中考数学专题训练几何题中用旋转构造“手拉手”模型

中考数学专题训练几何题中用旋转构造“手拉手”模型
中考数学专题训练几何题中用旋转构造“手拉手”模型

中考专题复习——几何题用旋转构造“手拉手”模型

一、教学目标:

1.了解并熟悉“手拉手模型”,归纳掌握其基本特征.

2.借助“手拉手模型”,利用旋转构造全等解决相关问题.

3.举一反三,解决求定值,定角,最值等一类问题. 二、教学重难点:

1.挖掘和构造“手拉手模型”,学会用旋转构造全等.

2.用旋转构造全等的解题方法最优化选择. 三、教学过程: 1.复习旧知

师:如图,△ABD ,△BCE 为等边三角形,从中你能得出哪些结论?

生:(1)△ABE ≌△DBC (2)△ABG ≌△DBF (3)△CFB ≌△EGB (4)△BFG 为等边三角形

(5)△AGB ∽△DGH (6)∠DHA =60°(7)H ,G ,F ,B 四点共圆 (8)BH 平分∠AHC …… 师:我们再来重点研究△ABE 与△DBC ,这两个全等的三角形除了对应边相等,对应角相等外,还有什么共同特征呢?

生:它们有同一个字母B ,即同一个顶点B .

师:我们也可以把△DBC 看作由△ABE 经过怎样的图形运动得到? 生:绕点B 逆时针旋转60°得到.

2.引入新课

师:其实我们可以给这两个全等的三角形赋予一个模型,叫“手拉手模型”,谁可以将这个模型的特征再做进一步的简化归纳呢? 生:对应边相等.

师:我们可以称之为“等线段”. 生:有同一个顶点.

师:我们可以称之为“共顶点”.

师:等线段,共顶点的两个全等三角形,我们一般可以考虑哪一种图形运动? 生:旋转.

师: “手拉手模型”可以归纳为:等线段,共顶点,一般用旋转.

H G

F E D

C

B

A

3.小题热身

图1 图2 图3

1.如图1,△BAD中,∠BAD=45°,AB=AD,AE⊥BD于E,BC⊥AD于C,则AF=____BE.2.如图2,△ABC和△BED均为等边三角形,ADE三点共线,若BE=2,CE=4,则AE=______.3.如图3,正方形ABCD中,∠EAF=45°,BE=3,DF=5,则EF=_______.

师:我们来看第1,第2题,这里面有“手拉手模型”吗?请你找出其中的“等线段,共顶点”.生:题1中,等线段是AC,BC,共顶点是C,△ACF绕点C逆时针旋转90°得△BCD.题2中,等线段是AB,BC,共顶点是B,△ABD绕点D顺时针旋转60°得△CBE.

师:我们再来看第3题,这里有“手拉手模型”吗?

生:没有.

师:那其中有没有“等线段,共顶点”呢?

生:等线段是AD,AB,共顶点是A.

师:我们可否利用旋转来构造“手拉手模型”呢?

生:将AE旋转,绕点A逆时针旋转90°.

师:为什么是逆时针旋转90°,你是如何思考的?

生:我准备构造一个和△ABE全等的三角形,AB绕点A逆时针旋转90°即为AD,那么将AE逆时针旋转90°可得AG,连接GD,证明全等.

师:说的不错,谁能再来归纳一下,借助“手拉手模型”,用旋转构造全等的方法吗?

生:先找有没有“等线段,共顶点”,再找其中一条“共顶点”的线段,将其旋转.

师:旋转角度如何确定,方向怎么选择?

生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致.

师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型”的一些条件,剩余的需要我们自己去构造,可以如何构造呢?

步骤1:先找有没有“等线段,共顶点”.

步骤2:选择其中一个三角形,将其中经过“共顶点”的线段旋转.

步骤3:旋转方向与这个三角形的“等线段”旋转到另一条“等线段”的方向一致,旋转角为“等线段”间的夹角.

师:这道题还有一个要注意的地方,你发现了吗?

生:连接GD后,要证明G,D,F三点共线.

4.例题精讲

例1:等边△ABC中,AD=4,DC=3,BD=5,求∠ADC度数.

师:这里有没有隐含的“手拉手模型”?

要构造全等,该怎样旋转?

生:将△ADC绕点A顺时针旋转60°.

师:你是怎么想的,还有其他做法吗?

生:我发现AB=AC,A为“共顶点”,我选择的旋转线段

是AD,因为AC绕点A顺时针旋转60°到AB,所以△ADC也要绕点A

顺时针旋转60°.也可将△ADB绕点A逆时针旋转60°.

