分式的基本概念、约分、通分教案

合集下载

初中数学分式教案【优秀4篇】

初中数学分式教案【优秀4篇】

初中数学分式教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初中数学分式教案【优秀4篇】作为一名教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。

分式的理解教案

分式的理解教案

分式的理解教案一、教学目标:1. 能够读懂含有分式的算式。

2. 能够在计算含有分式的算式时正确运用分式的运算法则。

3. 能够简化分式及将分式化简为通分式。

4. 能够应用分式解决实际问题。

二、教学重点:1. 引导学生正确理解分式的定义、基本概念和性质,掌握分式的基本运算方法,提高分式的应用能力。

2. 让学生能够利用分式解决实际问题,加深学生对分式的认识。

三、教学难点:1. 让学生理解分式的定义和基本概念。

2. 熟练掌握分式的基本运算方法。

3. 能够将分式化简为通分式。

四、教学过程:1. 导入环节教师通过问学生一些简单的数学问题来引起学生的兴趣,如:1/2 + 1/4等于多少? 2/3 - 1/3等于多少? 让学生在回答问题的过程中逐渐理解分式的概念。

2. 概念讲解让学生了解分式的基本概念和定义,如分子、分母、分式的类型等,同时讲解分式的基本运算、化简等知识点。

3. 实例讲解教师用简单的实例讲解分式的应用方法,如1/2 乘以 2/3等于多少? 2/3 减去 1/6等于多少? 通过实际例子让学生更容易地理解分式运算方法。

4. 分组练习让学生分组进行小组练习,让学生互相讨论并推导出正确答案,加深学生的理解与记忆,同时也能够有效地帮助学生巩固分式的基本概念与运算方法。

5. 问题解答教师选取一些典型问题进行解答,并与学生讨论解题思路及方法,强化学生的实际应用能力。

6. 总结回顾教师总结讲解内容,让学生更好地理解分式的基本概念与运算方法,同时检查学生的学习效果,评价学生对分式的掌握情况。

五、教学建议1. 客观评价学生的学习情况,及时发现苗头,并及时帮助学生解决问题,强化学生的自信心。

2. 提高教师对于分式的理解,强化分式的实际应用方法,能够更好地帮助学生掌握分式的基本概念。

3. 采取多种方式传授分式的知识,在讲解、实例讲解、分组练习等方面尤为重要,同时学生也需要更好地参与其中。

4. 教师要及时关注学生的学习效果,及时发现问题并适时解决问题,提高学生的学习效率。

人教版初中分式教案

人教版初中分式教案

人教版初中分式教案一、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的约分和通分,能够熟练运用分式的基本性质进行化简。

3. 培养学生的观察、类比、推理能力,提高分析问题、解决问题的能力。

二、教学内容1. 分式的概念与基本性质2. 分式的约分与通分3. 分式的化简与应用三、教学重点与难点1. 重点:分式的概念、基本性质、约分与通分的方法。

2. 难点:确定分式的最简公分母,进行复杂的分式化简。

四、教学过程1. 情境导入通过展示实际生活中的例子,如比例尺、折扣等,引导学生思考数学在实际生活中的应用,从而引入分式的概念。

2. 自主学习让学生阅读教材,了解分式的定义,掌握分式的基本性质。

引导学生通过观察、类比、推理,总结出分式的基本性质。

3. 合作探究让学生分组讨论,探索如何对分式进行约分和通分。

引导学生通过实际操作,总结出约分和通分的方法。

4. 教师讲解针对学生的探究结果,进行讲解和补充,强调约分和通分的关键步骤。

通过例题,演示分式化简的整个过程。

5. 练习巩固布置一些分式化简的练习题,让学生独立完成,检验学生对分式基本性质的掌握程度。

6. 总结拓展让学生总结本节课所学内容,思考分式在实际生活中的应用。

引导学生进行拓展学习,如分式的混合运算。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习完成情况:检查学生课后练习的完成质量,评估学生对知识的掌握程度。

3. 学生互评:鼓励学生之间进行相互评价,促进学生之间的交流与学习。

六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

同时,关注学生在学习过程中遇到的困难和问题,及时给予指导和帮助。

《分式的基本性质的应用:约分、通分》教学设计1

《分式的基本性质的应用:约分、通分》教学设计1

第十五章分式15.1.2第二课时分式的约分、通分教学目标:一.知识与技能1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念.2.类比分数的约分、通分掌握分式约分、通分的方法与步骤.二.过程与方法通过类比分数的约分与通分,探索分式的约分与通分的法则,学会运用类比转化的思想方法研究数学问题.三.情感态度与价值观通过研究解决问题的过程,培养学生合作交流的意识与探究精神.四.重点难点重点:运用分式的基本性质正确的进行分式的约分与通分难点:通分时最简公分母的确定;运用通分法则将分式进行变形.五.教学方法讲练结合六.教学媒体多媒体,实物投影七.教学过程教学过程板书设计教学反思约分是分式基本性质的直接利用。

