高中提前自主招生模拟卷

合集下载

高中自主招生语文模拟卷一(含答案)

高中自主招生语文模拟卷一(含答案)

高中自主招生语文模拟卷一一、基础知识(30分)(一)默写(10分,每空1分)1.大学之道,_____________________,在亲民,在止于至善。

(《大学》)2.高山仰止,_____________________。

(《诗经·小雅·车辖》)3._____________________,必先利其器。

(《论语·卫灵公》)4._____________________,幼吾幼以及人之幼。

(《孟子·梁惠王上》)5.周公吐哺,_____________________。

(曹操《短歌行》)6.年年岁岁花相似,_____________________。

(刘希夷《代悲白头吟》)7.若待上林花似锦,_____________________。

(杨巨源《城东早春》)8.花开堪折直须折,_____________________。

(杜秋娘《金缕衣》)9._____________________,门前流水尚能西。

(苏轼《浣溪沙》)10.寄意寒星荃不察,_____________________。

(鲁迅《自题小像》)(二)选择题(20分,每小题2分)1.下列不属于“五经”的是哪一部著作?()。

A.《礼记》B.《春秋》C.《左传》D.《周易》2.在农历干支纪年中,2017年属于什么年?()。

A.甲午B.乙未C.丙申D.丁酉3.在二十四节气中,属于春天的六个节气排序正确的一项是()。

A.惊蛰立春雨水谷雨春分清明B.立春雨水惊蛰春分清明谷雨C.立春谷雨惊蛰清明春分雨水D.惊蛰立春春分雨水清明谷雨4.苏轼《念奴娇·赤壁怀古》词中描绘的“羽扇纶巾”,所写的人物是()。

A.诸葛亮B.周瑜C.曹操D.孙权5.下边这首诗的排列顺序正确的是()。

①杨花漫漫搅天飞②杨柳青青著地垂③借问行人归不归④柳条折尽花飞尽A.②①④③B.④②①③C.④①②③D.①③④②6.清代张潮在《幽梦影》中说:“天下有一人知己,可以不恨。

高中自主招生模拟试题及答案

高中自主招生模拟试题及答案

高中自主招生模拟试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项不是中国四大名著之一?A.《红楼梦》B.《西游记》C.《水浒传》D.《聊斋志异》2. 根据题目所给的数学公式:\( y = 3x + 2 \),当 \( x = 1 \) 时,\( y \) 的值是多少?A. 3B. 4C. 5D. 63. 英语中,“break a leg”是什么意思?A. 摔断腿B. 祝好运C. 休息一下D. 折断腿4. 以下哪个化学元素的原子序数是8?A. 氢B. 氧C. 碳D. 氮5. 地球的自转周期是多少小时?A. 24B. 12C. 48D. 366. 以下哪个历史事件标志着中国封建社会的开始?A. 秦始皇统一六国B. 汉武帝开疆拓土C. 周武王灭商D. 黄帝战胜蚩尤7. 以下哪个不是中国的传统艺术形式?A. 京剧B. 书法C. 油画D. 国画8. 物理中,牛顿第二定律的表达式是什么?A. \( F = ma \)B. \( F = mv \)C. \( F = m \frac{v^2}{r} \)D. \( F = \frac{Gm_1m_2}{r^2} \)9. 以下哪个不是联合国安全理事会的常任理事国?A. 中国B. 法国C. 德国D. 俄罗斯10. 以下哪个是植物的光合作用?A. \( 6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2 \)B. \( 2H_2O + 2e^- \rightarrow H_2 + 2OH^- \)C. \( 2H_2 + O_2 \rightarrow 2H_2O \)D. \( C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \)二、填空题(每题2分,共20分)11. 我国古代著名的诗人杜甫被称为“______”,李白被称为“______”。

12. 圆的面积公式是 \( A = πr^2 \),其中 \( r \) 表示______。

高中自主招生模拟试题

高中自主招生模拟试题

高中自主招生模拟试题# 高中自主招生模拟试题随着教育改革的不断深入,越来越多的高中开始实施自主招生政策,为学生提供更多的选择机会和个性化的教育体验。

为了帮助学生更好地准备自主招生考试,以下是一套模拟试题,涵盖了语文、数学、英语等主要学科,供学生参考和练习。

语文部分一、阅读理解阅读以下文章,回答文后问题。

文章:《春》春,是大自然最神奇的画师。

它用温暖的阳光和轻柔的风,唤醒沉睡的大地。

万物复苏,生机勃勃。

柳树抽出了嫩绿的新芽,小草也从土里探出了头。

春日里,花儿竞相开放,红的、黄的、粉的,五彩斑斓,为大地披上了一层绚丽的外衣。

春天,是希望的季节,是播种的季节。

问题:1. 文章中描述了春天的哪些特点?2. 作者为什么说春天是“希望的季节”?二、文言文翻译请将以下文言文翻译成现代汉语。

文言文:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”数学部分一、选择题1. 若x^2 + 4x + 4 = 0,求x的值。

A) -4B) 0C) -2D) 22. 圆的面积公式是πr^2,若圆的半径为3,其面积是多少?A) 9πB) 18πC) 28πD) 36π二、解答题1. 已知函数f(x) = 2x^2 - 3x + 1,求f(x)的最小值。

英语部分一、完形填空阅读下面的短文,从每题所给的选项中,选择最佳答案填空。

In a small village, there lived a wise old man. He was known for his ability to solve any problem. One day, a young boy came to him with a puzzle. "Can you tell me," the boy asked, "what is the secret to happiness?"The old man thought for a moment and said, "Let me show you something." He took the boy to a garden and pointed to a flower. "This flower blooms every morning and withers every evening. It is the happiest flower in the garden because it knows the value of each moment."The boy was puzzled. "But how can a flower be happy?" he asked.The old man smiled and said, "Happiness is not something you find, it is something you create."二、阅读理解Read the following passage and answer the questions.Passage:The Internet has revolutionized the way we communicate, learn, and do business. It has made information more accessible and has connected people across the globe. However, with its benefits come challenges. Cybersecurity is a growing concernas more personal and sensitive data is stored online. Theneed for secure communication and data protection isparamount.Questions:1. What has the Internet made more accessible?2. What is a growing concern with the Internet's benefits?综合能力测试一、逻辑推理在一场数学竞赛中,有三名选手A、B、C,他们分别获得了不同的名次。

