全国I卷2019届高三五省优创名校联考数学(文)试卷【附答案】
2019届五省优创名校高三联考(全国I卷)数学(文)试题(解析版)
2019届五省优创名校高三联考(全国I卷)数学(文)试题一、单选题1.已知全集U=R,则下列能正确表示集合M={0,1,2}和N={x|x2+2x=0}关系的韦恩(Venn)图是A.B.C.D.【答案】A【解析】化简集合,则可得,分析选项可得结果.【详解】为的解集,解可得,或,则,由选项中的图可得选项符合题意,故选A.【点睛】本题考査集合的交集运算与图的运用,意在考查灵活应用所学知识解答问题的能力,属于简单题.2.设复数z=2+i,则A.-5+3iB.-5-3iC.5+3iD.5-3i【答案】C【解析】利用复数的乘法运算法则,以及除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果.【详解】,故选C【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是A.2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2018年1~4月的业务量同比增长率均超过50%,在3月最高C.从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长【答案】D【解析】由题意结合所给的统计图确定选项中的说法是否正确即可.【详解】对于选项A: 2018年1~4月的业务量,3月最高,2月最低,差值为,接近2000万件,所以A是正确的;对于选项B:2018年1~4月的业务量同比增长率分别为,均超过,在3月最高,所以B是正确的;对于选项C:2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C是正确的;对于选项D,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D错误.本题选择D选项.【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.4.设x,y满足约束条件,则的取值范围是A.(-∞,-9]∪[0,+∞)B.(-∞,-11]∪[-2,+∞)C.[-9,0]D.[-11,-2]【答案】A【解析】由约束条件作出可行域,目标函数为两点连线的斜率,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数,利用数形结合得结论.【详解】画出表示的可行域,表示可行域内的点与点连线的斜率,由,得,,由图知,的范围是,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.函数的图象大致为A.B.C.D.【答案】C【解析】根据奇偶性排除;由,排除;由,排除,从而可得结果.【详解】由,得为偶数,图象关于轴对称,排除;,排除;,排除,故选C.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A.B.64-4π C.64-6π D.64-8π【答案】B【解析】首先确定空间几何体的结构特征,然后利用体积公式确定其体积即可.【详解】由题意可知,题中的结合体是一个正方体去掉四分之一圆柱所得的组合体,其中正方体的棱长为4,圆柱的底面半径为2,高为4,则组合体的体积:.本题选择B选项.【点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.7.有一程序框图如图所示,要求运行后输出的值为大于1000的最小数值,则在空白的判断框内可以填入的是A.i<6 B.i<7 C.i<8 D.i<9【答案】B【解析】运行流程图,结合选项确定空白的判断框内可以填入的的内容即可.【详解】程序运行过程如下:首先初始化数据:,此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值大于,应跳出循环,即时程序不跳出循环,时程序跳出循环,结合选项可知空白的判断框内可以填入的是.本题选择B 选项. 【点睛】本题主要考查流程图的运行过程,补全流程图的方法等知识,意在考查学生的转化能力和计算求解能力.8.袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001 231 130 133 231 031 320 122 103 233 由此可以估计,恰好第三次就停止的概率为A .B .C .D .【答案】C 【解析】从18组随机数中,找到恰好第三次就停止的有4组,由古典概型概率公式可得结果. 【详解】因为随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有:,,,共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为,故选C.【点睛】本题主要考查随机数的应用以及古典概型概率公式,属于中档题. 在解答古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.9.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知,则B=【答案】D【解析】由结合余弦定理可得,再由正弦定理可得,由辅助角公式可得,从而可得结果.