三角函数必考题型小综合(四)
三角函数综合测试题(含答案)
三角函数综合测试题(含答案)三角函数综合测试题一、选择题(共18小题,每小题3分,共54分)1.(08全国一6)函数y=(sinx-cosx)-1的最小正周期为π的奇函数。
2.(08全国一9)为得到函数y=cos(x+π/3)的图象,只需将函数y=sinx的图像向左平移π/3个长度单位。
3.(08全国二1)若sinα0,则α是第二象限角。
4.(08全国二10)函数f(x)=sinx-cosx的最大值为2.5.(08安徽卷8)函数y=sin(2x+π/3)图像的对称轴方程可能是x=-π/6.6.(08福建卷7)函数y=cosx(x∈R)的图象向左平移π/2个单位后,得到函数y=g(x)的图象,则g(x)的解析式为-sinx。
7.(08广东卷5)已知函数f(x)=(1+cos2x)sinx,则f(x)是以π为最小正周期的奇函数。
8.(08海南卷11)函数f(x)=cos2x+2sinx的最小值为-2,最大值为3/3π。
9.(08湖北卷7)将函数y=sin(x-θ)的图象F向右平移π/3个单位长度得到图象F′,若F′的一条对称轴是直线x=5π/12,则θ=π/4.10.(08江西卷6)函数f(x)=(sinx+2sin2x)/x的最小正周期为2π的偶函数。
11.若动直线x=a与函数f(x)=sinx和g(x)=cosx的图像分别交于M,N两点,则MN的斜率为tan(a-π/4)。
19.若角 $\alpha$ 的终边经过点 $P(1,-2)$,则$\tan2\alpha$ 的值为 ________。
20.函数 $f(x)=\cos(\omega x-\frac{\pi}{6})$ 的最小正周期为 $\frac{\pi}{5}$,其中 $\omega>0$,则 $\omega=$ ________。
21.设 $x\in\left(0,\frac{\pi}{2}\right)$,则函数$y=\frac{2\sin2x+1}{\cos x}$ 的最小值为 ________。
2023北京高三(上)期末数学汇编:三角函数章节综合
2023北京高三(上)期末数学汇编三角函数章节综合一、单选题 1.(2023秋·北京东城·高三统考期末)在平面直角坐标系xOy 中,角α以Ox 为始边,终边位于第一象限,且与单位圆O 交于点P ,PM x ⊥轴,垂足为M .若OMP 的面积为625,则sin2α=( ) A .625B .1225C .1825 D .24252.(2023秋·北京海淀·高三统考期末)已知函数()cos2f x x =在区间()π,3t t t ⎡⎤+∈⎢⎥⎣⎦R 上的最大值为()M t ,则()M t 的最小值为( )A B . C .12D .12−3.(2023秋·北京海淀·高三统考期末)已知13πlg5,sin ,27a b c ===,则( )A .a b c <<B .b a c <<C .b c a <<D .a c b <<4.(2023秋·北京昌平·高三统考期末)若()4sin π,cos 05αα−=−>,则tan α=( )A .34B .34−C .43D .43−5.(2023秋·北京房山·α、β是锐角三角形的两个内角,则下列各式中一定成立的是( ) A .cos cos αβ> B .sin sin αβ< C .cos sin αβ>D .cos sin αβ<6.(2023秋·北京石景山·高三统考期末)已知函数()sin 2f x x x =,则下列命题正确的是( )A .()f x 的图象关于直线π3x =对称B .()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称C .()f x 最小正周期为π,且作π0,12⎡⎤⎢⎥⎣⎦上为增函数D .()f x 的图象向右平移π12个单位得到一个偶函数的图象 7.(2023秋·北京·高三校考期末)若角α的终边过点(3,4)P −,则cos 2=α( ) A .2425−B .725C .2425D .725−二、填空题8.(2023秋·北京丰台·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫⎪⎝⎭上有最小值无最大值,则ω=___________. 9.(2023秋·北京房山·高三统考期末)函数()0.03sin(1000π)0.02sin(2000π)0.01sin(3000π)f t t t t =++的图象可以近似表示某音叉的声音图象.给出下列四个结论: ①1500是函数()f t 的一个周期; ②()f t 的图象关于直线1500t =对称; ③()f t 的图象关于点1,0500⎛⎫⎪⎝⎭对称; ④()f t 在11,60006000⎡⎤−⎢⎥⎣⎦上单调递增.其中所有正确结论的序号是______.10.(2023秋·北京朝阳·高三统考期末)若函数cos sin y x x =−在区间[0,]a 上是严格减函数,则实数a 的最大值为________ 三、解答题11.(2023秋·北京通州·高三统考期末)已知函数()()2sin22cos 0f x x x ωωω=+>的最小正周期为π.(1)求ω的值;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向右平移π3个单位,得到函数()y g x =的图象,求函数()g x 的单调递增区间.12.(2023秋·北京昌平·高三统考期末)已知函数()cos2(02)f x x x ωωω=−<<,再从条件①、条件②、条件③中选择一个作为已知, (1)求()f x 的解析式;(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,关于x 的不等式()f x m ≤恒成立,求实数m 的取值范围.条件①:函数()f x 的图象经过点π,23⎛⎫⎪⎝⎭;条件②:函数()f x 的图象可由函数()2sin2g x x =的图象平移得到;条件③:函数()f x 的图象相邻的两个对称中心之间的距离为π2.注:如果选择条件①、条件②和条件③分别解答,按第一个解答计分.13.(2023秋·北京·高三校考期末)在ABC 中,17,8,cos 7a b B ===−.(1)求A ∠;(2)求AC 边上的高. 四、双空题14.(2023秋·北京东城·高三统考期末)已知函数()cos f x x x −,则π3f ⎛⎫= ⎪⎝⎭______;若将()f x 的图象向左平行移动π6个单位长度得到()g x 的图象,则()g x 的一个对称中心为______.参考答案1.D【分析】由三角函数的定义结合三角形面积列出方程,再由倍角公式求出答案. 【详解】由三角函数的定义可知:cos ,sin OM PM αα==,故511cos s 62in 22OM PM αα⋅==,故51sin 2462α=, 解得:sin2α=2425. 故选:D 2.D【分析】根据()f x 在x t =取最大值,可判断()π,3t t t ⎡⎤+∈⎢⎥⎣⎦R 要么在()f x 的单调减区间上,要么满足左端点到对称轴ππ2k +不小于右端点,即可得πππ3k t k ≤≤+,进而可求()M t 的最小值. 【详解】()cos2f x x =的周期为π,()cos2f x x =的单调递增区间为ππ,π2k k ⎡⎤+⎢⎥⎣⎦,Z k ∈,单调递减区间为ππ,ππ2k k ⎡⎤++⎢⎥⎣⎦,Z k ∈ 当x t =取最大值,故可知ππ,π,ππ32t t k k ⎡⎤⎡⎤+⊄++⎢⎥⎢⎥⎣⎦⎣⎦,当ππππ32k t t k ≤<+≤+时,即πππ6k t k ≤≤+,Z k ∈,()f x 在()π,3t t t ⎡⎤+∈⎢⎥⎣⎦R 单调递减,显然满足最大值为()M t ,当ππππ<23k t k t ≤<++时,要使()M t 是最大值,则需满足ππππππππ2323k t t k k t k ⎛⎫⎛⎫+−≥+−+⇒≤≤+ ⎪ ⎪⎝⎭⎝⎭,Z k ∈综上可知当πππ3k t k ≤≤+,Z k ∈时,()f x 在x t =取最大值()M t , ()=2cos 2M t t 在πππ3k t k ≤≤+,Z k ∈单调递减,故当ππ3t k =+时,()M t 取最小值,且最小值为12−,故选:D 3.B【分析】根据指数函数的单调性、正弦函数的单调性、对数函数的单调性进行求解即可/【详解】因为lg10<,所以112a <<, 因为ππsinsin 76<,所以12b <, 因为01322>,所以1c >,因此b a c <<,故选:B 4.D【分析】利用诱导公式和同角三角函数的基本关系式求得正确答案.【详解】()4sin πsin ,cos 05ααα−==−>,所以3cos 5α=, 所以sin 4tan cos 3ααα==−. 故选:D 5.D【分析】根据题设可得ππ0ππ22βαβ<−<<<−<,结合诱导公式判断内角α、β对应三角函数值的大小关系.【详解】由锐角三角形知:ππ2αβ<+<且π0,2αβ<<, 所以ππ0ππ22βαβ<−<<<−<, 则πsin()sin 2βα−<,即cos sin βα<,且πcos()cos 2βα−>,即sin cos βα>.又已知角的大小不确定,故A 、B 不一定成立,而C 错,D 对. 故选:D 6.C【分析】利用辅助角公式,结合正弦型函数的对称性、最小正周期公式、单调性、奇偶性逐一判断即可.【详解】π()sin 222sin(2)3f x x x x ==+,对于A ,因为ππ2sin 22sin π02333f π⎛⎫⎛⎫=⨯+==≠± ⎪ ⎪⎝⎭⎝⎭,所以π3x =不是函数图象的对称轴,所以A 错误,对于B ,因为πππ2π2sin 22sin06633f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以点π(,0)6不是函数图象的对称中心,所以B 错误,对于C ,()f x 的最小正周期为2ππ2=,当()πππ2π22πZ 232k x k k −+≤+≤+∈即 ()5ππππZ 1212k x k k −+≤≤+∈时,()f x 单调递增,所以 ()f x 在π[0,]12上单调增,所以C 正确;把()f x 的图象向右平移 π12个单位得到函数πππ2sin 22sin(2)1236y x x ⎡⎤⎛⎫=−+=+ ⎪⎢⎥⎝⎭⎣⎦的图象,没有奇偶性,所以D 错误, 故选:C7.D【解析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P −知,4sin 5α,3cos 5α=−,故229167cos 2cos sin 252525ααα=−=−=−. 故选:D. 8.4【分析】根据三角函数的对称性、最值求得正确答案.【详解】由于若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫⎪⎝⎭上有最小值无最大值,πππ6223+=,则πππsin 1336f ω⎛⎫⎛⎫=+=− ⎪ ⎪⎝⎭⎝⎭,所以πππ2π,62,Z 362k k k ωω+=−=−∈,ππππ,62366T ωω=≥−=≤, 由于0ω>,所以ω的值为4. 故答案为:4 9.①③④【分析】①应用诱导公式判断判断1()500f t +()f t =是否成立即可;②③2()500f t −、()f t 的等量关系判断正误;④判断ππ1000π[,]66t ∈−,ππ2000π[,]33t ∈−,ππ3000π[,]22t ∈−上sin(1000π)t ,sin(2000π)t ,sin(3000π)t 对应单调性,即可判断.【详解】①()()1()0.03sin 1000π2π0.02sin(2000π4π)0.01sin 3000π6π500f t t t t +=+++++()()0.03sin 1000π0.02sin(2000π)0.01sin 3000πt t t =++()f t =, 所以1500是函数()f t 的一个周期,正确; ()()()2()0.03sin 4π1000π0.02sin 8π2000π0.01sin 12π3000π500f t t t t −=−+−+−()()0.03sin 1000π0.02sin(2000π)0.01sin 3000πt t t =−−−()f t =−, 所以()f t 不关于直线1500t =对称,而关于点1,0500⎛⎫⎪⎝⎭对称,②错误,③正确; ④11,60006000t ⎡⎤∈−⎢⎥⎣⎦,则ππ1000π[,]66t ∈−,ππ2000π[,]33t ∈−,ππ3000π[,]22t ∈−, 而sin y x =在ππ[,]66−、ππ[,]33−、ππ[,]22−均递增,故()f t 在11,60006000⎡⎤−⎢⎥⎣⎦上单调递增,正确.故答案为:①③④10.34π【分析】化简cos sin y x x =−得到4y x π⎛⎫=+ ⎪⎝⎭,结合cos y x =的单调递减区间得到4a ππ+≤,即可求出结果.【详解】因为cos sin 4y x x x π⎛⎫=−+ ⎪⎝⎭,又因为在区间[0,]a 上是严格减函数,且cos y x =的单调递减区间为[]()2,2k k k Z πππ+∈, 所以4a ππ+≤,即34a π≤,所以实数a 的最大值为34π, 故答案为:34π. 11.(1)1.(2)5π7π2π,2π1212k k ⎡⎤−+⎢⎥⎣⎦,()k ∈Z .【分析】(1)化简()f x 的表达式,根据最小正周期求得ω的值;(2)根据三角函数图象的变换规律,可得()y g x =的解析式,根据正弦函数的单调性,即可求得答案.【详解】(1)因为()2sin22cos f x x x ωω=+sin2cos21x x ωω=++π214x ω⎛⎫++ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ωω==,依题意得ππω=,解得1ω=.