【解答】

将AD绕点A顺时针旋转60°到AE,连接BE,DE.则△ADE也为等边三角形.易证△AEB≌△ADC,∴BE=DC=4,根据勾股定理逆定理,可证∠BED=90°,则∠AEB=∠ADC=150°

例2:如图,△ABO和△CDO均为等腰直角三角形,AOB =COD=

90.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边

长的三角形的面积.

师:由于线段分散,如何通过图形变换,使这些线段能构成一个三角

形?

生:将OD绕点O逆时针旋转90°至OE,即可使OC,OD共线,再通过证明确定△BCE即是以AD、BC、OC+OD的长度为三边长的三角形.

【解答】

如图,将OD绕点O逆时针旋转90°至OE,连接BE.易证

△OAD≌△OBE,AD=BE,∴△BCE即是以AD、BC、OC+OD长度为三边长的三角形.又∵OC=OE,∴S△BCE=2S△BOC=2.

E

A

O

B

C

D

D

C B

O

A

E D

B

B

D

D

C

B

A

5.自主练习

1.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠

ADC =45°,则BD 的长为 _________.

师:请找出隐含的“手拉手模型”,并写出解决方法.

生:“等线段”是CA 和BA ,“共顶点”是A .方法是将AD 绕点A 顺时针旋转90°.

2.如图,在△ABC 中,BC =2,AB =2,以AC 为边,向外做正方形

ACDE ,连接BE ,则BE 最大值为_________.

师:请找出隐含的“手拉手模型”,并写出解决方法. 生:“等线段”是CA 和EA ,“共顶点”是A . 方法是将AB 绕点A 逆时针旋转90°.

师:你为何要逆时针旋转,你准备旋转哪个三角形?

生:△ABC ,因为AC 是逆时针旋转90°到AE ,所以AB 也绕点A 逆时针旋转90°. 3.如图,点A 在⊙B 上,AB =1,BC =2,△ACD 是等边三角形,求△BCD 面积的最大值.

师:请找出隐含的“手拉手模型”,并写出解决方法. 生:“等线段”是CA 和CD ,“共顶点”是C . 方法是将CA 绕点C 逆时针旋转60°.

附:自主练习解答

1. 如图,将AD 绕点A 顺时针旋转90°至AE ,易证△EAC ≌△DAB ,

可得CE =BD ,又∵∠EDA =45°,∴∠CDE =90°,CD =3,DE =42,则Rt △CDE 中,CE 2

=CD 2

+DE 2

=32

+ (42)2

=41 ∴CE =41,∴DB =41

2.如图,将AB 绕点A 逆时针旋转90°至AF ,易证△EAF ≌△CAB ,可

得EF =BC =2.Rt △BAF 中,AF =AB =2,∴BF =2.由三角形三边关系易知,BE ≤EF +BF ,∴BE 最小值为4.

E

D

C

B

A

A

D

C B

D

F

E

B

C

D

A

3.如图,将CB绕点C逆时针旋转60°至CE,连接DE,过点E作EF⊥CB 于F,过点D作DG⊥CB于G.易证△CBA≌CED,则DE=1,EF=3,过E作DG边上的高,可证DG<DE+EF.

当D,E,F三点共线时,DG=DE+EF.即高的最大值为1+3,S△BCDmax

=1

2

×2×(1+3)=1+ 3

F

E

D

C

B

A

G

E

F

A

B

C

D

用旋转法………作辅助线证明平面几何题

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC中 B=AC;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 E C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴BP=BD AP=CD=5, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60? PD=PB=4所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

中考数学专题训练旋转模型几何变换的三种模型手拉手、半角、对角互补

几何变换的三种模型手拉手、半角、对角互补 ?????? ?? ?? ??? ???? ? ????????等腰三角形手拉手模型等腰直角三角形(包含正方形)等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角特殊角角含半角模型一般角 等线段变换(与圆相关) 【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α?<

【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=, ,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60?且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数; (2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.

例题精讲 考点1:手拉手模型:全等和相似 包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)

中考数学几何专题之手拉手模型(初三数学)

手拉手模型 【课堂导入】 什么是手拉手相似基本图形?与手拉手全等的基本图形类似,手拉手相似要比手拉手全等更具有一般性。 在上面右侧的四个图形中,每一个图形中都存在两对相似三角形,△ADE∽△ABC, △ADB∽△AEC,这两对相似三角形是可以彼此转化的。

【例1】已知:△ABC,△DEF 都是等边三角形,M 是 BC 与 EF 的中点,连接 AD,BE. (1)如图1,当EF 与BC 在同一条直线上时,直接写出 AD 与BE 的数量关系和位置关系; (2)△ABC 固定不动,将图1 中的△DEF 绕点M 顺时针旋转(0o≤≤90o)角,如图2 所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由; 【例2】以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD,其中∠ABO=∠DCO=30°.点E、F、M 分别是AC、CD、DB 的中点,连接FM、EM. ①如图 1,当点D、C 分别在 AO、BO 的延长线上时 F M E M ②如图2,将图1 中的△AOB 绕点O 沿顺时针方向旋转60度角,其 他条件不变,判断 F M的值是否发生变化,并对你的结论进行证明; E M

