(仅供参考)自动控制原理第七章习题答案

合集下载

自动控制原理 课后习题答案(2020年7月整理).pdf

自动控制原理 课后习题答案(2020年7月整理).pdf

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理胡寿松主编课后习题答案详解

自动控制原理胡寿松主编课后习题答案详解

运动模态 e−t / 2 sin
3 2
t
所以: x(t) =
2 3
e
−t
/
2
sin
3 2
t
(3) &x&(t) + 2x&(t) + x(t) = 1(t)。
解:对上式两边去拉氏变换得:
(s 2
+ 2s + 1) X (s) = 1 → X (s) = s
s(s 2
1 + 2s + 1)
=
1 s(s + 1)2
(2)
iC 2
ห้องสมุดไป่ตู้
=
uC1
+ iC1R R
+
iC1
= uC1 R
+ 2iC1
= C2
duC 2 dt
= C2
d (u0 − iC1R) dt
(3)
4
胡寿松自动控制原理习题解答第二章
即:
uC1 R
+
2iC1
=
C2
d (u0
− iC1R) dt
(4)
将(1)(2)代入(4)得:
ui
− u0 R
+ 2C1
d (ui − u0 ) dt
y0
=
12.65
×
1.1y
0.1 0
= 13.915 ×1.1y00.1
2-8 设晶闸管三相桥式全控整流电路的输入量为控制角,输出量为空载整流电压,它们之间的关系为:
ed = Ed0 cosα
式中是整流电压的理想空载值,试推导其线性化方程式。 解:
设正常工作点为 A,这时 Ed = Ed 0 cosα 0

自动控制原理简明教程第二版课后答案第七章习题答案

自动控制原理简明教程第二版课后答案第七章习题答案

s2(0.K2s +1)
= (1− z−1)Z
s2(5sK+ 5)
1
− (1 z
− 1
)
(z5−Tz1)2
= − 5(z5−(11−)(ez−−2Te)−z3T ) (z5−T1) = ((1z−−ee−−55TT )) z(4(+z −e−15)(T )z+−1e−−56T e) −5T

4.0067z + 0.96 = z2 − 1.0067z + 0.0067
7
胡寿松自动控制原理习题解答第七章 电三刘晓峰制作
G2(s) R(s) G1(s) - T Gh(s) G3(s) G4(s)
(b) D2(z) D1(z) T (c) 图 7-56 闭环离散系统 N(s) T Gh(s) G1(s) G2(s)
R(s) -
T T
G1(z)
解: (a)G12(z) =
2 2 z −5.0335z+ 3 2 z +
0.0035+ 3.0067Kz+ 0.9598K = 0
(3.0067K − 5.0335)z+ 0.0035 + 0.9598K = 0
10
胡寿松自动控制原理习题解答第七章 电三刘晓峰制作
(2)G(z) = (1− z−1)Z
z−1)Z
K s2(0. 2s +1) 5K s2( s + 5)
7-3 试用部分分式法、幂级数法和反演积分法,求下列函数的 z 反变换:
10z
(1)E(z) =
(z −1)(z − 2) − 3+ z−1
(2)E(z) = 1− 2z−1 + z−2

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

自动控制原理(孟华)第7章习题解答(含过程)

自动控制原理(孟华)第7章习题解答(含过程)

习 题7-1 根据定义*()e()enTsn E s nT ∞-==∑试求下列函数的E *(s )和闭合形式的E (z )。

(1) e (t ) = t ; (2) 2)(1)(a s s E +=解 (1) e (t ) = t 求解过程可分为以下三个步骤进行:① 求()e t 的采样函数*()e t :由()()|,0,1,2,t nT e nT e t nT n ==== ,得斜坡函数()e t 在各采样时刻的值()e nT 。

故采样函数为*00()(0)()()()()()()()()n n e t e t e T t T e nT t nT e nT t nT nT t nT δδδδδ∞=∞==+-++-+=-=-∑∑② 求*()e t 的拉氏变换式*()E s :*()e t 的拉氏变换式为*()E s*0223'2'''2()()02[][(1)]1111(1)nTsnTsn n Ts TsnTsTs TsTsnTsTsTsTsnTs TsTs Ts Ts Ts E s e nT enTeTe TenTe e e eeeeeeTe e e e e ∞∞--==-------------===+++++=-+++++=-+++++⎡⎤⎡⎤=-=-=⎢⎥⎢⎥---⎣⎦⎣⎦∑∑③ 求()E z :由*1ln ()()|s znE z E s ==,得2()(1)Tz E z z =-(2) 2)(1)(a s s E +=① 求()e t :()ate t te -=② 求*()e t*0()()(),()()|anTt nTn e t e nT t nT e nT e t nTeδ∞-===-==∑所以 *0()()anTn e t nTet nT δ∞-==-∑③ 求*()E s*()()nTsanTnTsn n E s e nT enTee∞∞---====∑∑④ 求()E s*1ln 012()()|[()2()()]anTns zn Tat atatnE s E s nTeze z e z n e z T∞--==---===++++∑令1()at e z y -=,则2123''2()(123)()1(1)n nE y y y nyyT y y y y yTy Ty yT y y -=+++++=+++++⎛⎫== ⎪--⎝⎭将1()at y e z -=代入上式,可得()E z 为 1122()()[1()]()ataT at aTT e z Tze E z e z z e----==--7-2 求下列函数的Z 变换X (z )。

自动控制原理_清华大学出版社课后习题答案

自动控制原理_清华大学出版社课后习题答案

第一章习题答案1.自动控制:就是在人不直接参与的情况下,依靠外加装置或设备(称为控制装置或控制器),使机械、设备或生产过程(称为被控对象)的某个工作状态或参数(称为被控量)自动地按照预定的规律运行,或使某个被控制的参数按预定要求变化。

