线的解析式为y =-x 2+2x +.)4.-2(解析:把点(1,2)和(-1,-6)分别代入y =ax 2+bx +c (a ≠0),得①+②得2a +2c =-4,则a +c =-2.)5.C (解析:根据题意,x 1+x 2=-4,x 1x 2=-5,解得x 1=-5,x 2=1或x 1=1,x 2=-5,所以抛物线y =ax 2+bx +c 经过(-5,0),(1,0),(0,-5)三点,所以解得所以所求二次函数的表达式为y =x 2+4x -5.)6.y =x 2+x -(解析:∵对称轴为直线x =-1,且图象与x 轴交于A ,B 两点,AB =6,∴抛物线与x 轴交于(-4,0),(2,0),顶点的横坐标为-1.∵顶点在函数y =2x 的图象上,∴y =2×(-1)=-2,∴顶点坐标为(-1,-2),设二次函数的解析式为y =a (x +1)2-2,把(2,0)代入得0=9a -2,解得a =,∴y =(x +1)2-2=x 2+x -,∴这个二次函数的表达式为y =x 2+x -.故填y =x 2+x -.)7.解:(1)由已知得解得∴二次函数的解析式为y =2x 2+4x -6.(2)∵y =2x 2+4x -6=2(x +1)2-8,∴顶点坐标为(-1,-8).(3)由已知,得-8mn -10=2(m -2n )2+4(m -2n )-6,m 2+4n 2+2m -4n +2=0,(m +1)2+(2n -1)2=0,∴m =-1,n =.8.解:(1)根据题意,得解得∴所求的解析式为y=-x2+2x+2.(2)二次函数的图象如图所示.9.解:(1)若选择①:根据表格,可知抛物线的顶点坐标为(1,4),设抛物线的解析式为y=a(x-1)2+4,将点(0,3)代入,得a(0-1)2+4=3,解得a=-1,所以抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3;若选择②,设抛物线的解析式为y=ax2+bx+c,将(-1,0),(1,4),(3,0)分别代入得解得所以抛物线的解析式为y=-x2+2x+3;若选择③,由图象得到抛物线的顶点坐标为(1,4),且过(0,3),设抛物线的解析式为y=a(x-1)2+4,将(0,3)代入得a=-1,则抛物线的解析式为y=-(x-1)2+4=-x2+2x+3.(2)抛物线y=-x2+2x+3的性质:①对称轴为直线x=1,②当x=1时,函数有最大值,为4;③当x<1时,y随x的增大而增大.(答案不唯一) 10.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴解得∴抛物线的解析式为y=x2-4x+3. (2)∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2.(3)如图所示,∵抛物线的顶点坐标为(2,-1),∴PP'=1,由题意知阴影部分的面积等于平行四边形A'APP'的面积,平行四边形A'APP'的面积为1×2=2,∴阴影部分的面积为2.本节课的重点是利用待定系数法列三元一次方程组求二次函数的表达式,所以解决问题的前提是会解三元一次方程组,所以提前要求学生对这一部分知识进行复习,就大大降低了本节课的难度,收到了非常好的效果.突破这一难点后,就让学生类比上节课的探究方法利用已知的三个点的坐标确定二次函数表达式.在解答过程中提醒学生对于表达式的选择,要具体问题具体分析,让学生自己总结出确定二次函数表达式的步骤和方法,为后面的“议一议”的一题多解做好充分的准备.没有精心设置问题的难度,使学生步步深入地探究出求二次函数表达式的方法和步骤,对于基础差的学生而言,直接解答有点吃力.课堂上注意讲课的节奏,尽量让中下游的学生跟上老师的步伐,多给学生自己练习的时间,让学生真正成为学习的主体.随堂练习(教材第45页)解:设函数表达式为y=ax2+bx+c,将(0,2),(1,0)和(-2,3)分别代入表达式,得解得所以二次函数表达式为y=-x2-x+2.习题2.7(教材第45页)1.解:设函数表达式为y=ax2+bx+c,将(1,3),(2,0)和(3,4)分别代入表达式,得解得所以二次函数表达式为y=x2-x+13.2.解法1:设函数表达式为y=ax2+bx+c,将(1,0),(3,0)和(2,3)分别代入表达式,得解得所以二次函数表达式为y=-3x2+12x-9.解法2:设函数表达式为y=a(x-1)(x-3),将(2,3)代入表达式,解得a=-3,所以二次函数表达式为y=-3(x-1)(x-3)=-3x2+12x-9.3.解:答案不唯一.如添加:C (-2,13).设函数表达式为y =ax 2+bx +c ,将(0,a ),(1,-2)和(-2,13)分别代入表达式,得解得所以二次函数表达式为y =x 2-4x +1.1.学生通过上节课的学习,已经掌握了利用待定系数法求二次函数表达式的方法,所以本节课可以利用类比的方法进行探究.2.课前做好三元一次方程组解法的复习是求三个未知系数进而确定二次函数表达式的关键.3.要学会对所给出的点的坐标特征进行分析,合理地设出表达式,能运用不同的解法求解二次函数的表达式,提高解决问题的能力.(2014·宁波中考)如图所示,已知二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y =x +1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.〔解析〕(1)根据二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点,代入得出关于a ,b ,c 的三元一次方程组,求得a ,b ,c ,从而得出二次函数的解析式.(2)令y =0,解一元二次方程,求得x 的值,从而得出与x 轴的另一个交点坐标.(3)画出图象,再根据图象直接得出答案.解:(1)∵二次函数y =ax 2+bx +c 的图象经过A (2,0),B (0,-1)和C (4,5)三点,∴∴∴二次函数的解析式为y =x 2-x -1.(2)令y =0,得x 2-x -1=0,解得x 1=2,x 2=-1,∴点D的坐标为(-1,0).(3)图象如图所示.当一次函数的值大于二次函数的值时,x的取值范围是-1<x<4.[解题策略]本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x 轴的交点问题,是中档题,要熟练掌握.。