【例3】如图 1,在△ABC 中,∠ACB=90°,BC=2,∠A=30°,点 E,F 分别是线段 BC, AF=_______. AC 的中点,连结 EF.(1)线段B E 与A F 的位置关系是_______, BE (1)中的结论是(2)如图2,当△CEF 绕点C顺时针旋转α时(0°<α<180°) ,连结A F,BE, 否仍然成立.如果成立,请证明;如果不成立,请说明理由. 【例4】如图 1,在四边形 ABCD 中,点E、F 分别是AB、CD 的中点,过点E 作AB 的垂 线,过点F 作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC. (1)求证:AD=BC. (2)求证:△AGD∽△EGF. (3)如图2,若AD、BC 所在直线互相垂直,求E F A D的值.

中考数学压轴题专题复习——旋转的综合含详细答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF. (1)求证:四边形ABEF是菱形; (2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示). 【答案】(1)详见解析;(2)FE·sin(-90°) 【解析】 【分析】 (1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得 ∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论; (2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可. 【详解】 (1)∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠FAE=∠BEA, 由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF, ∴∠BAE=∠FEA, ∴AB∥FE, ∴四边形ABEF是平行四边形, 又BE=EF, ∴四边形ABEF是菱形; (2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.

∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B ∴∠1=∠2 又AM=NM,AB=MG ∴△ABM≌△MGN ∴∠B=∠3,NG=BM ∵MG=AB=BE ∴EG=AB=NG ∴∠4=∠ENG= (180°-)=90°- 又在菱形ABEF中,AB∥EF ∴∠FEC=∠B= ∴∠FEN=∠FEC-∠4=- (90°-)=-90° ②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN. 同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90° 综上所述,∠FEN=-90° ∴当点M在BC上运动时,点N在射线EH上运动(如图3) 当FN⊥EH时,FN最小,其最小值为FE·sin(-90°) 【点睛】 本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值. 2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<

手拉手模型专题训练

1、在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明: △ABE≌△DBC,AE=DC,AE与DC的夹角为60?,△AGB≌△DFB,△EGB≌△CFB, BH平分∠AHC,GF∥AC 2、如果两个等边三角形△ABD和△BCE,连接AE与CD,直线AE与CD相交于点H,求证:(1)AE=DC;(2)AE与DC的夹角为60?;(3)BH平分∠AHC. 3、如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H,求证: (1)AG=CE;(2)AG与CE之间的夹角为90度;(3)HD平分∠AHE.

4.将等腰Rt△ABC和等腰Rt△ADE按图①方式放置,∠A=90°,AD边与AB边重合,AB=2AD=4。 将△ADE绕点A逆时针方向旋转一个角度α(0°<α>180°),BD的延长线交CE于P。(1)如图②,证明:BD=CE,BD⊥CE; (2)如图③,在旋转的过程中,当AD⊥BD时,求出CP的长。 ,PB=4,以AB为直角边作等腰直角三角形ABD,且P、D两点在直线AB 5、已知:PA (1)如图,当∠APB=45°时,求AB及PD的长; (2)当∠APB变化,且其它条件不变时,求PD的最大值及相应∠APB的大小.

1、如图,已知△ABC的面积是3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC 与DE相交于点F,则△AEF的面积等于__________(结果保留根号). 2、在△ABC中,AB=AC,∠BAC=2∠DAE=2α. (1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC; (2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2; (3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.

三角形手拉手模型-专题讲义(无答案)

手拉手模型 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;;导角核心:八字导角 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形结论:;;导角核心:

3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;; 核心图形: 核心条件:;; 例题讲解: A类 1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD, 等边三角形要得到哪些结论? 要联想到什么模型?

证明:(1)△ABE≌△DBC; (2)AE=DC; (3)AE与DC的夹角为60°; (4)△AGB≌△DFB; (5)△EGB≌△CFB; (6)BH平分∠AHC; 解题思路: 1:出现共顶点的等边三角形,联想手拉手模型 2:利用边角边证明全等; 3:八字导角得角相等; 2:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H. 等腰直角三角形要得到哪些结论? 要联想到什么模型? 问 (1)△ADG≌△CDE是否成立? (2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度? (4)HD是否平分∠AHE?