【详解】,,,即,,又,,故选D.【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.10.在直角坐标系xOy中,F是椭圆C:(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ于点M,若M是线段PF的中点,则椭圆C的离心率为【答案】C【解析】求得,可得直线方程,从而得,利用可得从而可得结果.【详解】如图,,将代入椭圆方程,由,可得,又,,可得,因为平分线段,故,,即,,故选C.【点睛】本题主要考查椭圆的简单性质及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.11.已知奇函数f(x)在R上的导数为f′(x),且当x∈(-∞,0]时,f′(x)>1,则不等式f(2x-1)-f(x+2)≥x-3的解集为A.(3,+∞)B.[3,+∞)C.(-∞,3] D.(-∞,3)【答案】B【解析】构造函数,可得为奇函数且在上单调递增,根据奇偶性可得在上单调递增,原不等式化为,从而可得结果.【详解】令,当时,,在上单调递增,为奇函数,也是奇函数,且在上单调递增,由化为得,,的解集为,故选B.【点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.12.已知函数f(x)=3sin(ωx+φ)(ω>0,0<φ<π),,对任意x∈R恒有,且在区间(,)上有且只有一个x1使f(x1)=3,则ω的最大值为A.B.C.D.【答案】C【解析】由题意得到满足的关系式,然后结合题意分类讨论确定ω的最大值即可.【详解】由题意知,则,其中,又f(x)在(,)上有且只有一个最大值,且要求最大,则区间(,)包含的周期应最多,所以,得0<≤30,即,所以k≤19.5.分类讨论:①.当k=19时,,此时可使成立,当时,,所以当或时,都成立,舍去;②.当k=18时,,此时可使成立,当时,,当且仅当或时,都成立,综上可得:ω的最大值为.本题选择C选项.【点睛】本题主要考查三角函数的性质,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.已知单位向量的夹角为60°,则________.【答案】【解析】先利用平面向量的数量积公式求出,再利用数量积的运算,化简,将代入,结合单位向量的模为1,即可得结果.【详解】,,故答案为.【点睛】平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.14..【答案】2【解析】利用“降幂公式”将化为,结合诱导公式可得结果.【详解】,故答案为2.【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.15.已知正三棱柱ABC—A1B1C1的高为6,AB=4,点D为棱BB1的中点,则四棱锥C—A1ABD的表面积是________.【答案】【解析】根据直三棱柱的性质判断的底面为直角梯形,四个侧面中,有三个直角三角形,一个等腰三角形,分别求出面积,再求和即可.【详解】正三棱柱的高为6,,四棱锥的表面为等腰三角形,,到距离为,,,故答案为.【点睛】求几何体的表面积的方法:(1)求表面积问题的思路是将立体几何问题转化为平面问题,即将空间图形平面化,这是解决立体几何的主要出发点;求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或求差求得几何体的表面积.16.已知双曲线C:(a>0,b>0),圆M:.若双曲线C的一条渐近线与圆M相切,则当取得最小值时,C的实轴长为________.【答案】4【解析】设渐近线方程为,由点到直线的距离公式可得,则,利用导数研究函数的单调性可得在上递减,在上递增,时,有最小值,从而可得结果.【详解】设渐近线方程为,即,与相切,所以圆心到直线的距离等于半径,,,,时,;时,,在上递减,在上递增,时,有最小值,此时长轴,故答案为4.【点睛】本题主要考查双曲线的渐近线、直线与圆的位置关系以及利用导数研究函数的单调性与最值,意在考查综合应用所学知识解答问题的能力,属于难题.解答直线与圆的位置关系的题型,主要是考虑圆心到直线的距离与半径之间的大小关系.三、解答题17.设数列{an}的前n项和为Sn,a1=3,且Sn=nan+1-n2-n.(1)求{an}的通项公式;(2)若数列{bn}满足,求{bn}的前n项和Tn.【答案】(1) 数列{a n}是首项为3、公差为2的等差数列,从而得a n=2n+1;(2).【解析】(1)由,可得,两式相减整理得,从而可得数列为等差数列,进而可得结果;(2)由(1)得,利用裂项相消法可得结果.【详解】(1)由条件知S n=na n+1-n2-n,①当n=1时,a2-a1=2;当n≥2时,S n-1=(n-1)a n-(n-1)2-(n-1),②①-②得a n=na n+1-(n-1)a n-2n,整理得a n+1-a n=2.综上可知,数列{a n}是首项为3、公差为2的等差数列,从而得a n=2n+1.(2)由(1)得,所以.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)(ⅰ)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.