生物质发电技术

合集下载

生物质能发电原理

生物质能发电原理

生物质能发电原理生物质能发电是一种利用生物质作为燃料来发电的技术。

生物质包括植物、动物等有机物质,如木材、农作物废弃物、食品废料等。

利用这些生物质作为燃料来发电,不仅可以有效回收利用有机废弃物,还可以减少对传统化石燃料的依赖,降低温室气体排放,具有重要的环境和经济效益。

一、生物质能燃烧发电原理生物质能燃烧发电是目前最常用的生物质能发电技术。

其基本原理是通过燃烧生物质燃料释放的热能来获得蒸汽,进而驱动涡轮发电机发电。

其具体过程如下:1. 原料处理:生物质燃料经过破碎、干燥等处理工序,得到适合燃烧的小颗粒物。

2. 燃烧过程:将处理后的生物质颗粒物送入锅炉,进行燃烧。

在燃烧过程中,生物质燃料中的可燃物质在氧气的存在下发生反应,产生高温和燃烧产物,其中最主要的产物是二氧化碳和水蒸气。

3. 热能转化:锅炉中的燃料燃烧释放的热能被传递给水,使水转化为高温高压的蒸汽。

4. 涡轮发电机组:高温高压的蒸汽推动涡轮发电机组转动,通过转动的涡轮产生电能。

5. 发电输送:发电机组产生的电能通过输电网输送到用户端,为人们的生活和生产提供电力支持。

生物质能燃烧发电技术具有成熟的产业化应用,其中关键的环节是燃烧过程和热能转化。

优化燃烧过程和提高热能转化效率是提高生物质能发电效率的重要手段。

二、生物质气化发电原理除了燃烧发电,生物质气化发电是另一种常见的生物质能发电技术。

该技术通过将生物质颗粒物在高温和缺氧条件下转化为可燃气体,再利用气体发电。

其具体过程如下:1. 生物质气化:生物质燃料经过粉碎、干燥等处理工序后,进入气化炉。

在气化炉中,生物质在高温和缺氧条件下发生热解和干馏反应,生成可燃的合成气体,主要成分为一氧化碳、氢气和甲烷等。

2. 合成气净化:气化产生的合成气中含有较多的杂质,需要进行除尘、脱硫、脱氮等处理,以便保护后续设备的正常运行。

3. 合成气发电:经过净化后的合成气进入内燃机或燃气轮机,产生动力,驱动发电机发电。

生物质发电的技术与装备

生物质发电的技术与装备

江苏宿迁生物质直燃发电项目::฀ 建设规模: 22××1212MW+2MW+2××75t/h75t/h生物质直燃锅炉,年发电量约 1.631.63亿千瓦时。฀ 技术:采用自主研发的生物质直燃锅炉。฀ 燃料 :稻秆、麦秆、花生壳等,年耗秸秆1717——2020万吨฀ 20062006年 1212月第一台锅炉点火。
生物质气化发电系统流程图
广州能源研究所在江苏兴化建设的44MWMW的稻壳IGCCIGCC电厂, 是科技部““863863””示范项目。฀ 规模:11台循环流化床气化炉 ,1111××400400KW+1KW+1××600KW600KW内燃机,配有余热 锅炉和蒸汽轮机发电。฀ 20052005年1010月投产฀ 主要燃料:稻 壳和棉杆,每年可利用生物质3.23.2万吨(干),年发电量28002800 万kWh
气化发电
• 气化发电控制室 • 气化发电厂
气化发电
在气化炉内,生物质转化 为可燃气体,温度约800oC 气体的主要成分: H2, CO, N2, H2O, CO2, CH4 可燃气体进行冷却与净化
气化发电
锅炉 生 物 质 炉 统 化 系 气 化 机 发电机 净 蒸汽轮机 发电机
气轮机
气化发电
发电机
直燃发电
混燃发电
混燃炉及配套发电项目
混燃发电
将20%的生物质与化石 燃料(通常是煤)混合 不需要对现有锅炉进行 大的改造,成本低 发电容量:50-100 MW
十里泉发电厂: ฀ 20052005年55月,在引进消化丹麦技术的基础上,对#5#5锅炉(( 容量为400400t/ht/h,,配套机组容量140140MWMW))进行了混燃 秸秆的技术改造。฀ 20052005年1212月投入运行฀ 主要混燃燃料 :麦秆和玉米秆,目前锅炉燃烧稳定,运行正常,,每年可燃烧10.510.5 万吨秸秆。