1.3不共线三点确定二次函数的表达式 教案

1.3不共线三点确定二次函数的表达式  教案

湘教版九年级下册数学教案1.3 不共线三点确定二次函数的表达式教学目标1.掌握用待定系数法确定二次函数的表达式.2.知道满足何种条件的三点确定一个二次函数.重点:用待定系数法确定二次函数的表达式.难点:知道满足何种条件的三点确定一个二次函数.教学设计一.预习导学学生通过自主预习P21-P23完成下列各题:1. 二次函数的表达式一般式:y= ax2+bx+c顶点式:y= y=a(x-h)2+k交点式: y=a(x-x1)(x-x2),其中x1,x2是抛物线与 x 轴的两个交点的横坐标.2.用待定系数法确定二次函数表达式的步骤有哪些?(1)设出合适的函数表达式;(2)把已知条件(自变量与函数的对应值)代入函数表达式中,得到关于待定系数的方程(方程组);(3)解方程(组)求出待定系数的值,从而写出函数表达式.设计意图:通过学生自主预习教材,初步理解掌握用待定系数法确定二次函数的表达式,知道满足何种条件的三点确定一个二次函数,培养学生的自学能力.二.探究展示(一)合作探究与一次函数相类似,如果已知二次函数图象上三个点的坐标(也就是函数的三组对应值),将它们代入函数表达式,列出一个关于待定系数a,b,c的三元一次方程组,求出a,b,c的值,就可以确定二次函数的表达式.1.已知一个二次函数的图象经过三点(1,3)(-1,-5),(3,-13 )求这个二次函数的表达式.将三个点的坐标(1,3),(-1,-5),(3,-13),分别代入函数表达式,得到关于a,b,c的三元一次方程组:2.已知三个点的坐标,是否有一个二次函数,它的图象经过这三个点?(1) P (1,-5), Q (-1,3), R (2,-3);(2) P (1,-5), Q (-1,3), M (2,-9).解 (1)设有二次函数y=ax 2+bx+c ,它的图象经过 P ,Q ,R 三点,则得到关于a ,b ,c 的三元一次方程组:解得 a= 2 ,b= -4 ,c= -3 .因此,二次函数 y=2x 2-4x-3 的图象经过P ,Q ,R 三点.(2)设有二次函数y=ax 2+bx+c ,它的图象经过 P ,Q ,R 三点,则得到关于a ,b ,c 的三元一次方程组:解得 a= 0 ,b= -4 ,c= -1 .因此,一次函数 y=-4x-1 的图象经过P ,Q ,M 三点.这说明没有一个这样的二次函数, 它的图象能经过P ,Q ,M 三点.例2中, 两点P (1,-5), Q (-1,3)确定了一个一次函数y=-4x-1.点R (2,-3)的坐标不适合y=-4x-1,因此点R 不在直线PQ 上,即P ,Q ,R 三点不共线.点M ( 2,-9)的坐标适合y=-4x-1,因此点M 在直线PQ 上, 即P ,Q ,M 三点共线. 例2表明:若给定不共线三点的坐标,且它们的横坐标两两不等,则可以确定一个二次函数; 而给定共线三点的坐标,不能确定二次函数.a+b+c=5a-b+c=34a+2b+c=-3a+b+c=5 a-b+c=3 4a+2b+c=-9可以证明:二次函数y=ax2+bx+c(a≠0)的图象上任意三个不同的点都不在一条直线上. 还可以证明:若给定不共线三点的坐标,且它们的横坐标两两不等,则可以确定唯一的一个二次函数,它的图象经过这三点.设计意图:通过探究,进一步理解掌握用待定系数法确定二次函数的表达式,知道满足何种条件的三点确定一个二次函数.培养学生通过解决问题的能力.(二)展示提升1.已知二次函数y=ax2+bx+c的图象经过三点A(0,2), B(1,3),C(-1,-1),求这个二次函数的表达式.2.已知二次函数的图象经过A(1,3), B(-4,-12),C(3,-5)三点.(1)求此抛物线的解析式;(2)求出这条抛物线与x轴、y轴的交点P、Q、R的坐标.3.已知二次函数的图象与x轴的交点的横坐标分别是x1=-3,x2=1,且与y轴的交点为(0,2),求这个二次函数的表达式.设计意图:可点名展示,也可分组展示,培养学生分析问题的能力;同时增强学生团结协作的精神。

《确定二次函数的表达式》(优秀教案)

《确定二次函数的表达式》(优秀教案)
情感态度价值观:
4.逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考的能力、勇于创新的精神,以及良好的学习习惯。
重点
难点
1.学会用特定系数法确定二次函数的表达式。
2.灵活选用三种表达形式来确定二次函数的表达式,解决实际问题。
关键
问题
1.掌握二次函数解析式的三种不同表达形式。
2.学生能够在小组内畅所欲言,进行有序有效的交流,并在同伴交流时认真倾听,做好记录;
3.学科长组织组员围绕任务目标热烈讨论,及时进行修改,统一认识,做好展示准备
展示交流
规范评价
15---20
min
创设展示交流情境
1.每个小组上台,按问题顺序进行展示交流,解决问题;
2.要求学生规范上台讲解展示的语言,强调生生互动,激发学生质疑的热情;
《确定二次函数的表达式》课堂学习过程设计
上课
年级
九年级
学科:数学
主题
确定二次函数的表达式
指导教师
学生主持
第几
课时
1
课型
问题综合解决评价课
学习日期
学习
目标
知识技能:
1.掌握二次函数解析式的三种不同表达形式。
2.学会用特定系数法确定二次函数的表达式。
过程方法:
3.经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。
1.学生主持呈现学习目标,学生展读学习目标;
2.学生主持呈现学生生成问题;
3.希望学生能积极进入状态,准备讨论问题。
自主学习
合作讨论
8---12
min
创设讨论
学习情境
1.教师巡回检查指导;