2024年重点中学自主招生模拟试卷(2)参考答案

2024年重点中学自主招生模拟试卷(2)参考答案

2024年重点中学自主招生模拟试卷(2)数学参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)(2024•宁海县校级自主招生)在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点P是△ABC所在平面内一点,则PA2+PB2+PC2取得最小值时,下列结论正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条内角平分线的交点C.点P是△ABC三条高的交点D.点P是△ABC三条中线的交点【分析】过P作PD⊥AC于D,过P作PE⊥AB于E,延长CP交AB于M,延长BP交AC于N,设AD=PE=x,AE=DP=y,则AP2+CP2+BP2=3(x﹣)2+3(y﹣2)2+,当x=,y=2时,AP2+CP2+BP2的值最小,此时AD=PE=,AE=PD=2,由=,得AM=3,M是AB的中点,同理可得AN=AC,N为AC中点,即P是△ABC三条中线的交点.【解答】解:过P作PD⊥AC于D,过P作PE⊥AB于E,延长CP交AB于M,延长BP交AC于N,如图:∵∠A=90°,PD⊥AC,PE⊥AB,∴四边形AEPD是矩形,设AD=PE=x,AE=DP=y,Rt△AEP中,AP2=x2+y2,Rt△CDP中,CP2=(8﹣x)2+y2,Rt△BEP中,BP2=x2+(6﹣y)2,∴AP2+CP2+BP2=x2+y2+(8﹣x)2+y2+x2+(6﹣y)2=3x2﹣16x+3y2﹣12y+100=3(x﹣)2+3(y﹣2)2+,∴x=,y=2时,AP2+CP2+BP2的值最小,此时AD=PE=,AE=PD=2,∵∠A=90°,PD⊥AC,∴PD∥AB,∴=,即=,∴AM=3,∴AM=AB,即M是AB的中点,同理可得AN=AC,N为AC中点,∴P是△ABC三条中线的交点,故选:D.2.(4分)(2024•达州)如图,△ABC是等腰直角三角形,∠ABC=90°,AB=4,点D,E 分别在AC,BC边上运动,连结AE,BD交于点F,且始终满足AD=CE,则下列结论:①=;②∠DFE=135°;③△ABF面积的最大值是4﹣4;④CF的最小值是2﹣2.其中正确的是()A.①③B.①②④C.②③④D.①②③④【分析】①先求出,,则,由此可证△CAE∽△ABD,然后根据相似三角形性质可对结论①进行判断确;②根据△CAE∽△ABD得∠CAE=∠ABD,再根据三角形外角性质得∠BFE=45°,由此可对结论②进行判断确;③以AB为斜边在△ABC外侧构造等腰Rt△OAB,作△OAB的外接圆⊙O,过点O作OK⊥AB于K,OK的延长线交⊙O于H,连接AH,BH,过点O作OM⊥CB交CB的延长线于M,连接OC交⊙O于P,证明点F在弧AB上运动,则当点F与点H重合时,△ABF的面积为最大,最大值为△ABH的面积,然后求出△ABH的面积即可对结论③进行判断确;④根据点F在弧AB上运动,得当点F与点P重合时,CF为最小,最小值为线段CP的长,然后求出线段CP的长即可对结论④进行判断确,综上所述即可得出答案.【解答】解:①∵△ABC是等腰直角三角形,∠ABC=90°,AB=4,∴∠BCA=∠BAC=45°,AB=BC=4,由勾股定理得:AC==,∴,∵AD=CE,∴,∴,又∵∠ECA=∠DAB=45°,∴△CAE∽△ABD,∴,故结论①正确;②∵△CAE∽△ABD,∴∠CAE=∠ABD,∴∠BFE=∠BAF+∠ABD=∠BAF+∠CAE=∠BAC=45°,∴∠DFE=180°﹣∠BFE=180°﹣45°=135°,故结论②正确;③以AB为斜边在△ABC外侧构造等腰Rt△OAB,作△OAB的外接圆⊙O,过点O作OK ⊥AB于K,OK的延长线交⊙O于H,连接AH,BH,过点O作OM⊥CB交CB的延长线于M,连接OC交⊙O于P,如图所示:∴∠AOB=90°,∴∠AHB=180°﹣∠AOB=180°﹣×90°=135°,∵∠DFE=135°,∴点F在上运动,∵AB=4,∴当点F与点H重合时,△ABF的面积为最大,最大值为△ABH的面积,根据等腰直角三角形的性质得:AK=BK=AB=2,∠AOH=45°,∴AK=OK=2,在Rt△AOK中,由勾股定理得:OA==,∴OA=OH=OB=OP=,∴KH=OH﹣OK=,∴SABH=AB•KH==,△故结论③正确;④∵点F在上运动,∴当点F与点P重合时,CF为最小,最小值为线段CP的长,∵OM⊥CB,OK⊥AB,∠ABM=∠ABC=90°,∴四边形OMBK为矩形,∴OM=BK=2,BM=OK=2,∴CM=BC+BM=4+2=6,在Rt△COM中,由勾股定理得:CO==,∴CP=CO﹣OP=,即CF的最小值是,故结论④正确,综上所述:正确的结论是①②③④.故选:D.3.(4分)(2023•鄞州区校级一模)如图是由四个全等的三角形和一个正方形组成的大正方形,连结EC与BG交于M,射线BH交EC于点N,交EF于点Q,交AD于点K,连接KE,则与△DKE面积相等的图形是()A.△MEF B.△HNEC.四边形MNQF D.△CGM【分析】通过边长设元计算直接求出△DKE的面积,及选项中可求面积,得到面积相等的图形.计算中利用含有等角的直角三角形相似得到边长比例及边长,再利用基本的三角形面积等于底乘高的一半,得到目标三角形面积,最后四配选项中图形面积得到答案.【解答】解:作HP垂直CD于P,作HQ垂直CB于Q,作ET垂直AD于T,如图,设DH=a,HG=b,DC=c,由四个直角三角形全等、正方形ABCD、正方形EFGH,可知:DH=GC=AE=BF=a,AB=BC=CD=AD=c,HG=GF=EF=HE=b,ET=HP=CQ,在Rt△DHC中,根据勾股定理得,c2=a2+(a+b)2,∵△HCQ∽△CDH,∴,∴.∴,∴BQ=CB﹣CQ=c﹣,∵△KBA∽△BHQ,∴,∴AK=AB×=c×=,∴DK=AD﹣AE=c﹣=,∴SDKE=,△∵ET=HP=CQ=,∴SDKE===,△∵△CGM∽△EFM,∴,∴GM=,CG=a,∴,∴SGMC=S△DKE,故选项D正确;△同理FM=,,故A错误;∵△HEC≌△GHB,∴∠HCE=∠GBH,∴∠GBH+∠GHB=∠HCE+∠GHB=90°,∴△HEN∽△CEH,∴,∴,故B错误;同理,,∵△HEQ∽△BFQ.∴,∴,∴梯形HGFQ的面积=,∴四边形HGMN的面积=SHCN﹣S△GMC=,△四边形MNQF的面积=梯形HGFQ的面积﹣四边形HGMN的面积==≠,故C错误;故选:D.4.(4分)(2023秋•洛江区期中)设,利用等式(n≥3),则与A最接近的正整数是()A.18B.20C.24D.25【分析】利用等式(n≥3),代入原式得出数据的规律性,从而求出.【解答】解:利用等式(n≥3),代入原式得:=48×(++…+﹣)=12×(1﹣+﹣+﹣+…+)=12×[(1++…+)﹣(+…+)]=12×(1+)而12×(1+)≈25故选:D.5.(4分)(2023•泰安)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(﹣6,4);Rt△COD中,∠COD=90°,OD=4,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是()A.3B.6﹣4C.2﹣2D.2【分析】由点M是BC中点,想到构造中位线,取OB中点,再利用三角形两边之差的最值模型.【解答】解:取OB中点N,连接MN,AN.在Rt△OCD中,OD=4,∠D=30°,∴OC=4,∵M、N分别是BC、OB的中点,∴MN=OC=2,在△ABN中,AB=4,BN=3,∴AN=5,在△AMN中,AM>AN﹣MN;当M运动到AN上时,AM=AN﹣MN,∴AM≥AN﹣MN=5﹣2=3,∴线段AM的最小值是3,故选:A.6.(4分)(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.PA+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,PA+PB=PA'+PB最小,即可得PA+PB最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得SABCD=四边形(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B 共线时,PA+PB=PA'+PB最小,此时PA+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴SADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣△2m+2,SDKTC=(m+2﹣m)•2=2,梯形∴SABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣四边形1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.7.(4分)(2023•宁波自主招生)如图所示,半径为r的圆O内切于正△PQR,M为边PQ 上一点,N为边PR上一点,且直线MN与圆O相切于点E,△PMN的内切圆C与MN相切于点F.若圆C的半径为,则的值为()A.B.C.D.【分析】设PQ、PR、MN分别与⊙C相切于点D、G、F,PQ、PR分别与⊙O相切于T、K,连接PC、PO、CD、CG、CF、OE、OT,利用等边三角形的性质、切线长定理、解直角三角形等即可求得答案.【解答】解:如图1,设PQ、PR、MN分别与⊙C相切于点D、G、F,PQ、PR分别与⊙O相切于T、K,连接PC、PO、CD、CG、CF、OE、OT,则CD⊥PQ,CG⊥PR,PD=PG,MD=MF,NF=NG,ME=MT,NE=NK,PT=PK,∵CD=CG,∴PC平分∠QPR,同理,PO平分∠QPR,∴P、C、O三点共线,∵△PQR是等边三角形,∴∠QPR=60°,∴∠OPQ=∠QPR=30°,∴PD===r,CP=2CD=r,∵PD=PG=,∴=r①,在Rt△POT中,PT===r,OP=2OT=2r,∵PT=PK,PT+PK=PM+MT+PN+NK=PM+ME+PN+NE=PM+PN+MN,∴PT=,∴=r②,∴②﹣①得:MN=r,如图2,过点C作CL⊥OE,交OE的延长线于L,则∠L=∠CFE=∠FEL=90°,∴EL=CF=r,CL=EF,∴OL=OE+EL=r+r=r,OC=OP﹣CP=2r﹣r=r,在Rt△OCL中,CL===r,∴EF=r,∴==.故选:D.8.(4分)(2023•自贡)如图,分别经过原点O和点A(4,0)的动直线a,b夹角∠OBA =30°,点M是OB中点,连接AM,则sin∠OAM的最大值是()A.B.C.D.【分析】作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.证明KM=TB=2,推出点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大.【解答】解:如图,作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.∵∠ATO=2∠ABO=60°,TO=TA,∴△OAT是等边三角形,∵A(4,0),∴TO=TA=TB=4,T(2,2),K(1,),∵OK=KT,OM=MB,∴KM=TB=2,∴点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大,∵△OTA是等边三角形,OK=KT,∴AK⊥OT,∴AK===2,∵AM是切线,KM是半径,∴AM⊥KM,∴AM===2,过点M作ML⊥OA于点L,KR⊥OA于点R,MP⊥RK于点P.∵∠PML=∠AMK=90°,∵∠P=∠MLA=90°,∴△MPK∽△MLA,∴====,设PK=x,PM=y,则有ML=y,AL=x,∴y=+x①,y=3﹣x,解得,x=,y=,∴ML=y=,∴sin∠OAM===.故选:A.9.(4分)(2022•常州自主招生)如图,在矩形ABCD中,对角线AC,BD相交于点O,AB =6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边△DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2;其中正确结论的序号为()A.①④B.①②③C.②③D.①②③④【分析】①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠EDF=∠EFD=∠DEF=60°,即可得出结论①正确;②如图,连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,从而得出结论④正确;【解答】解:①∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ODA=60°,AD=OD,∵△DFE为等边三角形,∴∠EDF=∠EFD=∠DEF=60°,DF=DE,∵∠BDE+∠FDO=∠ADF+∠FDO=60°,∴∠BDE=∠ADF,∵∠ADF+∠AFD+∠DAF=180°,∴∠ADF+∠AFD=180°﹣∠DAF=120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°﹣∠DFE=120°,∴∠BDE=∠EFC,故结论①正确;②如图,连接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故结论②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,∵OE′=OD=AD=AB•tan∠ABD=6•tan30°=2,∴点E运动的路程是2,故结论④正确;故选:D.10.(4分)(2022•九龙坡区自主招生)如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处,折痕为AP.再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.当AD=CP时,则的值为()A.B.2C.2D.【分析】根据折叠的性质和平角定义,证明∠DAB=90°,四边形APCD是平行四边形,根据平行四边形的性质和含30度角的直角三角形即可解决问题.