生物质发电

生物质发电

生物质发电随着全球能源需求的不断增长和石化能源的日益枯竭,人类已经开始寻找更加可持续和环保的能源替代品。

生物质发电是一种新型的能源发电方式,在国内外均已引起了广泛关注和研究。

本文将对生物质发电进行介绍和分析。

一、生物质的基本概念生物质是指来自于动植物,微生物和其它有机物经过降解和转化后形成的可再生生物物质。

这些生物物质包括木材、农作物秸秆、沼气、食品废弃物、动物粪便等。

在能源利用方面,生物质是一种广泛应用的可再生能源,也是一种较为理想的绿色能源。

二、生物质发电的原理生物质发电是把生物质转化为电能的一种新型技术,主要通过热力发电和有机物发酵两种方式来实现。

一、热力发电:生物质被燃烧后产生高温高压蒸汽,推动汽轮机旋转,产生电能。

热力发电是目前生物质发电中使用最为广泛的一种方式,主要适用于城市生活垃圾、农业废弃物、工业废渣等大量产生的生物质能源。

二、有机物发酵:把生物质制成发酵料后,通过微生物发酵得到的生物气体可以用于发电,也可以用于城市天然气,汽车燃料等方面。

这种方法适用于沼气、动物粪便、废料等有机物质。

三、生物质发电的优点1. 显著减少温室气体和环境污染物的排放,保护环境和地球。

2. 生物质作为可再生能源,可以有效解决能源需求供给的问题。

3. 生物质在储量和分布上都更加广泛,可以有效避免由于石化能源的有限性所带来的风险问题。

4. 生物质发电设备建设和运维成本相对较低,节能效益很大,对于缓解能源供需矛盾和促进可持续发展非常有利。

4、生物质发电的局限性1. 生物质资源严重浪费,尚未得到很好的合理利用。

2. 生物质发电需要庞大的投资和技术支持,建设周期较长。

3. 不同生物质的成分不同,在燃料特性、含水率、卡路里等多个方面有所不同,对于生物质的选用和处理成本有较大影响。

4. 生物质发电的效率和稳定性需进一步提高。

五、生物质发电在全球的应用生物质发电技术已经在全球得到了广泛应用,包括欧洲、北美洲、日本、澳大利亚等地,其中欧洲是世界上最先进的生物质发电技术应用地区。

生物质能发电技术

生物质能发电技术
今后的几十年是中国将在以生物能为主的可再生 能源技术领域, 进入高新技术开发与大规模推广并举 的发展阶段。我们要紧紧抓住机遇促进生物质能源产 业和市场的全面发展。
力争到2020年达到1600万kW, 走出一条解决电力 短缺与实现生物质能源合理利用的双赢之路。
谢谢!
气化发电技术
• 包括三个方面: 生物质气化 气体净化 燃气发电
气化发电典型流程
沼气发电技术
• 什么是沼气:有机 物质在厌氧条件下,
经过微生物的发酵
作用而生成的一种 可燃气体。
• 沼气发电:它将沼 气用于发动机上,
并装有综合发电装
置,以产生电能和
热能,是有效利用
沼气的一种重要方 式。
禽畜粪便加农作物下料的沼气发电供热工程
燃料电池产生的水蒸汽热量可供消化池加热或采暖用排出废气的热量可用于加热消沼气发电技术沼气发电典型流程湛江生物质能发电厂1缺乏成熟的核心技术和设备到目前为止用于生物质焚烧发电的锅炉及燃料输送系统的技术和设备绝大部分依靠进口国内尚无成熟的产品制造厂家这成为制约我国生物质能发电事业快速发展的瓶颈
生物质能发电技术与应用
混合燃烧技术
• 混合燃烧发电是指将生物质原料应用于燃 煤电厂中,使用生物质和煤两种原料进行 发电,主要有两种方式:直接混合燃烧和 并联混合燃烧。
山东德州垃圾焚烧发电
直接混合燃烧
• 将生物质原料直接送入燃煤锅炉,与煤共 同燃烧,生产蒸汽,带动蒸汽轮机发电。
并联混合燃烧
• 先将生物质原料在气化炉中气化生成可燃 气体,再通入燃煤锅炉,可燃气体与煤共 同燃烧生产蒸汽,带动蒸汽轮机发电。
沼气发电技术
沼气燃料电池由三个单元组成:燃料处理单元、发电单 元和电流转换单元。燃料处理单元主要部件是沼气裂解转化 器(改质器),以镍为催化剂,将甲烷转化为氢气;发电单元 把沼气燃料中的化学能直接转化为电能;电流转换系统主要 任务是把直流电转换为交流电。燃料电池产生的水蒸汽、热 量可供消化池加热或采暖用,排出废气的热量可用于加热消 化池。

生物质发电技术及其应用

生物质发电技术及其应用

生物质发电技术及其应用随着人民生活水平和经济发展水平的提高,对于环保、节能等问题的关注越来越高。

生物质发电技术由于其清洁环保、可再生、低碳排放等特点,得到人们的广泛关注和应用,本文主要探讨生物质发电技术及其应用。

一、生物质能源的概念和种类生物质能源是指来自动物、植物等生物体的能量,其来源是可再生的,具有环保和可持续的特点。

生物质能源主要包括植物生物质和动物生物质。

植物生物质是指来自植物的能源,包括木材、秸秆、垃圾等。

动物生物质是指来源于动物体的能源,包括牛粪、鸡粪等。

二、生物质发电技术生物质发电技术是指将生物质转化为电能的技术,主要有以下几种:1.生物质直接燃烧发电技术生物质直接燃烧发电技术是将生物质燃烧产生高温热能,再利用蒸汽发电机将热能转化为电能的过程。

当燃料燃烧形成高温的烟气进入锅炉之后,通过蒸汽发电机将热能转化为电能。

燃烧废气可以进行净化处理,减少污染物的排放。

2.生物质气化发电技术生物质气化发电技术是将生物质在高温、无氧条件下转化为合成气,再利用发电机将合成气转化为电能的过程。

气化产物中可分为废渣、可燃气和焦炭等三部分。

废渣主要是残留灰分和一些无法气化的杂质;可燃气主要是CO、H2、CO2、N2等有机物、无机物的气体混合物,其中含有大量可用的热能,经过干燥、保温等处理后进入燃气发电机组,将热能转化为电能;焦炭则可以在温度较低、时间较长的情况下恢复出生物质原有成分,可以用于制备化学原料或热值燃料。

3.生物质液化发电技术生物质液化发电技术是将湿生物质在高温、高压条件下催化加氢处理,将生物质转化为高品质的液体燃料(如生物质液态燃料),再利用内燃机将液体燃料转化为电能的过程。