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计一. 教材分析《确定二次函数的表达式》是北师大版数学九年级下册第2章3.2节的内容。

本节课主要让学生掌握二次函数的通用形式,了解二次函数的各个系数与函数图象的关系,为后续学习二次函数的性质打下基础。

教材通过实例引导学生从实际问题中抽象出二次函数模型,进一步探究二次函数的性质。

二. 学情分析九年级的学生已经学习了函数的基本概念,对一次函数、二次函数有一定的了解。

但学生在确定二次函数表达式方面存在困难,难以把握二次函数的各个系数与函数图象的关系。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出二次函数模型,并通过观察、操作、猜想、验证等方法,让学生体会二次函数的性质。

三. 教学目标1.让学生掌握二次函数的通用形式;2.使学生了解二次函数的各个系数与函数图象的关系;3.培养学生解决实际问题的能力;4.引导学生运用数形结合的方法探究二次函数的性质。

四. 教学重难点1.重点:二次函数的通用形式,二次函数的各个系数与函数图象的关系;2.难点:确定二次函数表达式,二次函数的性质。

五. 教学方法1.情境教学法:通过实际问题引出二次函数模型,激发学生兴趣;2.观察法:让学生观察二次函数图象,发现其性质;3.操作法:让学生动手操作,验证二次函数的性质;4.讨论法:分组讨论,培养学生的合作能力。

六. 教学准备1.课件:制作课件,展示二次函数的图象和性质;2.练习题:准备一些有关二次函数的练习题,巩固所学知识;3.板书:准备黑板,书写关键知识点。

七. 教学过程1.导入(5分钟)教师通过展示一个实际问题,引导学生从实际问题中抽象出二次函数模型。

例如:抛物线与x轴相交于A、B两点,且AB=2,求抛物线的解析式。

2.呈现(10分钟)教师展示二次函数的图象,让学生观察并描述二次函数的性质。

引导学生关注二次函数的顶点、开口方向、对称轴等关键点。

3.操练(10分钟)教师引导学生分组讨论,让学生动手操作,验证二次函数的性质。

2.3 确定二次函数的表达式 教案

2.3  确定二次函数的表达式 教案

一、情境导入一副眼镜镜片的下半部分轮廓对应的两条抛物线关于y 轴对称,如图.AB ∥x 轴,AB =4cm ,最低点C 在x 轴上,高CH =1cm ,BD =2cm.你能确定右轮廓线DFE 所在抛物线的函数解析式吗?二、合作探究探究点:用待定系数法确定二次函数解析式 【类型一】 已知顶点坐标确定二次函数解析式已知抛物线的顶点坐标为M (1,-2),且经过点N (2,3),求此二次函数的解析式.解析:因为抛物线的顶点坐标为M (1,-2),所以设此二次函数的解析式为y =a (x -1)2-2,把点N (2,3)代入解析式解答.解:已知抛物线的顶点坐标为M (1,-2),设此二次函数的解析式为y =a (x -1)2-2,把点N (2,3)代入解析式,得a -2=3,即a =5,∴此函数的解析式为y =5(x -1)2-2.方法总结:若题目给出了二次函数的顶点坐标,则采用顶点式求解简单. 变式训练:见《学练优》本课时练习“课堂达标训练” 第9题 【类型二】 已知三个点确定二次函数解析式已知:抛物线经过A (-1,8)、B (3,0)、C (0,3)三点. (1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.解析:(1)设一般式y =ax 2+bx +c ,再把A 、B 、C 三点坐标代入得到关于a 、b 、c 的方程组,然后解方程组求出a 、b 、c 即可;(2)把(1)中的解析式配成顶点式即可得到抛物线的顶点坐标.解:(1)设抛物线的解析式为y =ax 2+bx +c ,根据题意得⎩⎪⎨⎪⎧a -b +c =8,9a +3b +c =0,c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3.所以抛物线的解析式为y =x 2-4x +3;(2)y =x 2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1).方法总结:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式.变式训练:见《学练优》本课时练习“课堂达标训练” 第4题 【类型三】 已知两交点或一交点和对称轴确定二次函数解析式已知下列抛物线满足以下条件,求各个抛物线的函数表达式. (1)抛物线经过两点A (1,0),B (0,-3),且对称轴是直线x =2;(2)抛物线与x 轴交于(-2,0),(4,0)两点,且该抛物线的顶点为(1,-92).解析:(1)可设交点式y =a (x -1)(x -3),然后把B 点坐标代入求出a 即可;(2)可设交点式y =a (x +2)(x -4),然后把点(1,-92)代入求出a 即可.解:(1)∵对称轴是直线x =2,∴抛物线与x 轴另一个交点坐标为(3,0).设抛物线解析式为y =a (x -1)(x -3),把B (0,-3)代入得a (-1)×(-3)=-3,解得a =-1,∴抛物线解析式为y =-(x -1)(x -3)=-x 2+4x -3;(2)设抛物线解析式为y =a (x +2)(x -4),把(1,-92)代入得a (1+2)×(1-4)=-92,解得a =12,所以抛物线解析式为y =12(x +2)(x -4)=12x 2-x -4.方法总结:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型四】 二次函数解析式的综合运用如图,抛物线y =x 2+bx +c 过点A (-4,-3),与y 轴交于点B ,对称轴是x =-3,请解答下列问题:(1)求抛物线的解析式;(2)若和x 轴平行的直线与抛物线交于C ,D 两点,点C 在对称轴左侧,且CD =8,求△BCD 的面积.解析:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,根据对称轴是x =-3,求出b =6,即可得出答案;(2)根据CD ∥x 轴,得出点C 与点D 关于x =-3对称,根据点C 在对称轴左侧,且CD =8,求出点C 的横坐标和纵坐标,再根据点B 的坐标为(0,5),求出△BCD 中CD 边上的高,即可求出△BCD 的面积.解:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,∴c -4b =-19.∵对称轴是x =-3,∴-b2=-3,∴b =6,∴c =5,∴抛物线的解析式是y =x 2+6x +5;(2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.∵点C 在对称轴左侧,且CD =8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12.∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,∴△BCD 的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 三、板书设计确定二次函数的表达式1.运用顶点式确定二次函数解析式 2.运用三点式确定二次函数解析式 3.运用交点式确定二次函数解析式。