【解答】解:由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,∵AD∥BC,AD=CP,∴四边形APCD是平行四边形,∴AR=PR,∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故选:A.二.填空题(共6小题,满分30分,每小题5分)11.(5分)(2024•九龙坡区自主招生)如图,四边形ABCD为矩形,AB=,BC=,点E为AB边上一点,将△BCE沿CE翻折,点B的对应点为点F,过点F作FG∥CE交DC于点G,若DG:GC=1:4,则FG的长为.【分析】设EF与CG的交点为M,可得△CEM和△GFM是等腰三角形,设GM=x,则CM=2﹣x,在Rt△CFM中,根据勾股定理可建立方程,求出x的值,表达GM和CM 的值,进而可得BE的长;再根据勾股定理可得CE的长,由平行可得△GFM和△CEM 相似,根据相似比可得最终结果.【解答】解:设EF与CG的交点为M,在矩形ABCD中,AB=CD=,AD=BC=,AB∥CD,∴∠DCE=∠BEC,由折叠可知,∠BEC=∠FEC,BE=EF,BC=CF=,∴∠FEC=∠DEC,∴EM=CM,∵FG∥CE,∴△GFM∽△CEM,∴GM:FM=CM:EM=1:1,FG:CE=GM:EM,∴GM=FM,EF=CG=2,∵DG:GC=1:4,AB=,∴DG=,CG=EF=2,∴CE==,设GM=x,则CM=2﹣x;∴FM=GM=x,CM=EM=2﹣x,在Rt△CFM中,∠CFM=∠B=90°,由勾股定理可得CF2+FM2=CM2,即()2+x2=(2﹣x)2,解得x=,∴GM=FM=,CM=EM=,∴GF:=:,∴GF=.故答案为:.12.(5分)(2024•重庆)我们规定:若一个正整数A能写成m2﹣n,其中m与n都是两位数,且m与n的十位数字相同,个位数字之和为8,则称A为“方减数”,并把A分解成m2﹣n的过程,称为“方减分解”.例如:因为602=252﹣23,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成602=252﹣23的过程就是“方减分解”.按照这个规定,最小的“方减数”是82.把一个“方减数”A进行“方减分解”,即A=m2﹣n,将m放在n的左边组成一个新的四位数B,若B除以19余数为1,且2m+n=k2(k为整数),则满足条件的正整数A为4564.【分析】设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),根据最小的“方减数”可得m=10,n=18,即可求解;根据B除以19余数为1,且2m+n=k2(k为整数),得出为整数,30a+b+8是完全平方数,在1≤a≤9,0≤b≤8,逐个检验计算,即可求解.【解答】解:①设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),由题意得:m2﹣n=(10a+b)2﹣(10a+8﹣b),∵1≤a≤9,∴要使“方减数”最小,需a=1,∴m=10+b,n=18﹣b,∴m2﹣n=(10+b)2﹣(18﹣b)=100+20b+b2﹣18+b=82+b2+21b,当b=0时,m2﹣n最小为82;②设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),∴B=1000a+100b+10a+8﹣b=1010a+99b+8,∵B除以19余数为1,∴1010a+99b+7能被19整除,∴=53a+5b+为整数,又2m+n=k2(k为整数),∴2(10a+b)+10a+8﹣b=30a+b+8是完全平方数,∵1≤a≤9,0≤b≤8,∴30a+b+8最小为49,最大为256,即7≤k≤16,设3a+4b+7=19t,t为正整数,则1≤t≤3,(Ⅰ)当t=1时,3a+4b=12,则b=3﹣a,30a+b+8=30a+3﹣a+8是完全平方数,又1≤a≤9,0≤b≤8,此时无整数解,(Ⅱ)当t=2时,3a+4b=31,则b=,30a+b+8=30a++8是完全平方数,又1≤a≤9,0≤b≤8,此时无整数解,(Ⅲ)当t=3时,3a+4b=50,则,是完全平方数,若a=6,b=8,则3a+4b+7=57=19×3,30×6+8+8=196=142,∴t=3,k=14,此时m=10a+8=68,n=10a+8﹣a=60,∴A=682﹣60=4564,故答案为:82,4564.13.(5分)(2024•成都)如图,在Rt△ABC中,∠C=90°,AD是△ABC的一条角平分线,E为AD中点,连接BE.若BE=BC,CD=2,则BD=.【分析】连接CE,过E作EF⊥BC于F,设BD=x,则BC=x+2,由∠ACB=90°,E为AD中点,可得CE=AE=DE=AD,有∠CAE=∠ACE,∠ECD=∠EDC,证明△ECD∽△BCE,可得=,∠CED=∠CBE,故CE2=CD•BC=2(x+2)=2x+4,再证△ABC∽△BEF,得=,而AC=2EF,即得2EF2=(x+1)(x+2),从而=(2x+4)﹣12,即可解得答案.【解答】解:连接CE,过E作EF⊥BC于F,如图:设BD=x,则BC=BD+CD=x+2,∵∠ACB=90°,E为AD中点,∴CE=AE=DE=AD,∴∠CAE=∠ACE,∠ECD=∠EDC,∴∠CED=2∠CAD,∵BE=BC,∴∠ECD=∠BEC,∴∠BEC=∠EDC,∵∠ECD=∠BCE,∴△ECD∽△BCE,∴=,∠CED=∠CBE,∴CE2=CD•BC=2(x+2)=2x+4,∵AD平分∠CAB,∴∠CAB=2∠CAD,∴∠CAB=∠CED,∴∠CAB=∠CBE,∵∠ACB=90°=∠BFE,∴△ABC∽△BEF,∴=,∵CE=DE,EF⊥BC,∴CF=DF=CD=1,∵E为AD中点,∴AC=2EF,∴=,∴2EF2=(x+1)(x+2),∵EF2=CE2﹣CF2,∴=(2x+4)﹣12,解得x=或x=(小于0,舍去),∴BD=.故答案为:.14.(5分)(2024•宁海县校级自主招生)如图,等腰直角△ABC的斜边AB下方有一动点D,∠ADB=90°,BE平分∠ABD交CD于点E,则的最小值是.【分析】如图,取AB的中点O,连接OC,OD,AE.想办法证明CE=CA,当CD是直径时的值最小.【解答】解:如图,取AB的中点O,连接OC,OD,AE.∵∠ACB=∠ADB=90°,OA=OB,∴OC=OD=AB,∴A,C,B,D四点共圆,∵CA=CB,∴∠CBA=∠CAB=45°,∴∠CDA=∠CBA=45°,∠CDB=∠CAB=45°,∴∠CDB=∠CDA,∴DE平分∠ADB,∵BE平分∠ABD,∴点E是△ABD的角平分线的交点,∴AE平分∠BAD,∴∠BAE=∠DAE,∵∠CAE=∠CAB+∠BAE=45°+∠BAE,∠CEA=∠EDA+∠EAD=45°+∠DAE,∴∠CAE=∠CEA,∴CA=CE=定值,∴当CD的值最大时,的值最小,∴CD是直径时,的值最小,最小值==,故答案为.15.(5分)(2024•渝中区校级自主招生)如图所示,平面直角坐标系中,四边形OABC是矩形,点A在第一象限,点B、C在第二象限,SOAB=,将△OAB沿OB翻折至△△OA′B,反比例函数恰好经过点B和点A′,连接A′C交x轴于点M,则点M的坐标为.【分析】过点A'作A'D⊥x轴于D,A'G⊥OB于G,过点B作BE⊥x轴于E,BF⊥DA'交DA'的延长线于F,过C作CH⊥OB于H,根据矩形及翻折的性质得∠BA'O=90°,SOA'B=S△OAB=S△OBC=,再根据反比例函数比例系数的几何意义得:S△OBE=S△OA'D △=,由此可得SOA'B=S△OBE+S梯形A'BED﹣S△OA'D=S梯形A'BED=,△设A',B,其中a<b<0,则,OD=﹣a,BE=﹣12√2/b,OE=b,DE=OD﹣OE=b﹣a,则SA'BED=(A'D+BE)•DE=梯形,整理得2a2﹣2b2+3ab=0,即(2a+b)(a﹣2b)=0,据此可得a=2b,则点A',设直线OB的表达式为y=mx,将B代入y=mx,得,直线OB的表达式为,再证四边形A'CHG为矩形得A'C∥OB,可设直线A'C的表达式为,将点A'代入,得,则直线A'C的表达式为,进而得点,证△A'OD和△BA'F相似得BF:A'D=A'F:OD,根据A',B得BF=﹣b,,,OD=a=﹣2b,则由此解出b即可得点M的坐标.【解答】解:过点A'作A'D⊥x轴于D,A'G⊥OB于G,过点B作BE⊥x轴于E,BF⊥DA'交DA'的延长线于F,过C作CH⊥OB于H,如图所示:∵四边形OABC为矩形,且SOAB=,△∴SOBC=S△OAB=,△∵将△OAB沿OB翻折至△OA′B,∴SOA'B=S△OAB=,∠BA'O=90°,△∴SOA'B=S△OAB=S△OBC=,△根据反比例函数比例系数的几何意义得:SOBE=S△OA'D=,△∵A'D⊥x轴,BE⊥x轴,∴四边形A'BED为梯形,∵SOA'B=S△OBE+S梯形A'BED﹣S△OA'D=S梯形A'BED=,△设A',B,其中a<b<0,则,OD=﹣a,BE=﹣12√2/b,OE=b,DE=OD﹣OE=b﹣a,∴SA'BED=(A'D+BE)•DE=,梯形∴,整理得:2a2﹣2b2+3ab=0,即(2a+b)(a﹣2b)=0,∵a<b<0,∴2a+b<0,∴a﹣2b=0,∴a=2b,∴点A'.设直线OB的表达式为:y=mx,将B代入y=mx,得:,∴直线OB的表达式为:,∴SOA'B=OB•A'G=,S△OAC=OB•CH=,△∴OB•A'G=OB•CH,∴A'G=CH,又∵A'G⊥OB,CH⊥OB,∴四边形A'CHG为矩形,∴A'C∥OB,设直线A'C的表达式为:y=tx+n,则,∴直线A'C的表达式为:入,将点A'代入,得:,∴直线A'C的表达式为:,对于,当y=0时,,∴点M的坐标为,∵A'D⊥x轴,BF⊥DA',∴∠A'DO=∠BFA'=90°,∠FBA'+∠FA'B=90°,∵∠BA'O=90°,∴∠FA'B+∠DA'O=90°,∴∠DA'O=∠FBA',∴△A'OD∽△BA'F,∴BF:A'D=A'F:OD,∵A',B,∴BF=﹣b,,,OD=a=﹣2b,∴,整理得:b4=36,∴,(不合题意,舍去),∴,∴点M的坐标为.故答案为:.16.(5分)(2022•成都自主招生)在平面直角坐标系xOy中有两点A,B,若在y轴上有一点P,连接PA,PB,当∠APB=45°时,则称点P为线段AB关于y轴的“半直点”.例:如图,点A(﹣3,1),B(﹣3,﹣2),则点P(0,1)就是线段AB关于y轴的一个“半直点”,线段AB关于y轴的另外的“半直点”的坐标为(0,﹣2);若点C(3,3),点D(6,﹣1),则线段CD关于y轴的“半直点”的坐标为(0,2)或(0,﹣3).【分析】观察直接可得线段AB关于y轴的另外的“半直点”P'的坐标,以CD为斜边,在CD左侧作等腰直角三角形CDE,过E作GF∥y轴,过C作CG⊥GF于G,过D作DF⊥GF于F,设E(m,n),由△DEF≌△ECG(AAS),得EF=CG,DF=GE,可得,解得E(,﹣),以E为圆心,CE的长为半径作⊙E,交y轴于M、N,过E作EH⊥y轴于H,由∠CND=∠CED=×90°=45°,知N是线段CD关于y 轴的“半直点”,同理M也是线段CD关于y轴的“半直点”,根据E(,﹣),C(3,3),得NH==,N(0,2),同理MH=,M(0,﹣3).【解答】解:如图:∵A(﹣3,1),B(﹣3,﹣2),∴线段AB关于y轴的另外的“半直点”P'的坐标为(0,﹣2),以CD为斜边,在CD左侧作等腰直角三角形CDE,过E作GF∥y轴,过C作CG⊥GF 于G,过D作DF⊥GF于F,如图:设E(m,n),∵∠CED=90°,∴∠DEF=90°﹣∠CEG=∠GCE,又∠F=∠G=90°,DE=CE,∴△DEF≌△ECG(AAS),∴EF=CG,DF=GE,∵点C(3,3),点D(6,﹣1),∴,解得,∴E(,﹣),以E为圆心,CE的长为半径作⊙E,交y轴于M、N,过E作EH⊥y轴于H,如图:∵∠CND=∠CED=×90°=45°,∴N是线段CD关于y轴的“半直点”,同理M也是线段CD关于y轴的“半直点”,∵E(,﹣),C(3,3),∴CE==EN,HE=,∴NH==,∴N(0,2),同理MH=,M(0,﹣3),∴线段CD关于y轴的“半直点”坐标是(0,2)或(0,﹣3),故答案为:(0,﹣2),(0,2)或(0,﹣3).三.解答题(共8小题,满分80分,每小题10分)17.(10分)(2024•福建)已知实数a,b,c,m,n满足,.(1)求证:b2﹣12ac为非负数;(2)若a,b,c均为奇数,m,n是否可以都为整数?说明你的理由.【分析】(1)根据题意,可得b=a(3m+n),c=amn,将其代入原式中,再利用公式法与提公因式法进行因式分解,可得原式=a2(3m﹣n)2,根据a,m,n是实数,可知a2(3m﹣n)2≥0,即可证b2﹣12ac为非负数.(2)m,n不可能都为整数.理由如下:若m,n都为整数,其可能情况有:①m,n都为奇数;②m,n为整数,且其中至少有一个为偶数,分别进行论证讨论即可.【解答】解:(1)证明:∵,∴b=a(3m+n),c=amn,则b2﹣12ac=[a(3m+n)]2﹣12a2mn=a2(9m2+6mn+n2)﹣12a2mn=a2(9m2﹣6mn+n2)=a2(3m﹣n)2,∵a,m,n是实数,∴a2(3m﹣n)2≥0,∴b2﹣12ac为非负数.(2)m,n不可能都为整数.理由如下:若m,n都为整数,其可能情况有:①m,n都为奇数;②m,n为整数,且其中至少有一个为偶数,①当m,n都为奇数时,则3m+n必为偶数,又∵,∴b=a(3m+n),∵a为奇数,∴a(3m+n)必为偶数,这与b为奇数矛盾;②当m,n为整数,且其中至少有一个为偶数时,则mn必为偶数,又∵,∴c=amn,∵a为奇数,∴amn必为偶数,这与c为奇数矛盾;综上所述,m,n不可能都为整数.18.(10分)(2024•广东)【知识技能】(1)如图1,在△ABC中,DE是△ABC的中位线.连接CD,将△ADC绕点D按逆时针方向旋转,得到△A′DC′.当点E的对应点E′与点A重合时,求证:AB=BC.【数学理解】(2)如图2,在△ABC中(AB<BC),DE是△ABC的中位线.连接CD,将△ADC绕点D按逆时针方向旋转,得到△A′DC′,连接A′B,C′C,作△A′BD的中线DF.求证:2DF•CD=BD•CC′.【拓展探索】(3)如图3,在△ABC中,tan B=,点D在AB上,AD=.