(2)由(1)知()π214f x x ⎛⎫=++ ⎪⎝⎭,把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到π14y x ⎛⎫=++ ⎪⎝⎭的图象,再把得到的图象向右平移π3个单位,得到πππ114231y x x ⎛⎫⎛⎫=−++−+ ⎪ ⎪⎝⎭⎝⎭的图象,即()π112g x x ⎛⎫−+ ⎪⎝⎭,由函数sin y x =的单调递增区间为ππ2π,2π22k k ⎡⎤−+⎢⎥⎣⎦,()k ∈Z ,令πππ2π2π,Z 2122k x k k −≤−≤+∈,得5π7π2π2π,Z 1212k x k k −≤≤+∈, 所以()f x 的单调递增区间为5π7π2π,2π1212k k ⎡⎤−+⎢⎥⎣⎦,()k ∈Z .12.(1)()π2sin(2)6f x x =−;(2)[2,)+∞.【分析】(1)化简()π2sin(2)6f x x ω=−,若选①,将点π,23⎛⎫⎪⎝⎭代入求得1ω=,可得答案;选②,根据三角函数图象的平移变化规律可得1ω=,可得答案;选②,由函数的最小正周期可确定1ω=,可得答案; (2)由π0,2x ⎡⎤∈⎢⎥⎣⎦确定ππ5π2[,]666x −∈−,从而求得()f x 的范围,根据不等式恒成立即可确定实数m 的取值范围.【详解】(1)()πcos22sin(2)6f x x x x ωωω=−=−;选①:函数()f x 的图象经过点π,23⎛⎫⎪⎝⎭,则ππ2sin(2)236ω⨯−=,所以πππ22π,Z 362k k ω⨯−=+∈,则13,Z k k ω=+∈,由02ω<<,可得1ω=,则()π2sin(2)6f x x =−;选②:函数()f x 的图象可由函数()2sin2g x x =的图象平移得到,即()π2sin(2)6f x x ω=−的图象可由函数()2sin2g x x =的图象平移得到,则1ω=,则()π2sin(2)6f x x =−.选③:函数()f x 的图象相邻的两个对称中心之间的距离为π2,则函数的最小正周期为π,故2π22,1πωω==∴=, 故()π2sin(2)6f x x =−.(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ5π2[,]666x −∈−,则π1sin(2)[,1]62x −∈−, 故()π2sin(2)[1,2]6f x x =−∈−,又当π0,2x ⎡⎤∈⎢⎥⎣⎦时,关于x 的不等式()f x m ≤恒成立,故2m ≥, 即实数m 的取值范围为[2,)+∞.13.(1)∠A =π3;(2)AC【分析】(1)方法一:先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠; (2)方法一:利用诱导公式以及两角和正弦公式求sin C ,即可解得AC 边上的高.【详解】(1)[方法一]:平方关系+正弦定理在ABC 中,∵1πcos ,,π,sin 72B B B ⎛⎫=−∴∈∴=⎪⎝⎭由正弦定理得7ππsin ,π,0,,.sin sin sin 223a b A B A A A B A π⎛⎫⎛⎫=⇒∴=∈∴∈∴∠= ⎪ ⎪⎝⎭⎝⎭[方法二]:余弦定理的应用由余弦定理知2222cos b a c ac B =+−.因为17,8,cos 7a b B ===−,代入上式可得3c =或5c =−(舍).所以2221cos 22b c a A bc +−==,又(0,π)A∈,所以π3A =.(2)[方法一]:两角和的正弦公式+锐角三角函数的定义 在△ABC 中,∵sin sin()sin cossin cos C A B A B B A =+=+=1172⎛⎫−+ ⎪⎝⎭如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7, ∴AC[方法二]:解直角三角形+锐角三角函数的定义 如图1,由(1)得1cos 842AD AC A =∠=⨯=,则14737AB =−⨯=.作BE AC ⊥,垂足为E,则sin 3BE AB A =∠==AC .[方法三]:等面积法由(1)得60A ∠=︒,易求CD =1,作CD AB ⊥,易得4=AD ,即3AB =.所以根据等积法有11sin 22AC BE AB AC A ⋅⋅=⋅⋅⋅,即3BE =所以AC 【整体点评】(1)方法一:已知两边及一边对角,利用正弦定理求出;方法二:已知两边及一边对角,先利用余弦定理求出第三边,再根据余弦定理求出角; (2)方法一:利用两角和的正弦公式求出第三个角,再根据锐角三角函数的定义求出; 方法二:利用初中平面几何知识,通过锐角三角函数定义解直角三角形求出; 方法三:利用初中平面几何知识,通过等面积法求出. 14. 1 ()0,0(答案不唯一)【分析】化简()2sin 6f x x π⎛⎫=− ⎪⎝⎭,代入即可求出π3f ⎛⎫⎪⎝⎭;由三角函数的平移变换求出()g x ,再由三角函数的性质求出()g x 的对称中心,即可得出答案.【详解】()cos 2sin 6f x x x x π⎛⎫−=− ⎪⎝⎭,所以π2sin 1336f ππ⎛⎫⎛⎫=−= ⎪ ⎪⎝⎭⎝⎭,将()f x 的图象向左平行移动π6个单位长度得到()g x 的图象,则()2sin 2sin 66g x x x ππ⎛⎫=+−= ⎪⎝⎭,所以()g x 的对称中心为(),0k π. 故()g x 的一个对称中心为()0,0. 故答案为:1;()0,0(答案不唯一).。
三角函数综合检测试题(含解析)
三角函数综合检测第Ⅰ部分(选择题,共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知点(tan ,cos )P αα在第三象限,则角α在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限 2.函数2sin6x y π=,x ∈R 的最小正周期是( ) A .12 B .6 C .12πD .6π 3.下列函数中,既是奇函数又在区间()1,1-上是增函数的是( )A .1y x =B .tan y x =C .sin y x =-D .cos y x =4.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为( )A .135平方米B .270平方米C .540平方米D .1080平方米5.已知cos α=,()sin αβ-=,α、β0,2π⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A BC D .12 6.已知函数()sin(2)()2f x x x R π=-∈下列结论错误的是( )A .函数()f x 的最小正周期为πB .函数()f x 是偶函数C .函数()f x 的图象关于直线4x π=对称 D .函数()f x 在区间[0,]2π上是增函数7.函数y =2x sin2x 的图象可能是A .B .C .D .8.函数()sin()f x A x ωϕ=+ (0,0,2A πωϕ>><)的部分图象如图所示,若12,,63x x ππ⎛⎫∈- ⎪⎝⎭,且()()12f x f x =,则12()f x x +=( )A .1B .12C .22D .32二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 全部选对的得5分,部分选对的得3分,有选错的得0分.9.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数 B .在区间0,2π⎛⎫ ⎪⎝⎭上单调递增 C .最大值为2 D .其图象关于点,04π⎛⎫ ⎪⎝⎭对称 10.定义:角θ与ϕ都是任意角,若满足2πθϕ+=,则称θ与ϕ“广义互余”.已知1sin()4πα+=-,则下列角β中,可能与角α“广义互余”的是( )A .15sin β=B .1cos()4πβ+=C .tan 15β=D .15tan β= 11.关于函数f (x )=sin|x |+|sin x |的叙述正确的是( )A .f (x )是偶函数B .f (x )在区间,2ππ⎛⎫ ⎪⎝⎭单调递增 C .f (x )在[-π,π]有4个零点D .f (x )的最大值为212.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +) B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x - 第Ⅱ部分(选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分13.若2sin 3x =-,则cos2x =__________. 14.函数()sin cos f x ax ax =的最小正周期是π,则实数a =________ 15.函数cos y x π=的单调减区间为__________.16.在平面直角坐标系xOy 中,角α与角β均以x 轴的非负半轴为始边,它们的终边关于x 轴对称.若1sin 3α=,则sin β=__________,cos 2β=__________. 四、解答题:本小题共6小题,共70分。
三角函数题型及解法
高中数学常见三角函数题型及解法近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来.在考查三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,降低了对三角函数恒等变形的要求,加强了对三角函数性质和图象的考查力度. 三角函数的命题趋于稳定,会保持原有的考试风格,尽管命题的背景上有所变化,但仍属基础题、中档题、常规题.实施新课标后,新一轮基础教育的改革增添了与现代生活和科学技术发展相适应的许多全新的内容,它们会吸引命题者关注的目光.三角函数试题可以归纳为以下几种典型题型。
1、三角函数的概念及同角关系式此类题主要考查三角函数诱导公式及三角函数的符号规律.解此类题注意必要的分类讨论以及三角函数值符号的正确选取.例1(10全I 卷理2)记cos(80)k -︒=,那么tan100︒= A.21k k - B.-21k k - C.21k - D.-21k- 解: 222sin801cos 801cos (80)1k =-=--=-,∴tan100tan80︒=-2sin 801.cos80k k-=-=-。
故选B 评注:本小题主要考查诱导公式、同角三角函数关系式,并突出了弦切互化这一转化思想的应用. 同时熟练掌握三角函数在各象限的符号. 例2(10全1卷文1)cos300︒=(A)32- (B)-12(C)12(D) 32 解:()1cos300cos 36060cos602︒=︒-︒=︒= 评注:本小题主要考查诱导公式、特殊三角函数值等三角函数知识2、三角函数的化简求值这类题主要考查三角函数的变换.解此类题应根据考题的特点灵活地正用、逆用,变形运用和、差、倍角公式和诱导公式,进行化简、求值.例3(10重文数15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311cos cos sin sin 3333αααααα++-=____________解:232312311cos cos sin sin cos 33333ααααααααα++++-=又 1232αααπ++=,∴1231cos 32ααα++=- 评注:本题以过同一点的三段圆弧为背景,考查了三角恒等变形中公式逆用的基本技巧,将已知与求解合理转化,从而达到有效地求解目的.例4(10全1理数14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 解: α为第三象限的角∴ππ+k 2<α<ππ232+k∴ππ24+k <2α<ππ34+k (Z K ∈)又 3cos 25α=-<0,∴4sin 25α=,∴sin 24tan 2cos 23ααα==- ∴tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. 评注:本题主要考查了同角三角函数的关系和二倍角公式的灵活运用。
锐角三角函数的综合常考50题
《各章节核心资料“锐角三角函数”50道常考题型》【韩春成内部核心资料(33)】知识构架一、 三角函数基础二、 锐角三角函数与代数综合 三、 化简求值 四、 比较大小五、 三角函数与几何综合典题精练三角函数基础1. 【易】︒的值是____________.2. 【易】(江西南昌十五校联考)计算:tan60︒=_______.3. 【易】(沈阳)在Rt ABC △中,C ∠为直角,sin A cos B 的值是( ) A .12 B C .1 D .4. 【易】(河南省实验中学内部中考数学第一轮复习资料4)在ABC △中,90C =︒∠,1tan 3A =,则sinB =( )A B .23 C .34D 5. 【易】(河南省实验中学内部中考数学第一轮复习资料4)若3cos 4A =,则下列结论正确的为( ) A .030A ︒<<︒∠ B .3045A ︒<<︒∠ C .4560A ︒<<︒∠ D .6090A ︒<<︒∠ 6. 【易】(2013年广东省佛山市高中阶段招生考试数学试题)如图,若60A ∠=︒,20m AC =,则BC 大约是(结果精确到0.1m )( )A .34.64mB .34.6mC .28.3mD .17.3mA CB7. 【易】(浙江省初中毕业生学业考试(湖州市))如图,已知在Rt ABC △中,90C ∠=︒,13AB =,12AC =,则cos B 的值为________8. 【易】如图,ABC △中,90C ∠=︒,12AC =,5BC =.⑴ 求AB 的长;⑵ 求sin A 、cos A 的值; ⑶ 求22sin cos A A +的值; ⑷ 比较sin A 与cos B 的大小.9. 【易】(石家庄市42中二模)在Rt ABC △中,90C ∠︒=,1BC =,2AC =,则tan A 的值为( )A .2B .12CD10. 【易】(莆田市初中毕业、升学考试试卷)已知在Rt ABC △中,90C ∠=︒,5sin 13A =,则tan B 的值为____________. 11. 【易】已知α为锐角,且5sin 13α=,求cos α的值;12. 