确定二次函数的表达式(第2课时)教学设计 (2)

确定二次函数的表达式(第2课时)教学设计 (2)

第二章二次函数《确定二次函数的表达式(第2课时)》教学设计说明一、学生知识状况分析在前几节课,学生已经分别学习了二次函数的图象与性质,确定二次函数的表达式(第1课时).在此基础上,通过对待定系数法进一步探讨二次函数的表达式的确定方法.二、教学任务分析本节课是北师大版义务教育教科书九年级(下)第二章《二次函数》第三节的第2课时,主要是通过对用待定系数法求二次函数表达式的探究,掌握求表达式的方法.能灵活的根据条件恰当地选取选择表达式,体会二次函数表达式之间的转化.教学目标知识目标:经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识.技能目标:会用待定系数法求二次函数的表达式.情感目标:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点求二次函数的解析式.教学难点根据问题灵活选用二次函数表达式的不同形式,求出函数解析式,解决实际问题.三、教法学法“问题情境—建立模型—应用与拓展”,让学生积极探索,并和同伴进行交流,勇于发表自己的观点,从交流中发现新知识.四、教学过程本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置.第一环节:情境引入(从现实情境和已有知识经验出发,讨论求二次函数表达式的方法)1.二次函数解析式有哪几种表达方式?一般式:y=ax 2+bx+c顶点式:y=a(x-h)2+k交点式:y=a(x-x 1)(x-x 2)2.如何求二次函数的解析式?已知二次函数图象上三个点的坐标,可用待定系数法求其解析式. 第二环节:问题解决例1已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标.分析:(1)本题可以设函数的表达式为?(2)题目中有几个待定系数?(3)需要代入几个点的坐标?(4)用一般式求二次函数的表达式的一般步骤是什么?解:设所求的二次函数的表达式为c bx ax y ++=2由已知,将三点(-1,10),(1,4),(2,7)分别代入表达式,得 ⎪⎩⎪⎨⎧++=++=+-=c b a c b a c b a 247410解这个方程组,得⎪⎩⎪⎨⎧=-==532c b a∴所求函数表达式为5322+-=x x y∴831)43(253222+-=+-=x x x y ∴二次函数对称轴为直线43=x ,顶点坐标为)831,43( 例2 已知抛物线的顶点为(-1,-3),与y 轴交点为(0,-5),求抛物线的解析式.解题过程略。

初中数学_确定二次函数的表达式教学设计学情分析教材分析课后反思

初中数学_确定二次函数的表达式教学设计学情分析教材分析课后反思

2.3(1)确定二次函数的表达式教学设计一、教学目标经历用待定系数法求二次函数关系式的过程,加深对二次函数的理解,二、教学重点和难点重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.三、教学过程(一)复习回顾:1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.若二次函数y=ax ²+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式?4.我们在用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y =(k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(二)初步探索1、已知二次函数2ax y =的图象经过点A (2,-3)、B (3,m )(1)求a 与m 的值;(2)写出该图象上点B 的对称点的坐标:_________(3)当x_________时,y 随x 的增大而减小(4)当x_________时,y 有最_________值,是_________。

2.已知二次函数c ax y +=2的图象经过点(2,3)和(-1,-3),求二次函数的表达式3.已知二次函数bx ax y +=2的图象经过点(1,2)、(2,3),求二次函数的表达式.4.已知二次函数c bx x y ++=2图象经过点M (1,—2)、N(—1,6),求二次函数的表达式.探索1:在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c 中三个都是未知的,这个我们将在下节课中进行研究.(三)深入探索5.如图是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其 表达式吗?6.已知二次函数的图象与y 轴的交点的横纵坐标是为1,且经过点M(2,5)、N(-2,13),(1)求这个二次函数的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.(3)求这个二次函数的最大值或最小值。

北师大版数学九年级下册2.3.1《确定二次函数的表达式》说课稿1

北师大版数学九年级下册2.3.1《确定二次函数的表达式》说课稿1

北师大版数学九年级下册2.3.1《确定二次函数的表达式》说课稿1一. 教材分析北师大版数学九年级下册2.3.1《确定二次函数的表达式》这一节主要介绍了二次函数的表达式以及如何确定二次函数的表达式。

二次函数是中学数学中的重要内容,对于学生来说,掌握二次函数的表达式以及确定方法具有重要意义。

本节课通过实例引导学生掌握待定系数法确定二次函数的表达式,培养学生运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了函数、方程等基础知识,对函数的概念有一定的了解。

同时,学生已经掌握了二次函数的一般形式,具备了一定的数学思维能力。

但是,对于如何确定二次函数的表达式,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的认知基础,引导学生逐步掌握确定二次函数表达式的方法。

三. 说教学目标1.知识与技能目标:让学生掌握待定系数法确定二次函数的表达式,能运用所学知识解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等数学活动,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用价值。

四. 说教学重难点1.教学重点:待定系数法确定二次函数的表达式。

2.教学难点:如何引导学生运用待定系数法确定二次函数的表达式,以及如何将实际问题转化为数学问题。

五.说教学方法与手段1.教学方法:采用启发式教学法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过复习二次函数的一般形式,引导学生思考如何确定二次函数的表达式。

2.新课讲解:讲解待定系数法确定二次函数的表达式,并通过实例进行分析。

3.课堂互动:学生分组讨论,尝试运用待定系数法确定给定二次函数的表达式。

4.总结提升:教师引导学生总结确定二次函数表达式的步骤,并强调其在实际问题中的应用。

5.课堂练习:布置相关练习题,让学生巩固所学知识。

确定二次函数表达式

确定二次函数表达式

第二章二次函数2.3 确定二次函数的表达式(一)一、学生知识状况分析学生已经学习了二次函数的一般式和顶点式表达式,二次函数的图像和性质,尤其对特殊类型的二次函数图像已有充分的认识。

