最短距离问题将军饮马
《最短路径-将军饮马问题》教学课件ppt
• A2
AB+BC+CA的和
为什么是最小呢?
·
M
A
两点之间
N
线段最短
反思验证
将军饮马问题
为什么AB+BC+CA的和最小?Fra bibliotek情节1:
O
B
C
• A2
A1 •
C′
B′ ·
M
A
N
两点之间 线段最短
反思验证
将军饮马问题
为什么AB+BC+CA的和最小?
情节2: A1 •
O
C
B
·
M
A
• A2
两点之间 线段最短
N
y
4
A′• 3 2 1•P
-4 -3 -2 -1 0 1 -1 -2 -3 -4
•A
2 3•P 4 x
•B
若换成y 轴呢?
一题多变
将军饮马问题
探究3 若将军要先让马到草地OM吃草,再到河边ON喝水 ,最后回到出发点A,你能画出最短路径吗?
O
A
M
N
探究新知
将军饮马问题
分析:1、建模:点在两直线的内部 2、在OM上找点B,在ON上找点C, 使AB+BC+CA的和最小。
O
B
·
M
A
考虑对称点的作用
C
1.将直线同侧两点问题转 化为直线异侧两点问题;
2.利用轴对称的性质可以 将相等线段转化。
N
方法揭晓
将军饮马问题
作法:
1、作点A关于直线OM的对称点A1,点A关于直线ON的对称点A2 , 2、连接A1,A2,交OM于B,交ON于C,
则路径A-B-C-A是最短路径。
将军饮马模型
将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。
所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。
而最短距离是题眼,也就意味着归类这类的题目的理由。
比如题目经常会出现线段 a+b 这样的条件或者问题。
一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。
1.将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短?•A•B模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。
一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。
A’B即为最短距离。
理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。
所以 PA+PB=PA’+PB。
这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。
例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。
已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。
(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短?最短线路的长度是多少千米?(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?模型二:一条定直线,一定点,一动点如图,已知直线L 和定点A ,在直线K 上找一点M,在直线L 上找一点P ,使得AP+PB 值最小。
模型三:一定点,两条定直线如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题 眼)。
一般做法:作点 P 关于 OA 和 OB 的对称点 P1、P2。
最短距离之将军饮马
B
L C
B1
1、动点所在直线为对称轴 2、异侧和最小:两点在这条直线的异侧时,才能
使这两点在同一条直线上并且与直线L有交点
A
B
L C
B1
例2变式1: 已知:P、Q是△ABC的边AB、 AC上的点,你能在 BC上确定一点R, 使△PQR的周长最短吗? R即为所求点
R P1
一点在两条相交线的内部
最短路线
为什么有的人会经常践踏草地呢?
两点之间,线段最短
禁止践踏
将军饮马问题:
将军每天骑马从城堡A出发,到城堡B,途 中马要到小溪边饮水一次。将军问怎样走路程 最短?
这就是被称为"将军饮马"而广为流传的问题。
(一)两点在一条直线两侧
例1.如图:古希腊一位将军骑马从城堡A到城堡 B,途中马要到小溪边饮水一次。问将军怎样 走路程最短?
例3.如图:一位将军骑马从驻地A出发,先牵马去草地 OM 吃草,再牵马去河边ON喝水, 最后回到驻地A问:这位将 军怎样走路程最短?
M 草地
O
.驻地A
N 河边
例3变式:已知如图 MON和 MON 内
一点A
A1
M
作法:
(1)作点A关于OM、
B
ON的对称点A1、A2
O
C
(2)连结A1和A2,交OM于B,交ON于C
点分别放在两条直线的异侧)
练习
1.在锐角AOB中有一点p,若从p点出发到达AO上任意一点后 再到达BO上任意一点,然后返回P点,使总路程最短?
2.探究“将军饮马问题”时抽象出数学模型:直线l同旁有两 个 定 点 A 、 B , 在 直 线 l 上 存 在 点 P , 使 得 PA + P B 的 值 最 小
13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册
13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册一.将军饮马:线段和的最小值例1.唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题.如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的C点饮马后再到B点宿营.请问怎样走才能使总的路程最短?请你用所学的数学知识在图2中画出.例2.已知x+y=7,且x,y均为正数,则的最小值是.变式1.如图,在平面直角坐标系中,点A(﹣2,2),B(2,1),点P(x,0)是x轴上的一个动点.结合图形得出式子的最小值是()A.3B.C.5D.变式2.如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为()A.6B.8C.10D.8变式3.如图,牧童在A处牧马,牧童的家在B处,A,B处到河岸的距离分别是AC=300m,BD=500m,且C,D两地之间的距离为600m.牧童从A处将马牵到河边去饮水,再牵回家,他至少要走的路程是()A.1400m B.(500+300)mC.1000m D.(300+100)m变式4.如图,在△ABC中,AB⊥AC,AB=3,BC=5,AC=4,EF垂直平分BC,点P为直线EF上的任意一点,则△ABP周长的最小值是()A.12B.6C.7D.8变式5.如图,在△ABC中,AB=7,BC=5,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上任意一点,△BCF的周长的最小值是()A.2B.12C.5D.7二.选址造桥例3.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.变式1.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.变式2.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)三.线段差最大例4.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为()A.2B.3C.D.变式1.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.变式2.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cmC.6cm D.2cm四.角中对称问题例5.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.变式1.如图,点P是∠AOB内任意一点,OP=8cm,点M和点N分别是射线OA和射线OB上的动点,若PN+PM+MN的最小值是8cm,求∠AOB的度数.变式2.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,求则△PMN的周长.变式3.如图,∠AOB=60°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,求MP+PQ+QN的最小值课后练习1.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG ⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.2.如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC 上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.3.