通过学习约分,不仅可以巩固分式的基本性质,而且还可以为下节课学习分式四则运算打下基础.本节课我采用了如下方法:1.重视复习的作用.第一环节安排复习引入,唤起学生对分式基本性质和整式的单项式,多项式,多项式因式分解中相关知识的回忆,为约分做准备.2.引导学生自主摸索.新课学习以学生自主探究为主,教师引导与点拨为辅的方式进行,让全体学生通过观察,探究,展示,交换,小结等活动,一步一步地从化简分式的过程中抽象出分式的概念.学生也在约分的探究学习中相互交换了自己的想法和作法通过合作交流增进了学生对约分的理解.通分是在分式基本性质的基础上的运用,它为后面学习分式的加减法奠定基础.所以我仍采取了自主探究的学习方式,让学生经历知识的形成过程,动脑思考,动手验证,突出学生主体性.让学生在探究过程中有所体验,有所感悟,目的在于激励学生积极主动的参与摸索通分知识的全过程.在本节课的教学中应让学生讨论的更充分一些,教学效果会更好!附录: 当堂检测1.下列分式中,最简分式是( )A. 21B. a a 2C. 22y x y x -+D. 22y x y x ++ 2.将 3623121824xa y x a 约分的结果为( ) A. 91226y a B. 2634y a C. 2234y a D. axy 68 3.化简 mnm n m +-222 的结果是 ( )A. m n m 2-B. mnm - C. m n m + D. n m n m --4.分式 ax b 2, bx c32-, 35xa 的最简公分母是( )A. abx 15B. 315abx C.abx 30 D.330abx5.化简44422++-a a a = 6.分式 xx 312- 与 922-x 的最简公分母是7.化简123162--m m 得 ;当 m= -1时,原式的值为8.通分:(1)bc a y ab x 2296, ( 2 )16,12122-++-a a a a。

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。

下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。

一定要让学生充分活动起来。

在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。

可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。

今后要防止类似事情的发生。

2、问题(1) 分式的运算错的较多。

分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。

所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。

其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。

一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。

八年级数学《分式的约分和通分》教案

八年级数学《分式的约分和通分》教案

“三部五环”教学模式设计《16.1.2分式的基本性质(2)》教学设计
活动三变式训练,巩固新知 题组一:选择题
1、下列说法错误的是( ) A .
a 21与24a b
通分后分别为242a a 与2
4a
b B .
z xy 231与y
x 2
31
通分后分别为z y x x 223与z
y x yz
2
23 C .
n m +1与m
n -1
的最简公分母为2
2
n m - D .
)(1n m a -与m
n -1
最简公分
母为))((m n n m a -- 2、下列约分正确的是( ) A .
33
=+m
m B.
022=--y x y x C.
b
a
b x a x =++ D.
1-=-+-y x y x 题组二:快速解答 1、约分
2、通分 (1)
2
261
21xy
y x -与 (2)
6
4312---+x x x
x 与 题组三:挑战自我
【师生活动】
教师相机出示题组,其中题组一口答,题组二、三纸笔演练
(题组二的1题分组练习,交叉评价),生思考并独立完成,
教师巡视指导,相机提名板演,重点关注学困生的表现,
及时辅导、补救。

【设计意图】
培养学生自主学习的思想,观察其成效
板书设计
16.1.2分式的约分和通分(2)。

分式约分通分教案

分式约分通分教案

分式约分通分习题考点一.分式的概念与基本性质1.整式A 除以整式B 可以表示成B A ,如果除式B 中含有 那么BA (B ≠0), 称为分式。

2.当 时,分式无意义;当 时,分式值为0.3.分式的基本性质:分式的分子与分母都 同一个不等于0的整式,分式的值不变。

考点二.分式的运算1. 分式的加减运算(1)通分的关键是确定几个分式的 。

(2)同分母相加减, 不变,把分子相加减。

(3)异分母相加减,先 ,变为同分母的分式,然后在加减。

2. 分式的乘除运算(1)约分的关键是确定分子、分母的 。

(2)分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

(3)分式除以分式,把除式的分子、分母颠倒位置后,与被除数相乘。

3.分式通分:如何确定最简公分母。

①取各个分母系数的最小公倍数作为最简公分母的系数;②取各个公因式的最高次幂作为最简公分母的因式;③如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母。