并初步具备了敢于探究与实践,乐于合作交流,善于总结提升的良好习惯,自主学习的愿望强烈,主动发展的意识浓厚。

二、学习任务分析本节课是在学习二次函数的表达式和图像性质的基础上展现,目的为二次函数的的实际应用奠基,是本章学习的关键点。

本节课既要承接上一节课的数形结合的数学思想,又要能够根据实际问题抽象数学模型,同时还要启迪学生的思维,引导和规范学生学习。

三、教学目标1、知识目标:经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。

2、技能目标:会用待定系数法求二次函数的表达式。

3、情感目标:能把实际问题抽象为数学问题,也能把所学知识运用于实践,加强学生的理想教育,培养学生积极参与的意识,加深学生在生活中学学数学,将数学知识服务于生活的学习理念,养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,真正实现“和谐高效、思维对话”,培养数学的应用意识。

四、教学过程本节课设计了六个教学环节:第一环节:小组讨论,引入课题;第二环节:问题思考;第三环节:合作学习;第四环节:巩固提高;第五环节:我的收获.环节一:小组讨论,引入课题如图 2-7 是一名学生推铅球时,铅球行进高度 y (m )与水平距离 x (m )的图象,你能求出其表达式吗?解:设函数表达式为:y =a(x-h)2+k ,由图象得顶点是(4,3)。

则y =a(x-4)2+3,图像经过点(10,0),故0=a(10-4)2+3,a=121-所以函数表达式为y =121- (x-4)2+3 观察图象可得该表达式是一个二次函数,已知二次函数顶点坐标(4,3)和与x 轴交点(10,0)。

联系之前所学二次函数顶点式方程y =a(x-h)2+k 。

2.3第1课时由两点确定二次函数的表达式(教案)

2.3第1课时由两点确定二次函数的表达式(教案)
2.逻辑推理:培养学生运用逻辑推理能力,推导由两点确定二次函数的一般方法,理解数学知识之间的内在逻辑关系;
3.数学建模:让学生学会运用数学建模方法,解决实际问题时能够将问题转化为数学问题,并用数学语言进行表达;
4.数形结合:培养学生通过图形直观地理解二次函数的性质,提高数形结合的能力过程中,学生可能会遇到的求解困难,如去括号、移项、合并同类项等。
(2)理解二次函数的顶点式:帮助学生理解顶点式y = a(x - h)^2 + k的含义,并与两点式求解方法相互转化。
难点举例:如何从两点式中推导出顶点式,以及理解顶点式中h、k的几何意义。
(3)数形结合能力的培养:引导学生通过观察图形,理解二次函数的性质,提高数形结合能力。
三、教学难点与重点
1.教学重点
(1)理解由两点确定二次函数表达式的方法:强调两点式求二次函数的一般步骤,即根据给定的两点(x1, y1)和(x2, y2),建立方程组,解出二次函数的三个参数a、b、c。
举例:给定两点(1, 4)和(3, 0),求解过这两点的二次函数表达式。
(2)运用数形结合理解二次函数性质:通过绘制抛物线图形,让学生观察并理解二次函数的顶点、开口方向、对称轴等性质。
2.3第1课时由两点确定二次函数的表达式(教案)
一、教学内容
本节课选自教材第二章第三节“二次函数”,第1课时“由两点确定二次函数的表达式”。教学内容主要包括:1.理解由两点确定二次函数的一般方法;2.学会运用两点求解二次函数表达式;3.掌握如何将实际问题抽象为由两点确定二次函数模型。通过以下示例进行教学:
难点举例:如何根据图形判断抛物线的开口方向、顶点、对称轴等,以及将这些性质与二次函数表达式相互关联。
(4)解决实际问题时建模能力的培养:指导学生从实际问题中抽象出二次函数模型,并学会运用所学知识解决问题。