【答案】(1) 中位数为35;(2) (ⅰ);(ⅱ)该小区年龄不超过80岁的成年人人数约为2000×0.88=1760.【解析】(1)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;直方图左右两边面积相等处横坐标表示中位数;(2)(ⅰ)从6人中任选2人共有15个基本事件,至少有1人年龄不低于60岁的共有9个基本事件,由古典概型概率公式可得结果;(ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88.【详解】(1)平均数.前三组的频率之和为0.15+0.2+0.3=0.65,故中位数落在第3组,设中位数为x,则(x-30)×0.03+0.15+0.2=0.5,解得x=35,即中位数为35.(2)(ⅰ)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a,b,c,d,年龄在[60,70)的有2人,设为x,y.则从中任选2人共有如下15个基本事件:(a,b),(a,c),(a,d),(a,x),(a,y),(b,c),(b,d),(b,x),(b,y),(c,d),(c,x),(c,y),(d,x),(d,y),(x,y).至少有1人年龄不低于60岁的共有如下9个基本事件:(a,x),(a,y),(b,x),(b,y),(c,x),(c,y),(d,x),(d,y),(x,y).记“这2人中至少有1人年龄不低于60岁”为事件A,故所求概率.(ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88,故可以估计,该小区年龄不超过80岁的成年人人数约为2000×0.88=1760.【点睛】本题主要考查直方图以及古典概型概率公式的应用,属于中档题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….… 这样才能避免多写、漏写现象的发生.19.如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,点E在棱CS上,且CE=λCS.(1)若,证明:BE⊥CD;(2)若,求点E到平面SBD的距离.【答案】(1)见解析;(2)点E到平面SBD的距离为.【解析】(1)在线段上取一点使,连接,可得垂直.再证明垂直平面,所以垂直,又垂直.由此得垂直平面,从而可得结果;(2)先求得,再求得,设点到平面的距离为,则由得【详解】(1)因为,所以,在线段CD上取一点F使,连接EF,BF,则EF∥SD 且DF=1.因为AB=1,AB∥CD,∠ADC=90°,所以四边形ABFD为矩形,所以CD⊥BF.又SA⊥平面ABCD,∠ADC=90°,所以SA⊥CD,AD⊥CD.因为AD∩SA=A,所以CD⊥平面SAD,所以CD⊥SD,从而CD⊥EF.因为BF∩EF=F,所以CD⊥平面BEF.又BE平面BEF,所以CD⊥BE.(2)解:由题设得,,又因为,,,所以,设点C到平面SBD的距离为h,则由V S—BCD=V C—SBD得,因为,所以点E到平面SBD的距离为.【点睛】解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20.在直角坐标系xOy中,动圆P与圆Q:(x-2)2+y2=1外切,且圆P与直线x=-1相切,记动圆圆心P的轨迹为曲线C.(1)求曲线C的轨迹方程;(2)设过定点S(-2,0)的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点M(与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.【答案】(1) 曲线C的轨迹方程为y2=8x;(2)见解析.【解析】(1)设,圆的半径为,由动圆与圆外切,可得,又动圆与直线相切,所以,两式结合消去即可得结果;(2)设出的坐标,直线方程为,联立直线与抛物线方程消去可得关于的一元二次方程,由韦达定理、斜率公式可得,,化为,由可得结果.【详解】(1)设P(x,y),圆P的半径为r,因为动圆P与圆Q:(x-2)2+y2=1外切,所以,①又动圆P与直线x=-1相切,所以r=x+1,②由①②消去r得y2=8x,所以曲线C的轨迹方程为y2=8x.(2)假设存在曲线C上的点M满足题设条件,不妨设M(x0,y0),A(x1,y1),B(x2,y2),则,,,,,所以,③显然动直线l的斜率存在且非零,设l:x=ty-2,联立方程组,消去x得y2-8ty+16=0,由Δ>0得t>1或t<-1,所以y1+y2=8t,y1y2=16,且y1≠y2,代入③式得,令(m为常数),整理得,④因为④式对任意t∈(-∞,-1)∪(1,+∞)恒成立,所以,所以或,即M(2,4)或M(2,-4),即存在曲线C上的点M(2,4)或M(2,-4)满足题意.【点睛】本题主要考查直接法求抛物线的标准方程以及解析几何中的存在性问题,属于难题.解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在,注意:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规方法题很难时采取另外的途径.21.已知函数.(1)若函数f(x)在[1,+∞)上是单调递减函数,求a的取值范围;(2)当-2<a<0时,证明:对任意x∈(0,+∞),.【答案】(1);(2)见解析【解析】(1)对函数求导并令导函数小于等于0,即在上恒成立,求解即可;(2)结合(1)并讨论函数的单调性,可得在上单调递减,由条件,可得,进而得,整理不等式即可得结论。