【易】(贵阳市初中毕业生学业数学考试试题卷)如图,P 是α∠的边OA 上一点,点P的坐标为(12,5),则tan α等于( )A .513B .1213C .512D .125BCACBA13. 【难】用几何方法求15︒角的三角函数值.14. 【中】(杭州市各类高中招生文化考试)在Rt ABC △中,90C ∠=︒,2AB BC =,现给出下列结论:①sin A ;②1cos 2B =;③tan A ;④tan B 结论是__________(只需填上正确结论的序号)锐角三角函数与代数综合15. 【易】(淮南市洞山中学第四次质量检测)在ABC △中,若()2sin 1tan 0A B -=,则C ∠的度数是( )A .45︒B .60︒C .75︒D .105︒16. 【易】(海南省中考数学科模拟)在ABC △中,()2tan 12cos 0C B -=,则A ∠=______. 17. 【易】(安徽省芜湖市中考)已知锐角A 满足关系式22sin 7sin 30A A -+=,则sin A 的值为( )A .12B .3C .12或3D .418. 【易】求适合下列条件的锐角α:2cos(10)α+︒19. 【中】若方程222210x ax a -+-=的一个根是sin α,则它的另一个根必是cos α或cos α-.20. 【中】已知ABC △中,A ∠,B ∠,C ∠的对边分别是,,,a b c 若,a b 是关于x 的一元二次方程2(4)480x c x c -+++=的两个根,且925sin .c a A =⑴求证:ABC △是直角三角形; ⑵求ABC △的三边长.化简求值21. 【易】(北大附中初二第二学期期末考试)计算:tan60tan 45cos30︒-︒︒的值是___________.22. 【易】(延庆县2011-2012学年第一学期期末试卷)tan452cos30sin60-+23. 【易】(深圳初三月考)计算:2cos30cos45tan45-+°°°°24. 【易】(深圳初三月考)已知tan 2A =,求3sin cos sin cos A AA A-+的值25. 【易】(初三深圳实验第一次月考)()114cos0π 3.14tan 453-⎛⎫︒--+︒+ ⎪⎝⎭的值.26. 【易】(初三期末)sin30tan60+°°°的值为__________. 27. 【易】(河南省实验中学内部中考数学第一轮复习资料4)计算sin60tan 45cos30-的值是____________.已知3tan 0 A A ∠=则______.28. 【易】21220103tan303-⎛⎫-+-+︒ ⎪⎝⎭29. 【易】(滨州市初级中学学业水平考试)计算:()12112|52009π2-⎛⎫-++-⨯- ⎪⎝⎭.30. 【易】(怀化市初中毕业学业考试试卷)先化简,再求值:()20tan60a ab a b b a b-⨯--⋅︒-,其中1a b =,三角函数与几何综合31. 【易】(江苏沭阳银河学校质检题)在ABC △中,若tan 1A =,sin B ABC △是______三角形. 32. 【易】(江苏沭阳银河学校质检题)一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为_____. 33. 【易】(兴仁中学一模)如图,在Rt ABC △中,90ACB ∠=︒,CD 是AB 边上的中线,若6BC =,8AC =,则tan ACD ∠的值为( )A .35B .45C .43D .3434. 【易】(温州市泰顺九校模拟、第一学期期末考试九年级数学试卷)直线2y x =与x 轴正半轴的夹角为α,那么下列结论正确的是( )A .tan 2α=B .1tan 2α=C .sin 2α=D .cos 2α=35. 【易】(河南省实验中学内部中考数学第一轮复习资料4)等腰ABC △中,5AB AC ==,8BC =,求底角B ∠的四个三角函数值.36. 【易】(南汇区九年级数学期末质量抽查试卷)在ABC △中,::2a b c =,那么cos A 的值为( ). ABC .12DDCBA37. 【易】(北京二中分校第一学期初三期中)已知:如图,ABC △中,135A ∠=︒,2tan 3B =,8AB =,求AC .38. 【易】(宝山区二模、北大附中2010-2011学年度初二第二学期期末考试)如图,ABC△中,AB AC =,4cos 5ABC ∠=,点D 在边BC 上,6BD =,CD AB =. ⑴求AB 的长;⑵求ADC ∠的正切值.39. 【易】(福建厦门)已知:如图,在ABC △中,90C ∠=︒DE BC ∥,3DE =,9BC =.⑴求ADAB的值; ⑵若10BD =,求sin A ∠的值.ABCCDABEDCBA40. 【易】(浦东新区中考预测)如果等腰三角形的腰长为13厘米,底边长为10厘米,那么底角的余切值等于( )A .513B .1213C .512D .12541. 【易】(罗湖初三第一次月考)如果ABC △中,sin cos A B ==,则下列最确切的结论是( )A .ABC △是直角三角形B .ABC △是等腰三角形 C .ABC △是等腰直角三角形D .ABC △是锐角三角形42. 【易】(延庆县第一学期期末试卷)在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:⑴点B 的坐标;⑵cos BAO ∠的值.43. 【易】(遂宁市初中毕业生学业考试)如图,已知O ⊙的两条弦AC ,BD 相交于点E ,70A =︒∠,50C =︒∠,那么sin AEB ∠的值为( )A .12BCD44. 【易】(九年级第一模拟试题)如图,在菱形ABCD 中,DE AB ⊥,4sin 5A =,2BE =,则tan BDE ∠的值是( )A .12BC .2 DABCDE45. 【易】(河南省实验中学内部中考数学第一轮复习资料4)(2012年初三期末)如图,在等腰梯形ABCD 中,AD BC ∥,2AB CD ==,AC AB ⊥,4AC =,则sin DAC ∠=( )A .12 BCD .2 46. 【易】(福建福州中考)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30︒、45︒,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一条直线上,则A 、B 两点的距离是( )A .200米 B. C.D.)1001米47. 【易】(东城二模)如图,将三角板的直角顶点放置在直线AB 上的点O 处.使斜边CD AB ∥,则α∠的余弦值为__________.锐角三角函数48. 【易】(江苏省竞赛题)如图,等腰Rt ABC ∆中,︒=∠90C ,D 为BC 中点,将ABC ∆折叠,使A 点与D 点重合,若EF 为折痕,则BED ∠sin 的值为_______.DCBA45°30°DC BAACB DOα30°D EFABC49. 【易】(南充市中考题)如图,点E 是矩形ABCD 中CD 边上一点,BCE ∆沿BE 折叠为BFE ∆,点F 落在AD 上, ⑴ 求证:ABF ∆∽DFE ∆;⑵ 若31sin =∠DFE ,求EBC ∠tan 的值.50. 【易】(济南市中考题)如图,AOB ∠是放置在正方形网格中的一个角,则AOB ∠cos 的值是( )E《各章节核心资料“锐角三角函数”50道常考题型》答案【韩春成内部核心资料(33)】三角函数基础1.2.3. 【答案】D4. 【答案】D5. 【答案】B6.【答案】A7. 【答案】5138. 【答案】⑴∵90C ∠=︒,12AC =,5BC =,∴13AB ==. ⑵5sin 13BC A AB ==,12cos 13AC A AB ==. ⑶∵22525sin ()13169A ==,2212144cos ()13169A ==,∴2225144sin cos 1169169A A +=+= ⑷∵5cos 13BC B AB ==, ∴sin cos A B =.9. 【答案】B 10. 【答案】125 11. 【答案】121312. 【答案】C13. 【答案】如图所示,画Rt ABC ∆,使90ACB ∠=︒,D15︒30︒CBA1AC =,2AB =,30ABC ∠=︒,BC延长CB 到D ,使2BD BA ==,连接AD ,则15ADC ∠=︒.在Rt ACD ∆中,15ADC ∠=︒,1AC =,2DC =∵222AD DC AC =+2(21=+86432=+=++2262(2)=++2=∴AD =依定义得:sin15︒==;cos15︒==; tan152︒==- cot152︒=14. 【答案】②③④根据题意,因为90C =︒∠,2AB BC =,则该直角三角形是含30︒角的直角三角形,则12BC AB AC =∶∶1BC =,2AB =,AC 1sin 2BC A AB ==,②1cos 2BC B AB ==,③tan BC A AC ==④tan AC B BC ==,则答案为②③④. 锐角三角函数与代数综合15.【答案】C 16.【答案】105︒ 17.【答案】A18. 【答案】20α=︒【解析】∵2cos(10)α+︒=cos(10)α+︒=. ∵cos30︒=1030α+︒=︒,∴20α=︒. 19. 【答案】不妨设方程的另一根为m ,由一元二次方程的根系关系可知sin m a α+=,21sin 2a m α-=, 故2(sin )1sin 2m m αα+-=,整理可得22sin (sin )1m m αα=+-,即22sin 1m α+=,又22sin cos 1αα+=,故cos m α=±.20. 【答案】⑴∵,a b 是方程2(4)480x c x c -+++=的两个根,∴4,48a b c ab c +=+=+.∴222222()2(4)2(48)816816a b a b ab c c c c c c +=+-=+-+=++--=∴ABC ∆是直角三角形()90C ∠=︒.⑵在Rt ABC ∆中,sin a A c=,并代入925sin c a A =得22925.c a = ∴34,.55a cbc == 由344455a b c c c c +=++=+,. ∴10c =,且此时0∆>,从而68a b ==,化简求值21. 【答案】122. 【答案】tan452cos30sin60-+=12-+=1=1). 23. 【答案】124. 【答案】5325. 【答案】126. 27. 【答案】0,30︒28. 【答案】1029. 【答案】2-30. 【答案】()20tan60a ab a b b a b-⨯--⋅︒- ()1a a b b a b-=⨯--a b =-1a b =,∴原式12=-三角函数与几何综合31. 【答案】等腰直角.32. 【答案】34或13. 33. 【答案】D34. 【答案】A35. 【答案】3sin 5B =,4cos 5B =,3tan 4B =,4cot 3B =. 36. 【答案】B37.【答案】38. 【答案】⑴过点A 作AH BC ⊥,垂足为H∵AC AB =∴BC HC BH 21== 设x CD AC AB ===∵6=BD∴6+=x BC ,26+=x BH 在Rt △AHB 中,,又54cos =∠ABC ∴5426=+x x解得:10=x ,所以10=AB ⑵821===BC HC BH 2810=-=-=CH CD DH在Rt △AHB 中,222AB BH AH =+,又10=AB ,∴6=AH 在Rt △AHD 中,326tan ===∠DH AH ADC ∴ADC ∠的正切值是339. 【答案】⑴∵DE BC ∥,∴ADE ABC △∽△. ∴AD AB =13DE BC =. ⑵过点D 作DG BC ⊥,垂足为G .∴DG AC ∥.∴A BDG =∠∠.又∵DE BC ∥,∴四边形ECGD 是平行四边形.∴DE CG =.∴6BG =.在Rt DGB △中,GOB A ∠=∠∴sin A =∠35.AB BH ABC =∠cos40. 【答案】C41. 【答案】C42. 【答案】⑴如图,作BH OA ⊥,垂足为H在Rt OHB △中,5BO =,3sin 5BOA ∠=, 3BH ∴=.4OH ∴=.∴点B 的坐标为(43),.⑵10OA =,4OH =,6AH ∴=.在Rt AHB △中,3BH =,AB ∴=.cos AH BAO AB ∴∠==. 43.【答案】D 44.【答案】A 45.【答案】B 46. 【答案】D47. 【答案】12 锐角三角函数48. 【答案】35△AFE ≌△DFE ,45A FDE ∠=∠=︒,∵135135CDF EDB DEB EDB ∠+∠=︒∠+∠=︒,, ∴ 2DEB CDF AC CF x ∠=∠==,设,,则21DF AF x CD ==-=,,由2(2)x -= 22351 44x x DF +==,得,,3sin sin 5CF BED CDF DF ∠=∠== 49. 【答案】⑴略⑵由△ABF ∽△DFE,得EF DF BF AB ===,故tan tan EF EBC EBF BF ∠=∠=.50.△AOB 为直角三角形.。
(江苏专用)高考数学总复习 (基础达标演练+综合创新备选)第四篇 三角函数、解三角形《第20讲 函数
