化工原理第一章习题课

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、讨论题
例1:如图所示,在两个压强不 同的密闭容器A,B内充满了密 度为ρ的液体,两容器的上部与 下部分别连接两支规格相同的U 行管水银压差计,连接管内充满 密度为 ρ的液体。试回答: (1)pM和pN的关系; 1 p p (2)判断1-2,2-3,3-4及5-6, 6-7,7-8等对应截面上的压强是 否相等; (3)两压差计读数R与H的关 系。
解:1)取高位槽上液面为截面1,输水管出口外侧为截 面2,出口管中心线为基准面,在1-1’和2-2’间列柏努利 方程,可得:
2 u12 p2 u2 + + Z1 g = + + Z 2 g + ∑W f 1− 2 ρ 2 ρ 2 p1 = p2 = 0(表压) u1 = u2 ≈ 0
ቤተ መጻሕፍቲ ባይዱ
p1
将阻力公式代入 ,整理得:
N e = We m s = 242 × 10.37 = 2510 W = 2.51kW
泵的效率为60%,则泵的轴功率:
2.51 N= = = 4.18 ( kW ) η 0.6
Ne
例4:如本题附图所示,密度为950kg/m3、粘度为 1.24mPa·s的料液从高位槽送入塔中,高位槽内的液面 维持恒定,并高于塔的进料口4.5m,塔内表压强为 3.5×103Pa。送液管道的直径为45×2.5mm,长为35m (包括管件及阀门的当量长度,但不包括进、出口损失), 管壁的绝对粗糙度为0.2mm,试求输液量为若干m3/h。
7. 流体流过两个并联管路管1和2,两管内均呈层流。 两管的管长L1=L2、管内径d1=2d2,则体积流量V2/V1为 ( )。 A.1/2; B.1/4; C. 1/8; D.1/16。 (D) 8.流体在长为3m、高为2m的矩形管道内流动,则该矩 形管道的当量直径为( )。 A. 1.2m; B. 0.6m; C. 2.4m; D. 4.8m。 (C) 9.圆形直管内径d=100mm,一般情况下输水能力为( ) m3/h 。 A. 3; B. 30; C. 200; D. 300。
1 2 p1 1 2 p2 z1 g + u1 + + We = z 2 g + u 2 + + ΣW f 2 ρ 2 ρ
已知泵入口管的尺寸及碱液流速,可根据连续性方 程计算泵出口管中碱液的流速: d1 2 100 2 u2 = u1 ( ) = 1.2( ) = 2.45 (m / s) d2 70
l u2 h2 g = λ d 2
h g 2d u= 2 λl
0.5
10 × 9.807 × 2 × 0.05 = 0.025 × 100
0.5
= 1.98m / s
V=
πd 2u
4
3.14 × 0.052 × 1.98 = = 3.8877 × 10− 3 m3 / s = 14.0m3 / h 4
取ε=0.2mm,ε/d=0.2/40=0.005,在图1-28的阻力平 方区查得λ=0.03。将λ值代入式a计算u,即
由ε/d及Re值,再查图1-28,得到λ=0.0322,与原取 0.03有差别,进行第二次试差,解得u=1.656m/s, Re=5.08×104,λ=0.0322。于是u=1.656m/s即为所 求,故液体输送量为 试差方法二 根据流体性质初设u,按如下步骤进行计算。
(B)
二、计算
例1:如本题附图所示,蒸汽锅炉上装置一复式U形水 银测压计,截面2、4间充满水。已知对某基准面而言 各点的标高为z0=2.1m, z2=0.9m, z4=2.0m, z6=0.7m, z7=2.5m。 试求锅炉内水面上的蒸汽压强。
解:按静力学原理,同一种静止流体的连通器内、 同一水平面上的压强相等,故有:
对水平面5-6而言:
p3 = p4 = p2 − ρ g ( z4 − z2 )
例2:有一液位恒定的高位槽通过管路向水池供水(见 附图),高位槽内液面高度h1为1m,供水总高度h2为 10m,输水管内径50mm,总长度100m(包括所有局 部阻力的当量长度),λ=0.025。试求: 1) 供水量为多少? 2) 若此时在管垂直部分某处出现一直径为1mm的小孔, 有人说因虹吸现象,在某一高度范围内不会从小孔向外 流水,而还有人则认为水将从小孔流出。试推导证明哪 一种说法正确。
解:如图所示,取碱液池中液面为1-1’截面,塔顶喷嘴 入口处为2-2‘截面,并且以1-1‘截面为基准水平面。 在1-1‘和2-2’截面间列柏努利方程
p 2 − p1 1 2 2 We = ( z 2 − z1 ) g + (u 2 − u1 ) + + ΣW f 2 ρ 其中:z1=0;p1=0(表压);u1≈0 z2=20-1.5=18.5m; p2=29.4×103 Pa(表压)
ρ=1100 kg/m3, ΣWf=30.8 J/kg 将以上各值代入,可求得输送碱液所需的外加能量
1 29.4 × 103 + 30.8 = 242.0 ( J / kg ) We = 18.5 × 9.81 + × 2.452 + 2 1100
碱液的质量流量:
ms =
π
4 泵的有效功率:
d 2 2u2 ρ = 0.785 × 0.07 2 × 2.45 × 1100 = 10.37 (kg / s )