如图,在矩形ABCD中,AB=3,AD=6,AE=4,AF=2,G,H分别是边BC,CD上的动点,则四边形EFGH周长的最小值为.4.如图,在边长为4的正方形ABCD中,E为BC的中点,P为对角线BD上的一个动点,则线段CP+EP的最小值为.5.如图,正方形ABCD的边长为6,∠DAC的平分线交DC于点E.若点P,Q分别是AD 和AE上的动点,则DQ+PQ的最小值是.6.如图,过边长为2的等边三角形ABC的顶点C作直线l ⊥BC,然后作△ABC关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.2+7.如图,∠AOB=30°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.3B.C.D.65.如图,已知正方形ABCD的边长为3,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则当DF+CF之和取最小值时,△DCF的周长为()A.B.C.D.6.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°7.如图,△ABC中,AD⊥BC,垂足为D,AD=BC,P为直线BC 上方的一个动点,△PBC的面积等于△ABC的面积的,则当PB+PC最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°8.如图,直线y=x+8分别与x轴、y轴交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,当PC+PD值最小时,点P的坐标为()A.(﹣4,0)B.(﹣3,0)B.C.(﹣2,0)D.(﹣1,0)9.如图,等边△ABC中,BD⊥AC于D,QD=15,点P、Q分别为AB、AD上的两个定点且BP=AQ=20,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.35B.40C.50D.6010.如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC 的垂直平分线,P是直线EF上的任意一点,则P A+PB的最小值是()A.6B.8C.10D.1213.如图,在正方形ABCD中,点E,F在对角线AC上,AC=12,若点E,F是AC的三等分点,点P在正方形ABCD的边上从点A开始按逆时针方向运动一周,直至返回点A,则在此过程中PE+PF的最小值为()A.4B.4C.6D.614.如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC 的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2B.4C.6D.815.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上的点,当△PMN的周长最小时,∠MPN=100°,求∠AOB.16.如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N分别是AC 和BC边上的动点,当△PMN的周长最小时,求∠MPN的度数17.如图,∠AOB=30°,点P在OB上且OP=2,点M、N分别是OA、OB上的动点,求PM+MN的最小值18.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D在BC上且BD=1,AD=4,点E、F分别为边AC、AB上的动点,求△DEF的周长的最小值为.19.如图,在锐角△ABC中,∠ACB=30°,点P为边AB上的一定点,连接CP,CP=4,M,N分别为边AC和BC上的两动点,连接PM,PN,MN,则△PMN周长的最小值为;当△PMN周长的最小值时,∠MPN的度数为.20.如图,在△ABC中,AC=BC=4,∠ACB=120°,点M在边BC上,且BM=1,点N 是直线AC上一动点,点P是边AB上一动点,求PM+PN的最小值.21.如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D是线段BF上的动点,连接AD,在AD的右侧作等边△ADE,连接BE,求△ABE周长的最小值。
初中数学最值系列之将军饮马
最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(学生版) 24-25学年八年级数学上册
专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。
图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【变式】(23-24八年级上·广东广州·期中)如图,在ABC ∆中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC ∆中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7。
将军饮马模型
将军饮马模型LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。
所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。
而最短距离是题眼,也就意味着归类这类的题目的理由。
比如题目经常会出现线段 a+b 这样的条件或者问题。
一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。
1.将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短?AB模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。
一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。
A’B即为最短距离。
理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。
所以 PA+PB=PA’+PB。
这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。
例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。
已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。
(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短最短线路的长度是多少千米(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短此时分支点M与A1的距离是多少千米模型二:一条定直线,一定点,一动点 如图,已知直线L 和定点A ,在直线K 上找一点M,在直线L 上找一点P ,使得AP+PB 值最小。
模型三:一定点,两条定直线如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题眼)。
最短路径(将军饮马+造桥选址)
为AM+MN+NP+P
B
Q+QB.
11/24/2019
思维方法二
沿垂直于第一条河岸方
A
向平移A点至A1 点,沿 A1
垂直于第二条河岸方向平移
B点至B1点,连接A1B1
M
分别交A、B的对岸于N、P 两点,建桥MN和PQ.
N P
最短路径 AM+MN+NP+PQ+QB转化为
AA1+A1B1+BB1.
Q B
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
11/24/2019
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
A A1
B
11/24/2019
最短路径 问题
将军饮马 造桥选址
问题
问题
郧西县河夹中学
段廉洁
最短路径问题
①垂线段最短。
B L
A
②两点之间,线段最短。
A L
C B
问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马
人到河边的什么地方饮马,可使所走的路径最短?
A C
B
L
两种情形
① 点A,B分别是直线l异 侧的两个点
a
A
M
b
N
B
解决问题 2
① 作图
A A′
M N
a b
B
② 证明
A A′
a
M′
b
M
N′
N
B
最值问题----将军饮马(二)
----之将军饮马(二)
什么是将军饮马?
【问题描述】: 如图,将军在图中点A处,现在他要带马去河 边喝水,之后返回军营,问:将军怎么走能使得路程最短?
【问题简化】: 如图,在直线上找一点P使得PA+PB最小?