(word完整版)2019年高考文科数学全国1卷(附答案).docx
_ - __ - _ __-__:-号-学-__-___ - ___-______封__密___ - _:-名姓---班 - _ __-___ - _年 -______封_密__-___ - _ __-___ - ___-___ - ___ -:-12B-SX-0000022绝密★启用前2019 年普通高等学校招生全国统一考试文科数学全国I卷本卷共 23 小,分150 分,考用120 分(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、:本共12 小,每小 5 分,共 60 分。
在每个小出的四个中,只有一是符合目要求的。
1.z3i, z =12iA . 2B .3C.2 D .12.已知集合U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,BI e AUA .1,6B .1,7C.6,7D.1,6,7.已知 a0.20.3,3A . a b cB . a c bC. c a b D . b c a4.古希腊期,人最美人体的至肚的度与肚至足底的度之比是5 1(5 1≈0.618,称黄金分割比例),著名22的“断臂斯”便是如此.此外,最美人体的至咽喉的度与咽喉至肚的度之比也是5 1.若某人足2上述两个黄金分割比例,且腿105cm,至脖子下端的度26 cm,其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数 f(x)=sin x x2在 [ —π,π]的像大致cos x xA. B.C. D.6.某学校了解 1 000 名新生的身体素,将些学生号1, 2,⋯, 1 000,从些新生中用系抽方法等距抽取100 名学生行体.若 46 号学生被抽到,下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C. 616 号学生 D .815 号学生7.tan255 =°12B-SX-00000228.已知非零向量a ,b 满足 a = 2b ,且( a –b )b ,则 a 与 b 的夹角为A .ππ 2 π5 π6B .C .D .33619. 如图是求 21的程序框图,图中空白框中应填入2 12A. A=12 AB. A= 21AC. A=11 2 AD. A= 112 Ax 2 y 2 1(a 0,b 0) 的一条渐近线的倾斜角为130 °,则 C 的10.双曲线 C :b 2a 2 离心率为A . 2sin40 °B . 2cos40 °C .1 1 D .cos50sin5011. △ABC 的内角 A , B , C 的对边分别为 a , b ,c ,已知 asinA - bsinB=4 csinC ,cosA=- 1 ,则 b=4 cA . 6B . 5C . 4D . 312.已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 2 的直线与 C 交于 A ,B 两点 .若| AF | 2| F B|, | AB| | BF |,则 C 的方程为22 1A . x 2 y 21B. x 2 y 21232x 2 y 2 1x 2 y 2 1C .3D .445二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年全国卷1含答案
2019年全国卷1(文科数学)含答案(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--绝密★启用前2019年普通高等学校招生全国统一考试文科数学(全国Ⅰ卷)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则 A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是a b c <<a c b <<c a b <<b c a <<105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A . B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生 7.tan255°=A .B .C .D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+ D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
全国I卷2019届高三五省优创名校联考数学(文)试题+Word版含答案
绝密★启用前
2019届高三全国I 卷五省优创名校联考
数学(文科)试题
第Ⅰ卷
一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集U =R ,则下列能正确表示集合M ={0,1,2}和N ={x|x 2+2x =0}关系的韦恩(Venn )图是
A .
B .
C .
D .