4.分式的约分:如何确定公因式。

①取分子、分母系数最大公约数作为公因式的系数;②取各个公因式最低次幂作为公因式的因式;③如果分子、分母是多项式,则应先把分子、分母分解因式,在判断公因式。

一.选择题(共10小题)1.若分式=0,则x 的值是( ) A .±2 B .2 C .﹣2 D .02.若分式无意义,则()A.x=2 B.x=﹣1 C.x=1 D.x≠﹣13.使代数式有意义的x的取值范围为()A.x>2 B.x≠0 C.x<2 D.x≠24.一项工程,甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工程所需时间为()A.小时B.小时C.a+b小时D.小时5.下列各式:其中分式共有()A.2个 B.3个 C.4个 D.5个6.在代数式,,+,,中,分式有()A.1个 B.2个 C.3个 D.4个7.若分式的值为0,则x的取值是()A.x≠2 B.x≠﹣1 C.x=2 D.x≠±18.若分式的值为0,则x的值为()A.x=2 B.x=﹣2 C.x=±2 D.不存在9.如果把分式中的x、y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大9倍10.把分式的a、b、c的值都扩大为原来的3倍,则分式的值()A.不变B.变为原来的3倍C.变为原来的D.变为原来的二.填空题(共9小题)11.当x=时,分式的值为0.12.已知x=﹣2时,分式无意义;x=4时,分式的值为0,则a+b=.13.已知﹣的值为正整数,则整数m的值为.14.利用分式的基本性质约分:=.15.把分式约分得.16.分式,,的最简公分母是.17.分式、的最简公分母是.18.化简得.19.计算的结果是.三.解答题(共11小题)20.x取什么值时,分式;(1)无意义?(2)有意义?(3)值为零?21.(1)约分;(2)通分和.22.把下列各式化为最简分式:(1)=;(2)=.23.约分(1);(2);(3)(4).24.通分与.25.通分:(1),(2),.26.通分:(1),,(2),.27.不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数:①②.28.通分:(1)与(2)与.29.通分:a+2﹣30.已知:,求代数式的值.2017年05月12日的初中数学组卷参考答案一.选择题(共10小题)1.C;2.B;3.D;4.A;5.A;6.B;7.C;8.B;9.A;10.A;二.填空题(共9小题)11.3;12.6;13.0,3,4,5;14.﹣;15.;16.2x(x+3)(x﹣3);17.6x3y2;18.;19.1﹣2a;三.解答题(共11小题)20.;21.;22.;;23.;24.;25.;26.;27.;28.;29.;30.;。

初中分式约分的教案

初中分式约分的教案

教案:初中数学——分式约分教学目标:1. 理解分式的基本性质,掌握分式约分的方法和技巧。

2. 能够正确、熟练地进行分式的约分运算。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 分式的基本性质2. 分式约分的概念和原理3. 分式约分的方法和步骤4. 分式约分的应用教学过程:一、导入(5分钟)1. 复习分数的约分概念和方法。

2. 引入分式约分的概念,让学生思考分式和分数的异同。

二、新课讲解(15分钟)1. 讲解分式的基本性质,强调分式中分母不能为零的条件。

2. 讲解分式约分的概念和原理,解释为什么可以通过约分来简化分式。

3. 引导学生理解分式约分的方法和步骤。

三、例题演示(15分钟)1. 通过例题演示分式约分的过程,让学生跟随步骤进行约分。

2. 让学生尝试解决一些简单的分式约分问题,并及时给予指导和反馈。

四、练习与讨论(15分钟)1. 给学生发放练习题,让学生独立进行分式约分练习。

2. 鼓励学生相互讨论,分享解题方法和经验。

五、总结与复习(5分钟)1. 对本节课的内容进行总结,强调分式约分的重要性和应用。

2. 提醒学生注意分式约分时可能出现的错误和易混淆点。

六、作业布置(5分钟)1. 布置一些分式约分的练习题,让学生巩固所学知识。

2. 鼓励学生进行自主学习,探索更多的分式约分方法和技巧。

教学评价:1. 通过课堂讲解和练习,评价学生对分式约分的理解和掌握程度。

2. 观察学生在练习中的表现,了解他们在分式约分方面的优点和不足。

3. 鼓励学生进行自我评价,反思自己在分式约分学习中的进步和需要改进的地方。

教学反思:本节课通过讲解分式的基本性质和原理,引导学生理解分式约分的概念和方法。

通过例题演示和练习,让学生熟练地进行分式约分,并能够应用到实际问题中。

在教学过程中,要注意关注学生的理解程度,及时给予指导和反馈。

同时,要鼓励学生进行自主学习和讨论,培养他们的逻辑思维能力和解决问题的能力。

七年级数学下册《分式的通分》教案、教学设计

七年级数学下册《分式的通分》教案、教学设计
6.总结反思,提升素养
-通过课堂小结,让学生回顾本节课所学内容,总结分式通分的要点。
-鼓励学生反思学习过程中的得失,培养自我评价和自我改进的能力。
7.课后作业,巩固拓展
-布置适量的课后作业,让学生在课后继续巩固所学知识。
-设计具有挑战性的拓展题目,激发学生的求知欲,提高学生的数学素养。
在教学过程中,教师应关注学生的主体地位,注重启发式教学,引导学生主动探究、合作交流。同时,关注学生的个体差异,因材施教,使每位学生都能在课堂上得到充分的发展。通过本章节的学习,使学生掌握分式通分的知识,提高数学素养,为后续学习打下坚实基础。
1.重点:理解分式通分的概念,掌握寻找最简公分母的方法,能够熟练运用通分解决实际问题。
2.难点:对分式通分法则的理解与应用,特别是在解决复杂问题时,如何灵活运用通分技巧。
(二)教学设想
1.创设情境,导入新课
-通过生活中的实例,如比较不同物体的速度、密度等,引出分式通分的概念。
-利用多媒体展示,激发学生的兴趣,引导学生思考分式通分在实际生活中的应用。
5.总结反思:要求学生撰写一篇关于分式通分学习心得的文章,内容包括学习过程中的收获、遇到的困难、解决方法以及今后如何提高分式通分的能力。
作业布置要求:
1.作业量适中,保证学生在课后有足够的时间进行复习和巩固。
2.鼓励学生自主完成作业,培养独立思考和解决问题的能力。
3.作业批改要及时,对学生的错误给予指出和指导,帮助学生找到问题所在,提高解题能力。
4.练习巩固,内化知识
-设计不同难度的练习题,让学生在课堂上及时巩固所学知识。
-对学生的练习进行反馈,指出错误原因,帮助学生找到解决问题的方法。
5.拓展延伸,提高能力
-引导学生思考分式通分在生活中的其他应用,如科学实验、工程设计等领域。