北师版数学九年级下册3 确定二次函数的表达式教案与反思

北师版数学九年级下册3 确定二次函数的表达式教案与反思

3确定二次函数的表达式满招损,谦受益。

《尚书》原创不容易,【关注】,不迷路!第1课时确定含有两个未知数的二次函数的表达式教学目标一、基本目标1.会用待定系数法求二次函数的表达式.2.掌握用“顶点式”求二次函数表达式.二、重难点目标【教学重点】用待定系数法求二次函数的表达式.【教学难点】根据已知条件选取适当的方法求二次函数的表达式.教学过程环节1自学提纲,生成问题【5min阅读】阅读教材P42~P43的内容,完成下面练习.【3min反馈】1.由两点(两点的连线不与坐标轴平行)的坐标可以确定一次函数,即可以求出这个一次函数的表达式.2.二次函数的一般式:y=ax2+bx+c,顶点式:y=a(x--2)x2+(m+3)x +m+2的图象过点(0,5),求m的值,并写出二次函数的表达式.解:把(0,5)代入y=(m-2)x2+(m+3)x+m+2,得m+2=5,解得m=3.∴二次函数的表达式为y=x2+6x+5.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】已知二次函数y=ax2+c的图象经过点(2,3)和(-1,-3),求这个二次函数的表达式.【互动探索】(引发学生思考)用待定系数法求解.【解答】将点(2,3)和(-1,-3)的坐标分别代入表达式y =ax 2+c , 得⎩⎨⎧ 3=4a +c ,-3=a +c ,解得⎩⎨⎧ a =2,c =-5.即所求二次函数表达式y =2x 2-5.【互动总结】(学生总结,老师点评)已知函数表达式和该函数图象上两个点的坐标,一般用待定系数法求函数表达式.活动2 巩固练习(学生独学)1.写出经过点(0,0),(-2,0)的一个二次函数的表达式y =x 2+2x (答案不唯一).(写一个即可)2.若抛物线的顶点为(-2,3),且经过点(-1,5),则其表达式为y =2x 2+8x +11.3.二次函数图象的顶点坐标是(3,5),且抛物线经过点A (1,3),求此抛物线的表达式.解:设抛物线的表达式为y =a (x -3)2+5.将A (1,3)代入上式,得3=a (1-3)2+5,解得a =-2. ∴抛物线的表达式为y =-12(x -3)2+5. 活动3 拓展延伸(学生对学)【例2】二次函数的部分图象如图所示,对称轴是直线x =-1,则这个二次函数的表达式为( )A .y =-x 2+2x +3B .y =x 2+2x +3C .y =-x 2+2x -3D .y =-x 2-2x +3【互动探索】根据对称轴设顶点式→将两个点的坐标代入即可求解.【分析】由图象知抛物线的对称轴为直线x =-1,且过点(-3,0),(0,3,设抛物线的表达式为y =a (x +1)2+k .将(-3,0),(0,3)代入,得⎩⎨⎧ 4a +k =0,a +k =3,解得⎩⎨⎧ a =-1,k =4.故抛物线的表达式为y =-(x +1)2+4=-x 2-2x +3.【答案】D【互动总结】(学生总结,老师点评)本题主要考查定系数法求函数表达式,解题的关键是根据题意设出合适的二次函数表达式,已知对称轴一般设顶点式.环节3 课堂小结,当达标(学生总结,老师点评)已知二次函数y =ax 2+bx +c 中一项的系数,再知道图象上两个点的坐标,就可以确定这个二次函数的表达式.练习设计请完成本课时对应练习!第2课时 确定二次函数y =ax2+bx +c 的表达式教学目标一、基本目标1.掌握用“三点”列方程组求二次函数达式.2.能根据已知点的特点,用“交点式”求二次函数的解析式.3.通过探索和总结,让学生体会到学习数学的乐趣,从而提高学生学习数学的兴趣,并获得成功感.二、重难点目标【教学重点】用待定系数法求二次函数的表达式.【教学难点】根据已知条件选取适当的方法求二次函数的表达式.教学过程环节1 自学提纲,生成问题【5min 阅读】阅读教材P44~45的内容,完成下面练习.【3min 反馈】1.用待定系数法求二次函数的表达式y =ax 2+bx +c (a ≠0),需要求出a 、b 、c 的值,由已知条件(如二次函数图象上三个点的坐标)列出关于a 、b 、c 的方程组,求出a 、b 、c 的值,就可以写出二次函数的表达式.2.若已知抛物线的顶点或对称轴,则一般设抛物线的表达式为顶点式y =a (x -(1,-2),且经过点N (2,3),求此二次函数的表达式.解:∵抛物线的顶点坐标为M (1,-2),∴可设此二次函数的表达式为y =a (x -1)2-2.把点N (2,3)代入表达式,得a -2=3,即a =5.∴此二次函数的表达式为y =5(x -1)2-2.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标.【互动探索】(引发学生思考)已知二次函数的图象经过任意三点的坐标,考虑设二次函数的一般式解决问题.【解答】设所求二次函数的表达式为y =ax 2+bx +c (a ≠0). 将三点(-1,10),(1,4),(2,7)的坐标分别代入表达式,得⎩⎨⎧ 10=a -b +c ,4=a +b +c ,7=4a +2b +c ,解得⎩⎨⎧ a =2,b =-3,c =5.即所求二次函数的表达式为y =2x 2-3x +5.∵y =2x 2-3x +5=2x -342+318, ∴二次函数图象的对称轴为直线x =34,顶点坐标为34,318.【互动总结】(学生总结,老师点评)用待定系数法求二次函数解析式时,当已知抛物线过任意三点时,通常设二次函数的一般式,即设y=ax2+bx+c(a≠0),从而列三元一次方程组来求解.【例2】已知抛物线经过点(-1,0),(5,0)和(3,-4),求该抛物线的解析式.【互动探索】(引发学生思考)已知抛物线与x轴的两个交点坐标及另一点的坐标,应该怎样设函数解析式较为简便?【解答】设抛物线的解析式为y=a(x+1)(x-5).将(3,-4)代入,得-4=-8a,解得a=1 2 .则该抛物线的解析式为y=12(x+1)(x-5),即y=12x2-2x-52.【互动总结】(学生总结,老师点评)用待定系数法求二次函数解析式时,若已知抛物线与x轴的两个交点分别为(x1,0),(x2,0),可选择设其解析式为交点式,即y=a(x-x1)(x-x2).活动2巩固练习(学生独学)1.已知一个二次函数的图象经过A(0,-3)、B(1,0)、C(m,2m+3)、D(-1,-2)四点,求这个函数解析式以及点C的坐标.解:抛物线的解析式为y=2x2+x-3,点C坐标为-32,0或(2,7).2.已知二次函数的图象经过点(0,3),(-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?解:(1)此二次函数的解析式是y=-x2-2x+3.(2)点P(-2,3)在此二次函数的图象上.活动3拓展延伸(学生对学)【例3】已知二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是点C,求△ABC的面积.【互动探索】(1)设顶点式y=a(x-3)2+5,然后把点A坐标代入求出a,即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出点C坐标,然后根据三角形面积公式求解.【解答】(1)设抛物线的解析式为y=a(x-3)2+5.将A(1,3)代入上式,得3=a(1-3)2+5,解得a=-1 2 .即抛物线的解析式为y=-12(x-3)2+5.(2)∵A(1,3),且抛物线对称轴为直线x=3,∴B(5,3).令x=0,则y=-12(x-3)2+5=12,∴C0,1 2,∴S△ABC=12×(5-1)×3-12=5.【互动总结】(学生总结,老师点评)已知抛物线的顶点或对称轴时,常设其表达式为顶点式来求解.环节3课堂小结,当堂达标(学生总结,老师点评)用待定系数法求二次函数解析式的三种常见设法(其中,a≠0,x1、x2分别是抛物线与x轴的交点的横坐标):(1)一般式:y=ax2+bx+c;(2)顶点式:y=a(x-h)2+k;(3)交点式:y=a(x-x1)(x-x2).练习设计请完成本课时对应练习!【素材积累】海明威和他的“硬汉形象” 美国作家海明威是一个极具进取精神的硬汉子。