解题思路: 1:出现共顶点的等腰直角三角形,联想手拉手模型 2:利用边角边证明全等; 3:八字导角得角相等; 3:如图,分别以△ABC 的边AB、AC同时向外作等腰直角三角形,其中AB =AE,AC =AD, 等腰直角三角形要得到哪些结论? 要联想到什么模型? ∠BAE=∠CAD=90°,点G为BC中点,点F为BE 中点,点H 为CD中点。探索GF与 多个中点,一般考虑什么? GH 的位置及数量关系并说明理由。

中考数学压轴题专题旋转的经典综合题含详细答案

一、旋转 真题与模拟题分类汇编(难题易错题) 1.在△ABC 中,AB=AC ,∠BAC=α(?<

(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=?-?=?。 又∵∠DEC=45°,∴△DCE 为等腰直角三角形。 ∴DC=CE=BC 。 ∵∠BCE=150°,∴(180150) EBC 152 ?-?∠= =?。 而1 EBC 30152 α∠=?-=?。∴30α=?。 (1)∵AB=AC ,∠BAC=α,∴180ABC 2 α ?-∠= 。 ∵将线段BC 绕点B 逆时针旋转60°得到线段BD ,∴DBC 60∠=?。 ∴180ABD ABC DBC 603022 αα ?-∠=∠-∠= -?=?-。 (2)由SSS 证明△ABD ≌△ACD ,由AAS 证明△ABD ≌△EBC ,即可根据有一个角等于60?的等腰三角 形是等边三角形的判定得出结论。 (3)通过证明△DCE 为等腰直角三角形得出(180150) EBC 152 ?-?∠==?,由(1) 1 EBC 302α∠=?-,从 而1 30152 α?-=?,解之即可。 2.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)请问EG 与CG 存在怎样的数量关系,并证明你的结论; (2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG =EG . (2)结论仍然成立,连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点;再证

手拉手模型

手拉手模型 手拉手模型 特点:由两个顶角相等的等腰三角形所组成,并且顶角的顶点为公共顶点 结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA 平分∠BOC 变形: 例1.如图,B 是线段AC 上一点,分别以AB 和BC 为边长,在直线AC 的同一侧作两个等边三角形,△ABD 和△ECB ,连接AE 和CD ,AE 与DC 交于点H ,与BD 与BE 交于点G ,F . (1)求证:△B CD ≌△BEA ; (2)探究△BFG 的形状,并证明你的结论.

思考:的数量关系。与DC AE (2)AE 与DC 之间的夹角为? 60 (3)DFB AGB ??? (4)CFB EGB ??? (5)BH 平分AHC ∠ (6)AC GF // 变式精练1:如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)AE 与DC 的夹角为60°; (2)AE 与DC 的交点设为H ,BH 平分∠AHC . 思考:DC AE =;AE 与DC 之间的夹角为?60 试一试继续旋转结论是否成立。

变式精练2.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE. (1)试判断BD、CE的数量关系,并说明理由; (2)延长BD交CE于点F,试求∠BFC的度数; (3)把两个等腰直角三角形按如图2放置,(1)中的结论是否仍成立?请说明理由. 练习:已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50° (1)求证:①AC=BD;②∠APB=50°; (2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为

初中几何经典模型总结(手拉手模型)

初中几何经典模型总结(手拉手模型) 模型可以让同学更快的进入到几何之中,产生兴趣。也是近来学习初中几何不可或缺的一种重要方法。下面给大家介绍一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。手拉手模型的概念:1、手的判别:判断左右:将等腰三角形顶角顶点朝上,正对读者,读者左边为左手顶点,右边为右手顶点。2、手拉手模型的定义:定义: 两个顶角相等且有共顶点的等腰三角形形成的图形。(左手拉左手,右手拉右手)例如:3、手拉手模型的重要结论三个固定结论:结论1:△ABC≌△AB'C'(SAS)BC=B'C'(左手拉左手等于右手拉右手)结论2:∠BOB'=∠BAB'(用四点共圆证明)结论3: AO平分∠BOC'(用四点共圆证明)例题解析:类型一共顶点的等腰直角三角形中的手拉手例1:已知:如图△ABC和△ADE都是等腰直角三角形, ∠BAC=∠DAE=90°.求证:BD=CE.分析: 要证BD=CE可转化为证明△BAE≌△CAD,由已知可证 AB=AC,AE=AD,∠BAC=∠EAD=90°,因为∠BAC ∠CAE=∠EAD ∠CAE,即可证∠BAE=∠CAD,符合SAS,即得证.解答:证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC ∠CAE=∠EAD ∠CAE,即∠BAE=∠CAD,在△BAE与△CAD中,