2023高考总复习江苏专用(理科):第四篇 三角函数、解三角形《第20讲 函数y =Asin(ωx +φ)的图象与性质》(根底达标演练+综合创新备选,含解析)A 级 根底达标演练(时间:45分钟 总分值:80分)一、填空题(每题5分,共35分)1.(2023·苏州调研)函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))的图象如下图,那么φ=________.解析 T =2×(7-3)=8,所以2πω=8,ω=π4,f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ.又由sin ⎝ ⎛⎭⎪⎫3π4+φ=0,φ∈[0,2π),得φ=π4.答案π42.(2023·盐城调研)函数y =cos ⎝ ⎛⎭⎪⎫2x -3π4-22·sin 2x 的最小正周期为________.解析 y =cos ⎝ ⎛⎭⎪⎫2x -3π4-2(1-cos 2x )=cos 2x cos 3π4+sin 2x sin 3π4+2cos 2x-2=22 sin 2x +22cos 2x -2=sin ⎝⎛⎭⎪⎫2x +π4-2,所以f (x )的最小正周期T =2π2=π. 答案 π3.(2023·苏北四市调研)函数y =sin ⎝ ⎛⎭⎪⎫2x +π6+cos ⎝ ⎛⎭⎪⎫2x -π3的最大值为________.解析 法一 由题意可知y =sin 2x cos π6+cos 2x sin π6+cos 2x cos π3+sin 2x sin π3=3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6,所以最大值为2.法二 y =sin ⎝ ⎛⎭⎪⎫2x +π6+cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π6-π2= 2sin ⎝ ⎛⎭⎪⎫2x +π6,所以最大值为2.答案 24.(2023·泰州学情调查)要使sin α-3cos α=4m -64-m 有意义,那么应有________.解析4m -64-m =sin α-3cos α=2sin ⎝⎛⎭⎪⎫α-π3∈[-2,2],所以-2≤4m -64-m ≤2,解得-1≤m ≤73.答案 ⎣⎢⎡⎦⎥⎤-1,73 5.(2023·镇江调研)函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4+2sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是________.解析 f (x )=2⎝ ⎛⎭⎪⎫sin x cos π4+cos x sin π4+2sin x cos x =sin x +cos x +2sin x cos x .设t =sin x +cos x ,那么t 2=1+2sin x cos x ,∴2sin x cos x =t 2-1,且由π4≤x ≤π2,得t =2sin ⎝⎛⎭⎪⎫x +π4∈[1,2],所以y =t +t 2-1=t 2+t -1,当t =2时,y max =2+1.答案2+16.(2023·江苏)设定义在区间⎝⎛⎭⎪⎫0,π2上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,那么线段P 1P 2的长为________.解析 由⎩⎪⎨⎪⎧y =6cos x ,y =5tan x 消去y 得6cos x =5tan x .整理得6cos 2x =5sin x,6sin 2x +5sin x -6=0,(3sin x -2)·(2sin x +3)=0,所以sin x =23或sin x =-32(舍去). 所以P 1P 2=sin x =23.答案 237.给出以下命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数;②存在实数α,使得sin α+cos α=32;③假设α,β是第一象限角且α<β,那么tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎪⎫2x +5π4的一条对称轴; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形.其中正确命题的序号为________.(填所有正确命题的序号) 解析 ①y =cos ⎝⎛⎭⎪⎫2x 3+π2⇒y =-sin 23x 是奇函数; ②由sin α+cos α=2sin ⎝ ⎛⎭⎪⎫α+π4的最大值为2,2<32,所以不存在实数α,使得sin α+cos α=32.③α=60°,β=390°,显然有α<β,且α,β都是第一象限角,但tan α=3,tanβ=tan 390°=33,tan α>tan β,所以③不成立. ④∵2×π8+54π=π4+54π=32π,而sin 32π=-1,∴④成立.⑤∵sin ⎝ ⎛⎭⎪⎫2×π12+π3=sin ⎝ ⎛⎭⎪⎫π6+π3=1≠0,∴⑤不成立. 答案 ①④二、解答题(每题15分,共45分) 8.已知函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,|φ|<π2,ω>0的图象的一局部如下图. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 解 (1)观察图象可知:A =2且点(0,1)在图象上,所以1=2sin(ω·0+φ),即sin φ=12,因为|φ|<π2,所以φ=π6.又因为1112π是函数的一个零点,且是图象上升穿过x 轴形成的零点,所以11π12ω+π6=2π,所以ω=2.故f (x )=2sin ⎝⎛⎭⎪⎫2x +π6.(2)设2x +π6=B ,那么函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解上式得x =k π2+π6(k ∈Z ),所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z ).9.(2023·华东师大附中模拟)已知函数f (x )=A sin ωx +B cos ωx (A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2.(1)求f (x )的解析式;(2)在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解 (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π,又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2(k ∈Z ),φ=2k π+π6(k ∈Z ),所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx +2k π+π6=2sin ⎝ ⎛⎭⎪⎫πx +π6(k ∈Z ).故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫πx +π6.(2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512,又k ∈Z ,知k =5,由此可知在闭区间⎣⎢⎡⎦⎥⎤214,234上存在f (x )的对称轴,其方程为x =163.10.(★)(2023·深圳一调)已知函数f (x )=23·sin ⎝ ⎛⎭⎪⎫x 2+π4cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)假设将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.解 (1)因为f (x )=3sin ⎝ ⎛⎭⎪⎫x +π2+sin x =3cos x +sin x =2⎝ ⎛⎭⎪⎫32cos x +12sin x =2sin ⎝⎛⎭⎪⎫x +π3,所以f (x )的最小正周期为2π. (2)∵将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,∴g (x )=f ⎝⎛⎭⎪⎫x -π6=2sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π6+π3=2sin ⎝ ⎛⎭⎪⎫x +π6.∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴当x +π6=π2,即x =π3时,sin ⎝ ⎛⎭⎪⎫x +π6=1,g (x )取得最大值2.当x +π6=7π6,即x =π时,sin ⎝⎛⎭⎪⎫x +π6=-12,g (x )取得最小值-1. 【点评】 解决三角函数的单调性及最值值域问题主要步骤有:,第一步:三角函数式的化简,一般化成y =A sin ωx +φ+h 或y =A cos ωx +φ+h 的形式.,第二步:根据sin x 、cos x 的单调性解决问题,将“ωx +φ”看作一个整体,转化为不等式问题.,第三步:根据已知x 的范围,确定“ωx +φ”的范围.,第四步:确定最大值或最小值.,第五步:明确标准表述结论B 级 综合创新备选(时间:30分钟 总分值:60分)一、填空题(每题5分,共30分)1.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如下图,那么ω=________.解析 由函数y =A sin(ωx +φ)的图象可知.T 2=⎝⎛⎭⎪⎫-π3-⎝ ⎛⎭⎪⎫-23π=π3,所以T =23π.因为T =2πω=23π,所以ω=3.答案 32.(2023·连云港模拟)设函数y =2sin ⎝⎛⎭⎪⎫2x +π3的图象关于点P (x 0,0)成中心对称,假设x 0∈⎣⎢⎡⎦⎥⎤-π2,0,那么x 0=________.解析 因为函数图象的对称中心是其与x 轴的交点,所以y =2sin ⎝⎛⎭⎪⎫2x 0+π3=0,x 0∈⎣⎢⎡⎦⎥⎤-π2,0,解得x 0=-π6. 答案 -π63.(2023·四川改编)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________. 解析 将函数y =sin x 的图象上所有点向右平移π10个单位得y =sin ⎝ ⎛⎭⎪⎫x -π10,再把所得各点横坐标伸长到原来的2倍得y =sin ⎝ ⎛⎭⎪⎫12x -π10.答案 y =sin ⎝ ⎛⎭⎪⎫12x -π10 4.(2023·福建)已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.假设x ∈⎣⎢⎡⎦⎥⎤0,π2,那么f (x )的取值范围是________.解析 由f (x )与g (x )的图象对称轴完全相同知两函数的周期相同,∴ω=2. 所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,56π,f (x )的取值范围是⎣⎢⎡⎦⎥⎤-32,3.答案 ⎣⎢⎡⎦⎥⎤-32,3 5.(2023·南通调研)函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=-2,f (β)=0,且|α-β|的最小值等于π2,那么正数ω的值为________.解析 f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3,由题意得f (x )的最小正周期T =4×π2=2π,所以2πω=2π,即ω=1. 答案 16.(2023·菏泽模拟)函数f (x )=3sin ⎝⎛⎭⎪⎫2x -π3的图象为C ,以下结论:①图象C 关于直线x =π6对称;②图象C 关于点⎝⎛⎭⎪⎫-π6,0对称;③f (x )在区间⎝⎛⎭⎪⎫-π12,5π12上是增函数;④函数g (x )=3sin 2x 的图象向右平移π3个单位长度可以得到f (x )的图象,其中正确的命题序号是________.解析 ①当x =π6时,2x -π3=2×π6-π3=0,所以C 关于点⎝ ⎛⎭⎪⎫π6,0对称,所以①不正确.②当x =-π6时,3sin ⎝ ⎛⎭⎪⎫2x -π3=3sin ⎝ ⎛⎭⎪⎫-2π3≠0,所以②不正确.③当x ∈⎝ ⎛⎭⎪⎫-π12,5π12时,2x -π3∈⎝ ⎛⎭⎪⎫-π2,π2,y =f (x )在⎝ ⎛⎭⎪⎫-π2,π2上单调增,所以③正确.④g ⎝⎛⎭⎪⎫x -π3=3sin2⎝ ⎛⎭⎪⎫x -π3=3sin ⎝ ⎛⎭⎪⎫2x -2π3≠f (x ),所以④不正确,故正确的题号是③.答案 ③二、解答题(每题15分,共30分)7.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如下图.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y=f (x )+g (x )的图象在(0,π)内所有交点的坐标. 解 (1)由题图知A =2,T =π,于是ω=2πT=2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. (2)依题意得g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=-2cos ⎝⎛⎭⎪⎫2x +π6.故y =f (x )+g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6-2cos ⎝ ⎛⎭⎪⎫2x +π6=22sin ⎝ ⎛⎭⎪⎫2x -π12.由22sin ⎝ ⎛⎭⎪⎫2x -π12=6,得sin ⎝ ⎛⎭⎪⎫2x -π12=32.因为0<x <π,所以-π12<2x -π12<2π-π12.所以2x -π12=π3或2x -π12=2π3,所以x =524π或x =38π,故所求交点坐标为⎝⎛⎭⎪⎫5π24,6或⎝ ⎛⎭⎪⎫3π8,6.8.(2023·南通调研)已知函数f (x )=2cos x 2⎝⎛⎭⎪⎫3cos x 2-sin x 2.(1)设θ∈⎣⎢⎡⎦⎥⎤-π2,π2,且f (θ)=3+1,求θ的值;(2)在△ABC 中,AB =1,f (C )=3+1,且△ABC 的面积为32,求sin A +sin B 的值. 解 (1)f (x )=23cos 2 x 2-2sin x 2cos x 2=3(1+cos x )-sin x =2cos ⎝⎛⎭⎪⎫x +π6+ 3.由2cos ⎝ ⎛⎭⎪⎫θ+π6+3=3+1,得cos ⎝ ⎛⎭⎪⎫θ+π6=12.于是θ+π6=2kπ±π3(k ∈Z ).因为θ∈⎣⎢⎡⎦⎥⎤-π2,π2, 所以θ=-π2或π6.(2)因为C ∈(0,π),由(1)知C =π6.因为△ABC 的面积为32,所以32=12ab sin π6.于是ab =2 3.① 在△ABC 中,设内角A ,B 的对边分别是a ,b . 由余弦定理,得1=a 2+b 2-2ab cos π6=a 2+b 2-6.所以a 2+b 2=7.② 由①②,可得⎩⎨⎧a =2,b =3,或⎩⎨⎧a =3,b =2.于是a +b =2+ 3.由正弦定理,得sin A a =sin B b =sin C 1=12.所以sin A +sin B =12(a +b )=1+32.。