2.设复数z =2+i ,则
25z z
+= A .-5+3i
B.-5-3i
C.5+3i
D.5-3i
3.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是
A.2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B.2018年1~4月的业务量同比增长率均超过50%,在3月最高
C.从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D.从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
4.设x,y满足约束条件
60
3
30
x y
x
x y
-+
⎧
⎪
⎨
⎪+-
⎩
≥
≤
≥
,则
1
y
z
x
=
+
的取值范围是
A.(-∞,-9]∪[0,+∞)B.(-∞,-11]∪[-2,+∞)。
五省创优名校2019-2020学年高三上学期全国I卷第二次联考数学(文)试题
绝密★启用前 五省创优名校2019-2020学年高三上学期全国I 卷第二次联考数学(文)试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.命题:(1,),23x p x ∀∈+∞> ,则p ⌝ 是 A.(1,),23x x ∀∈+∞… B.(,1],23x x ∀∈-∞… C.00(1,),23x x ∃∈+∞… D.00(,1],23x x ∃∈-∞… 2.已知集合{}2|20,{|||1}M x x x N x x =->=… ,则M N = A.{|01}x x <… B.{|11}x x -剟 C.{|02}x x << D.{}11x x -<< 3.函数()2()ln 4f x x =- 的定义域是 A.[12-,) B.(2,2)- C.(1,2)- D.(2,1)(1,2)--- 4.复数z 满足|2||2|z i z -=-=,则||z = A.1 C.2 D.4 5.已知 1.10.60.4log 0.4,log 0.6,2a b c === ,则 A.a b c << B.b a c << C.a c b << D.b c a <<装…………○…………订………※要※※在※※装※※订※※线※※内※※答※※题装…………○…………订………6.已知非零向量a与b满足|a|=2|b|,且|a+2b|=2b-,则向量a与b的夹角是A.6πB.3πC.23πD.56π7.已知函数4()(1)e e2x xf x mm-=--+,则“2m=”是“f x()是奇函数”的A.充要条件B.既不充分也不必要条件C.必要不充分条件D.充分不必要条件8.函数22sin||1()xf xx-=的部分图象大致是A. B.C. D.9.已知()*()2cos3f x xπωω⎛⎫=+∈⎪⎝⎭N在2,63ππ⎛⎫⎪⎝⎭上单调递减,且413fπ⎛⎫=⎪⎝⎭,则23fπ⎛⎫-=⎪⎝⎭A. B. C.±1 D.110.定义在R上的函数f x()满足23f x f x+=()(),且当[0,2)x∈时,()(2)f x x x=-,则函数1()9y f x=-在(4,4)ε-上的零点个数为A.5B.6C.7D.811.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图则该几何体的外接球的表面积为线…………○……线…………○…… A.29π B.34π C.41π D.50π 12.定义在R 上的函数f x ()满足4(1)(2)()x ef x f x ++=- ,且对任意的1x ≥ 都有()2()0f x f x '+> (其中()f x '为f x ()的导数),则下列一定判断正确的是 A.4e (2)(0)f f > B.2e (3)(2)f f < C.6e (3)(1)f f <- D.10e (3)(2)f f <-第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.函数13()e xf x x-=-的图象在1x=处的切线方程是________.14.已知1tan3α=,则sin2α=________.15.《九章算术》中的“邪田”意为直角梯形,上、下底称为畔,高称为正广,非高腰边称为邪。
山西省2019年普通高等学校全国I卷五省创优名校第五次联考数学文科试题含答案
'分
所以数列$# )8
-#%为等比数列#且首项为!#公比为!!
.分
!!"解+由!#"知)#8 -#+!8# (分
!"#$年普通高等学校招生全国卷五省优创名校第五次联考数学参考答案!第!! 页共%页文科 #$&"'&'#()
!"#$年普通高等学校招生全国卷五省优创名校第五次联考
数学参考答案文科
#!*!解析本题考查复数的四则运算与复数的模考查运算求解能力!
"+!%&,"!!#-,"+(-!.,+'-!,#"""+槡#'!
!!/!解析本题考查集合的交集考查运算求解能力!
0#+$&!#&##"%#1##$+$&!#&#%!
'!)!解析本题考查分段函数的零点考查分类讨论的数学思想!
当%$"时#&!%"的零点为234!#!&当%%"时#&!%"的零点为"和&!#故&!%"的零点个数为'!
.!5!解析本题以百家姓为背景考查古典概型考查运算求解能力!
满足条件的姓氏为赵'孙'李'周'吴'郑'王'陈'杨'朱'何'张#共#!个#故所求概率为# !! .+
# '
6.6!槡!+7'槡!!
7!*!解析本题考查平面向量的数量积的应用考查函数与方程的数学思想!
2019年高考文科数学全国1卷(附答案)
10 .双曲线
2
C: x
2
2
y
的一条渐近线的倾斜角为
2 1( 0, 0)
ab
专业资料
14.记 Sn 为等比数列 { an} 的前 n 项和 .若 a 1 1, S3
3 ,则 S4=___________ .
4
3π
f (x) sin(2 x
) 3cos x 的最小值为 ___________ .
.