过点D作DE⊥BC,垂足为E,BE=3,CE=.在四边形ADEC内是否存在点G,使得∠AGD+∠CGE=180°?若存在,请给出证明;若不存在,请说明理由.【分析】(1)利用等腰三角形+平行线证明∠DAE=∠BCA即可得证;(2)先证△ADA′∽△CDC得到,再证AA'=2DF,代入变形即可得证;(3)利用特殊点,∠AGD=90°,∠CGE=90°,则G就是以AD为直径的圆和以CE 为直径的圆的交点,根据题意证G在内部即可.【解答】(1)证明:∵△ADC绕点D按逆时针方向旋转,得到△A′DC',且E'与A重合,∴AD=DE,∴∠DAE=∠DEA,∵DE是△ABC的中位线,∴DE∥BC,∴∠DEA=∠BCA,∴∠DAE=∠BCA,∴AB=BC.(2)证明:连接AA',∵旋转,∴∠ADA′=∠CDC′,AD=A'D,CD=C'D,∴,∴△ADA′∽△CDC′,∴,∵DE是△ABC的中位线,DF是△A'BD的中线,∴AD=BD,BF=A'F,∴DF是△AA'B的中位线,∴AA'=2DF,∴,∴2DF•CD=BD•CC'(3)解:存在,理由如下,解法一:取AD中点M,CE中点N,连接MN,∵AD是⊙M直径,CE是⊙N直径,∴∠AGD=90°,∠CGE=90°,∴∠AGD+∠CGE=180°,∵tan B=,BE=3,∴BD=5,∵CE=,∴EN=CE=,∴BN=BE+EN=,∵DE⊥CE,∴DE是⊙N的切线,即DE在⊙N外,作NF⊥AB,∵∠B=∠B,∠BED=∠BFN=90°,∴△BDE∽△BNF,∴,∴NF=>,即NF>r n,∴AB在⊙N外,∴G点在四边形ADEC内部.作MH⊥BC,∵BM=,tan B=,∴BH=,MH=,∴NH=,∴MN=≈7.4<AM+CN∴⊙M和⊙N有交点.故四边形ADEC内存在点G,使得∠AGD+∠CGE=180°.解法二:相似互补弓形,分别以AD,CE为弦作⊙O2和⊙O,使得△O2AD∽△OEC,两圆的交点即为所求.作图步骤:①在四边形ADEC内任取一点F,作△EFC得外接圆,圆心为O,连接OE,OC,②作AD的中垂线,③以D为圆心,OC为半径画圆交AD中垂线于点O2,④以O2为圆心,O2A为半径画圆,交⊙O于点G,点G即为所求.证明:∵==,∴△O2AD∽△OEC,∴∠AO2D=∠EOC,∵∠AGD=(360°﹣∠AO2D)=180°﹣∠AO2D,∠EGC=∠EOC,∴∠AGD+∠EGC=180°.故四边形ADEC内存在点G,使得∠AGD+∠CGE=180°.19.(10分)(2023•鼓楼区校级自主招生)已知a+b+c=2023,,求的值.【分析】依据题意,设,从而a=k(x2﹣yz),b=k(y2﹣xz),c=k(z2﹣xy),再代入式子中进行计算可以得解.【解答】解:由题意,设,∴a=k(x2﹣yz),b=k(y2﹣xz),c=k(z2﹣xy).∴原式=====k(x2﹣yz)+k(y2﹣xz)+k(z2﹣xy)=a+b+c=2023.20.(10分)(2023•安徽自主招生)如图,在平面直角坐标系xOy中,一次函数y=x+m 的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y =ax2+bx+c(a≠0)经过A,C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式;(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF 的周长最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值?请说明理由;(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1,若当1<x ≤m时,y2≥﹣x恒成立,求m的最大值.【分析】(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F•M2F=M1M2,最后可求+=1;(3)设y2与y=﹣x的两交点的横坐标分别为x0,x1,因为抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x1的值不断增大,所以当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.【解答】解:(1)∵一次函数y=x+m的图象与x轴交于A(﹣1,0)∴0=﹣+m,∴m=.∴一次函数的解析式为y=x+.∴点C的坐标为(0,).∵y=ax2+bx+c(a≠0)经过A、C两点且对称轴是直线x=2,代入得:,解得,∴y=﹣x2+x+.∴a的值为,抛物线C1的函数表达式为y=﹣x2+x+.(2)+为定值;理由如下:要使△ADF的周长取得最小,只需AF+DF最小连接BD交x=2于点F,因为点B与点A关于x=2对称,根据轴对称性质以及两点之间线段最短,可知此时AF+DF最小.令y=﹣x2+x+中的y=0,则x=﹣1或5,∴B(5,0),∵D(0,),∴直线BD解析式为y=﹣x+,∴F(2,).令过F(2,)的直线M1M2解析式为y=kx+b1,则=2k+b1,∴b1=﹣2k则直线M1M2的解析式为y=kx+﹣2k.解法一:由,得x2﹣(4﹣4k)x﹣8k=0,∴x1+x2=4﹣4k,x1x2=﹣8k,∵y1=kx1+﹣2k,y2=kx2+﹣2k,∴y1﹣y2=k(x1﹣x2),∴M1M2======4(1+k2),M1F===,同理M2F=,∴M1F•M2F=(1+k2)=(1+k2)=(1+k2)=4(1+k2)=M1M2,∴+===1;解法二:∵y=﹣x2+x+=﹣(x﹣2)2+,∴(x﹣2)2=9﹣4y,设M 1(x 1,y 1),则有(x 1﹣2)2=9﹣4y 1.∴M 1F ===﹣y 1;设M 2(x 2,y 2),同理可求得:M 2F =﹣y 2.∴+===①.直线M 1M 2的解析式为y =kx +﹣2k ,即:y ﹣=k (x ﹣2).联立y ﹣=k (x ﹣2)与抛物线(x ﹣2)2=9﹣4y ,得:y 2+(4k 2﹣)y +﹣9k 2=0,∴y 1+y 2=﹣4k 2,y 1y 2=﹣9k 2,代入①式,得:+==1.(3)设y 2与y =﹣x 的两交点的横坐标分别为x 0,x 1,∵抛物线C 2:y 2=﹣(x ﹣h )2可以看成由y =﹣x 2左右平移得到,观察图象可知,随着图象向右移,x 0,x 0′的值不断增大,∴当1<x ≤m ,y 2≥﹣x 恒成立时,m 最大值在x 1处取得∴当x 0=1时,对应的x 1即为m 的最大值将x 0=1代入y 2=﹣(x ﹣h )2=﹣x 得(1﹣h )2=4,∴h =3或﹣1(舍),将h =3代入y 2=﹣(x ﹣h )2=﹣x 有:﹣(x ﹣3)2=﹣x ,∴x 0=1,x 1=9.∴m 的最大值为9.21.(10分)(2022•宣城自主招生)如图,△ABC中,AB=AC,D,E在边BC上,延长AD,AE与△ABC的外接圆分别交于P,Q两点.(1)求证:D,E,Q,P四点共圆;(2)若AD=BD=3,AE=4,DC=5,求弦AQ的长度.【分析】(1)连接BQ,根据同弧所对圆周角相等可得∠C=∠AQB,∠BAP=∠BQP,由∠ADB+∠ABC+∠BAD=180°结合等腰三角形性质可证∠PDE+∠EQP=180°,最后得证∠P+∠DEQ=180°即可;(2)先证明△ABC∽△DAB,根据相似三角形的性质求得,再证明△ABE∽△AQB,最后根据相似三角形的性质即可求解.【解答】(1)证明:如图,连接BQ,∴∠C=∠AQB,∠BAP=∠BQP,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠AQB,∵∠ADB+∠ABC+∠BAD=180°,∴∠PDE+∠AQB+∠BQP=180°,∴∠PDE+∠EQP=180°,∵∠PDE+∠DEQ+∠EQP+∠P=360°,∴∠P+∠DEQ=180°,∴D,E,Q,P四点共圆;(2)解:∵AD=BD=3,DC=5∴∠ABD=∠BAD,BC=8,由(1)知∠ABC=∠C,∴∠ABD=∠BAD=∠C,∴△ABC∽△DAB,∴,即,∴,由(1)可知∠ABE=∠AQB,∵∠BAE=∠QAB,∴△ABE∽△AQB,∴,即,解得AQ=6.22.(10分)(2022•南京自主招生)已知a,b为方程x2﹣2x+t﹣3=0的两根,求(2a+5﹣t)(b2+2)的最小值.【分析】利用根与系数的关系及方程根的定义,利用整体的思想方法,用含t的代数式表示要求代数式的积得结论.【解答】解:∵a,b为方程x2﹣2x+t﹣3=0的两根,∴a+b=2,ab=t﹣3,b2﹣2b+t﹣3=0.∴b2=2b+3﹣t.∴(2a+5﹣t)(b2+2)=(2a+5﹣t)(2b+3﹣t+2)=(2a﹣t+5)(2b﹣t+5)=4ab﹣2bt+10b﹣2at+t2﹣5t+10a﹣5t+25=t2+4ab﹣2t(a+b)+10(a+b)﹣10t+25.把a+b=2,ab=t﹣3代入得t2+4(t﹣3)﹣2t×2+10×2﹣10t+25=t2+4t﹣12﹣4t+20﹣10t+25=t2﹣10t+25+8=(t﹣5)2+8.∵a,b为方程x2﹣2x+t﹣3=0的两根,∴Δ=(﹣2)2﹣4×1×(t﹣3)=4﹣4t+12=﹣4t+16≥0,∴t≤4.∵(t﹣5)2≥0,∴当t=4时,(t﹣5)2+8=(4﹣5)2+8=1+8=9.∴(2a+5﹣t)(b2+2)的最小值是9.23.(10分)(2022•成都自主招生)如图,抛物线y=﹣x2+2mx+m+2与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,OB=3OA.(1)求抛物线的解析式;(2)设D是第四象限内抛物线上的点,连接AD、OD、CD,SCOD:S△AOD=12:5.△①求点D的坐标;②连接BD,若点P,Q是抛物线上不重合的两个动点,在直线x=a(a>0)上是否存在点M,N(点A,P,M按顺时针方向排列,点A,Q,N按顺时针排列),使得△APM≌△AQN且△APM∽△ABD?若存在,求出a的值;若不存在,请说明理由.【分析】(1)设A坐标(﹣x0,0)B(3x0,0),x0≠0且x0>0,把A、B代入抛物线解析式得到关系式:8﹣8mx0=0,由两根的积等于,所以可得m的值和解析式;(2)①设D(x0,y0),已知S△COD:S△AOD=12:5,S△COD=CO×x0,S△AOD=AO•(﹣y),可得出x0,y0关系式y0=﹣x0,D在抛物线上,把D代入抛物线,可得D的坐标;②由题意知△APM≌△AQN,所以AM=AN,即M、N关于x轴对称,假设存在这样的P、Q,根据题意可得出△APQ∽△AMN,△AMN的中线在x轴上且与△APQ中线夹角为45°,可得出△APQ的中线在y=x+1上,同时,P、Q关于y=x+1对称,设P、Q解析式为y=﹣x+b,PQ中点为(m,n)解方程组得到AR的长度,即x=a与x轴交于H,由△APQ∽△AMN,可得到a的值.【解答】解:(1)由题设A坐标(﹣x0,0),则B为(3x0,0),x0≠0且x0>0,则有,①﹣②得8﹣8mx0=0,又∵﹣x0•3x0==﹣m﹣2,则解得m=1或﹣(舍去),即m=1,所以抛物线解析式为y=﹣x2+2x+3;(2)如图所示:①设D(x0,y0),则SCOD=×CO•x0=x0,△SAOD=×AO×(﹣y0)=﹣y0,△又∵SCOD:S△AOD=12:5,△∴=①,又∵点D在抛物线上,∴y0=﹣+2x0+3②,联立①②解得:x0=4或x0=﹣(舍去),则x0=4,y0=﹣5,即点D的坐标为(4,﹣5),②由(1)得B(3,0),如图2,∵△APM≌△AQN,∴AM=AN,又∵P、Q不重合,则M、N不重合,且MN都在x=a上,∴M、N关于x轴对称,假设存在这样的P、Q,∵△APM∽△ABD,∴△AQN∽△ABD,且相似比相同,∴△APQ∽△AMN,且∠NAQ=∠DAB=45°,∴△AMN的中线与△APQ中线夹角也为45°,而△AMN的中线在x轴上,∴△APQ的中线在y=x+1上,∴P、Q关于y=x+1对称,PQ垂直y=x+1.设PQ解析式为:y=﹣x+b,PQ中点为R(m,n),联立,∴x2﹣3x+b﹣3=0,x1+x2=3,∴m=,将R(,n)代入y=x+1得n=,∴R(,),∴AR=,设x=a与x轴交于H,则由△APQ∽△AMN可得,===,∴AH=,∴a=.24.(10分)(2022•洪山区校级自主招生)如图,在平面直角坐标系xOy中,直线y=x+6与x轴,y轴的交点分别为P,Q,且经过P,Q两点的抛物线y=x2+mx+n与x轴的另外一个交点为点M.(1)求抛物线的解析式;(2)已知E是直线PQ下方的抛物线上的一动点(不包括P,Q两点).①过点E作与x轴垂直的直线EF交直线PQ于点F,若点N为y轴上的一动点,当线段EF的长度最大时,求的最小值;②当tan∠EPM=tan∠MQP时,求点E的坐标.【分析】(1)用待定系数法即可求解;(2)①过点N作NH⊥OH于点H,则NH=ON•sin45°=ON,E、N、H共线时,=EN+HN=EH最小,进而求解;②求出tan∠PQM==,得到tan∠EPM=1,进而求解.【解答】解:(1)对于y=x+6,当x=0时,y=6,令y=x+6=0,则x=﹣6,故点P、Q的坐标分别为(﹣6,0)、(0,6),将点P、Q的坐标代入抛物线解析式得:,解得:,故抛物线的解析式为:y=x2+7x+6;(2)①设点F(x,x+6),则点E(x,x2+7x+6),则EF=(x+6)﹣(x2+7x+6)=﹣x2﹣6x,∵﹣1<0,故EF有最大值,此时x=﹣3,即点E(﹣3,﹣6),过点O作OH,使OH和y轴负半轴的夹角为45°,过点N作NH⊥OH于点H,则NH=ON•sin45°=ON,则=EN+HN,则E、N、H共线时,=EN+HN=EH最小,则直线OH和x轴的夹角为45°,故OH的解析式为:y=﹣x,直线EH的解析式为:y=(x+3)﹣6=x﹣3,联立y=﹣x和y=x﹣3并解得:x=,则点H(,﹣),由点E、H的坐标得,EH==;②过点M作MH⊥PQ于点H,由PQ的表达式知,∠QPO=∠PQO=45°,由点P、Q的坐标得,PQ=6,则HM=HP=PM=,则HQ=PQ﹣PH=6=,则tan∠PQM==,∵tan∠EPM=tan∠MQP,则tan∠EPM=1,即直线PE和x轴正半轴的夹角为45°,故直线PE的解析式为:y=﹣(x+6)=﹣x﹣6,联立y=﹣x﹣6和y=x2+7x+6并解得:,即点E(﹣2,﹣4).。