【问题分析】:这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结 果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段 最短”等,所以此处,需转化问题,将折线段变为直线段.
因为M、N皆为动点, 所以过点C作AB的垂线, 可得最小值.
08 菱形、矩中的将军饮马。
【问题描述】:如图,在菱形ABCD中,AC为6倍根号2,BD=6,E是BC的中点,P、M 分别是AC、AB上的动点,连接PE、PM,则PE+PM的最小值是____________.
【问题解析】:此处P为 折点,作点M关于AC的对 称点M',恰好在AD上, 化折线EP+PM为EP+PM'.
本节课你的收获是什么?
【问题解析】:对称点并不一 定总是在已知图形上.
07角分线系列之点到点。
【问题描述】:如图,在Rt△ABC中,∠ACB=90°,AC=6.AB=12,AD平分∠ACB,点 F是AC的中点,点E是AD上的动点,则CE+EF的最小值为________.
【问题解析】:此处E 点为折点,可作点C关 于AD的对称,对称点C' 在AB上且在AB中点, 化折线段CE+EF为 C'E+EF,当C'、E、F 共线时得最小值,C'E为 CB的一半.
【问题解析】:M点为折点,作B点关于AD的对称点,即C点,连接CN,即为所求的 最小值.过点C作AB垂线,利用勾股定理求得CN的长为2倍根号7.
最短路径问题1--将军饮马型2-一点两轴型
13.4最短路径问题1--将军饮马型2-一点两轴型一.【知识要点】题方法是关键。
二.【经典例题】1.如图,已知∠AOB,点P在∠AOB内部,请在射线OA上确定点M,在射线OB上确定点N,使△PMN的周长最小。
【问题 1】作法作图原理在直线 l 上求一点 P,使PA+PB 值最小。
连 AB,与 l 交点即为 P.两点之间线段最短.PA+PB 最小值为 AB.【问题 2】作法作图原理在直线 l 上求一点 P,使PA+PB 值最小.作 B 关于 l 的对称点 B'连 A B',与 l 交点即为 P.两点之间线段最短.PA+PB 最小值为A B'.【问题 3】“将军饮马”作法作图原理在直线 l1 、 l2 上分别求点M、N,使△PMN 的周长最小.分别作点 P 关于两直线的对称点 P'和 P',连 P'P',与两直线交点即为M,N.两点之间线段最短.PM+MN+PN 的最小值为线段 P'P''的长。
【问题 5】作法作图原理在 l1上求点 A,在 l2上求点 B,使 PA+AB 值最小.作点P 关于l1的对称点P',作P'B⊥ l2于B,交l1于 A.点到直线,垂线段最短PA+AB 的值最小为P'B三.【题库】 【A 】1.有一个养鱼专业户,在如图所示地形的两个池塘内养鱼,他住的地方在P 点,每天早上必须去池塘边投放鱼食,试问他怎么走才能走最少的路程完成放食回到住地?说明理由.2.如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .【B 】1.如图,四边形ABCD 中,∠C=50°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△A MN 周长最小时,则∠MAN 的度数为____________。
P 2P 1N MO PB A2.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ). A.4 B.5 C.6 D.7【C 】1.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。
第11讲最短路径探究之将军饮马(原卷版)
第11讲最短路径探究之将军饮马【知识点睛】❖将军饮马模型总结:,❖其他“两动一定”型最值问题模型:、,❖ “造桥选址”类将军饮马模型:村庄A 和村庄B 位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应该如何选择,才能使A 与B 之间的距离最短❖ 特别地:的两邻边中,一边是间距d 、另一边是定动线段AM 或BN 【类题训练】1.如图,在锐角三角形ABC 中,AB =4,∠BAC =60°,∠BAC AD和AB 上的动点,当BM +MN 取得最小值时,AN =( ) A .2B .4C .6D .82.如图,在矩形ABCD 中,AB =10,AD =6,动点P 满足S △P AB =S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( ) A .3B .2C .10D .23.如图,在等腰△ABC 中,AB =AC ,AD 是BC 边上的高,点E 是高AD 上任意一点,点F 是边AB 上任意一点,AB =5,BD =3,AD =4,则BE +EF 的最小值是( ) A .3B .5C .D .4.如图,已知正方形ABCD 的边长为4,点E 是边AB 的中点,点P 是对角线BD 上的动点,则AP +PE 的最小值是( ) A .B .C .D .5.如图,在△ABC 中,AD 是△ABC 的角平分线,点E 、F 分别是AD 、AB 上的动点,若∠BAC =50°,当BE +EF 的值最小时,∠AEB 的度数为( ) A .105°B .115°C .120°D .130°6.如图,钝角三角形△ABC 的面积是20,最长边BC =10,CD 平分∠ACB ,点P ,Q 分别是CD ,AC 上的动点,则AP +PQ 的最小值为( ) A .2B .3C .4D .5A`7.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,CE=5,AD=7,P是AD上一个动点,则BP+EP的最小值是()A.7B.C.5D.8.如图,∠AOB=30°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O 的动点,则△PMN周长的最小值是()A.3B.C.D.69.如图,牧童在A处牧马,牧童的家在B处,A,B处到河岸的距离分别是AC=300m,BD=500m,且C,D两地之间的距离为600m.牧童从A处将马牵到河边去饮水,再牵回家,他至少要走的路程是()A.1400m B.(500+300)mC.1000m D.(300+100)m10.如图,∠AOB=30°,点P在OB上且OP=2,点M、N分别是OA、OB上的动点,则PM+MN的最小值是()A.2B.4C.D.11.如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是()A.B.C.a+b D.a12.如图,点M在等边△ABC的边BC上,BM=8,射线CD⊥BC垂足为点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,BN=9,则AC的长为()A.13B.15C.16D.1713.如图,在△ABC中,AC=BC=4,∠ACB=120°,点M在边BC上,且BM=1,点N是直线AC上一动点,点P是边AB上一动点,则PM+PN的最小值为()A.B.C.D.414.