长度之比也是
5
若
1
某
人
满
2
足
上述两个黄金分割比 例,且腿长为 105cm ,头顶至脖子下
端的长度为 26 cm , 则其身高可能是
A. 165 cm B. 175 cm
C. 185 cm D. 190cm
在 [ — π, π的] 图像大致为
sin x x
函数 f(x)=
2
cos x x
专业资料
班-
12B-SX-0000022
_-
_______ :
-
绝密 ★ 启用前
2019 年普通高等学校招生全国统一考试
文科数学 全国 I 卷
本试卷共 23 小题,满分 150 分,考试用时 120 分钟
号学
(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福 建
)
_ - 注意事项:
___________________ :
12B-SX-0000022
附: 2
K (a
2
P( K ≥k)
2
n( ad bc)
.
b)(c d )(a c)(b d)
0.050
0.010
2019年高考全国I卷文科数学试卷(含答案)
2019年高考全国I卷试卷文科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
,则|x|=1.设x=3−i1+2iA.2B.√3C. √2D.1A=2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩CUA.{1,6}B.{1,7}C.{6,7}D.{1,6,7}0.2,b=20.2,c=0.20.3,则3.已知a=log2A.a<b<cB.a<c<bC.c<a<bD.b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是√5−12=0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此。
此外,最(√5−12。
美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是A.165 cmB.175 cmC.185 cmD.190 cm5.函数f(x)=sinx+xcosx+x 2的[-π,π]图像大致为6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生 7.tan225°=A.-2- √3B.-2+√3C.2- √3D.2+√38.已知非零向量a ,b 满足|a |=2|b |,且(a-b)⊥b ,则a 与b 的夹角为 A. π6 B. π3 C. 2π3 D. 5π69.右图是求12+12+1的程序框图,图中空白框中应填入A.A =12+A B.A =2+1AC. A =11+2A D. A =1+12A10.双曲线C :x 2a 2 - y 2b 2=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为A.2sin40°B.2cos40°C. 1sin50°D.1cos50°11. △ABC 的内角A 、B 、C 的边分别为a ,b ,c ,已知asinA- bsinB =4csinC ,cosA = -14,则bc =()A.6B.5C.4D.312.已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点,若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为A.x 22+y 2=1 B. x 23+y 22=1 C. x 24+y 23=1 D. x 25+y 24=1二、填空题:本题共4小题,每小题5分,共20分。
2019年高考全国Ⅰ卷文科数学试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试文科数学适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12i z -=+,则z =A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UBA =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的 长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断 臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至 肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿 长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cmB .175 cmC .185 cmD .190 cma b c <<a c b <<c a b <<b c a <<5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A . B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新 生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4 名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°=A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A+ C .A =112A + D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018—2019年度高三全国Ⅰ卷五省优创名校联考数学(文科)第Ⅰ卷一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,则下列能正确表示集合M ={0,1,2}和N ={x|x 2+2x =0}关系的韦恩(Venn )图是A .B .C .D .2.设复数z =2+i ,则25z z+= A .-5+3i B .-5-3i C .5+3i D .5-3i3.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是A .2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2018年1~4月的业务量同比增长率均超过50%,在3月最高C .