确定二次函数的表达式(经典)

确定二次函数的表达式(经典)
二次函数 确定二次函数的表达式
1
复习提问:
1.二次函数表达式的一般形式是什么?
y=ax²+bx+c (a,b,c为常数,a ≠0)
2.二次函数表达式的顶点式是什么?
y=a(x-h)2+k (a ≠0)
3.若二次函数y=ax²+bx+c(a≠0)与x轴两交点为 (x1,0),(x2,0)则其函数表达式可以表示成什么形 式?
AB 6CB AB 3,OC 0.9 2
B(3,0.9)代入y ax2中,0.9 a 32
a 0.1因此这段抛物线对应的二次
图 26.2.6
函数表示式为y 0.1x2 (3 x 3)
11
谈谈你的收获
12
〔议一议〕
通过上述问题的解决,您能体会到求二次函数 表达式采用的一般方法是什么?(待定系数法)
-b/2a = 3 (4ac-b2)/4a = 4
解方程组得:
a= -7 b= 42 c= -59 ∴ 二次函数的解析式为:y= -7x2+42x-59 5
解法2:(利用顶点式) ∵ 当x=3时,有最大值4∴ 顶点坐标为
(3,4) 设二次函数解析式为: y=a(x-3)2+4 ∵ 函数图象过点(4,- 3) ∴ a(4 - 3)2 +4 = - 3 ∴ a= -7 ∴ 二次函数的解析式为:
你能否总结出上述解题的一般步骤?
1.若无坐标系,首先应建立适当的直角坐标系; 2.设抛物线的表达式; 3.写出相关点的坐标; 4.列方程(或方程组); 5.解方程或方程组,求待定系数; 6.写出函数的表达式;
13
归纳:
在确定二次函数的表达式时 (1)若已知图像上三个非特殊点,常设一般式 ; (2)若已知二次函数顶点坐标或对称轴,常设顶 点式 较为简便; (3)若已知二次函数与x轴的两个交点,常设交 点式较为简单。

不共线三点确定二次函数的表达式 (教案)

不共线三点确定二次函数的表达式 (教案)

湘教版数学九年级1.3不共线三点确定二次函数的表达式教学设计课题 1.3不共线三点确定二次函数的表达式单元第一章二次函数学科数学年级九年级学习目标1、经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识.2、会用待定系数法求二次函数的表达式.3、逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重点用待定系数法求二次函数的表达式.难点用待定系数法求二次函数的表达式.教学过程教学环节教师活动学生活动设计意图导入新课1、怎样用待定系数法确定一次函数的解析式?2、二次函数的表达式有哪些?一般式:y=ax2+bx+c顶点式:y=a(x-h)2+k如何求二次函数的表达式?已知二次函数图像上三个点的坐标,可用待定系数法求其表达式回顾用待定系数法确定正比例函数、反比例函数和一次函数的解析式的求法.通过回顾用待定系数法确定正比例函数、反比例函数和一次函数的解析式的求法的回顾为本节课的探究学习做好铺垫.讲授新课一、用待定系数法求二次函数的表达式例1 已知一个二次函数的图象过点(1,3)、(-1,-5)、(3,-13)三点,求这个函数的表达式?已知三点求二次函数的解析式的一般步骤是什么?已知三点求二次函数的解析式的一般步骤:1、设:设二次函数的解析式为:y=ax2+bx+c;2、代:把三点的坐标代入所设的函数解析式;3、列:列三元一次方程组;4、解:解三元一次方程组;5、写:回代解析式,写成一般形式.二、确定二次函数是否经过已知三个点探究用待定系数法求二次函数的解析式.完成例1.会用待定系数法求二次函数的表达式.掌握用待定系数法求二次函数的表达式.系式是()A.y=4x2+3x-5 B.y=2x2+x+5C.y=2x2-x+5 D.y=2x2+x-53、已知二次函数的图象经过点(0,3)、(-3,0)、(2,-5)(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?4、已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:(1)求这个二次函数的解析式;(2)写出这个二次函数图象的顶点坐标.课堂小结1、求二次函数解析式的一般方法:y=ax2+bx+c(a≠0)2、求二次函数解析式的常用思想:注意:无论采用哪一种表达式求解,最后结果都化为一般形式.回顾本节课所学知识.培养学生良好的反思习惯,加深对知识的理解.。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。

2024北师大版数学九年级下册2.3.1《确定二次函数的表达式》教案

2024北师大版数学九年级下册2.3.1《确定二次函数的表达式》教案

2024北师大版数学九年级下册2.3.1《确定二次函数的表达式》教案一. 教材分析《确定二次函数的表达式》是北师大版数学九年级下册第2章第3节的内容。

本节课的主要目的是让学生掌握二次函数的解析式,并能够利用待定系数法求解二次函数的解析式。

教材通过实例引导学生探究二次函数的解析式,让学生在实际问题中体会数学的应用价值。

二. 学情分析学生在学习本节课之前,已经掌握了二次函数的基本概念,并了解了一次函数和正比例函数的解析式。

因此,学生在学习本节课时,具备了一定的数学基础。

但部分学生对于待定系数法求解二次函数解析式的理解可能存在困难,因此,在教学过程中,需要关注这部分学生的学习情况,通过实例和讲解,帮助他们理解和掌握待定系数法的运用。