三角函数综合测试题(含答案)
三角函数综合测试题一、选择题(每小题5分,共70分)1. sin2100 =A .23 B . -23 C .21 D . -21 2.α是第四象限角,5tan 12α=-,则sin α= A .15 B .15- C .513 D .513-3. )12sin12(cos ππ- )12sin12(cosππ+=A .-23 B .-21 C . 21 D .234. 已知sinθ=53,sin2θ<0,则tanθ等于A .-43 B .43 C .-43或43 D .545.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π=-C .1sin()26y x π=-D .sin(2)6y x π=-6. ()2tan cot cos x x x +=A .tan xB . sin xC . cos xD . cot x7.函数y =x x sin sin -的值域是A. { 0 }B. [ -2 , 2 ]C. [ 0 , 2 ]D.[ -2 , 0 ]αcos 81=α,且)2,0(πα∈,则sin α+cos α的值为A.25 B. -25 C. ±25 D. 239. 2(sin cos )1y x x =--是A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4(ππππ B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2πB .ω=21,θ=2π C .ω=21,θ=4π D .ω=2,θ=4π12. 设5sin7a π=,2cos 7b π=,2tan 7c π=,则 A .a b c << B .a c b << C .b c a << D .b a c <<13.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是A .2π B .4π- C .4π D .34π14. 函数f (x )=xxcos 2cos 1-A .在⎪⎭⎫⎢⎣⎡20π, 、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递减 B .在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递减C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛ππ,2上递减 (每小题5分,共20分,)15. 已知⎪⎭⎫⎝⎛-∈2,2ππα,求使sin α=32成立的α=16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图,则函数表达式为18.已知βα,为锐角,且cos α=71 cos )(βα+= 1411-, 则cos β=_________ 19.给出下列命题:(1)存在实数α,使1cos sin =αα (2)存在实数α,使23cos sin =+αα (3)函数)23sin(x y +=π是偶函数 (4)若βα、是第一象限的角,且βα>,则βαsin sin >.其中正确命题的序号是________________________________三.解答题(每小题12分,共60分,) 20.已知函数y =3sin )421(π-x (1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.21.已知)cos(2-)sin(πθπθk k +=+Z k ∈ 求:(1)θθθθsin 3cos 5cos 2sin 4+-; (2)θθ22cos 52sin 41+22.设0≥a ,若b x a x y +-=sin cos 2的最大值为0,最小值为-4,试求a 与b 的值,并求y 的最大、最小值及相应的x 值.23.已知21)tan(=-βα,71tan -=β,且),0(,πβα∈,求βα-2的值.24.设函数a x x x x f ++=ωωωcos sin cos 3)(2(其中ω>0,R a ∈),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[ππ-的最小值为3,求a 的值.测试题答案.一.DDDA,CDDA,DCAD,CA二arcsin32 1 y=)48sin(4-ππ+x 21(3) 三、解答题:20.已知函数y=3sin )421(π-x(1)用五点法作出函数的图象; (2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心. 解 (1)列表:x2π π23 π25 π27 π29421π-x 02π ππ232π 3sin )421(π-x 03 0 -3 0描点、连线,如图所示:…………………………………………………………………………………………5 (2)周期T=ωπ2=212π=4π,振幅A=3,初相是-4π. ………………………………………………………….8 (3)令421π-x =2π+k π(k ∈Z ), 得x=2k π+23π(k ∈Z ),此为对称轴方程. 令21x-4π=k π(k ∈Z )得x=2π+2k π(k ∈Z ). 对称中心为)0,22(ππ+k(k ∈Z )…………………………………………………………………………..12 21.已知sin(θ+k π)=-2cos(θ+k π) (k ∈Z ). 求:(1)θθθθsin 3cos 5cos 2sin 4+-;(2)41sin 2θ+52cos 2θ.解:由已知得cos(θ+k π)≠0, ∴tan(θ+k π)=-2(k ∈Z ),即tan θ=-2..................................................................................................2 (1)10tan 352tan 4sin 3cos 5cos 2sin 4=+-=+-θθθθθθ (7)(2)41sin 2θ+52cos 2θ=θθθθ2222cos sin cos 52sin 41++=2571tan 52tan 4122=++θθ (12)22.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、最小值时的x 值. 解:原函数变形为y =-41)2(sin 22a b a x ++++………………………………………2 ∵-1≤sin x ≤1,a ≥0∴若0≤a ≤2,当sinx =-2a 时 y max =1+b +42a =0 ①当sinx =1时,y min =-41)21(22a b a ++++=-a +b =-4 ②联立①②式解得a =2,b =-2…………………………………………………………7 y 取得最大、小值时的x 值分别为: x =2kπ-2π(k ∈Z),x =2kπ+2π(k ∈Z)若a >2时,2a ∈(1,+∞)∴y max =-b a a b a +=+++-41)21(22=0 ③y min =-441)21(22-=+-=++++b a a b a ④ 由③④得a =2时,而2a =1 (1,+∞)舍去.............................................11 故只有一组解a =2,b =-2.. (12)23.已知tan(α-β)=21,tan β=-71,且α、β∈(0,π),求2α-β的值. 解:由tanβ=-71 β∈(0,π) 得β∈(2π, π) ① (2)由tanα=tan[(α-β)+β]=31 α∈(0,π) ∴ 0<α<2π (6)∴ 0<2α<π由tan2α=43>0 ∴知0<2α<2π ②∵tan(2α-β)=βαβαtan 2tan 1tan 2tan +-=1 (10)由①②知 2α-β∈(-π,0)∴2α-β=-43π (12)24.设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[xπ-的最小值为3,求a 的值.解:(1) f(x)=23cos2ωx +21sin2ωx +23+a (2)=sin(2ωx +3π)+23+a …………………………………………………..4 依题意得2ω·6π+3π=2π解得ω=21………………………………….6 (2) 由(1)知f(x)=sin(2ωx +3π)+23+a 又当x ∈⎥⎦⎤⎢⎣⎡-65,3ππ时,x +3π∈⎥⎦⎤⎢⎣⎡67,0π…………………………………8 故-21≤sin(x +3π)≤1……………………………………………..10 从而f(x)在⎥⎦⎤⎢⎣⎡-65,3ππ上取得最小值-21+23+a 因此,由题设知-21+23+a =3故a =213+ (12)三角函数综合练习题1.已知α是第二象限角,且3sin()5πα+=- ,则tan 2α的值为 ( )A .45B .237-C .247-D .83-)2(cos 2π+=x y 的单调增区间是( )(A )π(π,π)2k k + k ∈Z (B )π(π, ππ)2k k ++ k ∈Z(C )(2π, π2π)k k +k ∈Z (D )(2ππ, 2π2π)k k ++k ∈Zx x y cos sin +=的图像,只需把x x y cos sin -=的图象上所有的点( ) (A )向左平移4π个单位长度(B )向右平移4π个单位长度(C )向左平移2π个单位长度(D )向右平移2π个单位长度4. 已知(,)2απ∈π,1tan()47απ+=,那么ααcos sin +的值为( )(A )51-(B )57 (C )57- (D )435.已知函数()sin y x =ω+ϕ(0,0)2πω><ϕ≤的部分图象如图所示,则点P (),ωϕ的坐标为( ) (A )(2,)3π(B )(2,)6π (C )1(,)23π (D )1(,)26π①x x y cos sin +=,②x x y cos sin 22=,则下列结论正确的是( )(A )两个函数的图象均关于点(,0)4π-成中心对称 (B )两个函数的图象均关于直线4x π=-成中心对称(C )两个函数在区间(,)44ππ-上都是单调递增函数 (D )两个函数的最小正周期相同7. 已知函数()x x x f cos sin 3-=,R x ∈,若()1≥x f ,则x 的取值范围为( ) A. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,3ππππ B . ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,232ππππC. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,656ππππ D. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ8.设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 Ay(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 9.如右上图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=__________. 10.在ABC 中,若5b =,4B π∠=,tan 2A =,则sin A =_______,a =______.11.已知,2)4tan(=+πx 则xx2tan tan 的值为__________.12.设sin1+=43πθ(),则sin 2θ=_________. 13.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=______.14.在ABC 中,60,3B AC ==2AB BC +的最大值为 。
高考数学一轮总复习第4章三角函数第4节函数y=Asinωx+φ的图象及简单应用教师用书