AB=AC,∠BAE=∠CAD,AE=AD∴△BAE≌△CAD(SAS), ∴BD=CE.类型二共顶点的等边三角形中的手拉手例2:图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形。(1)如图1,求证:AD=CE;(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°;②求证:CF BF=AF.分析:(1)如图1,利用等边三角形性质得:BD=BE,AB=BC,∠ABC=∠DBE=60°,再证∠ABD=∠CBE,根据SAS 证明△ABD≌△CBE得出结论;(2)①如图2,利用(1)中的全等得:∠BCE=∠DAB,根据两次运用外角定理可得结论; ②如图3,作辅助线,截取FG=CF,连接CG,证明△CFG 是等边三角形,并证明△ACG≌△BCF,由线段的和得出结论.解答:证明:(1)如图1,∵△ABC与△BED都是等边三角形,∴BD=BE,AB=BC,∠ABC=∠DBE=60°,∴∠ABC ∠CBD=∠DBE ∠CBD,即∠ABD=∠CBE,在△ABD和△CBE 中,AB=AC∠ABD=∠CBEBD=BE,∴△ABD≌△CBE(SAS),∴AD=CE,(2)①如图2,由(1)得:△ABD≌△CBE, ∴∠BCE=∠DAB,∵∠ABC=∠BCE ∠CEB=60°,∴∠ABC=∠DAB ∠CEB=60°,∵∠CFA=∠DAB ∠CEB,∴∠CFA=60°,②如图3,在AF上取一点G,使FG=CF,连接CG,∵∠AFC=60°, ∴△CGF是等边三角形,∴∠GCF=60°,CG=CF,∴∠GCB ∠BCE=60°,∵∠ACB=60°,∴∠ACG ∠GCB=60°, ∴∠ACG=∠BCE,∵AC=BC,∴△ACG≌△BCF,∴AG=BF,

ni三角形手拉手模型-专题讲义

手拉手模型 1.等边三角形 导角核心:八字导角 条件:△OAB ,△OCD 均为等边三角形 结论:①△OAC ≌△OBD ;②∠AEB = 60°;③OE 平分∠AED 2.等腰直角三角形 导角核心: 条件:△OAB ,△OCD 均为等腰直角三角形 结论:①△OAC ≌△OBD ;②∠AEB = 90°;③OE 平分∠AED 3.任意等腰三角形 核心图形:核心条件:OA=OB ;OC=OD ;∠AOB=∠COD 条件:△OAB ,△OCD 均为等腰三角形,且∠AOB = ∠COD 结论:①△OAC ≌△OBD ;②∠AEB=∠AOB ;③OE 平分∠AED 例题讲解: A 类 1.在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD , 等边三角形要得到哪些结论? 要联想到什么模型?

证明:(1)△ABE ≌△DBC ; (2)AE=DC ; (3)AE 与DC 的夹角为60°; (4)△AGB ≌△DFB ; (5)△EGB ≌△CFB ; (6)BH 平分∠AHC ; 解题思路: 1.出现共顶点的等边三角形,联想手拉手模型 2.利用边角边证明全等; 3.八字导角得角相等; 2.如图两个等腰直角三角形ADC 与EDG ,连接AG 、CE ,二者相交于H. 问 (1)△ADG ≌△CDE 是否成立? (2)AG 是否与CE 相等? (3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分∠AHE ? 解题思路: 1.出现共顶点的等腰直角三角形,联想手拉手模型 2.利用边角边证明全等; 3.八字导角得角相等; 3.如图,分别以△ABC 的边AB 、AC 同时向外作等腰直角三角形,其中 AB =AE ,AC =AD ,∠BAE =∠CAD=90°, 点G 为BC 中点,点F 为BE 中点,点H 为CD 中点。探索GF 与GH 的位置及数量关系并说明理由。 多个中点,一般考虑什么? 等腰直角三角形要得到哪些结论? 要联想到什么模型? 等腰直角三角形要得到哪些结论? 要联想到什么模型?

几何辅助线之手拉手模型初

手拉手模型教学目标: 1:理解手拉手模型的概念,并掌握其特点 2:掌握手拉手模型的应用 知识梳理: 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;; 导角核心: 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形 结论:;; 导角核心: 3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;;

核心图形: 核心条件:;; 典型例题: 例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC; (3)AE与DC的夹角为60°;(4)△AGB≌△DFB; (5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC 例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE? 例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立? (2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度? (4)HB是否平分∠AHC? 例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE , AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。探 索GF 与GH 的位置及数量关系并说明理由。 例8:如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD 于点E. (1)如图1,猜想∠QEP=_______°; (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