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,点P是边BC上一动点,点D在边AB上,且BD=AB,则P A+PD的最小值为.15.如图,在等腰△ABC中,AB=AC=20,BC=32,△ABD是等边三角形,P是∠BAC的平分线上一动点,连接PC,PD,则PC+PD的最小值为.16.如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=120°,AB=2,AD=4,P、Q分别是边BC、CD上的动点,连接AP,AQ,PQ,则△APQ周长的最小值为.17.如图,在边长为1的小正方形所组成的网格上,每个小正方形的顶点都称为“格点”,△ABC的顶点都在格点上,用直尺完成下列作图:(1)作出△ABC关于直线MN的对称图形;(2)求△ABC的面积;(3)在直线MN上取一点P,使得AP+CP最小(保留作图痕迹).18.古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营A,B.他总是先去A营,再到河边饮马,之后,再巡查B营.他时常想,怎么走,才能使他每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图2,作B关于直线l的对称点B',连结AB'与直线/交于点C,点C就是所求的位置.请你在下列阅读、应用的过程中,完成解答:(1)证明:如图3,在直线l上另取任一点C',连结AC',BC',B'C',∵直线l是点B,B'的对称轴,点C,C'在l上,∴CB=,C'B=,∴AC+CB=AC+CB'=.在△AC'B'中,∵AB'<AC'+C'B',∴AC+CB<AC'+C'B'.∴AC+CB<AC'+C'B',即AC+CB最小.本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(在连接A,B'两点的线中,线段AB'最短).本问题可归纳为求定直线上一动点与直线外两定点的距离和的最小值的问题的数学模型.(2)问题解决如图4,将军牵马从军营P处出发,到河流OA饮马,再到草地OB吃草,最后回到P处,试分别在边OA和OB上各找一点E、F,使得走过的路程,即△PEF的周长最小.(保留画图痕迹,辅助线用虚线,最短路径用实线)19.(1)如图,河道上A,B两点(看作直线上的两点)相距200米,C,D为两个菜园(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A,B,AD=80米,BC=70米,现在菜农要在AB上确定一个抽水点P,使得抽水点P到两个菜园C,D的距离和最短.请在图中作出点P,保留作图痕迹,并求出PC+PD的最小值.(2)借助上面的思考过程,请直接写出当0<x<15时,代数式+的最小值=.20.如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①连接PE,交AM于点N,证明AM垂直平分PE;②点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合.。
2020中考数学专题8——最值问题之将军饮马 -含答案
【模型解析】2020 中考专题 8——最值问题之将军饮马班级姓名.总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。
特点:①动点在直线上;②起点,终点固定;方法:作定点关于动点所在直线的对称点。
【例题分析】例1.如图,在平面直角坐标系中,Rt△OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3 ),点C 的坐标为(1,0),点2P 为斜边OB 上的一动点,则PA+PC 的最小值为.例 2.如图,在五边形ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE 上分别找一点M、N.(1)当△AMN 的周长最小时,∠AMN+∠ANM=;(2)求△AMN 的周长最小值.例3.如图,正方形ABCD 的边长为 4,点E 在边BC 上且CE=1,长为 2 的线段MN 在AC 上运动.(1)求四边形BMNE 周长最小值;(2)当四边形BMNE 的周长最小时,则tan∠MBC 的值为.例4.在平面直角坐标系中,已知点A(一 2,0),点B(0,4),点E 在OB 上,且∠OAE=∠OB A.如图,将△AEO 沿x 轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标.例5.如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P 为y 轴上的一个动点,M、N 为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN 的最小值为.【巩固训练】1.如图1 所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为.图1 图2 图3 图42.如图2,在菱形ABCD 中,对角线AC=6,BD=8,点E、F、P 分别是边AB、BC、AC 上的动点,PE+PF 的最小值是.3.如图3,在边长为2 的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为.4.如图 4,钝角三角形ABC 的面积为 9,最长边AB=6,BD 平分∠ABC,点M、N 分别是BD、BC 上的动点,则CM+MN 的最小值为.5.如图5,在△ABC 中,AM 平分∠BAC,点D、E 分别为AM、AB 上的动点,=6,则BD+DE的最小值为(1)若AC=4,S△ABC(2)若∠BAC=30°,AB=8,则BD+DE 的最小值为.(3)若AB=17,BC=10,CA=21,则BD+DE 的最小值为.6.如图6,在△ABC中,AB=BC=4,S△ABC=4一点,则PK+QK 的最小值为.,点P、Q、K 分别为线段AB、BC、AC 上任意图6 图7 图8 图97.如图7,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点,则PM+PN 的最小值为.8.如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D,M、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是.9.如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm.10.如图 10,菱形OABC 中,点A 在x 轴上,顶点C 的坐标为(1,OC、OB 上,则CE+DE+DB 的最小值是.),动点D、E 分别在射线图10 图11 图12 图1311.