【考试必备】吉林长春市十一高中中考提前自主招生数学模拟试卷(6套)附解析

【考试必备】吉林长春市十一高中中考提前自主招生数学模拟试卷(6套)附解析

中学自主招生数学试卷一、选择题(本大题共8小题,共24分)1.2的算术平方根是()A. B. C. D. 22.下列运算正确的是()A. B. C. D.3.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.4.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.8.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+()018.化简:19.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)25.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.27.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=S△OBG,连接GP,则当BO 为何值时,四边形PKBG的面积最大?最大面积为多少?答案和解析1.【答案】B【解析】解:2的算术平方根是,故选:B.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.【答案】C【解析】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.【答案】D【解析】解:将180000用科学记数法表示为1.8×105,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.【答案】A【解析】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选:A.先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.本题考查的知识点有:用样本估计总体、众数、方差以及中位数的知识,解题的关键是牢记概念及公式.6.【答案】C【解析】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.7.【答案】D【解析】解:过点P作PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO=6∴S矩形ABDO=S▱ABCD∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=-3故选:D.由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.【答案】D【解析】解:连接AC、BD、OE,∵四边形ABCD是菱形,∴AC⊥BD,AM=CM,BM=DM,∵⊙O与边AB、AD都相切,∴点O在AC上,设AM=x,BM=y,∵∠BAD<90°,∴x>y,由勾股定理得,x2+y2=25,∵菱形ABCD的面积为20,∴xy=5,,解得,x=2,y=,∵⊙O与边AB相切,∴∠OEA=90°,∵∠OEA=∠BMA,∠OAE=∠BAM,∴△AOE∽△ABM,∴=,即=,解得,OE=,故选:D.连接AC、BD、OE,根据菱形的性质、勾股定理分别求出AM、BM,根据切线的性质得到∠OEA=90°,证明△AOE∽△ABM,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、菱形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】5【解析】解:-5的相反数是5.故答案为:5.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.【答案】(2a-1)2【解析】解:4a2-4a+1=(2a-1)2.故答案为:(2a-1)2.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.11.【答案】x≥2【解析】解:由题意得:x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x-2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】30【解析】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为:30.根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD-∠AOB计算即可得解.本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.13.【答案】【解析】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】-40【解析】解:根据题意得x+32=x,解得x=-40.故答案是:-40.根据题意得x+32=x,解方程即可求得x的值.本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.【答案】(2+2)【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC-BP=(4+4)cm,∵∠EPC=180°-90°-60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.本题考查了翻折变换-折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.16.【答案】【解析】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.17.【答案】解:原式=6-8+1=-1.【解析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:==a.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.【答案】【解析】解:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;故答案为(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【答案】解:解不等式2x>1-x,得:x>,解不等式4x+2<x+4,得:x<,则不等式组的解集为<x<.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】200 12 36 108【解析】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.由翻折的性质可知:∠EAB=∠BAC,∠DCF=∠DCA.∴∠EAB=∠DCF.∠∠在△ABE和△CDF中,∠∠∴△ABE≌△CDF(ASA),∴DF=BE.∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【解析】(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形可证明AECF是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE,得到EA=EC,于是得到结论.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.【答案】240【解析】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=-6x+300,由题意(-6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.24.【答案】150° 5【解析】解:(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A转过的角度为:360°-90°-30°-90°=150°.在直角△BCH中,∠BCH=30°,BC=10cm,则BH=BC=5cm.故答案是:150°;5;(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,则MD=AD•sin30°=×10=5(cm).∵∠DCN=30°,∴cos∠DCN=cos30°==,即=,解得EF=32.4.即箱子的宽EF是32.4cm.(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A转过的角度;通过解直角△BHC来求BH的长度;(2)通过解直角△AMD得到线段MD的长度,则DN=65-EF-DM,利用解直角△DCN来求CD的长度,即EF的长度即可.本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.25.【答案】解:(1)∵点A(,0)与点B(0,-),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°-∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA-OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA-AF=,∴点E的坐标为:(,).【解析】(1)由点A(,0)与点B(0,-),可求得线段AB的长,然后由∠AOB=90°,可得AB是直径,继而求得⊙M的半径;(2)由圆周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,易得△AEC是等边三角形,继而求得EF与AF的长,则可求得点E的坐标.此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.26.【答案】解:(1)∵二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),∴,得,∴y=x2-x-=,∴二次函数的表达式是y=x2-x-,顶点坐标是(,);(2)①点M的坐标为(,),(,-)或(,-),理由:当AM1⊥AB时,如右图1所示,∵点A(-1,0),点B(0,-),∴OA=1,OB=,∴tan∠BAO==,∴∠BAO=60°,∴∠OAM1=30°,∴tan∠OAM1=,解得,DM1=,∴M1的坐标为(,);当BM3⊥AB时,同理可得,,解得,DM3=,∴M3的坐标为(,-);当点M2到线段AB的中点的距离等于线段AB的一半时,∵点A(-1,0),点B(0,-),∴线段AB中点的坐标为(-,),线段AB的长度是2,设点M2的坐标为(,m),则=1,解得,m=,即点M2的坐标为(,-);由上可得,点M的坐标为(,),(,-)或(,-);②如图2所示,作AB的垂直平分线,于y轴交于点F,由题意知,AB=2,∠BAF=∠ABO=30°,∠AFB=120°,∴以F为圆心,AF长为半径作圆交对称轴于点M和M′点,则∠AMB=∠AM′B=∠AFB=60°,∵∠BAF=∠ABO=30°,OA=1,∴∠FAO=30°,AF==FM=FM′,OF=,过点F作FG⊥MM′于点G,∵FG=,∴MG=M′G=,又∵G(,-),∴M(,),M′(,),∴≤t≤.【解析】(1)根据二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),可以求得该函数的解析式,然后将函数解析式化为顶点式,即可得到该函数的顶点坐标;(2)①根据题意,画出相应的图形,然后利用分类讨论的方法即可求得点M的坐标;②根据题意,构造一个圆,然后根据圆周角与圆心角的关系和∠AMB不小于60°,即可求得t的取值范围.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用分类讨论和数形结合的思想解答.27.【答案】不可能【解析】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②如图2中,∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°-∠AOB,在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中,,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;③结论:OA=OE.理由:如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.∵AB=BC,BQ=BO,∴AQ=QC,∵∠QAO=∠EOC,∠AQO=∠ECO=135°,∴△AQO≌△OCE(ASA),∴AO=OE.(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=S△OBG,∴=()2=,∴OP=1,∴S△POG=OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=4,∴b=,∴S△OBG=ab=a==,∴当a2=2时,△OBG有最大值1,此时S△PKO=S△OBG=,∴四边形PKBG的最大面积为1+1+=.∴当BO为时,四边形PKBG的面积最大,最大面积为.(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;③结论:OA=OE.如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.证明△AQO ≌△OCE(ASA)即可.(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△OBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反中学自主招生数学试卷一、选择题(本大题共8小题,共24分)28.2的算术平方根是()A. B. C. D. 229.下列运算正确的是()A. B. C. D.30.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.31.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.32.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是233.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.34.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.35.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)36.-5的相反数是______.37.分解因式:4a2-4a+1=______.38.若在实数范围内有意义,则x的取值范围为______.39.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.40.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.41.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.42.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.43.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)44.计算|-6|+(-2)3+()045.化简:46.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)47.解不等式组48.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?49.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.50.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?51.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)52.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.53.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.54.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在。

高中提前招生模拟卷答案(一)

高中提前招生模拟卷答案(一)

2021年提前招生模拟题(一)参考答案说明:本卷总分为150分,考试时间100分钟。

共32题,8页。

相对原子质量:H-1C-12N-14O-16Na-23S-32Cl-35.5Ca-40Fe-56g=10N/kg一、选择题(每题3分,每小题只有一个选项是正确的,共60分)题号12345678910答案A B D C B C B B B D 题号11121314151617181920答案C D A A C A B A C B 二、简答题(21小题每空1分,其余每空2分,共25分)21、(1)维生素(2)C6H12O6+6O2==6CO2+6H2O+能量(3)血红蛋白(4)由静脉血变成动脉血(5)神经系统和激素22、CO2、Cu、H2O O2Cu2(OH)2CO323、(1)先通一段时间一氧化碳__。

(2)20%24、(1)动(2)=(3)有价值.在阻力无法避免的情况下,用粗糙程度不同的轨道多次实验,轨道越光滑,h2约接近h1,即可推理得出:当无阻力时,h2=h1,即可判断V B=V A.25、375KJ4000J/(Kg.C)三、实验探究题(每空2分,共30分)26.(1)铁屑(2)打开H2(3)关闭活塞E,使FeSO4溶液被压入B瓶中进行反应(4)4Fe(OH)2+O2+2H2O=4Fe(OH)327、(1)Fa==1/2X Fb==X,(2)10cm(3)________7.5cm__________1228、(1)(1)用不同金属丝组成闭合回路;两连接点之间有温度差(2)测温装置(合理即可)29、(1)⑵①Cl 2>Br 2>I 2>S,②B四、分析计算题(本题有3小题,第30题11分,第31题9分,32题15分,共35分)30、解:(1)m=ρv=2.5×103×200×10-4×2=100(kg)G=mg=100×10=1000(N)(3分)(2)V 排=V 物=200×10-4米2×2米=0.04米3F 浮=ρ水gV 排=400N由T=2F ,T=G-F 浮得F=300N (3分)(3)F 浮’=G-T ’=1000N-2×350N=300N (1分)V 排’=)1)((03.010100.1300'33分水浮m gF =⨯⨯=ρ物体浸入水中的长度h 为:)1()(5.102.003.0'分排---===m SV h 物体上升的高度为:L=H-h=15-1.5=13.5(m)(1分)t=l/v =13.5/0.2=67.5s(1分)31、(1)由甲图,短路电流:0R U I =,3A 0R U=由乙图:024R U P =最大,即 4.5W 024R U =U =6V ,R 0=2Ω,4个电压为1.5V 的干电池组成。