给定量:它是人们期望系统输出按照这种输入的要求而变化的控制量。

故一般又称给定输入或简称输入。

上例中的调节器的给定值u g 即是给定输入。

扰动量:它是一种人们所不希望的﹑影响系统输出使之偏离了给定作用的控制量。

上例中给水压力变化或蒸汽负荷变化都属于扰动。

开环控制:指控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统,其特点是系统的输出量不会对系统的输入量产生影响。

闭环控制:按照偏差进行控制的,其特点是不论什么原因使被控量偏离期望而出现偏差时,必定会产生一个相应的控制作用去减小或消除这个偏差,使被控量与期望值趋于一致。

复合控制:将闭环控制系统和开环控制系统结合在一起构成的开环-闭环相结合的控制系统,称为复合控制恒值控制:给定量是一定的,控制任务是保持被控量为一不变常数,在发生扰动时尽快地使被控量恢复为给定值。

随动控制:给定量是按照事先不知道的时间函数变化的,要求输出跟随给定量变化。

2.7. 自动控制系统的性能的要求:稳定性、快速性、准确性。

自动控制系统的性能的最基本要求:稳定性第二章习题答案1. (a) 22()()1()()d y t f dy t k y t t dt m dt m m++=F (b )1211212()()()()k k k dy t y t t dt f k k k k +=++F (c )42422()2()()dy t k dy t kt dt m dt m+=F2. (a) 22211221122122112()d u du dvR C R C R C R C R C u R C vdt dt dt ++++=+(b )233112211221232()d u duR C R C R C R C R C u dt dt++++2112211222()d v dvR C R C R C R C vdt dt=+++(c )222220.25 1.5d u du dv u v dt dt dt++=+3. (a)2111212()(1)()c r U s R R C s U s R R CR R s+=++(b )222222()21()31c r U s C R s RCs U s C R s RCs ++=++(c )2211212()()()c r U s R U s R LCs L R R C s R R =++++4. (a)21212121221212212121()1()()()1f f f fs s k k k k Y s f f f f f X s s s k k k k k +++=++++(b )21212112221212112212()()1()()1c r U s R R C C s R C R C s U s R R C C s R C R C R C s +++=++++5. 0.085d d i u ∆=6. r d h Sh Q dt ∆+=∆7.2232(),()432t ts G s g t e e s s --+==-++8. 2()142tty t ee e--=-+9.(a )21()()c r U s RU s R =-(b )112212()(1)(1)()c r U s R C s R C s U s R C s ++=-(c )212()()(1)c r U s R U s R R Cs =-+10.(1) ;012180,3,211k k k π︒==-=-(2) 略;(3)系统的闭环传递函数22301230123()11()1c M t Mr M MQ s k k k k T Q s s s k k k k k k k k k k =+++11.闭环传递函数32()0.7(6)()(0.90.7)(1.180.42)0.68c r Q s s Q s s K s K s +=+++++12.闭环传递函数12342363451234712348()()1G G G G C s R s G G G G G G G G G G G G G G G G =+++-13.传递函数,21221)()(T s T s s K K s R s C +++=2121)1()()(T s T s T s s s N s C ++-+=14.传递函数。

自动控制原理考试试题第七章习题与答案

自动控制原理考试试题第七章习题与答案

第七章非线性控制系统分析练习题及答案7-1设一阶非线性系统的微分方程为xx3 x试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。

解令x0得3(21)(1)(1)0xxxxxxx系统平衡状态x e0,1,1其中:x0:稳定的平衡状态;ex1,1:不稳定平衡状态。

e计算列表,画出相轨迹如图解7-1所示。

x-2-11301312x-600.3850-0.38506x112010211图解7-1系统相轨迹可见:当x(0)1时,系统最终收敛到稳定的平衡状态;当x(0)1时,系统发散;x(0)1 时,x(t);x(0)1时,x(t)。

注:系统为一阶,故其相轨迹只有一条,不可能在整个x~x平面上任意分布。

7-2试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。

(1)xxx0(2) x1x2xx122xx12解(1)系统方程为1:xxx0(x0):xxx0(x0)令xx0,得平衡点:x e0。

系统特征方程及特征根:132:ss10,sj(稳定的焦点)1,2222:ss10,s1.618,0.618(鞍点)1,2xf(x,x)xx, d xdxxxxdx dx 1xx,1xxx11I:1(x0)1II:1(x0)计算列表-∞-3-1-1/301/313∞x0:11-1-2/302-∞-4-2-4/3-1x0:11-1-4/3-2-4∞20-2/3-1用等倾斜线法绘制系统相平面图如图解7-2(a)所示。

2图解7-2(a)系统相平面图(2)xxx112①x22xx②12由式①:x2x1x1③式③代入②:(x1x1)2x1(x1x1)即x12x1x10④令x1x10得平衡点:x e0由式④得特征方程及特征根为2.4142ss2101,2(鞍点)0.414画相轨迹,由④式xx 11 d x1dxx12x1x1x 1 x1 2计算列表322.53∞11.52=1/(-2)∞210-1-2∞用等倾斜线法绘制系统相平面图如图解7-2(b)所示。

自控原理习题答案(全)

自控原理习题答案(全)

普通高等教育“十一五”国家级规划教材全国高等专科教育自动化类专业规划教材《自动控制原理》习题答案主编:陈铁牛机械工业出版社1-11-21-3闭环控制系统主要由被控对象,给定装置,比较、放大装置,执行装置,测量和变送装置,校正装置等组成。