如图 11,点A(a,1)、B(-1,b)都在双曲线y=-3(x<0)上,点P、Q 分别是x 轴、y 轴上x的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是.12.如图12,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm,则∠AOB 的度数是.13.如图13,∠AOB=30°,点M、N 分别在边OA、OB 上,且OM=1,ON=3,点P、Q 分别在边OB、OA 上,则MP+PQ+QN 的最小值是.14.如图 14,在Rt△ABC 中,∠ACB=90°,点D 是AB 边的中点,过D 作DE⊥BC 于点E. (1)点P 是边BC 上的一个动点,在线段BC 上找一点P,使得AP+PD 最小,在下图中画出点P; (2)在(1)的条件下,连接CD 交AP 于点Q,求AQ 与PQ 的数量关系;图 143315. 在矩形 ABCD 中,AB =6,BC =8,G 为边 AD 的中点.(1) 如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长.(2) 如图 2,若 E 、F 为边 AB 上的两个动点,且 EF =4,当四边形 CGEF 的周长最小时,求 AF的长.16. 如图,抛物线 y = - 1x 2+ 2x + 4 交y 轴于点B ,点A 为x 轴上的一点,OA =2,过点A 作直线MN ⊥ AB2 交抛物线与 M 、N 两点. (1) 求直线 AB 的解析式;(2) 将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A 1B 1 ,求 MA 1 + MB 1 取最小值时实数 t 的值.33172020 中考专题 8——最值问题之将军饮马参考答案例1.解:作A 关于OB 的对称点D,连接CD 交OB 于P,连接AP,过D 作DN⊥OA 于N,则此时PA+PC 的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3,),∴AB=,OA=3,∵tan∠AOB=AB=3,∴∠AOB=30°,∴OB=2AB=2 ,OA 31 1 3 3由三角形面积公式得:×OA×AB=2×OB×AM,∴AM=2,∴AD=2×2=3,2∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=1AD=23,由勾股定理得:2DN=33 ,2∵C(1,0),∴CN=3﹣1﹣2 23=1,在Rt△DNC 中,由勾股定理得:DC=,2 2即PA+PC 的最小值是31.2例2.解:作A 关于BC 和ED 的对称点A′,A″,连接A′A″,交BC 于M,交ED 于N,则A′A″即为△AMN 的周长最小值.⑴作EA 延长线的垂线,垂足为H,∠BAE=120°,∴∠AA′A″+∠AA″A′=60°,∠AA′A″=∠A′AM,∠AA″A′=∠EAN,∴∠CAN=120°-∠AA′A″-∠AA″A′=60°,也就是说∠AMN+∠ANM=180°-60°=120°.⑵过点A′作EA 延长线的垂线,垂足为H,∵AB=BC=1,AE=DE=2,∴AA′=2BA=2,AA″=2AE=4,则Rt△A′HA 中,∵∠EAB=120°,∴∠HAA′=60°,∵A′H⊥HA,∴∠AA″H=30°,∴AH=1AA′=1,∴A′H=2,A″H=1+4=5,∴A′A″=2 ,例3.解:作EF∥AC 且EF=于P,,连结DF 交AC 于M,在AC 上截取MN=,延长DF 交BC 作FQ⊥BC 于Q,作出点E 关于AC 的对称点E′,则CE′=CE=1,将MN 平移至E′F′处,3332242 - 22 3 3 则四边形 MNE ′F ′为平行四边形,当 BM +EN =BM +FM =BF ′时,四边形 BMNE 的周长最小, 由∠FEQ =∠ACB =45°,可求得 FQ =EQ =1,∵∠DPC =∠FPQ ,∠DCP =∠FQP ,∴△PFQ ∽△PDC , ∴PQ PQ + QE + EC = PQ ,∴ CD PQ PQ + 2 1 = ,解得:PQ = 4 2 ,∴PC = 8 ,3 3由对称性可求得 tan ∠MBC =tan ∠PDC = 2 .3例 4.【提示】将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B 移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称点 E 1,连接 AE 1,与该直线交点 F 即为最小时点 B 的位置,求出 BF 长度即可求出点 E 向右平移的距离.例 5.解:如图所示,直线 OC 、y 轴关于直线 y =kx 对称,直线 OD 、直线 y =kx 关于 y 轴对称,点A ′是点 A 关于直线 y =kx 的对称点.作 A ′E ⊥OD 垂足为 E ,交 y 轴于点 P ,交直线 y =kx 于 M ,作 PN ⊥直线 y =kx 垂足为 N , ∵PN =PE ,AM =A ′M ,∴AM +PM +PN =A ′M +PM +PE =A ′E 最小(垂线段最短), 在 RT △A ′EO 中,∵∠A ′EO =90°,OA ′=4,∠A ′OE =3∠AOM =60°, ∴OE =1OA ′=2,A ′E = =2 .2 ∴AM +MP +PN 的最小值为 2 .333337【巩固训练】答案1.解:连接BD,∵点B 与D 关于AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小.∵正方形ABCD 的面积为 12,∴AB=2又∵△ABE 是等边三角形,∴BE=AB=2,,故所求最小值为2 .2.解:∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=5,作E 关于AC 的对称点E′,作E′F⊥BC 于F 交AC 于P,连接PE,则E′F 即为PE+PF 的最小值,∵1⋅AC⋅BD=AD⋅E′F,∴E′F=24,∴PE+PF 的最小值为24.2 5 53.解:作B 关于AC 的对称点B′,连接BB′、B′D,交AC 于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D 就是BE+ED 的最小值,∵B、B′关于AC 的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC 是边长为2,D 为BC 的中点,∴AD⊥BC,AD=,BD=CD=1,BB′=2AD=2 ,作B′G⊥BC 的延长线于G,∴B′G=AD=,在Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG 中,B′D=.故BE+ED 的最小值为7 .4.解:过点C 作CE⊥AB 于点E,交BD 于点M,过点M 作MN⊥BC 于N,∵BD 平分∠ABC,ME⊥AB 于点E,MN⊥BC 于N,∴MN=ME,∴CE=CM+ME=CM+MN 是最小值.∵三角形ABC 的面积为 9,AB即CM+MN 的最小值为 3.