高中自主招生模拟试题

高中自主招生模拟试题

高中自主招生模拟试题第一部分:语文(共60分)一、阅读理解(共30分)1. 阅读下面的文字,回答问题。

窗含西岭千秋雪,门泊东吴万里船。

新城烟柳咽莺花,流水落花春去辽。

问题:这首诗描绘了哪个季节的景色?(5分)2. 阅读下面的短文,回答问题。

人的一生是一个坎坷的旅程,有挫折和艰辛,但只要你坚持不懈,相信自己,总会走过难关,迎来更美好的明天。

问题:短文传达的主题是什么?(5分)3. 阅读下面的文字,回答问题。

心有猛虎,细嗅蔷薇。

斯人若彩虹,遇上方知有。

问题:请用自己的话解释这首诗的意思。

(10分)4. 阅读下面的文字,回答问题。

月落乌啼霜满天,江枫渔火对愁眠。

姑苏城外寒山寺,夜半钟声到客船。

问题:请简要描述这首诗的意境。

(10分)请根据以下任选题目写一篇不少于800字的文章。

1. 我的梦想2. 读书使我快乐3. 自然美景第二部分:数学(共40分)一、计算题(共30分)1. 3/4 + 4/5 = ?2. 240 ÷ 8 = ?3. 25% × 120 = ?4. 2² + 5 × 3 = ?5. 计算:(12 + 3)² ÷ 5 - 4 × 2 = ?6. 一个长方形的长是12厘米,宽是8厘米,周长是多少?7. 一个三角形的底边是6厘米,高是4厘米,面积是多少?8. 化简:3a + b - 2a + 4b = ?9. 若x = 3,y = 5,求3x + 2y = ?10. 若a = 4,b = 2,c = 6,求2(a + b) + c = ?1. 有一个长方形花坛,长比宽多6米,周长是42米,求长和宽各是多少米?2. 一块面积为80平方米的菱形鱼缸,其长边是长方形鱼缸的1.5倍,求长方形鱼缸的面积。

第三部分:英语(共30分)一、词汇与语法(共20分)1. 用所给单词的适当形式填空。

(1)Tom is good at _________ (sing).(2)Alice is looking forward to _________ (visit) the Great Wall.(3)There are some ____________(knife) on the table.2. 单项选择(1)I have _________ interesting book to read.A. aB. anC. theD. /(2)What's the weather like ________ Beijing in summer?A. byB. onC. atD. in(3)My brother _____ a computer class every Saturday morning.A. haveB. is havingC. hasD. having3. 完形填空阅读下面短文,掌握其大意,然后从各题所给的四个选项中选择一个最佳答案。

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。

各大高中自主招生试题及答案

各大高中自主招生试题及答案

各大高中自主招生试题及答案一、语文1. 解释下列成语的意思:- 画龙点睛- 杯弓蛇影2. 阅读以下古文段落,回答问题:> 孟子曰:“天时不如地利,地利不如人和。

”- 请解释“天时”、“地利”、“人和”的含义。

- 孟子此言所表达的核心观点是什么?二、数学1. 已知函数 \(f(x) = 3x^2 - 2x + 1\),求导数 \(f'(x)\)。

2. 解不等式:\(2x^2 - 5x + 3 > 0\)。

三、英语1. 翻译下列句子:- 他总是第一个到达学校。

- 她对音乐有着浓厚的兴趣。

2. 完形填空:[文章略]四、物理1. 一个物体从静止开始自由下落,忽略空气阻力,求物体下落前10秒内通过的路程。

2. 一个质量为2kg的物体在水平面上,受到一个大小为10N的力,求物体的加速度。

五、化学1. 写出水的化学式,并解释其分子结构。

2. 什么是氧化还原反应?请举例说明。

六、历史1. 简述辛亥革命的历史意义。

2. 描述二战期间的珍珠港事件。

七、地理1. 解释什么是板块构造学说。

2. 描述赤道地区和极地地区的气候特点。

八、生物1. 描述细胞分裂的过程。

2. 解释什么是基因突变,并举例说明其可能的影响。

答案一、语文1.- “画龙点睛”:比喻在文章或讲话中加上一两句关键的话,使内容更加生动有力。

- “杯弓蛇影”:比喻因疑神疑鬼而引起的恐慌。

2.- “天时”:指自然条件或时机;“地利”:指地理条件或位置的优势;“人和”:指人际关系的和谐。

- 孟子认为,虽然天时和地利都很重要,但人和更为关键,即人际关系的和谐是最重要的。

二、数学1. \(f'(x) = 6x - 2\)。

2. 解得 \(x < \frac{1}{2}\) 或 \(x > 3\)。

三、英语1.- He is always the first to arrive at school.- She has a strong interest in music.2. [答案略]四、物理1. 物体下落前10秒内通过的路程为 \(495\) 米。

中学提前招生考试模拟卷3含答案

中学提前招生考试模拟卷3含答案

中学提前招生考试模拟卷3 (考试时间:60分钟) 一、语言文字运用(16分,每小题4分) 1 .下列词语中加点的字,注音全都正确的一组是( ) A.牛虻(mαng) ■ B∙恫吓(dong) ■ C.脖颈(geng) ■ D.信笺(jian) ■ 呱呱坠地(gu ) ■ 力能扛鼎(gang ) ■ 杀一儆百(jing ) ■ 信手拈来(nian ) ■ 车载斗量(zGi ) ■ 洞见症结(zheng ) ■ 卓有成效(zhuδ) ■ 混水摸鱼(h (ιn ) ■ 2 .下列词语,没有错别字的一组是( ) A.陷阱 一泻千里 性格粗旷 B.狭隘 旁征博引 相形见拙 C.涵养 动则得咎 突如其来 D.锤炼 针硬时弊 安宁祥和 3.下列各句中,没有语病的一项是( ) A. “霸王条款”能横行霸道,部分原因是有些商家存心不良、推脱责任,但更重要的原 因在于消费者难以稳固地占领自己的权利“地盘”,对任何侵犯之举给予有力回击。

B.由于网络的互动性、网民的广泛参与性,使音乐的传播方式发生了革命性变化,任 何人都可以通过网络创作、发布自己的音乐作品。

C. 3月11日,日本大地震使得福岛核电站发生一定程度的放射性泄漏,增加了人们对核电安全性的担忧,当前世界核电快速发展的格局增添了变数。

D.针对日益增多的团购投诉事件,国内团购网站“糯米网”今天率先承诺——绝对不会人为篡改在网上出现的任何数字,因而杜绝消费者购买的情况出现。

4 .填入下面横线处的语句,与上下文衔接最恰当的句序是(语句间标点可不考虑)曾宪梓先生对中国内地的捐资额超过四亿人民币。

有人这样问他:“有钱快乐,还 是没钱快乐?”曾宪梓先生这样回答:“o 不要成为钱财的奴隶,要做钱财的主人」①我不算有钱②穷人有穷人的快乐,有钱人有有钱人的苦恼③有钱不一定快乐④看你怎么用 ⑤但是我把钱用在有益的事业上恰当的语序是 _____________________________ 濒临(bin ) ■ 栅栏(zha ) ■ 作坊(zu 。

山东省重点高中2024年自主招生(理科实验班)提前预录考试化学模拟试题05(含解析)

山东省重点高中2024年自主招生(理科实验班)提前预录考试化学模拟试题05(含解析)

2024年自主招生(理科实验班)提前预录考试化学模拟试题 05卷班级___________姓名___________学号____________分数____________(考试时间:70分钟试卷满分:70分)注意事项:1.答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。

2.答卷时,将答案直接写在试卷上。

3.本卷可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Mg-24 Al-27 S-32 Cl-35.5 Zn-65 Ca-40 Fe-56 Cu-64 Ag-108 K-39 Ba-137一、选择题(本题共15小题,每小题只有一个选项符合题意。

每小题2分,共30分)1.化学与生活、技术密不可分。

下列说法中正确的是()A. 用活性炭为焦糖脱色和用臭氧漂白纸浆原理相似B. 炒菜时加碘盐要在菜准备出锅时添加,是因为食盐中的碘受热易升华C. 汽油中添加含铅化合物Pb(C2H5)4,可提高汽油的抗爆震性能,有利于改善大气环境D. “熬胆矾铁釜,久之亦化为铜”,该过程发生了氧化还原反应2.以下装置(部分夹持仪器略)错误或达不到实验目的的是()A. 图①由含有HCl的CO2获取纯净干燥的CO2B. 图②由海水获得淡水C. 图③过滤除去蔗糖水中的泥沙D. 图④蒸发结晶由NaCl溶液获取NaCl晶体3.有两瓶完全相同的氢氧化钠固体,其中一瓶是新开封的,将其用7.3%盐酸恰好中和消耗盐酸质量为a;另一瓶露置在空气中一段时间了,将其用7.3%的盐酸恰好完全反应,消耗盐酸质量为b,则a和b的关系为()A. a=bB. a<bC. a>bD. 无法确定4.原子种类多种多样,组成了丰富多彩的世界万物。

已知,同种元素组成的结构不同的单质之间互称同素异形体。

符号H、D、T可以表示三种不同的氢原子。

以下说法错误的是()A. 科学家近期发现的N5、N3与氮气互为同素异形体B. 中科院研发的“东方超环”(人造太阳)用到的H、D、T属于同一种元素C. 石墨、金刚石、富勒烯(如C60)结构不同,物理性质不同,化学性质相似D. 中科院大连物化所的科学家在H+HD→H2+D转化中,观测到化学反应中的量子干涉现象,HD与H2互为同素异形体5.下列说法正确的是()A. 除去CO2中的HCl气体、水蒸气杂质,可通过饱和的Na2CO3溶液,再通过浓H2SO4B. 硝酸铵、苛性钠、氯化钠、碳酸钙四种白色固体用水不可以鉴别出来C. 用Zn、ZnO、Zn(OH)2、ZnCO3、CuCl2和盐酸6种物质制备ZnCl2的方法共有5种D. 检验氢氧化钠溶液是否部分变质,可取样加入适量的氯化钡溶液观察现象即可完成检验6.甲乙丁X的转化关系如图所示(反应条件和部分产物已略去,“→”表示一步转化)。

高考自招模拟试题

高考自招模拟试题

高考自招模拟试题
一、选择题
1. 下列关于地球自转和公转的描述中,正确的是:
A. 地球自转使得白昼和黑夜交替出现
B. 地球公转导致季节变化
C. 地球自转和公转的速度相同
D. 地球自转和公转不会对气候造成影响
2. 以下哪个国家拥有“天下第一长城”的美誉?
A. 中国
B. 日本
C. 韩国
D. 印度
3. 世界上最高的山峰是哪座?
A. 珠穆朗玛峰
B. 峨眉山
C. 黄山
D. 泰山
4. 著名的“埃菲尔铁塔”位于哪个国家的首都?
A. 意大利
B. 泰国
C. 法国
D. 西班牙
5. 中国的“兵马俑”是哪个朝代的文物?
A. 秦朝
B. 汉朝
C. 唐朝
D. 宋朝
二、填空题
6. 丝绸之路的发起者是___________。

7. 长江是中国第一大河,它的源头位于_____________。

8. 北京奥运会的口号是__________。

9. 《三国演义》的作者是_____________。

10. 1984年中国实施的一胎化政策开始于__________年。

三、问答题
11. 请简要描述地理知识中的“赤道”是什么?
12. 举例说明中国古代的四大发明是哪些?
四、作文题
请以“我的梦想”为题,写一篇不少于800字的作文。