被控对象:指要进行控制的设备和过程。

给定装置:设定与被控量相对应给定量的装置。

比较、放大装置:对给定量与测量值进行运算,并将偏差量进行放大的装置。

执行装置:直接作用于控制对象的传动装置和调节机构。

测量和变送装置:检测被控量并进行转换用以和给定量比较的装置。

校正装置:用以改善原系统控制性能的装置。

题1-4答:(图略)题1-5答:该系统是随动系统。

(图略)题1-6答:(图略)题2-1 解:(1)F(s)=12s 1+-Ts T(2)F(s)=0.5)421(2+-s s(3)F(s)=428+⋅s es sπ(4)F(s)=25)1(12+++s s(5)F(s)=32412ss s ++ 题2-2 解:(1) f(t)=1+cost+5sint (2) f(t)=e -4t(cost-4sint)(3) f(t)=t t t te e e 101091811811----- (4) f(t)= -tt t te e e ----+-3118195214(5) f(t)= -tt e e t 4181312123--+++题2-3 解:a)dtdu u C R dt du R R c c r 22111=++)( b)r c c u CR dt du R R u C R dt du R R 1r 12112111+=++)( c) r r r c c c u dtdu C R C R dtu d C C R R u dtdu C R C R C R dtu d C C R R +++=++++)()(1211222121122111222121 题2-4 解:a) G(s)=1)(212++s T T sT (T 1=R 1C, T 2=R 2C )b) G(s)=1)(1212+++s T T s T (T 1=R 1C, T 2=R 2C )c) G(s)= 1)(1)(32122131221+++++++s T T T s T T s T T s T T (T 1=R 1C 1, T 2=R 1C 2, T 3=R 2C 1, T 4=R 2C 2 )题2-5 解:(图略)题2-6 解:33)(+=Φs s 题2-7 解:a) ksf ms s +-=Φ21)(b) )()()(1))(1)(()(21221s G s G s G s G s G s +++=Φc) )()(1)())()(()(31321s G s G s G s G s G s ++=Φd) )()()()(1))()()(323121s G s G s G s G s G s G s -+-=Φe) G(s)=[G 1(s)- G 2(s)]G 3(s)f) )()()()()()()()()()(1)()()()()(43213243214321s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +-++=Φg) )()()()()()()()(1)()()()(43213212321s G s G s G s G s G s G s G s G s G s G s G s -+-=Φ题2-8 解:102310)1()()(k k s s T Ts k k s R s C ⋅++++⋅=1023101)1()()(k k s s T Ts k k s N s C ⋅++++⋅=1023102)1()()(k k s s T Ts s T k k s N s C ⋅++++⋅⋅⋅= 题2-9 解:)()()()(1)()()(4321111s G s G s G s G s G s R s C +=)()()()(1)()()(4321222s G s G s G s G s G s R s C +=)()()()(1)()()()()(432142121s G s G s G s G s G s G s G s R s C +=)()()()(1)()()(4321412s G s G s G s G s G s R s C += 题2-10 解:(1)3212321)()(k k k s k k k s R s C +=3212032143)()()(k k k s s G k k k s k k s N s C +⋅+= (2) 2140)(k k sk s G ⋅-= 题2-11 解:122212211111)()1()()(z z s T s T T C s T T s T k k s s m m d e L ⋅++⋅+++⋅=ΘΘ (T 1=R 1C, T 2=R 2C, T d =L a /R a , T m =GD 2R a /375C e C m )第三章 习题答案3-1. s T 15=(取5%误差带) 3-2. 1.0=H K K=2 3-3.当系统参数为:2.0=ξ,15-=s n ω时,指标计算为:%7.52%222.0114.32.01===-⨯---e eξξπσs t ns 352.033=⨯==ξωs t n p 641.02.01514.3122=-⨯=-=ξωπ当系统参数为:0.1=ξ,15-=s n ω时,系统为临界阻尼状态,系统无超调,此时有:st ns 95.057.10.145.67.145.6=-⨯=-=ωξ3-4.当110-=s K 时,代入上式得:110-=s n ω,5.0=ξ,此时的性能指标为:%3.16%225.0114.35.01===-⨯---e eξξπσs t ns 6.0105.033=⨯==ξωs t n p 36.05.011014.3122=-⨯=-=ξωπ当120-=s K 时,代入上式得:11.14-=s n ω,35.0=ξ,此时的性能指标为:%5.30%2235.0114.335.01===-⨯---e eξξπσs t ns 6.01.1435.033=⨯==ξω由本题计算的结果可知:当系统的开环放大倍数增大时,其阻尼比减小,系统相对稳定性变差,系统峰值时间变短,超调量增大,响应变快,但由于振荡加剧,调节时间不一定短,本题中的调节时间一样大。

自动控制原理第7章习题解——邵世凡

自动控制原理第7章习题解——邵世凡

自动控制原理第7章习题解7-1 求下列采样的离散信号x *(t )及离散拉斯变换X *(s ) ① ()t te t x α-=; ② ()t e t x t ωαsin -=; ③()t t t x ωcos 2=; ④ ()t te t x 4-=; 解:① ()t te t x α-=()()[][]()211111011111--------+∞=----+∞=---=⎥⎦⎤⎢⎣⎡-====∑∑z e z Te z e dz d Tz z e dz d Tz ztekT x Z z X T T T k k kT k kkTααααα ② ()t e t x t ωαsin -=()()[][][]()()()()211cos 1sin sin sin ---∞+=-∞+=--+-====∑∑z e zekT z e kT zekT zkT ekT x Z z X kTkTkT k kkTk kkTαααααωωωω③()t t t x ωcos 2=()()[]()[]()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+--=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡====-------∞+=-----+∞=---+∞=-∑∑∑211111101111112cos 21cos 1cos cos cos z z kT z kT dz d Tz dz d Tz z kT dz d Tz dz d TzzkT kT dz dTzzkT kT kT x Z z X k k k kk kωωωωω ④ ()ttet x 4-=()()[][][]()21414141104114111-----+∞=----+∞=---=⎪⎭⎫ ⎝⎛-====∑∑z e z Te z e dz d Tz z e dz d Tz zkTekT x Z z X T T T k k kT k kkT7-2求下列函数的Z 变换。