p 对水平面1-2而言: 2 = p1 = pa + ρi g ( z0 − z1 ) 对水平面3-4而言:
p6 = p5 = p4 + ρi g ( z4 − z5 ) 锅炉蒸汽压强 p = p6 − ρ g ( z7 − z6 ) = pa + ρi g ( z0 − z1 ) + ρi g ( z4 − z5 ) − ρ g ( z4 − z2 ) − ρ g ( z7 − z6 ) 则蒸汽的表压为
4.一转子流量计,当通过水流量为1m3/h时,测得该流 量计进、出间压强降为20Pa;当流量增加到1.5m3/h时, 相应的压强降 。 (不变) 5.在一水平变径管路中,在小管截面A和大管截面B连接 一U型压差计,当流体流过该管时,压差计读数R值反映( ). A.两截面间的压强差 ; B.两截面间的流动阻力; C.两截面间动压头变化;D. 突然扩大或缩小的阻力。 (A) 6.因次方析的目的在于( )。 A.得到各变量间的确切定量关系; B.用无因次数群 代替变量,使实验与关联简化;C.得到无因次数群间定 量关系; D.无需进行实验,即可得到关联式. (B)
解:该例为操作型试差计算题。计算过程如下: 以高位槽液面为上游截面1-1’,输液管出口内侧为下游 截面2-2’,并以截面2-2’的中心线为基准水平面。在两 截面间列柏努利方程式,即
将已知数据代入上两式,经整理得到
故需试差。 试差方法一: 先取ε 值,求 ε/d值,在阻力平方区查取λ,然后按如下 方框进行计算。
答:(1)由于管路及流动情况完全相同,故 :
(2)两管段的压强不相等。在a、b两截面间列柏努 利方程式并化简,得到
式中 表示a、b两截面间的垂直距离(即直管长度)。 同理,在c、d两截面之间列柏努利方程并化简,得到
(3)压差计读数反映了两管段的能量损失,故两管 段压差计的读数应相等。
一、 填空或选择 1.某设备表压为100kPa,则它的绝对压强为 kPa; 另一设备真空度为400mmHg,则它的绝对压强 。(当地大气压为101.33 kPa) 为 ( 201.33 ; 360mmHg ) 2.流体在钢管内作湍流流动时,摩擦系数λ与 和 有 关;若作完全湍流(阻力平方区),则λ仅与 有关。 (Re, ε/d , ε/d ) 3.从液面恒定的高位槽向常压容器加水,若将放水管路 上的阀门开度关小,则管内水流量将 ,管路的局部 ,管路总阻力将 。(设 阻力将 ,直管阻力将 动能项可忽略) (减小 , 增大,减小,不变)
)−
1.98 2 2
(1.5 − 0.025
) 0.05
显然,此式为单调增函数,且在 Z1-Z3=1m处,
ρ
= 6.8667 > 0
所以在Z1-Z3=1~9m时(即垂直管段任意高度处),
p3 − p a
ρ
>0

p3 > p a
表示管内静压高于大气压力,故不会出现虹吸现象, 水将从小孔流出。 讨论:判断水是否流出的依据是孔处压力的大小,若 讨论: 该处压力大于大气压力,则水从小孔流出;否则,水 不会流出。
2)仍取高位槽上液面为截面1,再取垂直管处任意一 点为截面3,在1-1’和3-3’间列柏努利方程,可得:
p1
2 p3 u 3 u12 + + Z1 g = + + Z 3 g + ∑ W f 1−3 ρ 2 ρ 2
2 2 2 u3 Z1 − Z 3 − 1 u3 u3 = (Z1 − Z 3 ) g − − (λ + 0.5 ) 2 d 2 2
答:(1)pM>pN。 (2)1-2,3-4,5-6,6-7为等压面(连续的同一介质 在同一水平面上)。 (3)R和H相等。 因 又 有:
由于L3=L2,所以: 即:R=H
例2:本题附图中所示的高位 槽液面维持恒定,管路中ab 和cd两段的长度、直径及粗糙 度均相同。某液体以一定流量 流过管路,液体在流动过程中 温度可视为不变。问:(1) 液体通过ab和cd两管段的能 量损失是否相等?(2)此两 管段的压强差是否相等?并写 出它们的表达式;(3)两U 管压差计的指示液相同,压差 计的读数是否相等?
例3: 流体输送机械功率的计算 某化工厂用泵将敞口槽中的碱液(密度为1100kg/m3) 输送至吸收塔顶,经喷嘴喷出,如附图所示。泵的入口 管为φ108×4mm的钢管,管中的流速为1.2m/s,出口管 为φ76×3mm的钢管。贮液池中碱液的深 度为1.5m,池底至塔顶喷 嘴入口处的垂直距离为 20m。碱液流经所有管路 的能量损失为30.8J/kg (不包括喷嘴),在喷嘴 入口处的压力为29.4kPa (表压)。设泵的效率为 60%,试求泵所需的功率。
ρ p3 − p a
p3 − p1
ρ
2 u3 = ( Z1 − Z 3 )( g − ) − (1.5 − λ ) d d 2 2
2 λ u3
= ( Z1 − Z 3 )(9.807 −
0.025 × 1.98 2
2 × 0.05 = ( Z1 − Z 3 )8.8269 − 1.9602
p3 − p a
p − pa = ρi g ( z0 − z1 + z4 − z5 ) − ρ g ( z4 − z2 + z7 − z6 ) = 13600 × 9.81× (2.1-0.9+2.0-0.7)-1000 × 9.81× (2.0-0.9+2.5-0.7) =3.05 ×105 Pa
p1 = p2 ; p3 = p4 ; p5 = p6
相关文档
最新文档