初中几何专项——手拉手模型

E A D B C E A D B C E D C B A 图3图21图 O H G A B C D M P D E C B A 手拉手模型 模型 手拉手 如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB=AC ,AD=AE ,∠BAC=∠DAE= 。 结论:△BAD ≌△CAE 。 模型分析 手拉手模型常和旋转结合,在考试中作为几何综合题目出现。 模型实例 例1.如图,△ADC 与△GDB 都为等腰直角三角形,连接AG 、CB ,相交于点H ,问:(1)AG 与CB 是否相等? (2)AG 与CB 之间的夹角为多少度? 3.在线段AE 同侧作等边△CDE (∠ACE<120°),点P 与点M 分别是线段BE 和AD 的中点。 求证:△CPM 是等边三角形。

F E C B A H D E C B A 1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在 BC上,且AE=CF。 (1)求证:BE=BF; (2)若∠CAE=30°,求∠ACF度数。 2.如图,△ABD与△BCE都为等边三角形,连接AE与CD,延长AE交CD于点 H.证明: (1)AE=DC; (2)∠AHD=60°; (3)连接HB,HB平分∠AHC。

B A D C P E 3图B D A E C 图21 图P D E C B A 3.将等腰Rt △ABC 和等腰Rt △ADE 按图①方式放置,∠A=90°,AD 边与AB 边重合,AB=2AD=4。将△ADE 绕点A 逆时针方向旋转一个角度α(0°<α>180°),BD 的延长线交CE 于P 。 (1)如图②,证明:BD=CE ,BD ⊥CE ; (2)如图③,在旋转的过程中,当AD ⊥BD 时,求出CP 的长。

最新中考数学压轴题旋转问题带答案

旋转问题 考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。 旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。 一、直线的旋转 1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,4 = MN,1 = MA,1 > MB.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N x AB=.(1)求x的取值范围; (2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积? 2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α. (1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________; ②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________; (2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由. C (第1题)

解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°, 根据三角形的外角性质,得α=∠EDB-∠A=30,此时,AD=1; ②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°, 根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5. (2)当∠α=90°时,四边形EDBC是菱形. ∵∠α=∠ACB=90°, ∴BC‖ED, ∵CE‖AB, ∴四边形EDBC是平行四边形. 在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2, ∴∠A=30度, ∴AB=4,AC=2 , ∴AO= = . 在Rt△AOD中,∠A=30°, ∴AD=2, ∴BD=2, ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形. 3、(2009年北京市) 在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1) (1)在图1中画图探究: ①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直

中考数学专题训练几何题中用旋转构造“手拉手”模型

中考专题复习——几何题用旋转构造“手拉手”模型 一、教学目标: 1.了解并熟悉“手拉手模型”,归纳掌握其基本特征. 2.借助“手拉手模型”,利用旋转构造全等解决相关问题. 3.举一反三,解决求定值,定角,最值等一类问题. 二、教学重难点: 1.挖掘和构造“手拉手模型”,学会用旋转构造全等. 2.用旋转构造全等的解题方法最优化选择. 三、教学过程: 1.复习旧知 师:如图,△ABD ,△BCE 为等边三角形,从中你能得出哪些结论? 生:(1)△ABE ≌△DBC (2)△ABG ≌△DBF (3)△CFB ≌△EGB (4)△BFG 为等边三角形 (5)△AGB ∽△DGH (6)∠DHA =60°(7)H ,G ,F ,B 四点共圆 (8)BH 平分∠AHC …… 师:我们再来重点研究△ABE 与△DBC ,这两个全等的三角形除了对应边相等,对应角相等外,还有什么共同特征呢? 生:它们有同一个字母B ,即同一个顶点B . 师:我们也可以把△DBC 看作由△ABE 经过怎样的图形运动得到? 生:绕点B 逆时针旋转60°得到. 2.引入新课 师:其实我们可以给这两个全等的三角形赋予一个模型,叫“手拉手模型”,谁可以将这个模型的特征再做进一步的简化归纳呢? 生:对应边相等. 师:我们可以称之为“等线段”. 生:有同一个顶点. 师:我们可以称之为“共顶点”. 师:等线段,共顶点的两个全等三角形,我们一般可以考虑哪一种图形运动? 生:旋转. 师: “手拉手模型”可以归纳为:等线段,共顶点,一般用旋转. H G F E D C B A