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。

二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。

2. 能够运用约分与通分的方法对分式进行运算。

3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。

三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。

难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。

2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。

(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。

(3)通过例题讲解,演示如何运用基本性质简化分式。

3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。

4. 例题讲解:(1)分式的乘除法运算。

(2)分式的乘方运算。

(3)含有绝对值的分式简化。

5. 课堂小结:六、板书设计1. 分式的定义与结构。

2. 分式的基本性质。

3. 分式的约分与通分。

4. 分式的乘除法及乘方运算。

5. 例题及解题步骤。

七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。

(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。

(3)计算分式的乘方:(x^24)/(x+2)^2。

2. 答案:(1)1/(2x4)。

(2)3x(x2)/(2(x+2)(x2))。

(3)(x2)^2/(x+2)^2。

八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。

分式的基本性质通分、约分

分式的基本性质通分、约分

教学内容:分式的基本性质(通分、约分) 知识目标:会用分式的基本性质将分式变形,正确进行分式的通分和约分。

能力目标:灵活应用分式的基本性质将分式通分、约分,使学生在理解的基础上灵活地将分式变形.情感目标: 培养学生学习数学的兴趣教学重点:分式的通分和约分教学难点:最大公因式和最小公分母的确定。

教学准备:小黑板教学方法:类比学习、引导启发、讲练结合、归纳教学过程:一、情境引入二 探索学习1、P6例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.【解题反思】:(1)、约分有几条途径?(一条是逐步约分;另一条是一次性约分。

)(2)、一次性约分,怎样确定公因式?【1.分子分母的系数要找最大公约数;2.字母(或式子)要找分子分母中都有的,且指数要最小的。

】(3)、结果要达到什么形式?(最简分式)小试:约分:(1)c ab b a 2263 (2)2228mn n m (3)532164xyzyz x - (4)x y y x --3)(2 2、P7例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.讨论:怎样确定公因式?【1.所有分母的系数要找最小公倍数;2.字母(或式子)要找分母中凡是有的,且指数要最高的。

】学生试解,组内交流,谈出每一步的算理。

小试:通分:(1)321ab 和c b a 2252 (2)xy a 2和23x b (3)223ab c 和28bc a - (4)11-y 和11+y三、课后练习1.填空: (1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()yx -2.约分:(1)c ab b a 2263 (2)2228mn nm (3)532164xyz yz x - (4)x y y x --3)(23.通分:(1)321ab 和c b a 2252 (2)xy a2和23x b(3)223ab c 和28bc a- (4)11-y 和11+y4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab yx -- (2) 2317b a --- (3) 2135x a-- (4) m b a 2)(--答案:1.(1)2x (2) 4b (3) bn +n (4)x+y2.(1)bc a2 (2)n m4 (3)24z x - (4)-2(x-y)23.通分:(1)321ab = c b a ac 32105, c b a 2252= c b a b32104(2)xy a2= y x ax 263, 23x b = y x by262(3)223ab c = 223812c ab c 28bc a -= 228c ab ab(4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y4.(1) 233ab y x (2) 2317b a - (3) 2135x a (4) m b a 2)(--四、课堂小结五、作业1.判断下列约分是否正确:(1)c b c a ++=b a (2)22y x y x --=y x +1 (3)nm n m ++=0 2、课本P133第6、7、12题 板书设计:教学反思:。