液态燃料能够克服生物质水含量多的特性,能够方便地储存和运输,提高了利用效率。

4.生物质焚烧发电技术生物质焚烧发电技术是将生物质通过高温焚烧进行能量转化,将能量转化为热能后达到蒸汽自发循环的效果,从而实现电能的发电。

该技术将焚烧炉、一个蒸汽循环设备和一个发电机组紧密结合,是一种比较成熟的技术路线,广泛应用于巴西、美国、英国、中国等多个国家和地区。

生物质能发电

生物质能发电

生物质能发电
生物质能发电是利用生物质资源进行发电的一种可再生能
源技术。

生物质指的是植物的有机物质,包括农作物秸秆、木材、木屑、麦秸、稻壳等。

生物质能发电的过程一般包
括生物质燃烧、气化或发酵等方法,将生物质转化为热能
或燃气,然后通过燃气发动机、蒸汽涡轮机、燃气轮机等
设备产生电力。

生物质能发电的优点包括:1. 可再生性:生物质资源广泛
存在,具有大量的再生潜力,可避免对传统能源的过度依赖。

2. 减少温室气体排放:生物质能发电通过燃烧生物质
释放的二氧化碳,与生物质在生长过程中吸收的二氧化碳
相平衡,使其对全球气候变化的影响较小。

3. 垃圾和农作
物废弃物的综合利用:生物质能发电可以有效利用废弃农
作物和农业生物质废弃物,减少了垃圾的处理负担。

然而,生物质能发电也存在一些挑战和限制。

首先,生物
质资源的供给不稳定,受季节、气候和地理因素的影响较大。

其次,生物质料理过程中产生的废弃物需要妥善处理,以避免对环境造成负面影响。

此外,生物质能发电技术的
成本相对较高,需要进一步的技术进步和规模化生产来降低成本。

总的来说,生物质能发电是一种可持续发展的能源解决方案,对于引导能源结构的转型和减少对化石燃料的依赖具有重要意义。

随着技术的不断进步和经济的发展,相信生物质能发电将在未来发挥更大的作用。

生物质发电

生物质发电

生物质发电随着能源需求的增长,环境问题和气候变化变得越来越严重,越来越多的国家和地区开始探索新的清洁能源。

生物质能作为一种能源资源,在近年来备受关注。

生物质发电就是将生物质作为燃料,通过燃烧或生物化学反应来制造电力的过程。

生物质发电的本质是通过利用生物质材料中含有的化学能来制取电能,既能满足电力需求,同时也能减少对环境的负面影响和碳排放。

本文将探讨生物质发电的优势、发展现状、技术路线等方面。

一、生物质发电的优势1、生物质资源丰富生物质发电的燃料可以是众多的有机废弃物,如农业废弃物、林业废弃物、食品废弃物等。

其中较有代表性的是木材和秸秆等。

由于生物质资源的广泛分布,采购成本低且易于获取,因此生物质发电在可持续发展方面具有较大的优势。

2、清洁环保生物质燃烧产生的二氧化碳与生物质的吸收和分解之间形成了一种生物地球化学循环,从而减少了温室气体的排放,对环境污染的影响与化石能源相比更小。

生物质发电的排放物主要是水蒸气和少量二氧化碳,因此其对空气质量的影响也很小,这种清洁能源将有助于改善环境污染的状况。

3、可再生性高相比石化和核能源等一次能源,生物质能的可再生性更高,因为生物质能可以通过农业、林业和园艺等手段重新得到。

杂草、颗粒膨大、纤维类废弃物等也可以转化为生物质能。

二、生物质发电的主要技术路线生物质发电的主要技术路线包括热力学和生物化学路线。

前者是通过燃烧生物质产生蒸汽直接发电,后者是通过生物化学反应将生物质分解成可燃性气体或液体,再以此产生蒸汽并发电。

1、热力学路线热力学路线主要是利用生物质的热量来产生蒸汽,这种蒸汽驱动涡轮发电机产生电能。

基本热力学发电流程包括加料、预处理、燃烧、蒸汽化、发电和废弃物处理。

2、生物化学路线生物化学路线主要是通过生物质发酵产生的气体来发电,具有很高的能量效率。

生物质发酵的初级影响是生物质水解成糖,然后细菌通过之后的发酵作用把糖稳化为有用的甲烷酸。

再通过高温压缩生成生物质天然气(Bio-gas)用于生物质发电,发电机组将这些能量转换为电能。

能源工程中的生物质能发电技术资料

能源工程中的生物质能发电技术资料

能源工程中的生物质能发电技术资料在能源工程领域中,生物质能发电技术具有重要的地位和作用。

生物质能发电技术,即利用生物质作为燃料,通过燃烧或气化等方式转化为能量,进而驱动发电机组发电。

本文将详细介绍生物质能发电技术的相关资料,以及其在能源工程中的应用。

一、生物质能发电技术资料1. 生物质能介绍生物质是指来源于植物和动物的有机物质,包括木材、秸秆、农作物废弃物、食品加工废弃物等。

生物质资源广泛,易获取,是可再生能源的重要组成部分。

2. 生物质能发电技术分类生物质能发电技术主要包括直接燃烧发电、气化发电和生物质废弃物发电。

直接燃烧发电是将生物质直接燃烧,产生热能,再通过蒸汽发电机组转化为电能。

气化发电是将生物质气化为合成气,再通过燃气发电机组进行发电。

生物质废弃物发电是利用农作物秸秆、木屑等废弃物通过发酵和厌氧消化等方式产生沼气,再通过沼气发电机组发电。

3. 生物质能发电技术优势生物质能发电技术具有以下优势:(1)可再生性:生物质是一种可再生资源,可以不断获取和利用,有效缓解能源短缺问题。

(2)环保性:生物质能发电过程中的排放物相对较少,不会对环境造成明显的污染,符合可持续发展理念。

(3)废弃物综合利用:生物质废弃物可通过发电技术转化为电能,实现资源的综合利用,减少废弃物对环境的负荷。

二、生物质能发电技术在能源工程中的应用1. 农村电力供应生物质能发电技术在农村电力供应中起到重要作用。

农村地区常常存在着电力供应不足的问题,而农作物秸秆、柴草等生物质资源丰富。

利用这些资源进行生物质能发电,可以满足农村地区的电力需求,促进农村经济发展。

2. 工业生产用能生物质能发电技术可用于工业生产过程中的能源供应。

许多工业生产过程需要大量的能源,而利用生物质作为燃料,既能满足能源需求,又减少对化石能源的依赖,降低能源成本和环境影响。

3. 城市垃圾处理城市垃圾中含有大量的有机物质,是理想的生物质能发电原料。

通过垃圾气化或沼气发电技术,将城市垃圾转化为电能,可以实现垃圾资源化利用和减少垃圾对环境的污染。

生物质能发电分类

生物质能发电分类

生物质能发电分类生物质发电是利用生物质具有的生物质能进行发电的一种技术。

大致分为农林生物质发电、垃圾焚烧发电和沼气发电,而农林生物质发电从发电技术上又可分为直接燃烧发电和混合燃烧发电。

生物质发电技术是目前生物质能应用方式中最普遍、最有效的方法之一。

我国生物质发电主要有:蔗渣燃烧发电,垃圾燃烧发电,稻壳秸秆燃烧发电生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。