①()kTe kT x α--=1; ②()kT ekT x kTωαcos -=;③()tet t x 52--=; ④()t t t x ωsin =;⑤()()a s s k s G +=; ⑥()()()211++=s s s s G⑦()211s s s e s G Ts +-=-;⑧()()15+=-s s e s G Ts解:① ()kTe kT x α--=1根据z 变换定义有:()()[][]11011111---+∞=--+∞=-+∞=-----=-=-==∑∑∑ze z z e zzekT x Z z X T k k kT k kk kkTααα ② ()kT e kT x kT ωαcos -= 根据欧拉公式有:()()kT j kT kTj kT kTj kT j kTkTe e e e ekT ekT x ωαωαωωααω--+----+=⎪⎪⎭⎫ ⎝⎛+==212cos 然后,再根据z 变换定义得:()()[]()()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+==∑∑∑+∞=---+∞=-+-+∞=---+-0002121k k kT j kT k k kT j kT k k kTj kT kT j kT z e z e z e e kT x Z z X ωαωαωαωα()()()21111cos 1cos 1111121-------+-+--=⎥⎦⎤⎢⎣⎡---=ze z e kT z e kT z e z e kT kT kT T j T T j T αααωαωαωω或者()()[][][]()()[]()()()2111cos 1cos 1cos cos ----∞+=-∞+=--+--====∑∑z e z e kT z e ze kT zekT zkT ekT x Z z X kTkTkTkTk kkTk kkTααααααωωωω③ ()t e t t x 52--= 根据z 变换定义有:()()[]()[]()()()15311220502521111-----∞+=--∞+=-∞+=-----+=-=-==∑∑∑z e z z z T z ezkT zekT kT x Z z X T k kkT k kk kkT其中,根据z 变换的性质有()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡==∑∑∑+∞=-----+∞=---+∞=-011110112k k k k k kz kT u dz d Tz dz d Tz z kT dz d Tz zkT ()()()()411121121111111111121111---------------⋅-+-=⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=z Tz z z T Tz z Tz dz d Tz z dz d Tz dzdTz ()()()()()()()()()311124111141214121211111111112221-----------------+=--+=--=--++-=z z z T z z z T Tz z z T Tzz z z z z T Tz④ ()t t t x ωsin = 根据z 变换的性质有()()[][][]⎥⎦⎤⎢⎣⎡-====∑∑∑+∞=----+∞=---+∞=-0110112sin sin k k kT j kT j k k k kz j e e dz d Tz z kT dz d Tz zkT kT kT x Z z X ωωωω()()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=-------------1111111111111121111121z e z e z e z e j dz d Tz z e ze j dz d TzT j T j T j T j T j T j ωωωωωω()()⎪⎪⎭⎫ ⎝⎛+⋅-⋅=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++--=------------1cos 2sin 1211211112111z T z z T dz d Tz z e e z z e e j dz d TzT j T j T j T j ωωωωωω ()()[]()21211121121111cos 2cos 221cos 2sin 1cos 2sin +⋅---+⋅-⋅=⎪⎪⎭⎫ ⎝⎛+⋅-⋅=------------z T z T z z z T z T Tz z T z z T dz d Tzωωωωωω()()212111cos 21sin +⋅-⋅-⋅=----z T z z z T T ωω ⑤()()a s s ks G +=;方法是,首先将分式分解为部分分式,然后再利用留数方法确定其待定系数,最后通过查表可得Z 变换式。

自动控制原理考试题第七章习题与答案

自动控制原理考试题第七章习题与答案

第七章 非线性控制系统分析练习题及答案7-1 设一阶非线性系统的微分方程为3x x x+-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。

解 令 x=0 得 -+=-=-+=x x x x x x x 321110()()()系统平衡状态x e =-+011,,其中:0=e x :稳定的平衡状态;1,1+-=e x :不稳定平衡状态。

计算列表,画出相轨迹如图解7-1所示。

可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-<x 时,x t ()→-∞; 1)0(>x 时,x t ()→∞。

注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~xx 平面上任意分布。

7-2 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。

(1)x x x ++=0 (2) ⎩⎨⎧+=+=2122112x x xx x x解 (1) 系统方程为x -2 -1 -13 0 13 1 2x-6 0 0.385 0 -0.385 0 6x 11 2 0 1 02 11图解7-1 系统相轨迹⎩⎨⎧<=-+I I >=++I )0(0:)0(0:x x x x x x x x令0x x ==,得平衡点:0e x =。

系统特征方程及特征根:21,221,21:10,()2:10, 1.618,0.618()s s s s s s I II ⎧++==-±⎪⎨⎪+-==-+⎩稳定的焦点鞍点(, ) , , x f x x x x dxdxxx x dx dx x x x x x==--=--==--=-+=ααβ111⎪⎪⎩⎪⎪⎨⎧<-=>--=)0(11:II )0(11:I x x βαβα计算列表用等倾斜线法绘制系统相平面图如图解7-2(a )所示。