分式的约分教案

分式的约分教案

分式的约分教案分式的约分教案一、知识目标1. 理解分式的概念和性质。

2. 学会如何对分式进行约分。

3. 运用约分的方法简化分式。

二、能力目标1. 能够正确理解分式的含义和规则。

2. 能够灵活运用约分的方法简化分式。

3. 能够运用约分的方法解决实际问题。

三、情感目标1. 培养学生对分式习题的兴趣和积极性。

2. 鼓励学生勇于思考,善于总结。

四、教学过程1. 导入新课通过一个生活实例引入分式的概念,如何公平地分蛋糕,假设有8块蛋糕要分给4个人,每个人分到几块蛋糕?可以让学生思考并讨论。

引导学生找到分零头进行计算的方法,然后引入分式的概念。

2. 概念讲解分式的概念:一个数与另一个数的比值叫做这两个数的分式。

分式一般用a/b的形式表示,其中a和b都是整数,而且b不能为0。

3. 规则总结分式约分的规则总结:(1)分子和分母可以同时乘或除以同一个非零数,分式的值不改变。

(2)分子和分母里面的因式可以互除。

4. 例题讲解例题一:将分式12/48约分。

解析:12和48都能被2整除,所以分子和分母都除以2,得到1/4。

例题二:将分式16/24约分。

解析:16和24都能被8整除,所以分子和分母都除以8,得到2/3。

5. 独立练习让学生在教师指导下独立解决以下例题:(1)将分式24/36约分。

(2)将分式14/42约分。

(3)将分式27/45约分。

6. 总结归纳让学生回顾整个约分的过程,总结约分的规则和方法。

五、巩固练习1. 组织学生完成一组练习题,巩固约分的知识。

2. 出一道开放性问题,让学生分组讨论并呈现解题过程和结果。

六、作业布置布置相应的作业,要求学生进行约分的练习。

七、板书设计分式的约分(1)分式的概念:一个数与另一个数的比值(2)分式约分的规则:a. 分子和分母可以同时乘或除以同一个非零数,分式的值不改变。

b. 分子和分母里面的因式可以互除。

八、教学反思通过对分式的约分教学过程,学生从生活实例出发,理解了分式的概念。

初中数学分式 教案

初中数学分式 教案

初中数学分式教案一、教学目标:1. 让学生理解分式的概念,掌握分式的基本性质和运算法则。

2. 培养学生运用分式解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 分式的概念:分式是形如 a/b 的表达式,其中 a 和 b 是整式,b 不为零。

2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。

3. 分式的运算法则:(1)分式的加减法:分母相同,分子相加(减);分母不同,通分后相加(减)。

(2)分式的乘除法:分子乘(除)以分子,分母乘(除)以分母。

4. 分式在实际问题中的应用。

三、教学重点与难点:1. 重点:分式的概念,基本性质和运算法则。

2. 难点:分式的运算法则的应用,分式在实际问题中的解决。

四、教学过程:1. 导入:通过展示实际问题,引导学生思考如何用数学方法解决这些问题。

2. 新课讲解:(1)介绍分式的概念,通过示例让学生理解分式的含义。

(2)讲解分式的基本性质,让学生通过实际操作验证这些性质。

(3)讲解分式的运算法则,引导学生通过例子理解和掌握这些法则。

3. 课堂练习:布置一些简单的分式题目,让学生独立完成,巩固所学知识。

4. 应用拓展:展示一些实际问题,引导学生运用分式解决这些问题。

5. 总结:对本节课的内容进行总结,强调重点和难点。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度,理解程度和表现。

2. 作业完成情况:检查学生作业的完成质量,对学生的学习效果进行评估。

3. 实际问题解决能力:通过课后实践,观察学生运用分式解决实际问题的能力。

六、教学反思:在教学过程中,要注意引导学生理解和掌握分式的基本性质和运算法则,通过实际例子让学生学会如何运用分式解决实际问题。

同时,要关注学生的学习进度,及时解答学生的疑问,提高学生的学习效果。

数学教案分式

数学教案分式

数学教案分式一、教学目标1、知识与技能目标学生能够理解分式的概念,明确分式有意义、无意义和值为零的条件。

掌握分式的基本性质,能够进行分式的约分和通分运算。

2、过程与方法目标通过观察、类比、猜想、归纳等活动,培养学生的自主探究能力和创新思维。

经历分式概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标激发学生学习数学的兴趣,增强学生的自信心和成就感。

培养学生的合作交流意识和勇于探索的精神。

二、教学重难点1、教学重点分式的概念和分式有意义、无意义及值为零的条件。

分式的基本性质及约分、通分运算。

2、教学难点理解分式值为零的条件。

分式的约分和通分运算中符号的处理。

三、教学方法讲授法、讨论法、练习法相结合四、教学过程1、导入新课教师通过复习分数的概念,引导学生思考:如果把分数中的分子、分母用字母表示,会得到什么样的式子?例如:,,等,这些式子与分数有什么不同?从而引出分式的概念。

2、讲授新课分式的概念教师给出分式的定义:一般地,如果 A、B 表示两个整式,并且 B 中含有字母,那么式子叫做分式。

让学生举例说明哪些是分式,哪些不是分式,并说明理由。

强调分式与整式的区别:分式的分母必须含有字母,而整式的分母不含字母。

分式有意义、无意义和值为零的条件教师引导学生思考:分式在什么情况下有意义?什么情况下无意义?什么情况下值为零?对于分式,当分母B≠0 时,分式有意义;当分母 B=0 时,分式无意义。

