重庆一中2020-2021学年高一上学期第一次月考数学试卷(含答案)
2021届重庆一中高三上学期第一次月考数学试卷及答案
2021届重庆一中高三上学期第一次月考数学试卷★祝考试顺利★(含答案)本卷满分 150 分,考试时间 120 分钟一、单项选择题。
本大题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有1项是符合题目要求的.1. 设集合 A = {y |y =ln (1−x )} , B = {y |y =√4−2x },则 A ∩B= ( )A. [0,2)B. (0,2)C. [0,2]D. [0,1)2.a,b ∈(0,+∞), A =√a +√b , B =√a +b ,则 A,B 的大小关系是( )A. A<BB. A>BC. A ≤BD. A ≥ B3.已知直线 l 是曲线 y =√x +2x 的切线,则 l 的方程不可能是A.5x −2y +1=OB.4x −2y +1=OC.13x −6y +9=OD.9x − 4y + 4 = 04.中国传统扇文化有着极其深厚的底蕴。
一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为S 1 ,画面中剩余部分的面积为S 2,当 S 1 与S 2的比值为√5−12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A.(3−√5)πB. (√5−1)πC. (√5+1)πD. (√5−2)π 5. 若函数f (x )={a x ,2<x ≤a log a (x −2),x >a(其中a >0,且a ≠1)存在零点,则实数 a 的取值范围是 A.(12,1)U (1,3) B.(1,3] C.(2,3) D.(2,3]6. 己知0<ω≤2,函数f (x )=sin (ωx )−√3cos (ωx ),对任意x ∈R ,都有f (π3−x)=−f (x ),则 ω 的值为( )A. 12B. 1C.32D. 27. 函数f (x )=2cos x +sin 2x 的一个个单调递减区间是( )A.(π4,π2)B.(0,π6)C.(π2,π)D. (5π6,π)8.设函数 f (x )在 R 上存在导数f ′(x ),对任意的 x ∈R ,有f (x )+f (−x )=2cos x ,且在[0,+∞)上有f′(x)>−sin x ,则不等式f(x)−f(π2−x)≥cos x−sin x的解集是A.(−∞,π4] B.[π4,+∞) C.(−∞,π6] D.[π6,+∞)二、多项选择题。
重庆市第一中学校2022-2023学年高一上学期12月月考数学试题(含答案)
秘密★启用前2022~2023学年重庆一中上期学情调研高一数学试题卷注意事项:1.答卷前,考生务必将自己的姓名.准考证号码填写在答题卡上。
2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。
3.考试结束后,将答题卡交回。
一、选择题;本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.过两点()1,2-和()2,1-的直线的倾斜角为( ) A .πB .π2C .π3D .π42.设某厂去年的产值为1,从今年起,若该厂计划每年的产值比上年增长8%,则从今年起到第十年,该厂这十年的总产值为( ) A .91.08B .101.08C .()101.081 1.081 1.08--D .101 1.081 1.08--3.求过两点()()0,4,4,6A B ,且圆心在直线220x y --=上的圆的标准方程是( ) A .22(1(4)25)y x +++= B .22(4)(1)25x y ++-= C .22(4)(1)25x y -++=D .22(4)(1)25x y -+-=4.已知log a b c == ) A .b<c<aB .b a c <<C .c<a<bD .a b c <<5.函数f(x)=|x-2|-lnx 在定义域内零点的个数为( ) A .0B .1C .2D .36.某种汽车安全行驶的稳定性系数μ随使用年数t 的变化规律是0e t λμμ-=,其中0,μλ是正常数.经检测,当2t =时,00.9=u μ,则当稳定性系数降为00.5μ时,该种汽车已使用的年数为( )(结果精确到1,参考数据:lg20.3010≈,lg30.4771≈) A .10年B .11年C .12年D .13年7.已知(1)25f x x -=-,则(1)f =( ) A .3-B .1-C .1D .38.科学家以里氏震级来度量地震的强度,若设I 为地震时所散发出来的相对能量程度,则里氏震级γ可定义为0.6lg I γ=.2021年6月22日下午甲市发生里氏3.1级地震,2020年9月2日乙市发生里氏4.3级地震,则乙市地震所散发出来的能量与甲市地震所散发出来的能量的比值为( ) A .2B .10C .100D .10000二、选择题;本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列函数中,在区间()0,∞+内单调递增的是( ) A .1y x x=- B .2y x x =- C .ln y x x =+D .e x y =10.已知函数2()cos cos 26f x x x π⎛⎫=-- ⎪⎝⎭,则( )A .()f xB .()f x 的图象关于点7,06π⎛⎫⎪⎝⎭对称 C .()f x 图象的对称轴方程为5()122k x k ππ=+∈Z D .()f x 在[0,2]π上有4个零点11.对于方程2214x y m m+=-,下列说法中正确的是( )A .当04m <<时,方程表示椭圆B .