=6,∴12×6⋅CE=9,∴CE=3.333335.提示:作点E 关于AM 的对称点E′,BH⊥AC 于H,易知BD+DE 的最小值即为BH 的长. 答案:(1)3;(2)4;(3)8.6.解:如图,过A 作AH⊥BC 交CB 的延长线于H,∵AB=CB=4,S△ABC=4,∴AH=2,∴cos∠HAB=AH=2 3=3,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,AB 4 2∵∠BAC=∠C=30°,作点P 关于直线AC 的对称点P′,过P′作P′Q⊥BC 于Q 交AC 于K,则P′Q 的长度=PK+QK 的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH 是矩形,∴P′Q=AH=2 ,即PK+QK 的最小值为2 .7.解:作点N 关于AB 的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB 的交点即为PM+PN 的最小时的点,PM+PN 的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N 是弧MB 的中点,∴∠BON=12∠MOB=1×40°=20°,2由对称性,∠N′OB=∠BON=20°,∴∠MON′=∠MOB+∠N′OB=40°+20°=60°,∴△MON′是等边三角形,∴MN′=OM=OB=1AB=18 =4,2 2∴PM+PN 的最小值为 4,22338.解:如图,作BH⊥AC,垂足为H,交AD 于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD 是∠BAC 的平分线,∴M′H=M′N′,∴BH 是点 B 到直线AC 的最短距离,∵AB=4,∠BAC=45°,∴BH=AB sin45°=4×2=2 .2∵BM+MN 的最小值是BM′+M′N′=BM′+M′H=BH=2 .9.解:沿过A 的圆柱的高剪开,得出矩形EFGH,过C 作CQ⊥EF 于Q,作A 关于EH 的对称点A′,连接A′C 交EH 于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=1×182cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC 中,由勾股定理得:A′C=15cm,故答案为:15.10.解:连接AC,作B 关于直线OC 的对称点E′,连接AE′,交OC 于D,交OB 于E,此时CE+DE+BD 的值最小,∵四边形OCBA 是菱形,∴AC⊥OB,AO=OC,即A 和C 关于OB 对称,∴CE=AE,∴DE+CE=DE+AE=AD,∵B 和E′关于OC 对称,∴DE′=DB,∴CE+DE+DB=AD+DE′=AE′,过C 作CN⊥OA 于N,∵C(1,),∴ON=1,CN=,由勾股定理得:O C=2,即AB=BC=OA=OC=2,∴∠CON=60°,∴∠CBA=∠COA=60°,∵四边形COAB 是菱形,∴BC∥OA,∴∠DCB=∠COA=60°,∵B 和E′关于OC 对称,∴∠BFC=90°,∴∠E′BC=90°﹣60°=30°,∴∠E′BA=60°+30°=90°,CF=1BC=1,由勾股定理得:BF=2=E′F,在Rt△EBA 中,由勾股定理得:AE′=4,即CE+DE+DB 的最小值是 4.310 ⎩⎩11.解:把点 A (a ,1)、B (﹣1,b )代入 y =﹣ 3(x <0)得 a =﹣3,b =3,则 A (﹣3,1)、B (﹣1,x3),作 A 点关于 x 轴的对称点 C ,B 点关于 y 轴的对称点 D ,所以 C 点为(﹣3,﹣1),D 点为(1, 3),连结 CD 分别交 x 轴、y 轴于 P 点、Q 点,此时四边形 PABQ 的周长最小,设直线 CD 的解析式为 y =kx +b ,则⎧-3k + b = -1 ,解得⎧k = 1,所以直线 CD 的解析式为 y =x +2.⎨k + b = 3 ⎨b = 212.解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN 、MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ,∴PM =DM ,OP =OD ,∠DOA =∠ POA ;∵点 P 关于 OB 的对称点为 C ,∴PN =CN ,OP =OC ,∠COB =∠POB , ∴OC =OP =OD ,∠AOB =1∠COD ,2∵△PMN 周长的最小值是 5cm ,∴PM +PN +MN =5,∴DM +CN +MN =5,即 CD =5=OP , ∴OC =OD =CD ,即△OCD 是等边三角形,∴∠COD =60°,∴∠AOB =30°;13 解:作 M 关于 OB 的对称点 M ′,作 N 关于 OA 的对称点 N ′,连接 M ′N ′,即为 MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°, ∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°, ∴在 Rt △M′ON′中,M ′N ′= .故答案为 .10314.解:(1)作点 A 关于BC 的对称点 A′,连 DA′交BC 于点P.(2)由(1)可证得PA 垂直平分CD,∴AQ=CQ=3PQ15.解:(1)∵E 为AB 上的一个动点,∴作G 关于AB 的对称点M,连接CM 交AB 于E,那么E 满足使△CGE 的周长最小;∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而AE∥CD,∴△AEM∽△DCM,∴AE:CD=MA:MD,∴AE=CD ⨯MA=2;MD(2)∵E 为AB 上的一个动点,∴如图,作G 关于AB 的对称点M,在CD 上截取CH=4,然后连接HM 交AB 于E,接着在EB 上截取EF=4,那么E、F 两点即可满足使四边形CGEF 的周长最小.∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而CH=4,∴DH=2,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE=HD ⨯MAMD=2,3∴AF =4+2=14.3 316.解:(1)依题意,易得B(0,4),A(2,0),则AB解析式:y=-2x+4(2)∵AB⊥MN∴直线MN:y =1x - 12⎧y =-1x2+ 2x + 4⎪与抛物线联立可得:⎨⎪y =⎩21x - 1 2解得:M(-2,-2)将AB向负方向平移t个单位后,A1(2,-t),B1(0,4-t)则A1 关于直线x=-2 的对称点A2 为(-6,-t)当A2、M、B1 三点共线时,MA1 +MB1取最小值∴t =143。
最短路径问题 ---“将军饮马” 问题
【重要考点】 两点之间线段最短、轴对称的性质、正方形的性质、圆、
二次函数的图象与性质、三角形相关知识、基本作图等.