当分子 A=0 且分母B≠0 时,分式的值为零。

通过实例进行巩固练习,如:对于分式,当 x 取何值时,分式有意义?无意义?值为零?分式的基本性质教师提出问题:分式的分子、分母同时乘以(或除以)同一个不为零的整式,分式的值是否改变?引导学生通过计算、类比分数的基本性质,得出分式的基本性质:分式的分子与分母乘(或除以)同一个不等于 0 的整式,分式的值不变。

即:,(C 是不等于 0 的整式)让学生运用分式的基本性质进行填空练习,加深对性质的理解。

人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案

人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案

§15.1.2 分式的基本性质(2)——分式的约分和通分一、内容分析本节教学内容是人教版八年级上册《15.1.2分式的基本性质》第二课时,即分式的约分和通分。

本节是在学生有小学学习的分数的约分通分、初一学习了因式分解及上节课学习了分式的基本性质的知识基础上,进一步学习分式基本性质的应用。

学生通过类比分数的约分和通分来总结出分式的约分与通分的法则,从中体会数学的类比思想。

同时分式的约分和通分,是进行分式的加减乘除四则运算所必须掌握的分式变形,为后边分式的计算学习做铺垫,在本章中也有着非常重要的地位和作用。

二、教材分析(一)教学目标知识与技能:理解分式约分和通分的基本概念,认识到约分和通分其实是分式基本性质的应用和巩固,并会用分式的基本性质将分式进行正确的约分和通分。

过程与方法:应用分式的基本性质将分式变形,通过复习分数的约分、通分类比分式的约分、通分,从中渗透数学的类比思想方法,并在探究过程中掌握分式约分通分的关键。

情感态度与价值观:通过思考、探究等活动获得学习数学的成功体验,树立学习数学的信心,培养独立思考、合作交流的能力。

(二)教学重难点教学重点:分式的约分和通分教学难点:分式的约分和通分三、学情分析学生已经学过分数的约分和通分,已具备一定的知识基础,因而对于分式的约分和通分理解要相对容易一点。

但学生基础不是很好,无法灵活运用所学知识,在约分过程中先找分子和分母的公因式和在通分过程中先确定最简公分母这两个关键点不能很好地把握,尤其是当分子分母是多项式时要先进行因式分解,这样的变形过程对于学生来说更困难。

四、教学法分析本着以学生为主,教师为辅,充分发挥学生的主体地位,让学生积极主动地参与探索,互动交流学习,体现以“自主、探究、合作”为特征的教与学方式。

五、教学过程设计(一)温故知新分式的基本性质:_________________________________________________________ 用数学符号怎么表示:_________________________________________________________ 师生活动:学生回忆并举手发言,师展示答案。

人教版八年级数学上册教案-15.1.2分式的基本性质分式通分

人教版八年级数学上册教案-15.1.2分式的基本性质分式通分
五、教学反思
在本次教学活动中,我注意到学生在学习分式的基本性质与通分这一章节时,存在一些理解和掌握上的难点。首先,我发现学生在理解分式基本性质时,对于为何乘除同一个数(除数不为0)不会改变分式的值这一点上存在困惑。在今后的教学中,我需要更加形象、具体地解释这一性质的数学原理,以便学生能够更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调分式基本性质和通分方法这两个重点。对于难点部分,如选取公倍数和分解因式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式通分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式通分的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式通分的基本概念。通分是指将分母不相同的分式通过乘以适当的整式,使分母相同,以便进行加减运算。它是分式运算中的重要环节,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将$\frac{1}{x}$和$\frac{2}{x+1}$通分,以及通分在简化分式运算中的作用。
在授课过程中,我也注意到学生在解决实际问题时构建分式模型的能力较弱。为了提高学生的这一能力,我将在下一节课中增加一些关于建模的讲解和练习,帮助学生学会如何从实际问题中抽象出分式模型。
此外,教学流程的设计方面,导入新课环节的问题设置可能还不够吸引学生的兴趣,今后我需要在这个环节下更多功夫,设计更具趣味性和启发性的问题,激发学生的学习兴趣和好奇心。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质与通分》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将不同单位的量进行换算的情况?”比如,将米和厘米的长度进行加减。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式通分的奥秘。