第四节 函数y =A sin(ωx +φ)的图象及简单应用考试要求:1.结合具体实例,了解函数y =A sin(ωx +φ)的实际意义.2.能借助图象理解参数A ,ω,φ的意义,了解参数的变化对函数图象的影响.3.会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型.一、教材概念·结论·性质重现1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0,x ≥0)振幅周期频率相位初相A T =f ==ωx + φ φ2.用五点法画y =A sin(ωx +φ)(A >0,ω>0,x ∈R )在一个周期内的简图时,要找五个特征点,如下表所示:ωx +φ0π2πxy =A sin(ωx+φ)0A 0-A 01.五点法作简图要取好五个关键点,注意曲线凹凸方向.3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径:由函数y =sin x 的图象经过变换得到y =sin(ωx +φ)的图象,如先伸缩,再平移时,要平移个单位长度,而不是|φ|个单位长度.二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( × )(2)函数f(x)=A sin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( × )(3)若函数y=A sin(ωx+φ)(A≠0)为偶函数,则φ=kπ+(k∈Z).( √ )(4)函数y=A cos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( √ ) 2.(2021·常州一模)已知函数f(x)=2sin x,为了得到函数g(x)=2sin的图象,只需( )A.先将函数f(x)图象上所有点的横坐标变为原来的2倍,再向右平移个单位长度B.先将函数f(x)图象上所有点的横坐标变为原来的,再向右平移个单位长度C.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的D.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的2倍B 解析:将f(x)=2sin x的图象上各点的横坐标缩短到原来的,纵坐标不变,得到的函数解析式为f(x)=2sin 2x;再将函数f(x)=2sin 2x图象上所有的点向右平移个单位长度,得到函数f(x)=2sin.3.函数f(x)=cos(ω>0)的最小正周期是π,则其图象向右平移个单位长度后得到的图象对应函数的单调递减区间是( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)B 解析:由题意知ω==2,将函数f(x)的图象向右平移个单位长度后得到函数g(x)=cos=cos=sin 2x的图象,由2kπ+≤2x≤2kπ+(k∈Z),解得函数的单调递减区间为(k∈Z).4.(2021·东城区一模)已知函数f(x)=A sin(2x+φ),其中x和f(x)部分对应值如表所示:x-0f(x)-2-2-222那么A=________.4 解析:由题意得f(0)=A sin φ=-2,f=-A cos φ=-2,所以A2(sin2φ+cos2φ)=16,因为A>0,所以A=4.5.函数y=A sin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω= .3 解析:观察函数图象可得周期T=,故T==,所以ω=3.考点1 由图象确定y=A sin ωx+φ 的解析式——基础性1.(2022·银川模拟)已知函数y=sin(ωx+φ)的图象如图所示,则此函数的解析式可以是( )A.y=sinB.y=sinC.y=sinD.y=sinC 解析:由函数y=sin(ωx+φ)的图象知,T=2×=π,ω==2,由五点法画图知,是函数图象的第三个关键点,即2×+φ=π,解得φ=,所以此函数的解析式是y=sin.2.若函数f(x)=sin(ωx+φ)满足f=f(x),且f(x)的图象如图所示,则φ=( )A. B.-C. D.-D 解析:因为函数f(x)=sin(ωx+φ)满足f=f(x),所以函数f(x)的图象关于直线x=对称,结合图象,-=×,所以ω=2.结合五点法作图可得,2×+φ=,所以φ=-.3.(2021·全国甲卷)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则f =________.- 解析:由题意可得T=-=,所以T=π,ω==2,当x=时,ωx+φ=2×+φ=2kπ,所以φ=2kπ-π(k∈Z),令k=1可得φ=-,据此有f(x)=2cos,f =2cos=2cos=-.4.如图,某地一天6~14时的温度变化曲线近似满足函数T=A sin(ωt+φ)+b,则这段曲线对应的函数解析式为____________.y=10sin+20,x∈[6,14] 解析:从题图中可以看出,6~14时是函数y=A sin(ωx+φ)+b的半个周期,所以A=×(30-10)=10,b=×(30+10)=20.又×=14-6,所以ω=.又×10+φ=2π+2kπ,k∈Z,取φ=,所以y=10sin+20,x∈[6,14].1.由图象求解析式问题,求①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx+φ=+kπ,k∈Z;“最小值点”(即图象的“谷点”)时ωx+φ=+kπ,k∈Z.考点2 函数y=A sin ωx+φ 的图象变换——综合性(1)(2021 ·全国乙卷)把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin的图象,则f(x)=( )A.sin B.sinC.sin D.sinB 解析:由已知的函数y=sin逆向变换,第一步:向左平移个单位长度,得到y=sin=sin的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象,即为y=f(x)的图象,所以f(x)=sin.(2)(2021·山西二模)将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度得到y =cos 2x的图象,则φ的值可能为( )A. B.C. D.A 解析:将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度,得到y=sin=sin=cos=cos=cos.若要得到y=cos 2x的图象,则-2φ-=2kπ,即φ=-kπ-,k∈Z.因为φ>0,所以当k=-1时,φ=.本例(1)若改为:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度得到函数y=f(x)的图象,则f(x)=________.sin 解析:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin,向右平移个单位长度得到函数f(x)=sin=sin.1.由函数y移后伸缩”与“先伸缩后平移”.要特别注意这两种情况下平移的单位长度.2.当变换前后解析式三角函数名称不同时,要注意利用诱导公式转化.1.(2022·泰安模拟)已知函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C上所有点的( )A.横坐标伸长到原来的2倍,纵坐标不变B.纵坐标缩短到原来的倍,横坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.横坐标缩短到原来的倍,纵坐标不变D 解析:函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C 上所有点横坐标缩短到原来的倍,纵坐标不变,即可.2.已知函数f(x)=cos是偶函数,要得到函数g(x)=sin 2x的图象,只需将函数f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度C 解析:因为函数f(x)=cos是偶函数,所以φ-=kπ(k∈Z).因为|φ|<,所以φ=,所以f(x)=cos 2x,要得到函数g(x)=sin 2x=cos的图象,只需将函数f(x)=cos 2x的图象向右平移个单位长度.考点3 三角函数模型及其应用——应用性(2021·上海模拟)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到点A的距离与点P的高度之和为( )A.5米B.(4+)米C.(4+)米D.(4+)米D 解析:以圆心O1为原点,以水平方向为x轴正方向,以竖直方向为y轴正方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O离地面1米,12秒转动一圈.设∠OO1P=θ,运动t(秒)后与地面的距离为f(t).又T=12,所以θ=t,所以f(t)=3-2cos t,t≥0;风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达点P,θ=6π+,P(,1),所以点P的高度为3-2×=4(米).因为A(0,-3),所以AP==,所以点P到点A的距离与点P的高度之和为(4+)米.三角函数模型的应用体现在两方面:一是已知函数模型求解数模型,再利用三角函数的有关知1.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中使用.假设在水流量稳定的情况下,筒车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O的半径为4 m,P0在水平面上,盛水筒M 从点P0处开始运动,OP0与水平面所成角为30°,且2分钟恰好转动1圈,则盛水筒M距离水面的高度H(单位:m)与时间t(单位:s)之间的函数关系式是( )A.H=4sin+2B.H=4sin+2C.H=4sin+2D.H=4sin+2A 解析:以O为原点,过点O的水平直线为x轴,建立如图所示平面直角坐标系,因为∠xOP0=30°=,所以OM在 t(s) 内转过的角度为t=t,所以以x轴为始边,以OM为终边的角为t-,则点M的纵坐标为4sin,所以点M距水面的高度H(m)表示为时间 t(s) 的函数是H=4sin+2.2.据市场调查,某种商品一年内每件出厂价在7 000元的基础上,按月呈f(x)=A sin(ωx+φ)+B的模型波动(x为月份).已知3月份达到最高价9 000元,9月份价格最低,为5 000元,则7月份的出厂价格为________元.6 000 解析:作出函数简图如图:三角函数模型为y=A sin(ωx+φ)+B,由题意知A=(9 000-5 000)=2 000,B=7 000,T=2×(9-3)=12,所以ω==.将(3,9 000)看成函数图象的第二个特殊点,则有×3+φ=,所以φ=0,故f(x)=2 000sin x+7 000(1≤x≤12,x∈N*).所以f(7)=2 000×sin+7 000=6 000(元).故7月份的出厂价格为6 000元.考点4 三角函数图象与性质的综合问题——综合性(1)(多选题)将函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x),则下列结论正确的是( )A.函数g(x)的图象关于直线x=对称B.函数g(x)的图象关于点对称C.函数g(x)在上单调递减D.函数g(x)在[0,2π]上恰有4个极值点AD 解析:函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x)=2sin的图象,对于A:当x=时,g=2,故A正确.对于B:当x=时,g=2sin=,故B错误.对于C:当x∈时,2x-∈,故函数在该区间上单调递增,故C错误.对于D:令2x-=kπ+(k∈Z),解得x=+(k∈Z),当k=0,1,2,3时,x=,,,,正好有4个极值点,故D正确.(2)已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是( )A. B.(-2,2)C.(-2,-) D.(-2,-1)D 解析:方程2sin2x-sin 2x+m-1=0可转化为m=1-2sin2x+sin 2x=cos 2x+sin 2x=2sin,x∈.设2x+=t,则t∈,题目条件可转化为=sin t,t∈,有两个不同的实数根.所以y=和y=sin t,t∈的图象有两个不同交点,如图:由图象观察知,的范围为,故m的取值范围是(-2,-1).已知关于x的方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则实数m的取值范围是________.1≤m<2 解析:2sin2x-sin 2x+m-1=-cos 2x-sin 2x+m=-2sin+m.因为x∈,所以2x+∈.要使方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则2x+∈且2x +≠,此时2sin∈[1,2),所以1≤m<2.1.研究y=1.(2021·运城模拟)函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则下列结论错误的是( )A.f(x)=2sinB.若把f(x)的横坐标缩短为原来的,纵坐标不变,则得到的函数在[-π,π]上是增函数C.若把函数f(x)的图象向左平移个单位长度,则所得图象对应的函数是奇函数D.函数y=f(x)的图象关于直线x=-4π对称B 解析:由图象可得T=-2π=,所以T=6π,所以ω==.因为f(2π)=2,所以f(2π)=2sin=2,即sin=1,所以+φ=2kπ+(k∈Z),所以φ=2kπ-(k∈Z).因为|φ|<π,所以φ=-.所以f(x)=2sin,故A正确.把f(x)的横坐标缩短为原来的,纵坐标不变,得到的函数为y=2sin.因为x∈[-π,π],所以-≤x-≤,所以y=2sin在[-π,π]上不单调递增,故B错误.把函数f(x)的图象向左平移个单位长度,得到的函数为y=2sin=2sin x,是奇函数,故C正确.f(-4π)=2sin=2,是最值,故x=-4π是f(x)的对称轴,故D正确.2.若将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后得到的图象关于y轴对称,则函数f(x)在上的最大值为( )A.2 B.C.1 D.A 解析:将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后,得到的y=2sin的图象关于y轴对称,所以φ=,函数f(x)=2sin.因为x∈,所以2x+∈,则当2x+=时,函数f(x)在上的最大值为2.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .B .C .D .[四字程序]思路参考:构造正弦型函数的解析式.B 解析:y =cos x +sin x =2sin ,函数的图象向左平移m (m >0)个单位长度,得y =2sin 的图象.由x +m +=k π+(k ∈Z ),得函数y =2sin 的图象的对称轴为x =-m +k π(k ∈Z ).因为所得的图象关于y 轴对称,所以-m +k π=0(k ∈Z ),即m =k π+(k ∈Z ),则m 的最小值为.思路参考:构造余弦型函数的解析式.B 解析:函数y =cos x +sin x =2cos 的图象向左平移m (m >0)个单位长度得到y =2cos 的图象.因为此函数图象关于y 轴对称,所以y =2cos 为偶函数,易知m 的最小值为.思路参考:根据图象对称轴与函数最值的关系.B 解析:由解法1,得y =2sin .因为所得的图象关于y 轴对称,可得当x =0时,y =±2,进而sin =±1,易知m 的最小值为.思路参考:利用函数图象.B 解析:y=cos x+sin x=2sin,可得此函数图象的对称轴为x=kπ+(k∈Z),可知离y轴最近的对称轴为x=和x=-.由图象向左平移m(m>0)个单位长度后关于y轴对称,易知m的最小值为.1.基于课程标准,解答本题一般需要提升运算求解能力、逻辑推理能力,体现逻辑推理、数学运算的核心素养.2.基于高考数学评价体系,本题涉及三角恒等变换、三角函数的图象与性质等知识,渗透了转化与化归思想方法,有一定的综合性,属于中低档难度题.将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在上的最大值为( )A.0 B.C. D.1D 解析:将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,可得函数g(x)=sin的图象.根据所得图象关于原点对称,可得+φ=kπ.因为|φ|<,所以φ=,f(x)=sin.在上,2x+∈,故当2x+=时,f(x)取得最大值为1.。