3.小题热身 图1 图2 图3 1.如图1,△BAD中,∠BAD=45°,AB=AD,AE⊥BD于E,BC⊥AD于C,则AF=____BE.2.如图2,△ABC和△BED均为等边三角形,ADE三点共线,若BE=2,CE=4,则AE=______.3.如图3,正方形ABCD中,∠EAF=45°,BE=3,DF=5,则EF=_______. 师:我们来看第1,第2题,这里面有“手拉手模型”吗?请你找出其中的“等线段,共顶点”.生:题1中,等线段是AC,BC,共顶点是C,△ACF绕点C逆时针旋转90°得△BCD.题2中,等线段是AB,BC,共顶点是B,△ABD绕点D顺时针旋转60°得△CBE. 师:我们再来看第3题,这里有“手拉手模型”吗? 生:没有. 师:那其中有没有“等线段,共顶点”呢? 生:等线段是AD,AB,共顶点是A. 师:我们可否利用旋转来构造“手拉手模型”呢? 生:将AE旋转,绕点A逆时针旋转90°. 师:为什么是逆时针旋转90°,你是如何思考的? 生:我准备构造一个和△ABE全等的三角形,AB绕点A逆时针旋转90°即为AD,那么将AE逆时针旋转90°可得AG,连接GD,证明全等. 师:说的不错,谁能再来归纳一下,借助“手拉手模型”,用旋转构造全等的方法吗? 生:先找有没有“等线段,共顶点”,再找其中一条“共顶点”的线段,将其旋转. 师:旋转角度如何确定,方向怎么选择? 生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致. 师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型”的一些条件,剩余的需要我们自己去构造,可以如何构造呢? 步骤1:先找有没有“等线段,共顶点”. 步骤2:选择其中一个三角形,将其中经过“共顶点”的线段旋转.

中考数学几何专题——手拉手模型一

手拉手模型 一、手拉手模型 1.手的判别:人站在等腰三角形顶角的位置,张开双臂,左手边的腰为左手,右手边的腰为右手。 2.手拉手模型的定义: 两个等顶角的等腰三角形组成的图形,且顶角的顶点为公共顶点。(顶角相等、等腰三角形、共顶点) 条件模型结论特殊结论 △ABC与△CDE是等腰三角形,且 ∠ACB=∠DCE (1) D ACD@D BC E (SSS) (2)AD=BE (左手拉左手,右手拉右手) (3)DBHA=DBCA (4)HC平分DAHE △ABC与△CDE是等腰直角三角形,且∠ACB=∠DCE=90°(5)S D BCD=S D ACE (6) BD2+AE2=AB2+DE2 正方形ACBP与正方形CEQD是正方形

△ABC 与△CDE是等 边三角形(5)D ACM@D BCN D DCM@D ECN (6) CM=CN (7)D CMN是等边三角形 (8)MN∥AE,CD∥AB, CB∥DE (9) BH+CH=AH DH+CH=EH 二、手拉手模型的变形:(两三角形相似,且对应角共顶点) 条件模型结论 D BAC∽D DAE,且DDAE=DBAC (1)D BAD∽D CAE(两边对应成比例且夹角相等) (2) BD CE = BA CA (3) DBHC=DBAC 【巩固练习】 1、如图所示,若△ABC、△ADE都是正三角形,试比较线段BD与线段CE的大小.

2、如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是() 3、如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题: (1)说明四边形ADEF是什么四边形? (2)当△ABC满足什么条件时,四边形ADEF是矩形? (3)当△ABC满足什么条件时,四边形ADEF是菱形? (4)当△ABC满足什么条件时,四边形ADEF是正方形? (5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在? 4、问题情境: 如图1,已知△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC=2,CD=CE=1,点D在

用旋转法--作辅助线证明平面几何题《总结》

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等 邻边的公共端点,旋转另一位置的引辅助线的方法。 1、 旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、 旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、 旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 已知,在Rt ABC 中;∠BAC=90?; D 为BC 边上任意一点,求证:2AD 2=BD 2+CD 2.证明:把 ABD 绕点A 逆时钍方向旋转90 ?,得?ACE ,则 ABD ??ACE ,∴BD=CE , ∠B=∠ACE ; ∠BAD=∠CAE , AD=AE 。又 ∠BAC=90?;∴∠DAE=90?所以: D E 2=AD 2+AE 2=2AD 2。因为: ∠B+∠ACB=90?所以: ∠DCE=90? CD 2+CE 2=DE 2=2AD 2即: 2AD 2=BD 2+CD 2。注:也可以把ADC 顺时针方向旋转90?来证明。注 E C D

例2

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60 ?所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

八年级假期复习几何基本模型之-手拉手模型

几何基本模型之手拉手模型 1.如图,△ ADC与△ GDB都为等腰直角三角形, 连接相等?(2)AG与CB之间的夹角为多少 度? AG CB相交于点H,问:(1)AG与CB是否 2.如图,直线AB的同一侧作△ ABD^R^ BCE都为等边三角形,连接AE CD二者交点为H。求证: (1)△ABE^A DBC ( 2) AE=DC (3)Z DHA=60 ; ( 4)A AGB^A DFB ( 5)A EGB^A CFB (6)连接GF, GF// AC ( 7)连接HB HB平分Z AHC 3?如图,△ ABD与△ BCE都为等边三角形,连接AE与CD延长AE交CD于点 H .证明:(1)AE=DC(2)Z AHD=60 ; (3)连接HB HB平分Z AHC 模型手拉手 E D ADE是等腰三角 形, 例题:如图,△ ABC是等腰三角形、△AB=AC AD=AE Z BAC2 DAE求证:△BAD^A CAE 模型练习 n D C B