图解7-2(a )系统相平面图(2) xx x 112=+ ① 2122x x x+= ② 由式①: x xx 211=- ③ 式③代入②: ( )( )x xx x x 111112-=+- 即 x x x 11120--= ④ 令 x x110== 得平衡点: x e =0 由式④得特征方程及特征根为 ⎩⎨⎧-==--414.0414.20122,12λs s (鞍点) 画相轨迹,由④式x xdxdx x x x 1111112===+α xx 112=-α 计算列表用等倾斜线法绘制系统相平面图如图解7-2(b )所示。

自动控制原理作业第七章参考答案【可编辑】

自动控制原理作业第七章参考答案【可编辑】

7.1 求下列矩阵的若尔当型及其变换矩阵(1)010001341⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦解:矩阵的特征值为:1230.78,0.11 1.95,0.11 1.95i i λλλ=-=-+=--,因此可化为对角线规范型:0.780.11 1.950.11 1.95ii -⎡⎤⎢⎥-+⎢⎥⎢⎥--⎣⎦变换矩阵为:1232221231111110.780.11 1.950.11 1.950.61-3.8 - 0.42i -3.8 + 0.42i P i i λλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥==--+--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(2)540430461⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦解:矩阵的特征值为:1231λλλ===,()2rank I A -=,表明1λ=的几何重数为3-()rank I A -=1,即该特征值对应一个若尔当块。

所以该矩阵的若尔当型为:11111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,变换矩阵0410404040P ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦(3)421043521⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦解:矩阵的特征值为:1232, 2.21, 6.79λλλ=-==,因此可化为对角线规范型:2 2.21 6.79-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,变换矩阵为00.40.610.410.370.780.810.350.46P ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦(4)010001340⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦解:矩阵的特征值为:1232.3,1, 1.3λλλ==-=-,因此可化为对角线规范型:2.31 1.3⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦,变换矩阵为30.1 2.130.25 2.7530.583.58P -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦7.2已知系统状态方程,求状态变换阵P ,使系统变为对角线型(假设系统的特征值为123,,λλλ)(1)012010001x x a a a ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦解:123222123111P λλλλλλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(2)123100100a x a x a -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦解:系统的特征方程为:32123det()00I A a a a λλλλ-=⇒+++= 设变换矩阵123[,,],i i i i P v v v v Av v λ==满足设123[,,]Ti i i i v v v v =,则有:11212132313(1)(2)(3)i i i i i i i i i i i a v v v a v v v a v v λλλ-+=⎧⎪-+=⎨⎪-=⎩ 由(1)得211()(4)i i i v a v λ=+由(2)(4)得23121()(5)i i i i v a a v λλ=++ 代入(3)得321123()0i v a a a λλλ+++=所以1i v 是任意常数,取为1,则21i i v a λ=+,2312i i i v a a λλ=++所以112131222111221223132111P a a a a a a a a a λλλλλλλλλ⎡⎤⎢⎥=+++⎢⎥⎢⎥++++++⎣⎦7.3证明:对于具有互相不同特征值12,,,n λλλ 的矩阵1211000010000010000n n a a A a a --⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥-⎣⎦能将其变换为对角矩阵形式的变换矩阵为:11122111212121211111111n n n n n n n n n n n a a P a a a a a a a a λλλλλλλλλλ------⎡⎤⎢⎥++⎢⎥⎢⎥=++++⎢⎥⎢⎥⎢⎥++++++⎣⎦证明:系统的特征方程为:111det()00nn n n I A a a a λλλλ---=⇒++++=设变换矩阵12[,,,],n i i i i P v v v v Av v λ== 满足设12[,,,]Ti i i in v v v v = ,则有:21111212213231211211111111()()()(1)0(2)i i i i i i i i i i i i i i i n n n i in i in ini i n i n i i in i in n i v a v a v v v a v v v v a a v a v v v v a a v a v v v a v λλλλλλλλλλ-----=+⎧-+=⎧⎪⎪-+==++⎪⎪⎪⎪⇒⎨⎨⎪⎪-+==+++⎪⎪-=⎪⎪+=⎩⎩将(1)代入(2)得11110n n i i n i n i a a a v λλλ--++++= 对比系统特征方程可知11i v =满足。

自动控制原理第二章到第七章课后习题答案

自动控制原理第二章到第七章课后习题答案

自动控制原理第二章到第七章课后习题答案第二章2-1试求下图所示电路的微分方程和传递函数。

解:(a )根据电路定律,列写出方程组:001Li R c L R C di L u u dtu R i i dt Ci i i ⋅+==⋅==+⎰消除中间变量可得微分方程:20002i d u du L L C u u dt R dt⋅⋅+⋅+=对上式两边取拉氏变换得:2000()()()()i LL C U s s U s s U s U s R⋅⋅⋅+⋅⋅+= 传递函数为022()1()()1i U s R G s L U s R Ls LCRs s LCs R ===++++ (b )根据电路定律,列写出方程组:12011()i i u i R R idt C u u i R =++-=⎰消除中间变量可得微分方程:121012i R R Ru u idt R R C+=-⎰ 对上式两边取拉氏变换得:2012()(1)()(1)i U s R Cs U s R Cs R Cs +=++传递函数为0212()1()()1i U s R CsG s U s R Cs R Cs+==++2-3求下图所示运算放大器构成的电路的传递函数。

解:(a )由图(a ),利用等效复数阻抗的方法得22111(s)1(s)()1o i R U R Cs Cs G U s R R Cs ++==-=-+(b )由图(b ),利用等效复数阻抗的方法得222121211221211111(s)()1(s)1()1o i R U C s R R C C s R C R C s G U s R C s R C s R C s++++==-=-+2-5试简化下图中各系统结构图,并求传递函数()()C s R s 。