【命题形式】 主要以二次函数、四边形、三角形、圆为背景借助轴对称
的性质考查学生的综合能力。
【考查方向】 最短路径问题(即“将军饮马”模式),动点问题下的最
塔P向A村、B村铺设管道最短需__5_0_0__米。
y
B
A
O
P
M
X
H
B′
知识应用
(利用正方形的对称性找对称点)
2. 已知正方形ABCD的边长为4,F为BC边的中点, P为 对角线BD上的一动点,要使 PF+PC的值最小,试确定点P 的位置,并求出最小值。
因为点C关于BD的对称点为
点A,连接AF,交BD于P点。
坐标为(2,−3)
总结
【思想方法】 (1) 最短路径问题的背景来源主要有:角、等腰(边) 三角形、菱形、正方形以及圆等.从内容上看,还会引申到 三角形(四边形)的周长最值问题、面积最值等问题。 (2)“将军饮马”问题就是利用对称性“化折为直”。
方法提升:(PA+PB最小)
1.点的分类及确定: 两个定点+一个动点
2.如图,在边长为4的菱形ABCD中,点E,F分别在AB,AD边上,AE=1, AF=3,点P为BD上一动点,求:线段EP+FP和的最小值。
3.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y 轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时, 求点C的坐标。
值问题在中考中一般放置在选择题、填空题或解答题最后, 以压轴题的形式出现.
“将军饮马”常见模型 路径最短问题
两
点
·A
之
间
P
m
, 线
段
B·
最 短
第二关: “两点一线”两点在线的同侧
如图,将军您在A处接到最新消息,有人欲偷袭粮仓B, 需要您前去支援,但马儿已经口渴难耐,无法支撑至B处, 需先到河边饮水,您将选择在何处饮马?
同侧----异侧
·A
两点之间,线段最短
B·
m
·P
B1
第三关: “一点两线”点在两线中间
难点:如何理解通过轴对称解决路径一定是最 短
【路径最短问题】
知识点回顾
1、从A到B有三条路径,选择哪个路径最短? 理由是__两_点 __之__间__,__线__段__最_短 __。___
2、图中点C与直线AB上点的连线中哪条最短?
理由是__垂 __线__段__最__短____
C
①
②
A
B
第一题 ③
或 者转化为垂线段最短问题
3、基本思想:转化的思想
谢 谢!
本课件收集于网络,如果有侵权或错误,请联系作者马上删除。
BM+MN最小。
因为BAC的平分线交BC于点D。
由角平分线性质可知,ME=MN,
A
N
当BE是点B到直线AC的距离时 B (垂线段最短)
AB= 2,BAC=45o
BE=AB sin 45o 1
课堂总结:
1、基本知识点:两点之间线段最短 垂线段最短
2、基本方法:求线段和最短的问题通过对 称转化为两点之间线段最短 问题,实现“折”化“直”,
如图,将军您接到一个寻找水源的任务,行至P处,发现前方有两 河A,B交汇,您需派出一位侦察兵前往探测两河情况,并回到P处复命。 则侦察兵应在OA,OB上的何处侦察才能最快?
将军饮马两定一动的思路和解法
将军饮马两定一动的思路和解法
“将军饮马”问题的原型是这样的:一位骑马的将军每天从营地A 出发去河边饮马,并回到河同岸的营地B,如何走,才能使路程最短。
此类问题的解题思路如下:
第一步:作定点关于线段的对称点,以使几条线段能在同一直线上。
第二步:利用两点之间线段最短或垂线段最短的定理找出最短路径。
第三步:求出最短路径的长度。
我们将最常见的几种情况总结如下:
两定一动(两定点,一动点)
此类问题是“将军饮马”问题的最简单转化。
A、B两点为定点,在直线MN上确定点P,使AP+BP最小。
作法:过A点作关于直线MN的对称点A1,连接A1和B点,与直线MN的交点P即所求(也可作B点关于直线MN的对称点,并与A相连),且AP+BP最小值等于A1B。
证明思路:在直线MN上任取一点P1(不与P重合),连接AP1,BP1,A1P1,只需证明AP1+BP1>AP+BP即可。
因为MN是线段AA1的垂直平分线,所以AP=A1P,AP1=A1P1。
根据两点之间线段最短可知A1P1+BP1>A1B。
故AP1+BP1>AP+BP。
最值系列之将军饮马 - 解析
最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?P【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB 上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.AP''当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
人教版 八年级上册13.4 最短路径问题(将军饮马问题)
A
城堡
B
军营
“将军饮马” 问题(一)
设C将为河直流线抽上象的为一一个条动直点线,l上.面将的城问堡题和就军转营化分别 为抽:象当成点AC,在B l两的个什点么。位置时,AC 与CB 的和最小?