自主招生填报模拟试题

自主招生填报模拟试题

自主招生填报模拟试题一、选择题(每题4分,共20分)1. 自主招生是指高校在国家招生政策范围内,根据自身办学特色和人才培养需求,自主确定选拔标准、选拔方式和选拔程序,选拔具有学科特长和创新潜质的学生。

以下哪项不是自主招生的特点?A. 自主确定选拔标准B. 自主确定选拔方式C. 统一考试选拔D. 自主确定选拔程序2. 自主招生的报名流程通常包括哪些步骤?A. 网上报名B. 材料审核C. 面试或笔试D. 以上都是3. 自主招生中,学生需要准备哪些材料?A. 个人陈述B. 推荐信C. 成绩单D. 以上都是4. 自主招生的面试环节主要考察学生的哪些能力?A. 学科知识B. 综合素质C. 创新能力D. 以上都是5. 自主招生的录取结果通常在何时公布?A. 高考报名前B. 高考结束后C. 高考成绩公布后D. 高考志愿填报后二、填空题(每题3分,共15分)6. 自主招生的选拔过程强调学生的______和______。

7. 自主招生的报名通常在每年的______月份进行。

8. 自主招生的面试环节,学生需要展示自己的______和______。

9. 自主招生的录取结果公布后,学生需要在______天内确认是否接受录取。

10. 自主招生的录取政策允许学生在______和______之间进行选择。

三、简答题(每题10分,共20分)11. 简述自主招生与普通高考的主要区别。

12. 描述自主招生面试中,学生应如何准备以展示自己的学科特长和创新潜质。

四、论述题(15分)13. 论述自主招生对于高校和学生的意义,并分析其在当前教育体系中的作用和影响。

五、案例分析题(10分)14. 假设你是某高校的招生负责人,面对一名在数学竞赛中获得优异成绩但高考成绩未达到学校录取线的学生,你将如何评估其是否适合通过自主招生进入本校,并说明理由。

六、写作题(20分)15. 以“我眼中的自主招生”为题,写一篇不少于800字的文章,谈谈你对自主招生制度的看法和理解。

2024初升高自主招生数学试卷(一)及参考答案

2024初升高自主招生数学试卷(一)及参考答案

—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。

【考试必备】江苏南京市中华中学(高中)中考提前自主招生数学模拟试卷(6套)附解析

【考试必备】江苏南京市中华中学(高中)中考提前自主招生数学模拟试卷(6套)附解析
A.该调查的方式是普查 B.本地区只有40个成年人不吸烟
C.样本容量是50 D.本城市一定有100万人吸烟
6杭州银泰百货对上周女装的销售情况进行了统计,如下表所示:
颜色
黄色
绿色
白色
紫色
红色
数量(件)
100
180
220
80
550
经理决定本周进女装时多进一些红 色的,可用来解释这一现象的统计知识是()
A.平均数B.众数C.中位数D.方差
A. B. C. D.
3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )
A.1个 B.2个 C.3个 D.4个
4.如图,桌面上有一个一次性纸杯,它的俯视图应是( )
5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( )
A.x<0 B. 0<x<1
C.x<1 D.x>1
10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )
A.12120元 B.12140元 C.12160元 D.12200元
11.若 ,且 ≥2 ,则( )
18.如图,已知△OP1A1△、A1P2A2、△A2P3A3……均为等腰直角三角形,直角顶点P1、P2、P3……在函数 (x>0)图象上,点A1、A2、A3……在x轴的正半轴上,则点P2011的横坐标为.
三.解答题(本大题共10小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
24.(本题满分12分)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计.

高中自主招生试题及答案

高中自主招生试题及答案

高中自主招生试题及答案高中自主招生考试是许多学校选拔优秀学生的一种方式,这些考试通常会涵盖语文、数学、英语等基础学科知识,以及一些逻辑思维、创新能力等综合素质的测试。

以下是一些模拟的高中自主招生试题及答案,供参考。

语文试题1. 请解释“锲而不舍”的含义,并给出一个例句。

答案:锲而不舍原指雕刻时不断雕琢,比喻有恒心,不放弃。

例句:他学习外语锲而不舍,最终取得了优异的成绩。

2. 阅读以下古文,解释文中“之”的用法。

“子曰:‘学而时习之,不亦说乎?’”答案:这里的“之”用作代词,代指“学”的内容。

数学试题1. 若函数f(x) = ax^2 + bx + c,其中a ≠ 0,求证f(-x) = f(x) + b。

答案:将-x代入f(x)中,得到f(-x) = a(-x)^2 + b(-x) + c =ax^2 - bx + c。

由于f(x) = ax^2 + bx + c,所以f(-x) + b =ax^2 - bx + c + b = ax^2 + bx + c = f(x)。

2. 已知圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心到直线y = x的距离。

答案:圆心坐标为(3,4),直线y=x的斜率为1,因此直线的方程为x-y=0。

使用点到直线距离公式 d = |Ax0 + By0 + C|/√(A^2 + B^2),其中A=1, B=-1, C=0,x0=3, y0=4,代入计算得d = |3 - 4|/√2 = √2。

英语试题1. Translate the following sentence into English: “他昨天没有来学校,因为他生病了。

”答案:He did not come to school yesterday because he was sick.2. Fill in the blanks with the correct form of the words given in brackets.- The _______ (discover) of penicillin was a significant breakthrough in medicine.- The _______ (invent) of the telephone changed the way people communicate.答案:discovery, inventor综合素质测试题1. 描述一个你曾经遇到的困难,并说明你是如何克服它的。

自主招生高中模拟试题

自主招生高中模拟试题

自主招生高中模拟试题语文部分:一、阅读理解(共10小题,每题2分,满分20分)阅读下面的短文,根据短文内容选择正确答案。

春天来了,大地变得生机勃勃。

柳树吐出新芽,桃花儿开得娇艳动人。

小鸟们在枝头欢快地唱着歌,好像在和春天打招呼。

阳光普照,微风轻拂,整个世界仿佛都充满了希望和活力。

1. 从短文中可以得知什么季节?A. 冬天B. 夏天C. 秋天D. 春天2. 破题情景设的比喻是?A. 大地生机勃勃B. 柳树吐出新芽C. 小鸟们在枝头欢快地唱歌D. 桃花儿开得娇艳动人二、写作(满分30分)请根据以下提示写一篇议论文,字数不少于800字。

话题:如何保护地球环境要求:1. 分析当前地球环境面临的问题2. 提出自己的观点和解决方法3. 结尾要有感想或呼吁数学部分:一、选择题(每小题2分,共40分)1. 若a+b=100,且a=x+2,b=2x-6,则x=()A. 8B. 9C. 10D. 112. 已知等差数列的前一项是9,第五项是21,则公差是()A. 3B. 4C. 5D. 6二、解答题(共60分)1. 计算:0.3×23.7÷0.3+12-5.2×3+=2. 甲、乙两地相距40公里,两名骑自行车的人从甲地同时出发,速度分别为15km/h和20km/h,多少小时后相遇?英语部分:一、选择题(每小题2分,共40分)1. — Could you please tell me how to improve my English?—_____________, you can make flashcards to help you remember new words.A. No problemB. My pleasureC. Never mindD. Sure2. She asked me ___________.A. where is the post officeB. where the post office isC. where was the post officeD. where the post office was三、完形填空(共20分)阅读下面短文,掌握其大意,然后从各题所给的A、B、C、D四个选项中选择最佳选项。

高中自主招生模拟考试语文试卷

高中自主招生模拟考试语文试卷

高中自主招生模拟考试语文试卷(满分:100分考试时间:120分钟)亲爱的同学:答题时请注意:1.试卷分为四部分,共29题。

2.请将答案写在答题卷的相应位置上,否则以零分计算。

一、语文积累(20分)1.下列词语中加点字注音完全正确的一项是(c )A、山岚.(l uán)叫嚣.(xiāo)吹毛求疵.(cī) 苦心孤诣.(yì)B、眩.目(xuàn)忸怩.(niē)如隔世(huǎng) 悲天悯.人(mǐn)C、狼籍.(jí)休憩.(qì)重蹈覆.(fù)辙泰然处.之(chǔ)D、胆怯.(què)蝉蜕.(tuì)初露端倪.(ní)踽踽.独行(jǔ)2、下列各组词语中没有错别字的一项是( c )A、铤而走险穿流不息再接再厉未雨绸缪B、莫名其妙变本加厉哑雀无声恻隐之心C、吹毛求疵茅塞顿开好高骛远卑躬屈膝D、一愁莫展理曲词穷刚腹自用矫揉造作3.在下列各句加点的成语使用恰当的一句是( B )A.当记者来访震惊全国的齐齐哈尔第二制药厂假药案的几位药检人员时,令人不可思议....的是,他们居然都是非药学专业并从未接受过专业上岗培训的。

B.《财富》杂志说,近30年来新成立的科技公司的总资产,已经接近一晚亿美元,而这个增长速度还在与日俱增....。

C.美国总统布什和到访的英国首相布莱尔5月25日在华盛顿公开承认,在伊拉克战争问题上犯有无可..非议..的错误。

D.古今中外,许多名人先哲用他们讳莫如深....的语言道出了他们对大千世界的洞察,对人生万象的感悟。

4、在下列句子横线上依次填入词语,最恰当..的一组是( B )一位哲人说过,自然是伟大的一部书:“你认识了这一部书,你在这世界上寂寞时便不寂寞,贫困时便不贫困,苦恼时有,挫折时有,软弱时有督责,迷失时有。

”A.只有鼓励方向安慰B.只要安慰鼓励方向C.只要方向鼓励安慰D.只有鼓励安慰方向5、下列各句中有语病的一句是(D)A、一项新的研究成果显示,动物不但具有独特的性格,而且性格相当复杂.它们性格的复杂性甚至能够与人类的相媲美。

自主招生2022模拟试题

自主招生2022模拟试题

自主招生2022模拟试题2022年自主招生模拟试题:
一、选择题
1. 以下哪项不属于自主招生的特点?
A. 根据学生的兴趣和特长进行选拔
B. 通过笔试、面试等方式选拔学生
C. 高校不参与选招,完全由学生自主选择
D. 招生对象为高中毕业生
2. 自主招生考试中一般不包括以下哪种科目?
A. 语文
B. 数学
C. 外语
D. 体育
3. 参加自主招生选拔的学生需要具备哪些基本条件?
A. 年龄在18岁以上
B. 具有高中毕业文凭
C. 有特殊技能或兴趣
D. 以上全部
4. 自主招生选拔考试对考生的要求不包括以下哪种?
A. 多样性
B. 创造力
C. 批判性思维能力
D. 考试成绩排名
5. 自主招生考试一般分为几个阶段?
A. 1个阶段
B. 2个阶段
C. 3个阶段
D. 4个阶段
二、填空题
6. 自主招生考试的笔试通常包括______科目。

7. 自主招生选招通常由______组成。

8. 参加自主招生考试的学生需要具备______等基本条件。

9. 自主招生选招注重考察学生的______和______。

10. 自主招生考试一般不会对考生的______进行过多强调。

三、简答题
11. 请简要介绍自主招生选招的特点。

12. 你认为自主招生选招的优势和劣势分别是什么?
13. 自主招生选招对高校和学生都有哪些影响?
以上为2022年自主招生模拟试题,希望考生们认真思考每个问题,准确作答。

祝各位考生顺利通过模拟考试,取得优异成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中提前自主招生模拟试卷语文考生须知:1.本试卷分试题卷和答题卷两部分。

满分120分,考试时间120分钟。

2.答题前,必须用黑笔在答题纸上填写姓名、座位号和准考证号,并用2B铅笔填涂。

3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷。

一(29分)1.下列句子中注音和字形全都正确的一项是(3分)A. 一个有秩序的社会既是偏执的,又是高尚的;既是专横.(héng)的,又是理想的,它对群众的民意渲泄总是会保持应有的警惕,因为它具有极大的不可预测性。