2-6试求下图所示系统的传递函数11()()C s R s ,21()()C s R s ,12()()C s R s 及22()()C s R s 。

夏德钤《自动控制原理》(第4版)章节题库-第7章 非线性系统的分析【圣才出品】

夏德钤《自动控制原理》(第4版)章节题库-第7章 非线性系统的分析【圣才出品】

第7章 非线性系统的分析1.试计算并绘制下列各微分方程的相平面图。

解:(1)求得运用积分法解得相轨迹方程为其相轨迹如图7-1所示。

(2)求得运用积分法解得相轨迹方程为其相轨迹如图7-2所示。

图7-1 系统的相轨迹 图7-2 系统的相轨迹(3)求得令切线斜率,则可得等倾线方程为,即可见等倾线为一簇水平线。

①当α=0时,,则该等倾线亦为一条相轨迹,因相轨迹互不相交,故其他相轨迹均以此线为渐近线。

②当α→∞时,,表明相轨迹垂直穿过x轴。

③当α→-1/T时,,说明相平面上下无穷远处的相轨迹斜率为-1/T。

最后根据等倾线作图法可得其概略相轨迹如图7-3所示。

图7-3 系统的概略相轨迹(4)求得令切线斜率,则可得等倾线方程为,即可见等倾线为一簇水平线。

①当α=0时,x=M,则该等倾线亦为一条相轨迹,因相轨迹互不相交,故其他相轨迹均以此线为渐近线。

②当α→∞时,,表明相轨迹垂直穿过x轴。

③当α→-1/T时,,说明相平面上下无穷远处的相轨迹斜率为-1/T。

最后根据等倾线作图法可得其概略相轨迹,如图7-4所示。

图7-4 系统的概略相轨迹(5)求得运用积分法可解得相轨迹方程为为一抛物线,其概略相轨迹如图7-5所示。

图7-5 系统的概略相轨迹(6)运用积分法可解得相轨迹方程为其中c为一常数,其相轨迹如图7-6所示。

图7-6 系统的相轨迹2.非线性控制系统结构图如图7-7所示,M =1。

要使系统产生振幅A=4,频率ω=1的自振运动,试确定参数K ,τ的值。

图7-7 系统结构图解:画出和G (jω)曲线如图8.7所示,当K 改变时,只影响自振振幅A ,不改变自振频率ω;而当τ≠0时,会使自振频率降低,幅值增加。

因此可以调节K ,τ大小实现要求的自振运动。

由自振条件N (A )G (jω)=-1即将ω=1代入上式可解得K =9.93,τ=0.322图7-8 和G (jω)曲线3.设继电型控制系统结构如图7-9所示,输入r (t )=R·1(t ),c (0)=0。

广西大学自动控制原理习题答案(本科)第7章

广西大学自动控制原理习题答案(本科)第7章

习题参考答案7-1 求如下信号的频谱|()|F i ω。

(1)1)(=t f(2)t e t f -=)( (3)t t f cos )(= (4)t t f =)( (5)t te t f -=)((6)t t t f cos )(=解:控制系统中的信号都是指0<t 时0)(=t f 函数。

以下信号不考虑频谱中的奇异信号。

(1)|1||)(|ωω=i F(2)211|11||)(|ωωω+=+=i i F (3)|1||)(|2ωωω-=i F(4)21|)(|ωω=i F(5)2)1(1|)(|ωω+=i F(6)222)1(1|)(|ωωω-+=i F7-2 对题7-1的信号进行采样,采样频率为T =0.1秒, (1)求采样信号的频谱*|()|F i ω。

(2)求采样信号的z 变换。

解:(1)1)(=t f∑∞=-=0*)1.0()(n n t t f δωωωωωω1.0cos 2211.0sin 1.0cos 1111)(1.001.0*-=+-=-==-∞=-∑i e e i F i n n i111)(1-=-=-z zz z F(2)t e t f -=)(∑∞=--=01.0*)1.0()(n n n t e t f δωωωωωω1.0cos 2111.0sin 1.0cos 1111)(1.02.01.01.01.01.001.01.0*------∞=---+=+-=-==∑e e ieee e i F i n n i n1.011.011)(----=-=ez zz e z F (3)t t f cos )(=∑∑∞=-∞=-+=-=01.01.00*)1.0()(21)1.0()1.0(cos )(n n i n i n n t e e n t n t f δδ*0.1(1)0.1(1)0.1(1)0.1(1)0.1(1)0.1(1)0.1(1)0.1(1)0.20.10.10.21()21112111221122cos1(note :cos10.54)212cos110.54c i n i nn n i i i i i i i i i i F i ee e e e e e e e e e e ωωωωωωωωωωωωω∞∞-+--==-+---+---+------=+=+----=--+-==-+-=∑∑os0.10.54sin 0.11 1.08cos0.1cos0.2(1.08sin 0.1sin 0.2)i i ωωωωωω+-+++=108.154.008.1154.01)(22211+--=+--=---z z zz z z z z F (4)t t f =)(∑∞=-=0*)1.0(1.0)(n n t n t f δωωωωωωω1.0cos 202011.0sin 1.0cos 11.01|1.0|1.0)(221.01.001.0*-=+-=-==--∞=-∑i ee nei F i i n n i2211)1(1.0)1(1.0)(-=-=--z zz z z F (5)t te t f -=)(∑∞=--=01.0*)1.0(1.0)(n n n t ne t f δ,ωωωωωωω1.0cos 20101011.0sin 1.0cos 11.01|1.0|1.0)(1.02.021.01.021.01.01.01.001.01.0*--------∞=---+=+-=-==∑e e ie ee e nei F i i n n i n21.01.0211.011.0)(1.0)1(1.0)(-------=-=e z ze z e z e z F 7-3 已知连续信号的拉普拉斯变换如下,对信号进行频率为T =0.1秒采样后,求采样信号的z 变换。