从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长4.设x ,y 满足约束条件60330x y x x y -+⎧⎪⎨⎪+-⎩≥≤≥,则1y z x =+的取值范围是A .(-∞,-9]∪[0,+∞)B .(-∞,-11]∪[-2,+∞)C .[-9,0]D .[-11,-2] 5.函数211()ln ||22f x x x =+-的图象大致为 A . B . C . D .6.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为 A .4643π-B .64-4πC .64-6πD .64-8π7.有一程序框图如图所示,要求运行后输出的值为大于1000的最小数值,则在空白的判断框内可以填入的是 A .i <6 B .i <7 C .i <8 D .i <98.袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001 231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为A .19 B .318C .29D .5189.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知22()23sin a c b ab C +=+,则B =A .6π B .4πC .23πD .3π10.在直角坐标系xOy 中,F 是椭圆C :22221x y a b+=(a >b >0)的左焦点,A ,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为 A .22B .12 C .13D .1411.已知奇函数f (x )在R 上的导数为f′(x ),且当x ∈(-∞,0]时,f′(x )>1,则不等式f (2x -1)-f (x +2)≥x -3的解集为A .(3,+∞)B .[3,+∞)C .(-∞,3]D .(-∞,3)12.已知函数f (x )=3sin (ωx +φ)(ω>0,0<φ<π),()03f π-=,对任意x ∈R 恒有()|()|3f x f π≤,且在区间(15π,5π)上有且只有一个x 1使f (x 1)=3,则ω的最大值为 A .574 B .1114C .1054D .1174第Ⅱ卷二、填空题:本大题共4小题.将答案填在答题卡中的横线上.13.已知单位向量a ,b 的夹角为60°,则(2a +b )·(a -3b )=________. 14.253sin 50________43cos 20-︒=-︒. 15.已知正三棱柱ABC —A 1B 1C 1的高为6,AB =4,点D 为棱BB 1的中点,则四棱锥C —A 1ABD 的表面积是________.16.已知双曲线C :22221x y a b -=(a >0,b >0),圆M :222()4b x a y -+=.若双曲线C 的一条渐近线与圆M 相切,则当22147ln 2b a a +-取得最小值时,C 的实轴长为________. 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:17.设数列{a n }的前n 项和为S n ,a 1=3,且S n =na n +1-n 2-n . (1)求{a n }的通项公式;(2)若数列{b n}满足22121(1)nnnbn a++=-,求{b n}的前n项和T n.18.2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)(ⅰ)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.19.如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC =90°,AD=AS=2,AB=1,CD=3,点E在棱CS上,且CE=λCS.(1)若23λ=,证明:BE⊥CD;(2)若13λ=,求点E到平面SBD的距离.20.在直角坐标系xOy中,动圆P与圆Q:(x-2)2+y2=1外切,且圆P与直线x=-1相切,记动圆圆心P的轨迹为曲线C.(1)求曲线C的轨迹方程;(2)设过定点S(-2,0)的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点M(与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.21.已知函数()2ln af x x ax=-+-.(1)若函数f(x)在[1,+∞)上是单调递减函数,求a的取值范围;(2)当-2<a<0时,证明:对任意x∈(0,+∞),22e(1)ax aax-<-.(二)选考题:请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程]已知直线l的参数方程为2,2x my⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=48,其左焦点F在直线l上.(1)若直线l与椭圆C交于A,B两点,求|FA|+|FB|的值;(2)求椭圆C的内接矩形面积的最大值.23.[选修4—5:不等式选讲]已知函数f(x)=|x+2|-|ax-2|.(1)当a=2时,求不等式f(x)≥2x+1的解集;(2)若不等式f(x)>x-2对x∈(0,2)恒成立,求a的取值范围.2018~2019年度高三全国Ⅰ卷五省优创名校联考数学参考答案(文科)1.A 2.C 3.D 4.A 5.C 6.B 7.B 8.C 9.D 10.C 11.B 12.C 13.72- 14.215.2394336 16.417.解:(1)由条件知S n =na n +1-n 2-n ,① 当n =1时,a 2-a 1=2;当n≥2时,S n -1=(n -1)a n -(n -1)2-(n -1),② ①-②得a n =na n +1-(n -1)a n -2n , 整理得a n +1-a n =2.综上可知,数列{a n }是首项为3、公差为2的等差数列,从而得a n =2n +1. (2)由(1)得222221111[](22)4(1)n n b n n n n +==-++,所以22222221111111111[(1)()()][1]4223(1)4(1)44(1)n T n n n n =-+-++-=-=-+++L .18.解(1)平均数150.15250.2350.3450.15550.1(6575)0.0537x =⨯+⨯++⨯+⨯+⨯++⨯=. 