三. 教学目标1.知识与技能:让学生掌握二次函数的解析式,并能够利用待定系数法求解二次函数的解析式。

2.过程与方法:通过探究二次函数的解析式,培养学生的观察、分析和解决问题的能力。

3.情感态度与价值观:让学生感受数学在实际生活中的应用价值,激发学生学习数学的兴趣。

四. 教学重难点1.重点:二次函数的解析式及其求解方法。

2.难点:待定系数法在求解二次函数解析式中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生探究二次函数的解析式;以实际案例为例,讲解待定系数法的运用;小组讨论,促进学生之间的交流与合作。

六. 教学准备1.准备相关案例和问题,用于引导学生探究二次函数的解析式。

2.准备PPT,展示二次函数的图像和解析式。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示二次函数的图像,引导学生回顾二次函数的基本概念。

然后提出问题:“如何表示这个二次函数?”引发学生的思考。

2.呈现(15分钟)通过PPT呈现二次函数的解析式,解释二次函数的各个系数代表的意义。

同时,引导学生观察解析式与图像之间的关系。

3.操练(20分钟)以实际案例为例,讲解待定系数法在求解二次函数解析式中的应用。

确定二次函数的表达式优秀教案

确定二次函数的表达式优秀教案
给出一个具有挑战性的实际问题通过解决此问题让学生体会求二次函数表达式的一般方法待定系数法此问题解决后及时引导学生总结解法
确定二次函数的表达式
【教学目标】
1.知识与技能:经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。
2.方法与过程:会用待定系数法求二次函数的表达式。
3.情感与态度:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
问题1:如何建立坐标系呢?
问题2:分别选用哪种形式?
问题3:建立坐标系后如何将已知条件中的高度、跨度等转化为点的坐标呢?
给出一个具有挑战性的实际问题,通过解决此问题,让学生体会求二次函数表达式的一般方法——待定系数法,此问题解决后及时引导学生总结解法。
从现实情境和已有知识经回顾本节课所学知识。
1.掌握求二次函数的解析式的方法——待定系数法;
2.能根据不同的条件,恰当地选用二次函数解析式的形式,尽量使解题简捷;
3.解题时,应根据题目特点,灵活选用,必要时数形结合以便于理解。
学生回顾总结。
培养学生良好的反思习惯,加深对知识的理解。
二、议一议
我们可以一起总结此问题的解法:
(一)先建立适当的直角坐标系。
(二)设出抛物线的表达式。
(三)写出相关点的坐标。
(四)列方程。
(五)解方程组,求出待定系数。
(六)写出二次函数表达式。
活动(二)
已知二次函数图像过三点,求解析式,可以设一般式。
已知抛物线经过三点A(0,2),B(1,0),C(-2,3),求二次函数的解析式。
(二)已知二次函数的图像过点A(1,-1)B(-1,7)C(2,1)求此二次函数解析式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中部数学科备课格式
第周年级组别:组长:
三、课程讲授(10-12分钟)一、例题讲解
例1、已知二次函数y=ax2+c的图象经过点(2,3)
和(-1,-3),求出这个二次函数的表达式.
例2:已知二次函数的图象的顶点坐标是(1,4),且
经过点(-1,0),(3,0),求这个二次函数的表达式.
法一:
3
2
3
2
1
4
3
9
(1,4)
),
0,3()0,1
(
)0
(
2
2
+
+
-
=






=
=
-
=





=
+
+
=
+
+
=
+
-

-

+
+
=
x
x
y
c
b
a
c
b
a
c
b
a
c
b
a
a
c
bx
ax
y
表达式为:
解得:

二次函数过点
设表达式为
Θ
法二:
3
2
)3
)(
1
(
1
)3
1
)(
1
1(
4
(1,4)
)0
3)(
-
1)(
(
)0,3()0,1
(
2+
+
-
=
-
+
-
=

-
=

-
+
=


+
=

-
x
x
x
x
y
a
a
a
x
x
a
y
图象过点
设表达式为

二次函数过点
Θ
Θ
二、当堂检测
1、判断下列题目应设哪个表达式
(1)已知二次函数的图象的顶点坐标是(-1,1),且经过
点(1,-3)
(2)已知二次函数的图象经过点(1,0)与(3,0)和(2,3)
讲授法,例
题讲解用待
定系数法求
解二次函数
的表达式,
并分析三种
表达式的用
法。

训练法,及
时巩固用待
(3)已知二次函数的图象经过点(0,-1),(1,1)与(2,3) 2、一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为()
A.y=﹣2(x-1)2+3 B.y=﹣2(x+1)2+3
C.y=﹣(2x+1)2+3 D.y=﹣(2x-1)2+3
3、已知二次函数的图象如图所示,则这个二次函数的解析式为()
A.y=﹣3(x﹣1)2+3
B.y=3(x﹣1)2+3
C.y=﹣3(x+1)2+3
D.y=3(x+1)2+3定系数法求解二次函数表达式。

四、课堂练习(5-10分钟)1、(2014•贵州)如图:某古城有一个抛物线形石拱
门,拱门地面的最大宽度AB=4米,拱门的最大高度
OC=4米.
(1)请你建立适当的直角坐标系,求出石拱门所在的
抛物线的解析式;
(2)一辆高3米,宽米的货车能否通过此门试说明理
由.
训练法,及
时巩固新知
识,并与历
年中考题接
轨。

2.(2016•厦门)已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法求出抛物线解析式.
五、拓展提升(10-15分钟)已知A(1,0),B(0,-1),C(-1,2),D(2,-1),E(0,10,
F(2,1),G(4,2)七个点,抛物线y=a(x-1)2+k(a≠0)经过其
中的三个点.
(1)当a<0时,求a和k的值;
(2)判定C、G两点是否能同时在抛物线y=a(x-1)2+k(a≠0)
上,若能,求出a和k的值;若不能,请说明理由;
(3)若抛物线经过七个点中的三个,直接写出所有满足这样
的条件的抛物线条数.
训练法,拓
展提升关
于二次函
数三种表
达式的综
合应用。

六、课堂小结(1-2分钟)总结法,总结已学过的二次函数三种表达式,以及相关题型的解题思。

相关文档
最新文档