2020版高考数学一轮总复习检测:4.4 三角函数的最值与综合应用 Word版含解析
4.4三角函数的最值与综合应用挖命题【考情探究】分析解读 1.三角函数的最值问题是三角函数性质和三角恒等变换的综合应用,是数形结合的较好体现,是高考的热点.2.三角函数是基本初等函数,它是描述周期现象的重要模型,在数学和其他领域中具有重要的作用,在高考命题中,单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等周期现象是新的命题背景,借此突出数学的应用性质,也是高考命题的关注点.3.预计2020年高考试题中,本节内容是高考命题的热点,复习时应高度重视.破考点【考点集训】考点三角函数的最值与综合应用1.(2018浙江镇海中学单元测试,12)函数f(x)=sin2x+e|sinx+cosx|的最大值与最小值之差等于.答案+12.(2018浙江宁波模拟(5月),18(1))已知函数f(x)=4cosx·sin--1.求函数f(x)的单调递增区间.解析f(x)=4cosx--1=sin2x-cos2x-2=2sin--2,由于-+2kπ<2x-<+2kπ,k∈Z,所以-+kπ<x<+kπ,k∈Z.所以f(x)的单调递增区间为-,k∈Z.炼技法【方法集训】方法1 求三角函数的值域(最值)的方法1.(2017浙江金华十校调研,17)若函数f(x)=|asinx+bcosx-1|+|bsinx-acosx|(a,b∈R)的最大值为11,则a2+b2=.答案502.(2017浙江台州调研,18)在平面直角坐标系xOy中,已知点P,将向量绕原点O按逆时针方向旋转x弧度得到向量.(1)若x=,求点Q的坐标;(2)已知函数f(x)=·,令g(x)=f(x)·f,求函数g(x)的值域.解析(1)由已知得x Q=cos=coscos-sin·sin=-,y Q=sin=sincos+cossin=,所以点Q的坐标为-.(2)函数f(x)=·=cos+sin=cosx-sinx+cosx+sinx=cosx,于是,g(x)=cosx·cos=-sin2x=-sin-.因为-1≤sin-≤1,所以g(x)的值域为-.方法2 三角函数的综合应用问题的方法1.(2017浙江杭州质检,9)在△ABC中,角A,B,C所对的边分别为a,b,c,且b=5,+-=0,则a+c=()A.6B.7C.8D.9答案B2.(2018浙江名校协作体,18)函数f(x)=2sin(ωx+φ)+1的图象过点,且相邻的两个最高点与最低点的距离为.(1)求函数f(x)的解析式和单调增区间;(2)若将函数f(x)图象上所有点向左平移π个单位长度,再将所得图象上所有点的横坐标变为原来的,得到函数g(x)的图象,求g(x)在上的值域.解析(1)由已知相邻的两个最高点和最低点的距离为,可得+42=,解得ω=2.∵f=2sin+1=+1,∴sin=.又∵0<φ<,∴φ=,∴f(x)=2sin+1,当f(x)单调递增时,-+2kπ≤2x+≤+2kπ,k∈Z,∴-+kπ≤x≤+kπ,k∈Z.∴f(x)的单调增区间为-,k∈Z.(2)由题意得g(x)的解析式为g(x)=-2sin4x+1,当≤x≤时,≤4x≤,∴-≤sin4x≤1,∴g(x)∈[-1,+1].过专题【五年高考】统一命题、省(区、市)卷题组考点三角函数的最值与综合应用1.(2016课标全国Ⅰ,12,5分)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为()A.11B.9C.7D.5答案B2.(2017课标全国Ⅱ文,13,5分)函数f(x)=2cosx+sinx的最大值为.答案3.(2017课标全国Ⅱ理,14,5分)函数f(x)=sin2x+cosx-∈的最大值是.答案 14.(2017山东理,16,12分)设函数f(x)=sin-+sin-,其中0<ω<3.已知f=0.(1)求ω;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在-上的最小值.解析本题考查了y=Asin(ωx+φ)的图象和性质及最值.(1)因为f(x)=sin-+sin-,所以f(x)=sinωx-cosωx-cosωx=sinωx-cosωx=-=sin-.由题设知f=0,所以-=kπ,k∈Z.故ω=6k+2,k∈Z,又0<ω<3,所以ω=2.(2)由(1)得f(x)=sin-,所以g(x)=sin-=sin-.因为x∈-,所以x-∈-,当x-=-,即x=-时,g(x)取得最小值-.方法技巧y=Asin(ωx+φ)(A>0,ω>0)的图象变换:由y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象有两种方法.方法一:(先平移后伸缩)y=sinx的图象y=sin(x+φ)的图象y=sin(ωx+φ)的图象y=Asin(ωx+φ)的图象.方法二:(先伸缩后平移)y=sinx的图象y=sinωx的图象y=sin(ωx+φ)的图象y=Asin(ωx+φ)的图象.教师专用题组考点三角函数的最值与综合应用1.(2017北京文,16,13分)已知函数f(x)=cos--2sinxcosx.(1)求f(x)的最小正周期;(2)求证:当x∈-时,f(x)≥-.解析本题考查三角恒等变换,三角函数的性质.(1)f(x)=cos2x+sin2x-sin2x=sin2x+cos2x=sin.所以f(x)的最小正周期T==π.(2)证明:因为-≤x≤,所以-≤2x+≤.所以sin≥sin-=-.所以当x∈-时,f(x)≥-.易错警示正确化简y=f(x)是解题的关键.在(2)中,证明f(x)≥-时容易忽视x的取值范围.2.(2015天津,15,13分)已知函数f(x)=sin2x-sin2-,x∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间-上的最大值和最小值.解析(1)由已知,有f(x)=----=-cos2x=sin2x-cos2x=sin-.所以,f(x)的最小正周期T==π.(2)因为f(x)在区间--上是减函数,在区间-上是增函数,f-=-,f-=-,f=.所以,f(x)在区间-上的最大值为,最小值为-.评析本题主要考查两角差的正弦公式和余弦公式、二倍角公式,三角函数的最小正周期、单调性等基础知识.考查基本运算能力.3.(2014重庆,17,13分)已知函数f(x)=sin(ωx+φ)-的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f=,求cos的值.解析(1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω==2. 又因为f(x)的图象关于直线x=对称,所以2·+φ=kπ+,k=0,±1,±2,….由-≤φ<得k=0,所以φ=-=-.(2)由(1)得f=sin·-=,所以sin-=.由<α<得0<α-<,所以cos-=--=-=.因此cos=sinα=sin-=sin-cos+cos-sin=×+×=.4.(2014四川,16,12分)已知函数f(x)=sin.(1)求f(x)的单调递增区间;(2)若α是第二象限角,f=cos cos2α,求cosα-sinα的值.解析(1)因为函数y=sinx的单调递增区间为-,k∈Z.由-+2kπ≤3x+≤+2kπ,k∈Z,得-+≤x≤+,k∈Z.所以,函数f(x)的单调递增区间为-,k∈Z.(2)由已知,有sin=cos(cos2α-sin2α),所以sinαcos+cosαsin=-(cos2α-sin2α).即sinα+cosα=(cosα-sinα)2(sinα+cosα).当sinα+cosα=0时,由α是第二象限角,知α=+2kπ,k∈Z.此时,cosα-sinα=-.当sinα+cosα≠0时,有(cosα-sinα)2=.由α是第二象限角,知cosα-sinα<0,此时cosα-sinα=-.综上所述,cosα-sinα=-或-.评析本题主要考查正弦型函数的性质,二倍角与和差角公式,简单的三角恒等变换等基础知识,考查运算求解能力,考查分类与整合、化归与转化等数学思想.5.(2014湖北,17,11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cos t-sin t,t∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?解析(1)因为f(t)=10-2=10-2sin,又0≤t<24,所以≤t+<,-1≤sin≤1.当t=2时,sin=1;当t=14时,sin=-1.于是f(t)在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.(2)依题意,当f(t)>11时实验室需要降温.由(1)得f(t)=10-2sin,故有10-2sin>11,即sin<-.又0≤t<24,因此<t+<,即10<t<18.在10时至18时实验室需要降温.评析考查了正弦函数的性质,考查了运算求解能力.正确利用正弦函数的单调性是解题的关键.计算失误是造成失分的重要原因之一,应充分重视.【三年模拟】一、选择题(每小题4分,共8分)1.(2018浙江绍兴高三3月适应性模拟,10)已知x∈,y∈,且xtany=2(1-cosx),则()A.y<B.<y<C.<y<xD.y>x答案C2.(2018浙江镇海中学阶段测试,4)有4个关于x的函数:y1=sinx+cosx,y2=sinx-cosx,y3=sinxcosx,y4=.这4个函数中,在上单调递增的函数的个数是()A.0B.1C.2D.3答案C二、填空题(单空题4分,多空题6分,共12分)3.(2019届浙江高考信息卷(二),14)已知函数f(x)=sin2x-sin2-,x∈R,f(x)在区间-上的最大值是,最小值是.答案;-4.(2018浙江“七彩阳光”联盟期初联考,15)已知函数f(x)=sin(ωx+φ)的图象过点.若f(x)≤f对x∈R恒成立,则ω的值为;当ω最小时,函数g(x)=f--在区间[0,22]上的零点个数为.答案ω=1+12k,k∈Z;8三、解答题(共30分)5.(2019届浙江名校新高考研究联盟第一次联考,18)已知函数f(x)=sin2x+2sin2x.(1)求f(x)的最小正周期及单调递增区间;(2)求f(x)在区间上的最大值.解析(1)f(x)=sin2x+2sin2x=sin2x+1-cos2x=2sin-+1.故T==π.令2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以f(x)的单调递增区间为-,k∈Z.(2)当x∈时,2x-∈-,所以sin-∈-,所以f(x)在区间上的最大值为3.6.(2018浙江嵊州第一学期期末质检,18)已知函数f(x)=2sinx·-,x∈.(1)求f;(2)求f(x)的最大值与最小值.解析(1)cos-=,sin=,所以f=2××=.(2)f(x)=2sinx·-=2sinx·=sin2x+(1-cos2x)=sin-+.因为x∈,所以2x-∈-.又因为y=sinz(z∈R)在区间-上单调递增,在区间上单调递减,所以,当2x-=,即x=时,f(x)取得最大值;当2x-=-,即x=0时,f(x)取得最小值0.7.(2018浙江温州二模(3月),18)如图,已知函数f(x)=sin(ωx+φ)的图象与坐标轴交于点A,B,C-,直线BC交f(x)的图象于另一点D,O是△ABD的重心.(1)求φ;(2)求△ACD的外接圆的半径.解析(1)∵O是△ABD的重心,C-,∴A(1,0),∴=1--=,即最小正周期T=3.∵T==3,∴ω=.由f(1)=0,得sin=0,∴+φ=kπ,k∈Z,又|φ|<,∴φ=.(2)由(1)得f(x)=sin,∴B.又C-,∴∠BCO=60°.又由已知得点C-是BD的中点,∴D--,∴|AD|==.∵∠=°=,∴△ACD的外接圆的半径为.。
高考数学一轮复习专题五三角函数与解三角形4解三角形及其综合应用综合篇课件新人教A版
2
∴△ABC为等腰三角形或直角三角形,故选D. 解法二:(同解法一)可得2a2cos Asin B=2b2cos Bsin A.
由正弦、余弦定理,可得a2·b2 c2 a2 ·b=b2·a2 c2 b2 ·a.∴a2(b2+c2-a2)=b2(a
(1)A+B+C=π; (2)在△ABC中,大角对大边,大边对大角,如:a>b⇔A>B⇔sin A>sin B; (3)任意两边之和大于第三边,任意两边之差小于第三边;
(4)在锐角三角形ABC中,sin A>cos B⇔A+B> ;
2
(5)在斜△ABC中,tan A+tan B+tan C=tan A·tan B·tan C; (6)有关三角形内角的常用三角恒等式:sin(A+B)=sin C;cos(A+B)=-cos C;
由①②解得c=4或c=-6(不合题意,舍去).∴c=4.故选C.