生物质气化是在一定的热力学条件下,借助空气(或氧气),水蒸气的作用,使生物质的高聚物发生热解,氧化,还原重整反应,最终转化为一氧化碳,氢气和低分子烃类等可燃气体。

生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种。

形式如下:1.直接燃烧发电(放在锅炉中直接燃烧,采用流化床燃烧,要求将生物质粉碎至一定的粒度)2.混合燃料发电(与煤混合后燃烧,设备要求高;)3.气化发电(分为内燃机发电,燃气轮机发电,燃气-蒸汽联合循环发电,燃料电池发电)4.沼气发电。

5.生物质垃圾焚烧发电。

生物质发电技术分类(按发电方式划分)直接燃烧发电:将生物质放入锅炉中直接燃烧,产生的蒸汽带动蒸汽轮机及发电机发电。

混合燃烧发电:将生物质和煤混合进行燃烧发电,可分为两种方式:一种是直接将生物质与煤混合后投放燃烧,另一种是将生物质气化产生的燃气与煤混合燃烧。

垃圾发电:以焚烧发电的形式为主,垃圾焚烧发电是利用锅炉燃烧技术产生的热量将水加热后获得蒸汽推动汽轮机带动发电机发电。

沼气发电:利用工农业或城镇生活中产生的大量有机废弃物经厌氧发酵处理产生的沼气驱动发电机组发电。

气化发电:生物质在气化炉中转化为气体燃料,经一系列的净化冷却后直接进入燃气机中燃烧发电或者直接进入燃料电池发电。

生物能源利用生物质能源发电的关键技术是什么

生物能源利用生物质能源发电的关键技术是什么

生物能源利用生物质能源发电的关键技术是什么生物能源利用——生物质能源发电的关键技术随着能源需求的不断增长和环境污染问题的日益严重,生物能源成为了一种受到广泛关注的可持续能源形式。

其中,生物质能源发电作为生物能源利用的重要方式之一,在能源转型中具有重要意义。

本文将探讨生物质能源发电的关键技术,并分析其在解决能源和环境问题中的作用。

一、生物质能源概述生物质能源是指利用从植物和动物中获取的有机物质,如木材、农作物秸秆、生活垃圾等,转化为能源形式的能源。

相比化石能源,生物质能源具有可再生性、低碳排放、资源广泛等特点,是可持续发展的重要路径之一。

二、生物质能源发电技术1. 生物质燃烧发电技术生物质燃烧发电是利用生物质燃料进行燃烧,产生高温高压蒸汽带动涡轮发电机组发电的技术。

关键技术包括生物质燃料供给系统、燃烧系统、蒸汽发电系统等。

生物质燃料供给系统需要确保稳定供应燃料,避免堵塞和杂质对设备的损害;燃烧系统需要控制燃料的燃烧过程,保证燃烧效率和减少氮氧化物的排放;蒸汽发电系统则需要高效转化热能为电能。

2. 生物质气化发电技术生物质气化发电是将生物质通过气化反应转化为合成气,再通过内燃机或燃气轮机进行发电的技术。

关键技术包括气化炉的设计和控制、合成气的净化和储气、内燃机或燃气轮机的选择和优化等。

气化炉的设计和控制需要确保适宜的温度和压力条件,以促进气化反应的进行;合成气的净化和储气需要消除有害物质,保持合成气的稳定性和可燃性;内燃机或燃气轮机的选择和优化则需要在能效和经济性之间进行平衡。

3. 生物质液化发电技术生物质液化发电是将生物质通过热解或溶胀等方法转化为液体燃料,再经过内燃机或燃气轮机进行发电的技术。

关键技术包括生物质预处理、热解或溶胀反应、液体燃料的净化和储存等。

生物质预处理需要将生物质进行粉碎和干燥,以提高反应效率;热解或溶胀反应需要在适宜的温度和反应时间下实现生物质转化为液体燃料;液体燃料的净化和储存需要去除杂质和调节储存条件,确保燃料的稳定性和可燃性。