B. 在镁光灯下,成功和顺遂伴随着他,他成绩斐.(fěi)然,声名显赫,但他从没把自己当成苦情励志的偶像,认为自己是顺其自然,随遇而安。

C. 沉香、檀香等高品质的香品用于熏焚是香道的首选,其产生出来的气味清纯而又沁.(qìn)人心脾,不仅可以美化环境,更能给人凭添许多生活的情趣。

D.在众人感叹这个社会物欲横流或被权欲遮避时,能以真实的笔触为困顿和迷惘的人群提供心灵抚慰或灵魂庇.(pì)护的作品,便是最好的创新。

2.下列各句中,加点的词语运用正确的一句是(3分)A.编辑老王说,他敢对文字部分负责任,但出版过程中的其他环节,他就望尘莫及....了。

B.位于闹市区的这家商店服务之差是有口皆碑....的,也是大家一致公认的事实。

C.他在一所高中的图书馆工作,近水楼台先得月.......,总是可以比别人看到更多的新书刊。

D.桂林的山水真是神奇秀丽,青青的山,绿绿的水,栩栩如生....,令人陶醉。

3.下列句子中没有语病的一项是(3分)A.地铁是真正能降低城市交通拥堵的“利器”,但我们要享受它带来的便利,先要忍受建设过程中它给城市交通带来的“阵痛”。

B.郁达夫小说奖在倡导“实名投票、评语公开”的透明评奖方式的同时,将海外华语小说突破性地纳入评奖范围。

C.市防汛指挥部指出,今年防汛形势依然严峻,有关部门要对人民群众生命财产和城市发展高度负责的态度,扎扎实实地把防汛部署落到实处。

D.中国科学院某研究中心日前预测,今年我国经济仍将处于调整期,重心将放在经济质量的提升和经济结构的优化上。

4.下列句子中标点符号使用恰当的一项是(3分)A.许多自然学者直到最近还保持着的和我以前所保持过的观点:每一物种都是独立被创造的观点,是错误的。

B.李渔说,芙蕖“无一时一刻不适耳目之观,无一物一丝不备家常之用者也。

”这在文中可找到依据。

C.蛇盘踞时呈螺旋上升的圆,沙漠中它作“S”形移动,草丛里它像一条线笔直滑入深处。

D.我们越是懂得精细,深入和举一反三的阅读,就越能看出作品的独特性、个性和局限性。

5.下列不符合对联要求的一项是(3分)A.宠辱不惊看庭前花开花落 B.天气大寒霜降屋檐成小雪去留无意望天上云卷云舒日光端午清明水底见重阳C.爽气西来云雾扫开天地憾 D.人影独立不随桥边流水去大江东去波涛洗尽古今愁孤眠枕上梦魂回到故乡来6.下列有关文学常识的表述,有错误的一项是(3分)A.司马迁,字子长,西汉伟大的史学家、文学家,著有《史记》,首创“编年体”,分为本纪、世家、列传、表、书。

鲁迅称《史记》为“史家之绝唱,无韵之离骚”。

B.庄子,名周,战国时代宋国人。

庄子的文章,想像力很强,文笔变化多端,具有浓厚的浪漫主义色彩,多采用寓言故事形式。

庄周和他的门人以及后学者著有《庄子》,亦称《南华经》,道家经典之一。

C.王实甫,名德信,元杂剧作家。

元杂剧由曲、白、科三部分组成,曲是主要部分,每一折戏都用同一宫调演唱,如《长亭送别》中的“正宫”就是宫调名。

D.弗兰西斯·培根,英国哲学家。

“读史使人明智,读诗使人聪慧,演算使人精密,哲理使人深刻,伦理学使人有修养,逻辑修辞使人善辩”是他广为人知的名言。

7.下列句子的顺序排列,最为合理的一项是(3分)①包括地沟油、三鹿奶粉等各种事件,它们既反映伦理的问题,也反映制度不完善的问题。

②要重建中国的伦理道德和信仰,要从制度入手。

③政府层面不需要采取某种具体措施,而要创造公平的制度环境,社会才会滋生伦理道德。

④好制度会激发人心的善,但坏制度会抑制人性的善,而且会释放人性中的幽暗。

⑤我们不能孤立地讨论伦理问题,首先得检讨制度,看制度是否存有改进的空间。

⑥因为人心具有神魔二元性,扬善抑恶或抑善扬恶,制度是关键所在。

A.②③⑤④⑥①B.③⑤④⑥①②C.②④①⑤⑥③D.③②⑤①④⑥8.某出版社拟出版一套“中学生阅读文库”丛书,其中包括以下作品。

请选择其中一部作品,代出版社拟写一则封底广告语。

要求:①紧扣作品内容;②至少运用一种修辞手法;③20字以内(含标点)。

(4分)备选作品:《水浒传》《红楼梦》《杜甫诗全集》《简爱》9.假如你是XX县排岭街道朝阳路66号金阳小区的保安,今天上午小区的车库因为电路短路引起了火灾,请你拟写出报警电话的内容。

(4分)二(26分)(一)阅读下文,完成10—13题。

(13分)故乡的红蓼花已经中秋了,院子里的几株四季桂却迟迟没有开花,像是忘记了以往的约定..。

而每到这个时节,在老家生活的那段时光以及深藏心底的一些人和事,总是会在不经意的时候,像一缕秋天的晨雾一样轻柔地飘进我的梦里,纯净地覆盖在我的心上。

在我小的那时候,乡下人是并不太在意哪天是几月几号星期几的,他们更在意的是节气,谷雨的时候要插秧播种,清明时节要素衣寒食,秋分是把秋季一分为二却正好又是月圆之时,团圆了去收获或收获了来团圆共享则自然成了这时的主题,而冬至一过,不管日子多么艰难,都要开始准备新年了。

除了这些,还有不少东西总在提醒着人们日子的远去,“红了樱桃,绿了芭蕉”,孩子的衣服嫌短了,老人的胡子变长了。

每年,我都忧伤地看着油菜花开了又谢了,开心地等着满树的桑果由青变紫,而连通着长江的河水由浑转清的时候,我知道秋天就要来临,水边的蓼花应该盛开了。

其实在老家的时候,我并不知道那花叫蓼花,我们都称它狗尾巴花,这花在九月和中秋的时候开得最好,一大片一大片地簇拥在水沟边上,它茂盛得让人不太敢走进,生怕花丛里会有什么小危险,而它鲜艳得也让人不忍心去践踏。

无人欣赏却干净水红。

后来,我在清人纳兰性德的词里读到这样两句:“燕子矶头红蓼月,乌衣巷口柳扬烟。

”这才知道原来狗尾巴花就是蓼花,也叫红蓼。

我那么多次在燕子矶的水边走过,却并不知道蓼花的花名和花语。

也许那是年纪还小的缘故,也许那时还不曾懂得什么是离别和思念的滋味吧。

“江南江北蓼花红,都是离人眼中血。

”从琼瑶笔下的紫薇口中听到这两句,才知道原来这不起眼的花竟代表了离愁别绪。

在这个秋雨濛濛的上午,窗前独坐,我忽然那么想去找找蓼花,不知道它们是否还和昔日一样的鲜丽。

这一刻我的心里安静极了,安静得让许多往事可以像水一样流淌出来,让许多生命中珍贵却不常想起的情景一幕幕地展开。

这或许是伤秋情节吧。

或许在秋风秋雨里是不可以读纳兰词的,可又一想,有谁能像这位大清第一公子一样,把人的那点心思那么深地看透又那么淡地吟出;有谁曾经在我后来也站过的地方写下过“红蓼月”呢?这么想着,心里竟泛起一片温暖的涟漪。

喜欢纳兰的词真的就是从我知道他在燕子矶上站过开始,有位朋友也喜欢他的词,我们曾相互提醒不要太深地去感受词境。

的确,绝代公子虽英年早逝,却独领清词三百年,真的是不同凡响的人物,“家家争念饮水集,纳兰心事几人知。

”我相信纳兰的才情覆盖了他的人生经历,同时也相信有人说的,读他的词读冷了窗外的纷飞暮雨,读瘦了风雪中的一支寒梅。

而我在秋天来读,却让我读暖了手中的一杯冷酒,心里的缕缕情思也早已随着细雨飘到了很远很远的地方。

我没能找出第二首纳兰留给我家乡的诗词,而故乡留在我记忆中的除了许多刻骨铭心的人和事之外,却多了那一片片红蓼,于是每当梦回江南,色彩也明亮多了,这里有早春的油菜花,有小桥边的红药,有秋天里纷飞的芦花,还有就是,点缀在瑟瑟芦花中的串串红蓼。

秋天的美也许正是因为它承载了无数美丽的怀念。

写到这里的时候已是月上中天,一轮秋月正在薄云里缓缓穿行。

世上没有什么媒体能够比得上月亮,明月当空,只要两个人同时一抬头,无论天涯海角,思念马上就像水一样流通了。

是的,在这个时候我想起了许多美丽的约定..,就像《氓》里的“秋以为期”。

我想在这个秋天去看蓼花,去回想一段乡间旧事;想去读一首纳兰的词,在有些凄恻的词句里去寻找淡淡的柔情;我会在一个暖洋洋的午后去重读《国风》,和那时的人们一起为“杨柳依依”而陶醉,为“蒹葭苍苍”而惆怅。

秋天因为有思念而减少了许多萧瑟,那么我要在这个时节去想一个人,去想当年我们在一起的那些个日子,还要去问问这个人有没有也温暖地想起了我。

院子里的桂花树沉睡在月色之中,如果它们还记得去年的约定..,那么它们过不了多久一定会开花儿的。

10.作者故乡的蓼花有什么特点?为什么作者说“这不起眼的花代表了离愁别绪”?(3分)11.文章多次出现“约定”,这样写有什么作用?(3分)12.作者在第5段中说“在这个秋雨濛濛的上午,窗前独坐,我忽然那么想去......找找蓼花,不知道它们是否还和往昔一样的鲜丽。

”结合全文看,作者为什么“那么想去找找蓼花”?请分条写出理由。

(3分)13.有人说“读纳兰的词读冷了窗外的纷飞暮雨,读瘦了风雪中的一枝寒梅”,而作者却说“我在秋天来读,却让我读暖了手中的一杯冷酒”,为什么不同的人有这样不同的感受?(4分)(二)阅读下文,完成14—17题。

(13分)谈大气污染堂吉伟德世界卫生组织下属国际癌症研究机构10月17日发布报告,首次指认大气污染“对人类致癌”,并视其为普遍和主要的环境致癌物。

大气污染“对人类致癌”,其实并非新鲜话题。

因为基于常识性判断以及现实的诸多案例都足可证明。

比如,国外有研究显示,空气污染提高一级,心血管疾病的发病率会增加3%。

同时,作为空气的处理器官,呼吸道和肺部必然首当其冲。

每当一些地方空气质量下降,患呼吸系统疾病的人数就会增加,高污染地方的肺癌发生率也会比低污染地方高。

然而,这些都没有经过权威机构的认定,并作出科学的结论。

世界卫生组织及下属国际癌症研究机构是联合国负责卫生的专门机构,其权威性、科学性和专业性自不用说,其发布的相关医学研究结论,具有广泛的指导意义。

尽管大家都对空气污染的后果有所畏惧,但由于缺乏必要的理论支撑,使诉求很难引起正视,监督的正当性难以获得保障。

时下,随着人类活动的加快,空气污染状况日益严重,一个很重要的原因是,由于没有权威的科学依据,从官方至民间对其危害性还未能形成统一的意见,自然在行动上也就摇摆不定。

同样,无论是公共政策的出台,还是个体的行为表达,都缺乏自觉遵守的动力和互相监督的依据。

大气污染“对人类致癌”,意味着任何一种污染行为都可能“殃及池鱼....”。

事实上,相比于土壤污染和水质污染,空气污染更具公平性。

相关文档
最新文档