自动控制原理第7章习题及答案

自动控制原理第7章习题及答案

习题7-1下面的微分方程代表了线性定常系统,请写出它们对应的状态空间表达(a ))(5)()(4)(22t r t c dtt dc dt t c d =++(b ))()()()(4)(5)(02233t r d c t c dtt dc dt t c d dt t c d t =++++⎰ττ (c )dtt dr t r t c dt t c d dt t c d )(4)()()(2)(2233+=++ 7-2 已知线性定常系统的状态方程为:Ax x =.,其中(1)⎥⎦⎤⎢⎣⎡-=2010A (2) ⎥⎦⎤⎢⎣⎡-=0110A (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010100010A 试求系统统的状态转移矩阵At e答案:(1)⎥⎦⎤⎢⎣⎡-=--tt Ate e e2205.05.01 (2)⎥⎦⎤⎢⎣⎡-=t t t t e Atcos sin sin cos (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-+-=------)(5.0)(5.00)(5.0)(5.001)(5.0)(5.01t t t t t t t t t t t t Ate e e e e e e e e e e e e 7-3 已知系统的状态方程为:u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=103210.,初始条件为⎥⎦⎤⎢⎣⎡=10)0(x ,试求单位阶跃收入时系统的时间响应x(t)答案:(1)求状态转移矩阵 先求出预解矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++-+++-+-+++-++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++++-+++++=⎥⎦⎤⎢⎣⎡+-=---)2(2)1(1)2(2)1(2)2(1)1(1)2(1)1(2)2)(1()2)(1(2)2)(1(1)2)(1()3(321)(11s s s s s s s s s s s s s s s s s s s s A sI对上式进行拉式反变换,即可定出:⎥⎦⎤⎢⎣⎡+-+---=--------t t t t t t t t At2222e 2e e 2e 2e e e e 2e(2)求系统的时间响应()0022()2()()2()22()2()()2()022()e e ()d 002e e e e 2e e e e d 112e 2e e 2e 2e 2e e 2e 0.50.5tAt A t t t t t t t t t t t t t t t t t t t tx t x Bu e e ττττττττττττ---------------------------=+⎡⎤⎡⎤----⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥-+-+-+-+⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤-=⎢⎥⎣⎦⎰⎰7-4 已知矩阵:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t t t t sin cos 0cos sin 0001)(ϕ (2)⎥⎦⎤⎢⎣⎡--+=-t t t t t t t e e e e e e e t 222222)(ϕ 试问:它们可能是某个系统的状态转移矩阵吗?为什么?答案:I =)0(ϕ时才是状态转移矩阵,所以上述两个矩阵均不是某个系统的状态转移矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 线性离散系统的分析与校正7-1 试根据定义∑∞=-*=0)()(n nTs e nT e s E确定下列函数的)(s E *和闭合形式的)(z E :⑴ t t e ωsin )(=;⑵ ))()((1)(c s b s a s s E +++=,b a ≠,c a ≠,c b ≠。

解:Ts e z =;⑴ )()sin()(0z E enT s E n nTs==∑∞=-*ω;1)cos(2)sin(21}{21)(20+-=⎥⎦⎤⎢⎣⎡---=-=-∞=--∑z T z z T e z z e z z j e e e j z E T j T j n nTsjwnT jwnT ωωωω。

⑵ ))()((1))()((1))()((1)(c s c b c a b s b c b a a s a c a b s E +--++--++--=; ∑∑∑∞=--∞=--∞=--*--+--+--=000))((1))((1))((1)(n nTs cnT n nTsbnT n nTs anT e e c b c a e e b c b a e e a c a b s E ; ))()(())()(())()(()(cTbT aT e z c b c a ze z b c b a z e z a c a b z z E ------+---+---=; 记))()((c b c a b a ---=∆,∆-=b a k 1,∆-=ca k 2,∆-=cb k 3;))()(()()()()(3)(2)(12321cTbT aT T c b T c a T b a aT bT cT e z e z e z ze k e k e k z e k e k e k z E ---+-+-+-------+-++-=。

7-2 采样周期为T ,试求下列函数的Z 变换:⑴ n a nT e =)(; ⑵ t e t t e 32)(-=;⑶ 3!31)(t t e =; ⑷ 21)(ss s E +=;⑸ )1(1)(2+-=-s s e s E sT 。

解:求解⑵和⑶小题可应用Z 变换的偏微分定理或乘以时间变量的函数的Z 变换:偏微分定理 已知函数),(a t f 的Z 变换为),(a z F ,a 是与t 及Z 无关的变量或常数,则:),()],([a z F aa t f a Z ∂∂=∂∂。

证明:由Z 变换的定义及等值变换进行证明得,),(),(),()],([00a z F a z a nT f a z a nT f aa t f a Z n n n n ∂∂=∂∂=∂∂=∂∂∑∑∞=-∞=-。

乘以时间变量的函数的Z 变换 已知函数)(t f 的Z 变换为)(z F ,则:)()]([z F zd dzT t f t Z -=⋅。

证明:由Z 变换的定义及等值变换进行证明得,)()()()()]([000z F z d d z T z nT f z d d z T z nT f z d d z T znT f nT t f t Z n nn n n n-=-=-==⋅∑∑∑∞=-∞=-∞=-。

⑴ az zz E -=)(; ⑵ 解1:因t a ta e a e t --∂∂=222及T te z z e Z 33][---=,得到 33332)()()(T TT e z e z z eT z E ----+=。

解2:333322333)()(])([][)(T TT T T T e z e z z e T e z z Te z d d z T e z z z d d z T z d d z T z E -------+=--=---=。