生物质发电技术及经济性分析

生物质发电技术及经济性分析

生物质发电技术及经济性分析随着环保意识的提高,新能源的应用越来越受到重视。

而生物质作为一种可再生的源头,其发电技术也越来越受到人们的关注。

本文将从技术和经济性两方面进行探讨。

技术方面生物质发电技术是将生物质资源转化为能源的一种技术。

目前广泛采用的有生物质燃烧发电、生物质气化发电、生物质液化发电等。

生物质燃烧发电是将生物质资源燃烧产生蒸汽,通过蒸汽发电机发电。

生物质气化发电则是将生物质资源在高温下升华成气体,再通过气体机组发电。

而生物质液化发电则是将生物质经过液化处理后再进行发电。

在这三种方法中,生物质燃烧发电因技术成熟、设备稳定性高,成本相对较低,因此应用最为广泛。

但随着环保法规的不断加强,尤其是对废气的处理要求提高,生物质气化和生物质液化的应用也逐渐被重视。

经济性分析在经济性方面,生物质发电的成本主要集中在燃料、设备、维护等方面。

其中燃料是生物质发电的最主要耗费。

一般来说,燃料的成本占到了生物质发电成本的60%-70%左右。

但需要注意的是,不同的生物质资源价格存在很大差异。

例如,秸秆等农作物废弃物倾向于比柴草等生物质资源价格更为便宜。

这也意味着选择适合自己的生物质资源是影响生物质发电成本的重要因素之一。

此外,设备和维护同样是生物质发电的成本之一。

不过,生物质燃烧发电的技术成熟,许多设备已经具有较高的可靠性和稳定性,对设备和维护成本影响相对较小。

最终,生物质发电的经济性还要考虑到对生态环境的贡献以及政府的支持政策。

在环保方面,生物质发电的二氧化碳排放很低,对环境的污染也较小,这是其得到政府支持的主要原因之一。

而在利益方面,政府对生物质发电的支持政策也在不断加强,具有很强的经济优势。

结论生物质发电技术是一种环保、可持续的新能源技术,可以为沿海地区、农村地区等提供安全、稳定的电力供应。

在技术方面,生物质燃烧发电因技术成熟、设备稳定性高而得到广泛应用。

在经济性方面,生物质发电的成本主要集中在燃料、设备、维护等方面。

生物质能发电的技术和应用

生物质能发电的技术和应用

生物质能发电的技术和应用随着能源需求的不断增长,人类逐渐意识到传统的化石能源已经无法满足能源需求的快速增长,而生物质能作为一种更加环保、可持续的能源逐渐成为人们关注的热点。

那么,生物质能发电的技术和应用是怎样的呢?一、什么是生物质能?生物质能是指利用可再生的生物质作为燃料,通过燃烧过程产生的能量来发电的一种能源。

生物质能来源非常广泛,包括植物、木材、农作物残渣和废弃物等,这些生物质资源可以节约大量非可再生的化石能源,同时还能减少环境污染。

二、生物质能发电技术生物质能发电技术主要有两种类型,一种是生物质燃烧发电技术,另一种是生物质气化发电技术。

1. 生物质燃烧发电技术生物质燃烧发电技术是将生物质作为燃料,通过燃烧产生高温高压的蒸汽来驱动汽轮机发电。

这种技术适用于各种生物质资源,包括木屑、秸秆、植物废弃物等。

生物质燃烧发电技术相比传统的化石能源发电技术,具有更低的碳排放量和更高的环保性,在未来的可再生能源发电中具有很大的潜力。

2. 生物质气化发电技术生物质气化发电技术是将生物质资源进行气化处理,将其转化为气体燃料,进而作为燃料用于发电。

该技术具有很高的灵活性,可以处理各种不同类型的生物质,可以通过设备的不同调整其处理效率和燃烧效果。

生物质气化发电技术可以利用更多种类的生物质资源,进而提升其能源利用效率。

三、生物质能发电的应用生物质能发电技术已经在许多国家得到了广泛应用,其中主要包括一下几个方面:1. 农业废弃物的利用生物质能发电技术可以将农业废弃物进行利用,如秸秆、麦草、稻草等废弃物,进而转化为能源。

通过生物质能发电技术,能够最大限度地利用农业废弃物资源,减少废弃物对环境造成的污染。

2. 林业资源的利用生物质能发电技术可以利用林业资源,如木材、锯末等,将其转换为能源,减少对传统化石能源的依赖。

通过利用生物质能发电技术,可以避免对林业资源的过度开采,保护环境。

3. 生活垃圾的资源化处理生物质能发电技术可以将生活垃圾进行资源化处理,将废弃物转化为能源。

生物质能发电技术及应用

生物质能发电技术及应用

生物质能发电技术的局限性
资源限制:生物质能发电依赖于可获得的生物质资源,如农作物废弃物、木 材等,资源有限且分布不均。
效率问题:生物质能发电技术通常效率较低,转换效率一般在10%-30%之间, 相比化石燃料的燃烧效率较低。
污染问题:生物质能发电过程中会产生废气、废水和固体废弃物等污染物, 处理不当会对环境造成污染。
竞争压力:随着化石燃料的减少和价格上涨,生物质能发电面临着来自化石 燃料的竞争压力。
生物质能发电技术的发展挑战与机遇
挑战:资源分散,收集成本 高;技术成熟度不够,设备 可靠性有待提高;环保监管 压力加大,排放标准更严格。
机遇:可再生能源政策支持; 技术进步推动成本降低;环 保意识增强,市场需求增加。
生物质能是一 种可再生能源, 具有低碳、环 保、可持续等
优点
生物质能发电 技术主要包括 直接燃烧发电、 气化发电和生 物质燃料电池
等技术
生物质能发电 技术的应用范 围广泛,可用 于工业、农业、
林业等领域
生物质能发电技术的原理
生物质能转化:利用生物质能转化为热能、电能等能源形式 生物质燃烧:生物质在炉膛内燃烧产生高温高压气体 热能利用:高温高压气体推动涡轮机转动,将热能转化为机械能 机械能发电:涡轮机通过发电机将机械能转化为电能
减少废弃物处理负担:生物质能发电技术可将废弃物转化为电能和热能,减轻废弃物处理负担,实 现资源化利用。
促进生态平衡:生物质能发电技术可利用废弃物和农作物秸秆等可再生资源,减少对森林等自然资 源的依赖,促进生态平衡。
生物质能发电技 术的发展前景与 展望
生物质能发电技术的发展前景
技术创新:随着科技的不断进步,生物质能发电技术将得到进一步优化 和提升,提高发电效率和质量。

生物质发电的技术与经济分析

生物质发电的技术与经济分析

生物质发电的技术与经济分析生物质发电是一种新兴的能源发展方式,它利用可再生的、可持续的生物质资源,通过热电联产的方式实现电能与热能的统一利用,可有效缓解煤炭等化石燃料对环境的污染,减少温室气体排放,保护生态环境与能源安全。

本文将从技术与经济两个方面对生物质发电进行分析。

一、生物质发电技术分析(一)生物质的来源与性质生物质来源广泛,包括农业作物、林业废弃物、畜禽粪便、城市垃圾等,其燃烧产生的温室气体排放量较低,并且可以和其他再生能源相互补充,形成可持续发展的能源链。