·B
·A
C
C
l
“将军饮马” 问题(一)
如果点A与点B在直线l的异侧,点C 在什么位置,AC+BC最短?
·A
人教版 八年级上册
13.4 最短路径问题
(将军饮马问题)
最短路径
B
l
线段公理: 两点之间,线段最短。
垂线段性质: 垂线段最短。
“将军饮马” 问题(一)
将相军传从,城古堡希出腊发亚,历到山一大条里笔亚直城的里河有边一饮位马久,负然盛后名到 军的营学.者请,问名将叫军海到伦河.边有什一么天地,方一饮位马将可军使专他程所拜走访的海路伦线, 全求程教最一短个?百思不得其解的问题:
你能将 这个实际问 题转化成数 学问题吗?
“将军饮马” 问题(二)
A’
C
D B’
A
B
最短路径为: A C D B
C
l
·B 转化:两点之间,线段最短。
“将军饮马” 问题(一)
利用轴对称的性质如何找到点A的对应点 A’的位置。
·B ·A
l
A’
归纳
B A
l
解决实 际问题
B
A
C
l
B′
抽象为数学问题 用旧知解决新知
B
A
C
l
联想旧知
A
C
l
B
“将军饮马” 问题(二)
牧马人从A地出发,先到草地边某处牧 马,再到河边饮马,然后回到B处,请画出 最短路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 转化思想
一、线段和、差
“牧童放牛”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”,在最近几年的中招试题及竞赛中,该问题经过不同的转化及演变,一 一浮现在我们的眼前,使我们目不暇接,顾此失彼。
因此,我们有必要作一下总结,找出其中的规律,以做到屡战屡胜的效果。
原题:如图,一位小牧童,从A 地出发,赶着牛群到河边饮水,然后再到B 地,问怎样选择饮水的地点,才能使牛群所走的路程最短?
延伸一:某供电部门准备在输电主干线L 上连接一个分支线路,分支点为M ,同时向新落成的A 、B 两个居民小区送电。
已知两个居民小区A 、B 分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。
(1)如果居民小区A 、B 位于主干线L 的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短?最短线路的长度是多少千米?
(2)如果居民小区A 、B 位于主干线L 的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短?此时分支点M 与A1的距离是多少千米?
•A
•B
• A • B
• B
• A
• A ’
•
B ’
•
A ’
• B ’
L
L
延伸二:如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值是多少?
延伸三:如图,A 是半圆上一个三等分点,B 是弧AN 的中点,P 是直径MN 上一动点, ⊙O 的半径为1,求AP+BP 的最小值。
延伸四:如图所示,在边长为6的菱形ABCD 中,∠DAB=600,E 为AB 的中点,F 是AC 上一动点,则EF+BF 的最小值是多少?
延伸五:在直角坐标系XOY 中x 轴上的动点M (x,0)到定点P (5,5),Q (2,1)的距离分别为MP 和MQ ,那么当MP+MQ 取最小值时,点M 的横坐标x=?
A
B
M
N
O P
x
A B C
D
M
N
A
B
C
D
E F • •
例,如图,在梯形ABCD 中,AB ∥CD ,∠A +∠B =90°,E 、F 分别是AB 、CD 的中
点,求证EF = (AB -CD )
二、面积问题
例,如图, 中,BC =4, ,P 为BC 上一点,过点P 作PD//AB ,交AC 于D 。
连结AP ,问点P 在BC 上何处时, ⊿APD 面积最大?
ABC ∆︒=∠=6032ACB
AC , A
D
2
1
三、中考题
如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…, 如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,
…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示)
.如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x
的正半轴上,OA=2,OC=3,过原点O 作∠AOC 的平分线交AB 与点D ,连接DC.过点D 作D E ⊥DC 交OA 与点E. ① 求过点E,D,C 的抛物线的解析式.
② 将∠DEC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F,另一边与线段OC 交于点G ..如果DF 与第(1)题中的抛物线交于另一点M ,点M 的横坐标为6/5,那么EF=2GO 是否成立?请说明理由.
③ 对于第(2)题中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C ,G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.
B
C
A
E 1 E 2
E 3
D 4
D 1
D 2 D 3
如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.
求证:(1)CG
AE=;
=
∙
AN∙
MN
CN
DN
如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连结BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什
么?
如图,四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC CD ,于点P Q ,.
(1)请写出图中各对相似三角形(相似比为1除外); (2)求::BP PQ QR .
如图,已知反比例函数x
k y 1
=
的图象与一次函数b x k y +=2的图象交于A 、B 两点,)2,1(),,2(--B n A .
(1)求反比例函数和一次函数的关系式;
(2)在直线AB 上是否存在一点P ,使APO ∆∽AOB ∆, 若存在,求P 点坐标;若不存在,请说明理由.
A B
C
D E
P
O R。