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。

具体内容包括分式的概念、分式的基本性质以及分式的约分。

二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。

2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。

3. 学会分式的约分方法,能够熟练地进行分式的约分。

三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。

教学重点:分式的概念、分式的约分。

四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。

2. 学具:练习本、铅笔。

五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。

2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。

(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。

(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。

3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。

六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。

(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。

2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。

2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。

重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。

八年级数学下册《分式》教案、教学设计

八年级数学下册《分式》教案、教学设计
八年级数学下册《分式》教案、教学设计
一、教学目标
(一)知识与技能
1.了解分式的定义,理解分式表示的几何意义。
2.学会分式的化简,掌握分式的基本性质,如约分、通分等。
3.能够进行分式的加减乘除运算,掌握运算规律,提高运算速度和准确性。
4.能够将实际问题转化为分式问题,运用分式解决实际问题。
(二)过程与方法
4.教师将根据作业完成情况进行评价,关注学生的知识掌握、能力提升和情感态度等方面。
2.自主探究,合作交流:
(1)引导学生自主探究分式的定义,通过实际例子让学生体会分式的几何意义。
(2)组织学生进行小组讨论,发现分式的基本性质和运算规律,提高学生的合作能力。
3.精讲精练,突破难点:
(1)针对分式的化简和运算规律,教师进行详细讲解,通过典型例题让学生掌握解题方法。
(2)设计不同难度的练习题,让学生在练习中巩固知识,逐步突破难点。
在教学过程中,教师应关注学生的参与度,调动学生的积极性,鼓励学生主动探究、合作交流。同时,注重分层教学,针对不同学生的需求设计教学内容,使每个学生都能在课堂上得到有效的提升。通过本节课的学习,使学生掌握分式知识,提高数学素养,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对分式的理解和应用,以及检验学生对课堂所学知识的掌握程度,特布置以下作业:
3.在解决实际问题时,难以将问题转化为分式问题,缺乏运用分式解决实际问题的能力。
针对以上情况,教师应关注学生的认知发展水平,适时给予引导和启发,帮助学生搭建起分式知识的框架。在教学过程中,注重培养学生的抽象思维能力和问题解决能力,使学生在掌握分式知识的同时,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点

八年级数学下册 16.1.2分式的通分 约分教案 人教新课标版

八年级数学下册 16.1.2分式的通分 约分教案 人教新课标版
二.新课
1.约分
(1)回顾:如何把 进行约分?
(1)约分的方法:把分子、分母都除以它们的(最大)公约数.(分子、分母互质)
(2)约分的根据:分数的基本性质.
练习:下面的等式中右式是怎样从左式得到的?这种变换的根据是什么?
(1) ;(同除以 )(2) .(同除以 )
根据分式的式叫做最简分式.
(1) (2)
练习5:将 约分,正确的结果是( )
A.1B.2C. D.无法确定
练习6.先化简再求值
例9:已知
练习:已知 ,先化简再求 的值。
二.小结:
1.分式约分的目的是要把这个分式化为最简分式.
2.通分的关键是确定各分式的最简公分母.
四.作业
课题
16.1.2分式的通分、约分
教学
目的
1.了解分式通分、约分的步骤和依据,掌握分式通分、约分的方法。
2.使学生了解最简分式的意义,能将分式化为最简分式。
重点
1.利用分式的基本性质约分、通分。
难点
分子、分母是多项式的分式的约分和通分。
教学
手段
多媒体
教 学 内 容 和 过 程
一.复习,引入。
复习分式的基本性质
(3)约分:约去分子和分母的公因式,不改变分式的值,这样的分式变形叫分式的约分.
例1:约分:
(1) (2) (3)
分析: 定符号:只把负号留给分式.
定最大公约式:相同字母(或多项式)的最低次幂和系数的最大公约数.
单项式:先变乘积、后约分.
多项式:先分解因式、再约分.
3分式约分的最后结果应为最简分式,即:分子、分母没有公因式。
解:(1)
(2)
(3)
(4) 第7页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的基本概念、约分、通分 1、分式的定义:分母中含有字母.这样的代数式叫分式.
【概念巩固】
1.判断下列各式哪些是整式,哪些是分式? (1)9x+4, (2)x 7 , (3)209y +,(4) 54-m , (5) 238y y -,(6)9
1-x 是分式的有 ; 2.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千 米/时,轮船的逆流速度是 千米/时.
(3)x 与y 的差于4的商是 .
2、对于B A 分式
而言 (1)当 时,分式有意义;
(2)当 时,分式无意义;
(3)当 时,分式的值为0;
(4)当 时,分式的值为1;
(5)当 时,分式的值为-1;
(6)当 时,分式的值大于0;
(7)当 时,分式的值小于0; 典型例题
例1 、 对于分式
5
312-+x x , (1)当 时,分式有意义;
(2)当 时,分式无意义;
(3)当 时,分式的值为0;
(4)当 时,分式的值为1;
(5)当 时,分式的值为-1;
(6)当 时,分式的值大于0;
(7)当 时,分式的值小于0;
【针对性练习】
1、当x 取何值时,分式 2312-+x x (1)当 时,分式有意义;
(2)当 时,分式无意义;
(3)当 时,分式的值为0;
(4)当 时,分式的值为1;
(5)当 时,分式的值为-1;
(6)当 时,分式的值大于0;
(7)当 时,分式的值小于0;
2、 当x 为何值时,分式
x
x x --21|| 的值为0? 3、当x 取何值时,下列分式有意义? (1)x 25 (2)x x 235-+ (3)2
522+-x x 【基础知识点】
3、分式的基本性质:分式的分子分母同时乘以或除以同一个不为0的数或者式子,分式的值不变。

4、分式的约分
(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.
(2)分式约分的依据:分式的基本性质.
(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.
5、分式的通分
把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。