⑶ 解1:因t a e a t 333∂∂=,0=a ;即 42333)1()14(!3!31)(-++=-∂∂=z z z z T e z z a z E aT 。

解2:423)1()14(!3]}1[{!3)(-++=----=z z z z T z z z d d z T z d d z T z d d z T z E 。

⑷ 2022)1()1(]1[)(--+=-+∂∂==z T z z e z z s s s s z E s Ts ;或 22)1(1]1[]1[)(-+-=+=z z T z z sZ s Z z E 。

⑸ )1}())(1({)1]()1(1[)(1012--=---+-+∂∂=-+=z e z z e z s z s z s s Z z E Ts Ts ))(1()1(1)1(T T T e z z e T z e T -----+-+--=。

7-3 试用部分分式法、幂级数(长除)法和反演积分(留数计算)法,求下列函数的Z 反变换:⑴ )2)(1(10)(--=z z zz E ;⑵ 211213)(---+-+-=zz z z E 。

解:部分分式法⑴ }12{10)(---=z z z z z E ,)12(10)(-=n nT e ,0≥n ; ⑵ 1)1(2)(22----=z zz T z T z E ,32)(--=n nT e ,0≥n ; 幂级数(长除)法⑴ })12(830{103110)(321211+-+++++=+-=-------n n z z z z zz z z E , )12(10)(-=n nT e ,0≥n ;⑵ -+------=+-+-=-------nz n z z z zz z z E )32(9753213)(321211, 32)(--=n nT e ,0≥n ;反演积分(留数计算)法⑴ )12(10210110)(12-=-+-===n z nz n z z z z nT e ; ⑵ 32})1(3{)3()(11112--=++-=+-==-=-n z n z n z z z z d dnT e z n n z n 。

7-4 试求下列函数的脉冲序列)(t e *:⑴ )13)(1()(2++=z z zz E ;⑵ 2)5.0)(1()(+-=z z zz E 。

解:采用留数计算法,采样周期为T 。

⑴ jz nj z n z n j z z z j z z z z z t e =-=-=*+++-+++=3312)3)(1()3)(1(13)(;)]}33()33()1[(35.0)1{(25.0)(2/12/12/j j j nT e nn n n ++--⨯--=-;以下0≥k 为整数。

)931(25.0)4(k kT e -⨯-=;)193(25.0)4(-⨯=+-k T kT e ;)3/91(25.0)24(k T kT e -+=+;)3/91(25.0)34(k T kT e -+-=+; ⑵ 5.015.01225.2)1(25.211)5.0()(-=--==---=-++=z nn z n z n z z z n z z z d d z z nT e {}{}.0,)5.0)(13(194)5.0()5.0)(1(1941≥--+=----+=-n n n n n n n 7-5 试确定下列函数的终值:⑴ 211)1()(---=z z T z E ;⑵ )1.0)(8.0()(2--=z z z z E 。

解:⑴ nT nt e =)(,∞=∞→)(lim nT e n ;⑵ 0)1.0)(8.0()1(lim )(lim 211=---=-→∞→z z z z t e z t 。

7-6 采样周期为T ,已知)]([)(t e Z z E =,试证明下列关系成立:⑴ )()]([az E nT e a Z n=; ⑵ )()]([z E zd dTzt te Z -=。

证明:⑴ )()()()]([0azE a z nT e z nT e a nT e a Z n nn nn n =⎪⎭⎫⎝⎛==∑∑∞=-∞=-。

⑵ )]([)()()()(00t te Z z nT e nT z nT e z d d Tz z E z d d Tz n n n n==-=-∑∑∞=-∞=-。

7-7 已知差分方程为0)2()1(4)(=+++-k c k c k c ,初始条件:0)0(=c ,1)1(=c 。

试用迭代法求输出序列)(k c ,4,3,2,1,0=k 。

解:)2()1(4)(---=k c k c k c ,2≥k ;输出序列)(k c :{ 0,1,4,12,36 }。

7-8 试用Z 变换法求解下列差分方程:⑴ )()(8)(6)2(t r t c T t c T t c ****=++-+,)(1)(t t r =,)0(0)(≤=*t t c ;⑵ )()()(2)2(t r t c T t c T t c ****=++++,0)()0(==T c c ,),2,1,0()( ==n n nT r ; ⑶ 0)(6)1(11)2(6)3(=++++++k c k c k c k c ,1)1()0(==c c ,0)2(=c ;⑷ 2cos)(6)1(5)2(πk k c k c k c =++++,0)1()0(==c c 。

解:⑴ )()(8)1(6)2(k r k c k c k c =++-+,0)1()0(==c c ;)4(6)2(2)1(31)4)(2(1)(-+---=---=z zz z z z z z z z z C ; )4232(61)(n n nt c +⨯-=,0≥n 。

⑵ )()()1(2)2(k r k c k c k c =++++,0)1()0(==c c ;22)1()1(1)(-+=z zT z z C ;1212)1()1()(=-=++-=z n z n z z T z d d z z T z d d nT c ; 4])1(1)[1()(nn T nT c ---=;0)2(=kT c ,T k T kT c )1()2(-=+, ,2,1,0=k 。

⑶ )3(2527)1(211)3)(2)(1(177)(23+++-+=+++++=z zz z z z z z z z z z z C ; n n nT c 35.2275.5)(⨯+⨯-=。

⑷ 1)]2[cos(22+=z z kT T Z π,1)]2[sin(2+=z z kT T Z π; 11.011.033.024.01)3)(2(1)(22222+++++++-=+++=z zz z z z z z z z z z z C ; ]2sin 2[cos 1.024.033.0)(ππn n nT c n n ++⨯-⨯=; ,2,1,0=k 。

相关文档
最新文档