4 . 在线段AE 同侧作等边△ CDE (/ACEV120 ),点P 与点M 分别是线段BE 和AD 的中点。 求证:△ CPM 是等边三角形。 5 .如图:BE 丄AC , CF 丄 AB , BM=AC , CN=AB 。求证:(1) AM=AN ; ( 2) AM 丄AN 。 6.如图, 已知等边三角形 ABC 中,点D, E , F 分别为边AB AC BC 的中点,M 为直线BC 上一动 点,△ DMF 为等边三角形(点M 的位置改变时,△ DMr 也随之整体移动). (1) 如图①,当点 M 在点B 左侧时,请你判断 EN 与 MF 有怎样的数量关系?点 F 是否在直线NE 上?都请直接 写出结论,不必证明或说明由; (2) 如图②,当点 M 在 BC 上时,其它条件不变,(1)的结论中EN 与 MF 的数量关系是否仍然 成 立?若成立,请利用图②证明;若不成立,请说明理由; (3) 若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断( 1)的结论中EN 与 MF 的数 量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由. A D

全等三角形之手拉手模型专题

全等三角形之手拉手模型专题 基本图形1、图(1)中,C点为线段AB上一点,△ ACM △ CBN是等边三角形,AN 与BM相等吗说明理由; 如图(2)C点为线段AB上一点,等边三角形ACM和等边三角形CBN在 AB的异侧,此时AN与BM相等吗说明理由; 如图(3)C点为线段AB外一点,△ ACM △ CBN是等边三角形,AN与BM 相等吗 说明理由. 分析:题中三问均是对等边三角形性质的考查以及全等三角形的证明,由已知条件,利用等边三角形的性质可找出对应边及夹角相等,证明全等,即可得到线段相等. 解:(1)相等. 证明如下:???△ ACM △ CBN是等边三角形, ??? AC=CM CN=BC 又/ ACN=/ MCN+60 / MCB M MCN+60 , ???/ ACN=/ MCB ?△ ACNm MCB ?- AN=BM (2)相等. 证明如下:???△ ACM △ CBN是等边三角形, ?AC=CM CN=BC 又/ ACN=/ MCB ?△ ACNm MCB ?AN=BM (3)相等. 证明如下:???△ ACM △ CBN是等边三角形, ?AC=CM CN=BC 又/ ACN=/ MCN+60 / MCB M MCN+60 , ?/ ACN=/ MCB ?△ ACNm MCB ?AN=BM 点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键. 图(1) 图(3)

变形 2、( 1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边△ ACM 和厶CBN连接AN, BM分别取BM AN的中点E,F,连接CE CF,EF.观察并猜想△ CEF的形状,并说明理由. (2)若将(1 )中的“以AC, AC BC为 腰在AB的同侧作等腰△ 那么(1)中的 结论还成立吗若成立,由. 得出AN=BM, / ANC=Z MBA ,再证 △ NFC^^ BEC得出CE=CF / BCE=/ NCF利用等边三 角形的角度60 , 得出/ ECF=60 ,证得结论成立; (2)证明过程如上(1)中的结论只有CE=CF而/ ECF只等于等腰三角形的顶角工60°,得出结论不成立. 解:(1)如图1 , △ CEF是等边三角形, 理由:???等边△人。皿和厶CBN ??? AC=MC BC=NC / ACN=/ MCB 在厶ACN和厶MCB中 NC= BC / ACN=Z MCB AC= MC ?△ ACNm MCB( SAS , ?AN=MB / ANC=/ MBA 在厶NFC和厶BEC中, NC= BC / FNC=Z EBC NF= BE ?△ NFC^A BEC( SAS , ?EC=CF ???/ BCE+Z ECN=60 , / BCE2 NCF, ?/ ECF=60 , ?△ CEF是等边三角形; (2)如图2,不成立,首先/ ACN^Z MCB ?△ ACN与厶MCB不全等. 如果有两个等腰三角形的顶角相等,那么结论也不成立, 证明方法与上面类似,只能得到CE=CF而Z ECF只等于等腰三角形的顶角工60° 点评:此题综合考查等边三角形的性质与判定,三角形全等的判定与性 质,等腰三角形的性质等知识点. BC为边作等边△ ACM和厶CBN改为“以 ACM和厶CBN”如图2,其他条件不变,加以证 明;若不成立,请说明理

相关文档
最新文档