生物质燃烧后主要产生水蒸气、二氧化碳、氧气与其它气体,其中,水蒸气与氧气具有强烈的双重氧化作用,可以帮助减少二氧化碳引起的温室效应。

(二)生物质发电技术和装备生物质发电技术采用的最基本方式是锅炉发电,即热能产生在锅炉中,通过涡轮机驱动发电机发电。

其中,锅炉为燃烧器提供燃料,将燃料燃烧后,产生高温和高压的蒸汽,该蒸汽推动涡轮机桨叶旋转,从而驱动发电机发电。

锅炉种类主要有水管式和火管式两种,前者能量利用率和安全性较高,而后者则因结构简单便于维护。

目前生物质发电常用的发电机为间接式,在排气烟气中冷却出污水蒸汽,以增加烟气蒸汽含水量,使发电效率更高。

(三)技术现状目前,生物质发电技术已相当成熟,在欧美等发达国家,已形成了较为完善的生物质发电产业链,技术水平和装备先进性均居世界领先水平。

例如丹麦的生物质发电装置中,蒸汽产量达到了250条/小时,并且设备已有15年以上的使用寿命。

在中国,生物质发电的应用仍处于起步阶段,技术和装备水平有待提高,但受国家政策支持,生物质发电市场前景较好。

二、生物质发电经济分析(一)生物质发电的经济成本生物质发电的经济成本包括投资成本、燃料成本、设备维护成本、人工成本等。

其中,投资成本是最大的一项,主要包括建设土地、购置设备、安装机器、建设配套设施、环保设施等,占据总成本的70%以上。

但有效的运营管理和维护,可有效降低生物质发电的经济成本,提高发电效益。

生物质发电技术

生物质发电技术

生物质发电技术
《生物质发电技术》
一、简介
生物质发电技术是一种利用有机物质(如农业废弃物、木材、生物油、植物残体和动物粪便)的发电技术,它以转化有机物质化学能为机械能,从而产生电能的技术。

生物质发电技术可以把废弃物变成电能,如秸秆、木屑、草地残草等,由于其利用了可再生能源,因此可以减少大量的碳排放,降低环境污染,从而缓解气候变化的压力。

二、技术原理
生物质发电技术主要分为两种,一种是利用气化发电技术,即通过将有机物质气化发生化学反应,从而发生机械能,并将机械能转换成电能;另一种是利用发酵发电技术,即通过对有机物质进行发酵,从而发生化学反应,转化成电能。

三、生物质发电技术的优点
(1)环境友好:生物质发电技术可以利用可再生的资源,如秸秆、木屑、草地残草等,生产电能,从而减少大量的碳排放,降低环境污染,从而缓解气候变化的压力。

(2)经济性:生物质发电技术利用可再生的资源,可以节约传统发电所需要的能源,从而降低发电成本,提高经济性。

(3)发电稳定:由于生物质发电技术利用可再生的资源,可以提供持续不断的发电,可以满足社会对发电的需求。

四、生物质发电技术的应用
(1)家庭发电:生物质发电技术可以解决家庭用电的问题,如农村地区的家庭可以利用有机废弃物,如秸秆、木屑、草地残草等,进行生物质发电,从而解决家庭用电的问题。