答案 C
例 (2018北京朝阳二模,2)在△ABC中,AB=1,AC= 2,∠C= ,则∠B=
6
()
A. B. 或 C. 3 D. 或 3
4
42
4
44
解析
由正弦定理得 AB
sin C
= AC
sin B
,即
1 sin
= 2,
sin B
B,C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),则△ABC的形状为 ( )
A.等腰三角形 B.直角三角形
完整版)高三三角函数专题复习(题型全面)
完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。
考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。
考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。
考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。
此外,该函数的图像还可以通过一定的变换得到。
一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。
cosθ)(θ∈(π/2,π)),则sin=-cosθ。
3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。
练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。
4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。
练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。
高一数学三角函数综合试题答案及解析
高一数学三角函数综合试题答案及解析1.已知cosα=﹣,,则sin(α﹣)= .【答案】.【解析】,;则.【考点】两角和的正弦公式.2.,其中、是常数,且满足,是否存在这样的、,使是与无关的定值.若存在,求出的值;若不存在,说明理由.【答案】【解析】假设存在,由于函数的值与无关,故取的多个值函数值相同,为了能够尽可能的寻找的关系,这里取.试题解析:假设存在这样的,使是与无关的定值,可取的值分别为,则:且由此可解得 6分因为,所以所以解得, 10分此时,所以当时,是与无关的定值 14分【考点】存在性问题,任意性问题(特值法).3.曲线和直线在y轴右侧的交点按横坐标从小到大依次记为P1、P2、P3…,则|P2P4|等于______________。
【答案】π【解析】可以利用两角和与差的三角函数化简,然后求出曲线与y=的y轴右侧的交点按横坐标,即可求出|P2P4 |.【考点】三角函数化简.4.函数,的最小正周期为()A.B.C.D.【答案】C【解析】这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如的最小正周期为,而的最小正周期为,故函数的最小正周期为,故选C.【考点】三角函数的图像与性质.5.已知.(1)求的最小值及取最小值时的集合;(2)求在时的值域;(3)求在时的单调递减区间.【答案】(1)当,;(2);(3).【解析】先根据平方差公式、同角三角函数的基本关系式、二倍角公式化简所给的函数.(1)将看成整体,然后由正弦函数的最值可确定函数的最小值,并明确此时的值的集合;(2)先求出的范围为,从而,然后可求出时,函数的值域;(3)将当成整体,由正弦函数的单调减区间中解出的取值范围,然后对附值,取满足的区间即可.试题解析:化简4分(1)当时,取得最小值,此时即,故此时的集合为 6分(2)当时,所以,所以,从而即 9分(3)由解得当时,,而,此时应取当时,,而,此时应取故在的单调减区间为 14分.【考点】1.三角恒等变换;2.三角函数的图像与性质.6.(1)已知f(x)=sinx+2sin(+)cos(+).(1)若f(α)=,α∈(-,0),求α的值;(2)若sin=,x∈(,π),求f(x)的值.【答案】(1);(2).【解析】(1)首先根据三角函数公式对函数进行化简,即,从而,则,再由,又,从而求出的值.(2)由,则,根据同角平方关系,由,得,再由倍角公式,可得,,从而求出函数的值.试题解析:(1)f(x)=sin x+2sin(+)cos(+)=sin x+sin(x+)=sin x+cos x=sin(x+),由f(α)=,得sin(α+)=.∴sin(α+)=.∵α∈(-,0),∴α+∈(-,).∴α+=.∴α=-.(2)∵x∈(,π),∴∈(,).又sin=,∴cos=.∴sin x=2sin cos=,cos x=-=-.∴f(x)=sin x+cos x=-=.【考点】三角函数的公式及化简求值.7.若的值为()A.2B.3C.4D.6【答案】D【解析】因为,所以答案选D.【考点】1.三角函数式的变形、化简、求值.8.求函数y=2-sinx+cos2x的值域。
(完整版)三角函数知识点及题型归纳,推荐文档
3 1
到原来的 倍(纵坐标不变),得到的图象所表示的函数是
2
3.将函数 y sin 2x 的图象向左平移 个单位, 再向上平移 1 个单位,所得图象的函数解析式是 4
4.(1)要得到函数
三角函数高考题型分类总结
一.求值
1.若 sin 4 , tan 0 ,则 cos
.
5
2. 是第三象限角, sin( ) 1 ,则 cos = 2
3.若角 的终边经过点 P(1, 2) ,则 cos =
cos(5 ) = 2
tan 2 =
4.下列各式中,值为 3 的是 2
()
(A) 2 sin15 cos15 (B) cos2 15 sin 2 15 (C) 2 sin 2 15 1 (D) sin 2 15 cos2 15
2 3
,7 6
上是增函数
B.在区间
,
2
上是减函数
C.在区间
3
,
4
上是增函数
D.在区间
3
,5 6
上是减函数
5.函数 y 2 cos2 x 的一个单调增区间是
()
A. ( , ) 44
B. (0, )
2
3 C. ( , )
44
D.
(
,
)
2
6.若函数 f(x)同时具有以下两个性质:①f(x)是偶函数,②对任意实数 x,都有 f( x )= 4
y
sin
x
的图象,只需将函数
y
cos
x
的图象向
平移 个单位
人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)
第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。
高中三角函数常见题型与解法
三角函数的题型和方法令狐采学一、思想方法1、三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
即倍角公式降次与半角公式升次。
(4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
(5)引入辅助角。
asinθ+bcosθ=22ba+sin(θ+ϕ),这里辅助角ϕ所在象限由a、b的符号确定,ϕ角的值由tanϕ=ab确定。
(6)万能代换法。
巧用万能公式可将三角函数化成tan2θ的有理式。
2、证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4、解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。
2、三角变换的一般思维与常用方法。
注意角的关系的研究,既注意到和、差、倍、半的相对性,如ααββαββαα22122)()(⨯=⨯=+-=-+=.也要注意题目中所给的各角之间的关系。
(完整版)数学高职高考专题复习_三角函数
高考三角函数问题专题复习一、三角函数基础题1、已知角α的终边通过点P(-3,4),则sinα+cosα+t an α= ( )A.1523-B.1517-C.151-D.15172、π617sin = ( )A.21 B.23- C.21- D.23-3、x y 2sin 21=的最小正周期是 ( ) A.2πB.πC.2πD. 4π 4、设tan α=2,且sin α<0,则cos α的值等于 ( ) A.55 B.51- C.55- D.51 5、y=cos 2(2x)的最小正周期是 ( )A .2πB. πC.4πD.8π 6、命题甲:sin x=1,命题乙:x=2π,则 ( )A.甲是乙充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充分必要条件D.甲不是乙的必要条件也不是乙的充分条件 7、命题甲:A=B ,命题乙:sinA=sinB,则 ( ) A.甲不是乙的必要条件也不是乙的充分条件 B.甲是乙的充分必要条件C.甲是乙的必要条件但不是充分条件D.甲是乙的充分条件但不是必要条件 8、函数y=sin x 在区间________上是增函数. ( ) A.[0,π] B.[π,2π] C.]25,23[ππ D .]87,85[ππ 9、函数)43tan(π+=x y 的最小正周期为 ( )A.3πB.πC.32π D.3π10、设角α的终边通过点P (-5,12),则cot α+sin α等于 ( ) A.137 B.-137 C.15679 D.- 1567911、函数y=cos3x -3sin3x 的最小正周期和最大值分别是 ( )A.32π, 1 B.32π, 2 C.2π, 2 D.2π, 1 12、若23cos ],2,[-=∈x x ππ ,则x 等于 ( ) A.67π B.34π C.35π D.611π 13、已知57cos sin ,51cos sin =-=+αααα,则tan α等于 ( )A.34- B.-43 C.1 D.- 114、ο150cos = ( )A.21 B.23 C.﹣21D. ﹣2315、在△ABC 中,AB=3,AC=2,BC=1,则sin A 等于 ( )A.0B.1C.23 D.2116、在]2,0[π上满足sinx≤-0.5的x 的取值范围是区间 ( ) A.[0,6π] B.[6π,65π] C.]67,65[ππ D .]611,67[ππ17、使等式cosx=a -2有意义的a 的取值范围是区间 ( )A .[0,2] B.[1,3] C.[0,1] D.[2,3]18、=-+-)690sin(495tan )585cos(οοο ( )A .22 B.32 C.32- D.2 19、如果51cos sin =+x x ,且0≤x<π,那么tanx= ( ) A .34- B.43- C.43 D.3420、要得到)62sin(π-=x y 的图象,只需将函数y=sin2x 的图象 ( )A .向右平行移动3π个单位 B.向右平行移动6π个单位 C.向右平行移动12π个单位 D.向左平行移动12π个单位21、已知παππ0,53cos =α,那么=+)sin(πα ( ) A .-1 B.53- C.54 D.54-22、tan165°-tan285°= ( )A .32- B.31+ C.32 D.32+23、函数y=2sin2xcos2x 是 ( )A .周期为2π的奇函数 B.周期为2π的偶函数 C.周期为4π的奇函数 D.周期为4π的偶函数24、在△ABC 中,已知∠BAC=120o ,AB=3,BC=7,则AC=____________.25、在△ABC 中,AB=3,BC=5,AC=7,则cosB=________.26、在△ABC 中,已知AB=2,BC=3,CA=4,则cosA=____ ______.27、函数y=x x cos sin 3+的值域是___ ______. 28、函数y=sinx-3cosx 的最小正周期是___________. 29、设38πα-=,则与α终边相同的最小正角是_________. 30、cos 2398o +cos 2232o =___________. 31、函数tan(3)4y x π=+的最小正周期是 . 二、三角函数式的变换及其应用32、015tan 115tan 1-+= ( )A.3-B.33C.3D.33- 33、已知=-=θθπθπθθsin cos ,24,81cos sin 那么且ππ ( )A .23 B.23- C.43 D.43- 34、当=+∈≠xxx x ,Z k k x cos 3cos sin 3sin )(2时π ( ) A .-2cos2x B.2cos2x C.4cos2x D.-4cos2x 35、=++-)67sin()67sin(θπθπ ( ) A .23B.θcosC.θcos -D.θ2cos 3 36、已知=--==)tan(,21tan ,3tan βαβα则 ( ) A .-7 B.7 C.-5 D.137、=+2280cos 1ο( )A .cos14° B.sin50° C.cos50° D.cos140° 38、如果=-=+=ββααβα那么且是锐角,1411)cos(,734sin ,, ( ) A .3π B.4π C.6π D.8π39、如果=++-x x x sin 1sin 1,20那么πππ ( )A .2cosx B.2sinx C.2sin 2x D.2cos 2x40、当=--=+)tan 1)(tan 1(43βαπβα,时 ( )A .21 B.31C.1D.2 41、在△ABC 中,已知cosAcosB=sinAsinB ,那么△ABC 是 ( ) A .直角三角形 B.钝角三角形 C.等边三角形 D.不等边锐角三角形42、在△ABC 中,已知cosA=135,cosB=53,那么cosC= ( ) A .6563- B.6563 C.6533- D.653343、已知sin α.+cos α.=53,则sin2α.=_______.44、函数y=2cosx -cos2x 的最大值是___ _____.45、如果51cos sin =+αα (0<α<π=,那么tg α的值是____ ____. 46、设0<α<2π,则2cos2sin sin 1ααα--等于______ __________.三、三角函数综合题47、在ABC 中,已知∠A=45o ,∠B=30o ,AB=2,求AC.48、在ABC 中,已知∠A=60o ,且BC=2AB ,求sinC.49、设函数θθθθθcos sin 25cos sin 2)(++=f , ]2,0[πθ∈,(Ⅰ)求)12(πf ; (Ⅱ)求函数f(θ)的最小值.50、已知sin α=54,α是锐角,求1)28(cos 22--απ的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数必考题型小综合(四)
1、设向量(cos ,sin ),(cos ,sin )a b ααββ→→==,0,αβπ<<<且 若45a b →→∙=,4tan 3β=,求tan α的值。
2、已知向量(cos ,sin )αα=a , (cos ,sin )ββ=b , -=
a b . (Ⅰ)求cos()αβ-的值; (Ⅱ)若02πα<<, 02πβ-<<, 且5sin 13β=-, 求sin α.
3、已知函数)(32
1cos 3cos sin )(2R x x x x x f ∈+
-⋅=. (1)求)(x f 的最小正周期;
(2)求)(x f 的单调递增区间;
(3)求)(x f 图象的对称轴方程和对称中心的坐标.
4、已知函数()21sin 2sin cos cos 2f x x x ϕϕ=+1sin 22πϕ⎛⎫-+ ⎪⎝⎭()0ϕπ<<,其图象过点(π6,12
). (Ⅰ)求ϕ的值;(Ⅱ)将函数()y f x =的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()g y x =的图象,求函数()g x 在[0,
π4]上的最大值和最小值.
5、已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02
A π
ωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2
π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)求()f x 的单调增区间.
(III )当[
,]122x ππ
∈,求()f x 的值域.
6、在ABC ∆中,角A 、B 、C 所对的边分虽为c b a ,,,且31,4
a c C === (1)求)sin(B A +的值; (2)求A sin 的值; (3)求CA CB ⋅的值。