前三组的频率之和为0.15+0.2+0.3=0.65,故中位数落在第3组,设中位数为x , 则(x -30)×0.03+0.15+0.2=0.5,解得x =35,即中位数为35.(2)(ⅰ)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a ,b ,c ,d ,年龄在[60,70)的有2人,设为x ,y .则从中任选2人共有如下15个基本事件:(a ,b ),(a ,c ),(a ,d ),(a ,x ),(a ,y ),(b ,c ),(b ,d ),(b ,x ),(b ,y ),(c ,d ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ). 至少有1人年龄不低于60岁的共有如下9个基本事件:(a ,x ),(a ,y ),(b ,x ),(b ,y ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ). 记“这2人中至少有1人年龄不低于60岁”为事件A , 故所求概率93()155P A ==. (ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88, 故可以估计,该小区年龄不超过80岁的成年人人数约为2000×0.88=1760. 19.(1)证明:因为23λ=,所以23CE CS =,在线段CD 上取一点F 使23CF CD =,连接EF ,BF ,则EF ∥SD 且DF =1.因为AB =1,AB ∥CD ,∠ADC =90°, 所以四边形ABFD 为矩形,所以CD ⊥BF . 又SA ⊥平面ABCD ,∠ADC =90°, 所以SA ⊥CD ,AD ⊥CD .因为AD∩SA =A ,所以CD ⊥平面SAD , 所以CD ⊥SD ,从而CD ⊥EF . 因为BF∩EF =F ,所以CD ⊥平面BEF . 又BE ⊂平面BEF ,所以CD ⊥BE . (2)解:由题设得,111()2332S BCD BCD V S SA CD AD SA -=⋅=⨯⨯⨯⨯=△, 又因为225SB SA AB =+=,225BD AB AD =+=,2222SD SA AD =+=,所以2211()622SBD S SD SB SD =⋅⋅-=△, 设点C 到平面SBD 的距离为h ,则由V S —BCD =V C —SBD得6h =,因为13CE CS =,所以点E 到平面SBD 的距离为22633h =.20.解:(1)设P (x ,y ),圆P 的半径为r , 因为动圆P 与圆Q :(x -2)2+y 2=1外切, 所以22(2)1x y r -+=+,①又动圆P 与直线x =-1相切,所以r =x +1,② 由①②消去r 得y 2=8x ,所以曲线C 的轨迹方程为y 2=8x .(2)假设存在曲线C 上的点M 满足题设条件,不妨设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),则2008y x =,2118y x =,2228y x =,1010108MA y y k x x y y -==-+,2020208MB y y k x x y y -==-+,所以120210200120128(2)88()MA MB y y y k k y y y y y y y y y y +++=+=+++++,③显然动直线l 的斜率存在且非零,设l :x =ty -2,联立方程组282y xx ty ⎧=⎨=-⎩,消去x 得y 2-8ty +16=0,由Δ>0得t >1或t <-1,所以y 1+y 2=8t ,y 1y 2=16,且y 1≠y 2, 代入③式得02008(82)816MA MB t y k k y ty ++=++,令02008(82)816t y m y ty +=++(m 为常数),整理得2000(864)(1616)0my t my y m -+-+=,④因为④式对任意t ∈(-∞,-1)∪(1,+∞)恒成立,所以0200864016160my my y m -=⎧⎪⎨-+=⎪⎩,所以024m y =⎧⎨=⎩或024m y =-⎧⎨=-⎩,即M (2,4)或M (2,-4),即存在曲线C 上的点M (2,4)或M (2,-4)满足题意. 21.(1)解:由题意得22()0af x x x '=--≤, 即a≥-2x 在[1,+∞)上恒成立, 所以a≥-2.(2)证明:由(1)可知2222()a x af x x x x+'=--=-, 所以f (x )在(0,2a -)上单调递增,在(2a-,+∞)上单调递减.因为-2<a <0,所以112a ax-<<-, 所以(1)(1)0a f f x -<=,即2ln(1)01a aa a x x--+-<-,即222ln(1)ln(1)a a ax a x x<-=--, 所以22e(1)a x aax-<-.22.解:(1)将cos ,sin x y ρθρθ=⎧⎨=⎩代入ρ2cos 2θ+3ρ2sin 2θ=48,得x 2+3y 2=48,即2214816x y +=, 因为c 2=48-16=32,所以F 的坐标为(42-,0), 又因为F 在直线l 上,所以42m =-把直线l 的参数方程242222x y t ⎧=-⎪⎪⎨⎪=⎪⎩代入x 2+3y 2=48, 化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8, 所以2121212||||||()4164843FA FB t t t t t t +=-=+-=+⨯=. (2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(43θ,4sinθ)(02θπ<<), 所以内接矩形的面积838sin 3232S θθθ=⋅=, 当4θπ=时,面积S 取得最大值3 23.解:(1)当a =2时,4,2()|2||22|3,214,1x x f x x x x x x x --⎧⎪=+--=-<<⎨⎪-+⎩≤≥,当x≤-2时,由x -4≥2x +1,解得x≤-5;当-2<x <1时,由3x≥2x +1,解得x ∈∅;当x≥1时,由-x +4≥2x +1,解得x =1.综上可得,原不等式的解集为{x|x≤-5或x =1}.(2)因为x ∈(0,2),所以f (x )>x -2等价于|ax -2|<4, 即等价于26a x x-<<, 所以由题设得26a x x-<<在x ∈(0,2)上恒成立, 又由x ∈(0,2),可知21x -<-,63x >, 所以-1≤a≤3,即a 的取值范围为[-1,3].。