(2)垃圾处理:生物质发电技术可以把废弃物转变成电能,因此也可以用来处理垃圾,从而减少垃圾的危害。

(3)农业发电:生物质发电技术可以利用农业废弃物,如秸秆、木屑、草地残草等,进行生物质发电,从而满足农业的发电需求。

生物质能发电工作原理

生物质能发电工作原理

生物质能发电工作原理生物质能发电是指利用生物质作为燃料进行发电的一种方式。

生物质是指由植物和动物所产生的有机物质,如木材、农作物残余物、畜禽粪便等。

生物质能发电的工作原理主要包括生物质燃烧发电和生物质气化发电两种方式。

一、生物质燃烧发电生物质燃烧发电是将生物质作为燃料,经过燃烧产生高温高压蒸汽,然后利用蒸汽驱动涡轮发电机发电。

其工作过程如下:1. 原料准备:收集和处理合适的生物质燃料,如木材、农作物残余物和废弃物等。

2. 燃烧过程:将生物质燃料送入燃烧炉中进行燃烧,在高温下释放燃料中所含的化学能,产生高温高压蒸汽。

3. 蒸汽扩压:将燃烧释放的蒸汽送入蒸汽轮机中,通过涡轮的扩张和旋转,使蒸汽的动能转化为机械能。

4. 发电:涡轮转动时,驱动连接在轴上的发电机旋转,产生电能。

5. 能量回收:蒸汽在发电过程中失去了一部分能量,但仍保持一定的热量。

利用余热回收系统,将余热转化为其他有用的能量,如供暖或加热。

生物质燃烧发电具有供应稳定、可再生、低碳排放等优点,能够有效利用生物质资源,减少对传统化石能源的依赖。

二、生物质气化发电生物质气化发电是通过将生物质燃料在缺氧或氧气限制的条件下进行热解和气化,生成合成气,再利用合成气驱动内燃机或燃气轮机发电。

1. 原料准备:收集和处理适当的生物质燃料,如农作物秸秆、木屑等。

2. 气化反应:将生物质料送入气化炉内,在高温下进行热解和气化反应,生成合成气。

反应中的产物包括一氧化碳、氢气和少量的甲烷、二氧化碳等。

3. 气体净化:将合成气经过净化处理,去除其中的颗粒物、硫化物和氯化物等有害物质,以保护后续设备的正常运行。

4. 燃烧或发电:合成气进入内燃机或燃气轮机,在高温高压条件下燃烧或扩张,转化为机械能,驱动发电机发电。

5. 废气处理:气化过程中产生的废气含有有害物质,需要进行处理,如高温焚烧、吸收和过滤等方式,以达到排放标准。

生物质气化发电技术能够高效利用生物质资源,减少传统能源消耗,减少环境负荷,具有较高的经济性和环境友好性。

生物质能技术

生物质能技术

生物质能技术随着能源危机的日益严重和对环境保护的关注增加,生物质能技术作为一个可再生能源解决方案备受关注。

生物质能技术利用生物质作为原料,通过热化学、生物化学和物理化学等方法,将生物质转化为热能、电能、燃料和化工产品等多种形式的能源。

一、生物质能技术的发展现状生物质能技术起源于远古时代的烧木柴,经过几千年的演变和发展,已经成为现代能源领域的重要组成部分。

目前,生物质能技术主要包括生物质发电、生物质燃烧、生物质液化和生物质气化等几个方面。

1. 生物质发电生物质发电是将生物质燃烧或气化产生的热能转化为电能。

生物质发电有很高的可再生性和环境友好性,可以大大减少对化石能源的依赖,并减少温室气体的排放。

生物质发电技术可以使用各种生物质资源,如农作物秸秆、畜禽粪便和农田废弃物等。

2. 生物质燃烧生物质燃烧是将生物质直接燃烧获得热能的过程。

生物质燃烧技术已经广泛应用于供热和工业生产等领域。

生物质燃烧可以有效利用废弃物资源,减少环境污染,并为可再生能源的利用提供了一种可行途径。

3. 生物质液化生物质液化是将生物质在高温和高压条件下转化为液体燃料的过程。

生物质液化技术可以将生物质转化为生物燃料、生物油和生物液体化工原料等,具有选择性能、高效性和稳定性的特点。

生物质液化技术可以有效解决生物质资源的浪费和环境污染问题。

4. 生物质气化生物质气化是将生物质在高温和缺氧条件下转化为合成气的过程。

生物质气化技术可以将生物质转化为合成气,通过合成气制备燃料、化学品和材料等,具有高效能、低污染和多产物利用的特点。

生物质气化技术为可持续发展提供了可能性,并成为解决能源和环境问题的重要途径。

二、生物质能技术的优势与挑战生物质能技术具有许多优势,如可再生性、环境友好性、多功能性和可替代性等。

但同时也面临着一些挑战,如资源供应不稳定、技术成本高和政策支持不足等。

1. 优势生物质能技术的可再生性使其成为可持续发展的重要组成部分,可以减少对有限化石能源的依赖。

生物质发电(利用生物质所具有的生物质能进行的发电)

生物质发电(利用生物质所具有的生物质能进行的发电)

最新数据
据行业统计,截至2021年10月底,我国可再生能源发电累计装机容量达到10.02亿千瓦,突破10亿千瓦大关, 比2015年底实现翻番,占全国发电总装机容量的比重达到43.5%,比2015年底提高10.2个百分点。其中,水电、 风电、太阳能发电和生物质发电装机分别达到3.85亿千瓦、2.99亿千瓦、2.82亿千瓦和3534万千瓦,均持续保持 世界第一。
致公党中央在全国政协十届四次会议上的发言中提出,我国生物质资源生产潜力可达650亿吨/年,折合33亿 吨标准煤,相当于每年化石资源消耗总量的3倍以上。中国工程院专家预测说,2015年,全球总能耗将有4成来自 生物。大力加强生物质产业的开发与培育,对于缓解能源短缺、改善环境、扩大乡镇产业规模、促进循环经济的 发展具有重要意义。
发展
随着生物质能发电产业竞争的不断加剧,大型生物质能发电企业间并购整合与资本运作日趋频繁,国内优秀 的生物质能发电企业愈来愈重视对行业市场的研究,特别是对企业发展环境和客户需求趋势变化的深入研究。
发电形式
01
直接燃烧发 电
02
混合发电
03
气化发电
04
沼气发电
06
有待扶持
05
垃圾发电
直接燃烧发电是将生物质在锅炉中直接燃烧,生产蒸汽带动蒸汽轮机及发电机发电。生物质直接燃烧发电的 关键技术包括生物质原料预处理、锅炉防腐、锅炉的原料适用性及燃料效率、蒸汽轮机效率等技术。
2021年12月26日,前11个月,全国风电发电量、太阳能发电量、生物质发电量分别达到5866.7亿千瓦时、 3009亿千瓦时、1480亿千瓦时,同比分别增长40.8%、24.3%、23.4%。
谢谢观看
生物质还可以与煤混合作为燃料发电,称为生物质混合燃烧发电技术。混合燃烧方式主要有两种。一种是生 物质直接与煤混合后投入燃烧,该方式对于燃料处理和燃烧设备要求较高,不是所有燃煤发电厂都能采用;一种 是生物质气化产生的燃气与煤混合燃烧,这种混合燃烧系统中燃烧,产生的蒸汽一同送入汽轮机发电机组。

生物质发电技术

生物质发电技术

生物质能是太阳能以化学能形式储存在生物质中的能量。

生物质发电技术是将生物质能源转化为电能的一种技术,主要采用农作物秸秆和林业废弃物作为发电燃料,因此常将生物质发电称为秸秆发电。

作为一种可持续发展的能源,生物质发电在国际上越来越受到重视,在国内也越来越受到政府的关注和民间的拥护。

我国能源结构的调整、农村环境的保护及社会主义新农村的建设等宏观政策将有利于生物质能源的发展。

“十一五”期间我国生物质发电的发展必将进入快速发展期。

1. 我国发展生物质发电的必要性1.1 发展生物质发电是国家能源战略和能源结构调整的需要。

近年来,不可再生化石能源的紧张严重影响和波及丁业、农业、交通运输以及人民生活等各个方面,国民经济整体运行成本的增加严重影响中国经济的持续稳定健康发展.危及国家经济安全。

生物质能资源丰富,可循环使用,而且无污染,因此必将取代化石能源成为能源供应的主体。

用清洁可再生能源替代煤炭、石油,调整能源结构是我国近期的重要任务,而利用风能、生物质能等可再生能源发电正是我国能源结构调整最现实、最主要的方向。

1.2 发展生物质发电是建设社会主义新农村、服务“三农”的需要。

中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料.尽管煤炭、液化气等商业能源在农村的使用迅速增加,但生物质能仍占有重要地位。

1998年农村生活刚能总量为3.65亿T标准煤(以下简称标煤),其中秸秆和薪柴为2.07亿T标煤,占56.7%,发展生物质发电可增加农民收入,生物质发电使生物质秸秆变废为宝,1台装机容量为25 MW 的机组年消耗生物质秸秆约20万T。