※思考:分数通分的方法及步骤是什么?
答:先求出几个异分母分数的分母的最小公倍数,作为它们的公分母,把原来的各分数化成用这个公分母做分母的分数。

分式的通分和分数的通分是一样的:通分的关键是确定几个分式的公分母。

6、最简公分母:各分式分母中的系数是最小公倍数与所有的字母(或因式)的最高次幂的积,叫做最简公分母。

※找最简公分母的步骤:
(1).取各分式的分母中系数最小公倍数;
(2).各分式的分母中所有字母或因式都要取到;
(3).相同字母(或因式)的幂取指数最大的;
(4).所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。

※回顾分解因式找公因式的步骤:
(1) 找系数:找各项系数的最大公约数;
(2) 找字母:找相同字母的最低次幂; 典型例题
例1: 约分:()532164.1abc bc a - ()()()x y a y x a --322.2 例2:不改变分式的值,把下列各式的分子分母中的各项系数都化为整数,且分子分母不含公因式
=-+
b a b a 413
2312
1)1(
=-+y x y
x 6.02125.054)2( 针对性练习
把下列各式约分:
()x x x 525.122-- ()634.222-+++a a a a (3) d
b a
c b a 32232432- (4) )
(25)(152
b a b a +-+- (5) b a ab a --2; (6) 2242x x x ---; 小结:
1.约分的主要步骤:先把分式的分子,分母分解因式,然后约去分子分母中的相同
因式的最低次幂,(包括分子分母中系数的最大公约数)。

2.约分的依据是分式的基本性质:约去分子与分母的公因式相当于被约去的公因式
同时除原分式的分子分母,根据分式的基本性质,所得的分式与原分式的值相等。

3.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的
最低次幂,分子、分母的系数约去它们的最大公约数.
4.若分式的分子、分母中有多项式,则要先分解因式,再约分.
注意:1.当分式的分子与分母的因式只差一个符号时,要先处理好符号再约分,因式变号规
则如下:()()()
()⎩⎨⎧--=--=---121222n n n
n a b b a a b b a (其中n 为自然数)。

2.分式的分子,分母的多项式中有部分项不同时,不得将其中的一部分相同的项约
去(约分只能约分子分母中相同的因式)。

典型例题
例1 、 求分式
4322361,41,21xy y x z y x 的公分母。

例2 求分式2
241x x -与412-x 的最简公分母。

例3 通分:
(1)
xy
y x x y 41,3,22; (2)22225,103,54ac b b a c c b a -。

例4 通分:(1)
4
2,361,)42(222---x x x x x x , (2)232,1122+--x x x x ; 针对性练习
1、通分:
y
x y y x +-2
2;)1( 1;1)2(23----x x x x (3)21,42b a ac
(4)221,939a a a --- (5))
)((1,))((1,))((1b a c a a c c b c b b a ------ ※小结
1.把异分母的分式化为同分母的分式的理论依据是分式的基本性质;
2.分式通分的关键是,确定各分式的最简公分母;
3.分式通分的目的是,把异分母的分式转化为与原分式相等的同分母的分式,为学习异分母分式的加减法做准备。

二、巩固练习:
1.约分:(1)3262a b ab - (2)222
2a ab a ab b +++ 2、填空:
(1)z y x z y x 43231221=; (2)z y x y x 43321241=; (3)z
y x xy 4341261=。

3.求下列各组分式的最简公分母:
(1)
22265,41,32bc c a ab ; (2)c m n m mn 32291,61,21;(3))
)((1,1b a a b b a +--;
(4)2)3(21,)3)(2(1,)2(31++--x x x x x (5)11,1,2222-++x x x x x
4.通分:
(1)
z x y z x y 43,3,2; (2)c b a ab c a b 23326,43-; (3)232465,32,81xz
z y x y x -。

(4))2(,)2(++x b x x a y ; (5)y x x y x 221,)(1--; (6)2)2(34,)2(25x x --;
课后练习
1、下列各式是不是分式?为什么?
π
m y x x x 2)3(;8)2(;)1(2+ 2、在下列各式中,当x 取什么数时,下列分式有意义?
2||).3....(9
1).2....(3).1(2--+-x x x x x x 3、在下列分式中,当取什么数时,分式值为零?
)5)(3(5||).2....(321).
1(2-+-+-x x x x x 4、下列分式变形中正确的是( )
A 、ab a b a 2=
B 、1121
122-++=-+a ab a a a C 、2b ab b a = D 、211a ab a b +=+ 5、把下列各式约分 996).1.(22-++a a a 323627).2(b a b a n n + .)(24)(6).3(32
y
a x x a x ---- 6、通分:
(1)
3241,34,21x x x x x +--; (2)222254,43,32b a ab a -; (3))(,)(x y b y y x a x --;
(4)
)2)(2(,)2(12-+-x x x x (5)21,22---x x x x ; (6)263,14222---x x x x x ;
(7)
222231,)(1y xy x y x +--; (8)2293,125a a a a a --+。

(9)
21,2,23122423-+--+-a a a a a a a ;(10)203,125,1584222----+-+-+x x x x x x x x x ;
(11) ))((,))((a b c b c b c b b a b a --+--+ ; (12)))((1,))((1,))((1b c a c a b c b c a b a ------;。

相关文档
最新文档