如果按150元/T价格计算,则每年可给当地农民带来3000万元收入。

同时,生物质秸秆燃料的收、储、运工作可给农村造就成若干个新的就业岗位。

因此,发展生物质发电技术,为农村地区提供生活和生产用电能,是帮助这些地区脱贫致富实现小康目标的一项重要任务。

1.3 发展生物质发电是环境保护的需要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物质发电技术
1.概述
我国生物质能资源非常丰富,农作物秸秆资源量超过7.2亿t,其中6.04亿t可作能源使用。

秸秆资源是新能源中最具开发利用规模的一种绿色可再生能源,如果将这些秸秆资源用于发电,相当于0.9亿kw火电机组年平均运行5000h,年发电量为4500亿kWh。

秸秆为低碳燃料,且硫含量、灰含量均比目前大量使用的煤炭低,是一种较为“清洁”的燃料,在有效的排污保护措施下发展秸秆发电,会大大地改善环境质量,对环境保护非常有利。

在农村推广实施秸秆发电技术,在节省不可再生资源、缓解电力供应紧张等方面都具有特别重要意义。

1.1 我国利用秸秆发电的市场分析
目前生物质能秸秆发电技术的开发和应用,已引起世界各国政府和科学家的关注。

它们都将生物质能秸秆发电技术作为21世纪发展可再生能源战略的重点工程。

根据我国新能源和可再生能源发展纲要提出的目标,至2010年,我国生物质能发电装机容量要超过:300万kw。

因此,从中央到地方政府都制定了一系列补贴政策支持生物质能技术的发展,加快了技术商业化的进程。

随着我国国民经济的高速发展和城乡人民生活水平的不断提高,既有经济、社会效益,又能保护环境的秸秆发电技术的利用前景将会越来越广阔。

根据国家对可再生能源发电的一系列优惠政策,秸秆发电厂所发电量由电网全额收购;上网电价经当地省政府价格主管部门按现行电价政策提出上报国家发展和改革委员会核批后,一般在0.50~0.60元左右;进口设备的关税和进口环节增值税全免,同时,各地方省市还因地制宜地制定了其它的补贴政策。

这些政策的出台为秸秆发电在农村的推广利用提供了有力的保障。

可以预见,在我国农村推广生物质能秸秆发电技术市场广阔,前景光明。

2.生物质秸秆发电秸秆燃烧方式:
2.1秸秆直接燃烧发电
直接燃烧发电的过程是:生物质与过量空气在锅炉中燃烧,产生的热烟气和锅炉的热交换部件换热,产生出的高温高压蒸汽在蒸汽轮机中膨胀做功发出电能。

秸秆直接燃烧发电技术已基本成熟,进入推广阶段,这种技术在规模化情况下,效率较高,单位投资也较合理;但受原料供应及工艺限制,发电规模不宜过大,一般不超过30MW。

2.2 秸秆混燃发电
混合燃烧发电包括:直接混合燃烧发电、间接混合燃烧发电和并联混合燃烧发电,其中直接混合燃烧发电是主要的应用方式。

直接混合燃烧发电是将秸秆燃料与化石燃烧在同一锅炉内混合燃烧产生蒸汽,带动汽轮机发电。

2.3 气化发电
气化发电是在气化炉中将秸秆原料气化,生成可燃气体,经过净化,供给内燃机或小型燃气轮机,带动发电机发电。

一般规模较小,多数不大于6MW。

3. 生物质能秸秆发电的工艺流程
3.1 秸秆的处理、输送和燃烧
发电厂内建设独立的秸秆仓库,秸秆要测试含水量。

任何一包秸秆的含水量超过25%,则为不合格。

在欧洲的发电厂中,这项测试由安装在自动起重机上的红外传感器来实现。

在国内,可以手动将探测器插入每一个秸秆捆中测试水分,该探测器能存储99组测量值,测量完所有秸秆捆之后,测量结果可以存入连接至地磅的计算机。

然后使用叉车卸货,并将运输货车的空车重量输入计算机。

计算机可根据前后的重量以及含水量计算出秸秆的净重。

货车卸货时,叉车将秸秆包放入预先确定的位置;在仓库的另一端,叉车将秸秆包放在
进料输送机上;进料输送机有一个缓冲台,可保留秸秆5分钟;秸秆从进料台通过带密封闸门(防火)的进料输送机传送至进料系统;秸秆包被推压到两个立式螺杆上,通过螺杆的旋转扯碎秸秆,然后将秸秆传送给螺旋自动给料机,通过给料机将秸秆压入密封的进料通道,然后输送到炉床。

炉床为水冷式振动炉,是专门为秸秆燃烧发电厂而开发的设备。

3.2 锅炉系统
采用自然循环的汽包锅炉,过热器分两级布置在烟道中,烟道尾部布置省煤器和空气预热器。

由于秸秆灰中碱金属的含量相对较高,因此,烟气在高温时(450℃以上)具有较高的腐蚀性。

此外,飞灰的熔点较低,易产生结渣的问题。

如果灰分变成固体和半流体,运行中就很难清除,就会阻碍管道中从烟气至蒸汽的热量传输。

严重时甚至会完全堵塞烟气通道,将烟气堵在锅炉中。

由于存在这些问题,因此,专门设计了过热器系统。

3.3 汽轮机系统
汽轮机和锅炉必须在启动、部分负荷和停止操作等方面保持一致,协调锅炉、汽轮机和凝汽器的工作非常重要。

3.4 环境保护系统
在湿法烟气净化系统之后,安装一个布袋除尘器,以便收集烟气中的飞灰。

布袋除尘器的排放低于25 mg/Nm3,大大低于中国烧煤发电厂的烟灰排放水平。

3.5 副产物
秸秆通常含有3%~5%的灰分。

这种灰以锅炉飞灰和灰渣/炉底灰的形式被收集,这种灰分含有丰富的营养成分如钾、镁、磷和钙,可用作高效农业肥料。

相关文档
最新文档