当24m <<时,方程表示焦点在x 轴上的椭圆C .存在实数m ,使该方程表示双曲线D .存在实数m ,使该方程表示圆 12.设函数11()(1)ln (0)f x x x m m mx=+-+≠,则下列结论正确的是( ) A .当0m <时,min ()1f x <- B .当0m <时,()f x 有两个极值点 C .当01m <<时,()f x 在(1,)+∞上不单调D .当1m >时,存在唯一实数m 使得函数()()2g x f x =+恰有两个零点 三、填空题;本题共4小题,每小题5分,共20分13.设函数()2log ,>0=4,0x x x f x x ⎧⎨⎩…,则()()1f f -=___________.14.设m 为实数,若函数2()2=-+-f x x mx m 是偶函数,则m 的值是_______.15.著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为θ1 ℃,空气温度为θ0 ℃,则t 分钟后物体的温度θ(单位: ℃)满足:θ=θ0+(θ1-θ0)e -kt .若常数k =0.05,空气温度为30 ℃,某物体的温度从90 ℃下降到50 ℃,大约需要的时间为________分钟.(参考数据:ln 3≈1.1)16.已知在一次降雨过程中,某地降雨量y (单位:mm )与时间(单位:mm )的函数关系可近似表示为y 则在40min t =时的瞬时降雨强度(某一时刻降雨量的瞬间变化率)为__________mm/min. 四、解答题;本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.已知集合{}12|M x x =<<,集合{}|34=<<N x x . (1)求R R ,N M N ⋂痧;(2)设{}|2=<<+A x a x a ,若R R A N ⋃=ð,求实数a 的取值范围. 18.(1)已知1sin cos 5αα+=,若α是第二象限角,求sin cos αα-的值;(2)计算:2log 5112-⎛⎫⎪⎝⎭.19.已知数列{}n a 是等差数列,且12312a a a ++=,816a =.(1)若数列{}n a 中依次取出第2项,第4项,第6项,…,第2n 项,按原来顺序组成一个新数列{}n b ,试求出数列{}n b 的通项公式;(2)令3n n n c b =⋅,求数列{}n c 的前n 项和n S .20.已知抛物线2:2(0)C x py p =>的焦点为F ,点(2,1)P 在抛物线C 上. (1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 交抛物线C 于A 、B 两点,且线段AB 的中点为(2,3)M ,求直线l 的方程及||AB . 21.甲、乙两位消费者同时两次购买同一种物品,分别采用两种不同的策略,甲的策略是不考虑物品价格的升降,每次购买这种物品的数量一定;乙的策略是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.(1)若两次购买这种物品的价格分别为6元,4元,求甲两次购买这种物品平均价格和乙两次购买这种物品平均价格分别为多少;(2)设两次购买这种物品的价格分别为a 元,b 元(0,0)a b >>,问甲、乙谁的购物比较经济合算. 22.若不等式2(1)460a x x --+>的解集是{31}x x -<<. (1)解不等式22(2)0x a x a +-->;(2)b为何值时,230++≥的解集为R.ax bx参考答案1.D 斜率()1211211k --===----,又倾斜角[)0,πα∈,tan 1α=,π4α=.故选:D . 2.C因为去年的产值为1,该厂计划每年的产值比上年增长8%,所以从今年起到第十年,该厂这十年的产值构成一个首项为1.08,公比为1.08的等比数列, 所以该厂这十年的总产值为()101.081 1.081 1.08--故选:C 3.D设圆心坐标为C (2b +2,b ),由圆过两点A (0,4),B (4,6),可得|AC |=|BC |, 即()()()()222222042246b b b b =+-+-+-+-⎡⎤⎡⎤⎣⎦⎣⎦,解得1b =,可得圆心为(4,1),半径为5,则所求圆的方程为22(4)(1)25x y -+-=. 故选:D . 4.A在同一直角坐标系中画出22,,log xy y x y x ===的图象如下:所以2l og >>故选:A . 5.C分别画出函数y =ln x(x>0)和y =|x -2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2. 6.D由()220000.9e e t λμμμ--==,得e λ-=令()000.5e tλμμ-=,得0.5t =, 两边取常用对数,得lg 0.5lg 0.92t=,所以2lg 21312lg3t =≈-. 故选:D. 7.B设1t x =-,则1x t =+,∴()2(1)523f t t t =+-=-, ∴(1)2131f =⨯-=-. 故选:B . 8.C设乙市地震所散发出来的能量为1I ,甲市地震所散发出来的能量为2I , 则23.10.6lg I =,14.30.6lg I =,两式作差得121.20.6lg I I =, 故12lg2I I =,则21210100II ==. 故选:C. 9.CD对于A :因为1,==-y y x x在()0,∞+单调递减,所以1y x x=-在()0,∞+内单调递减,故A 错误. 对于B :2y x x =-的对称轴为12x =,开口向上,∴在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,故B 错误.对于C :因为ln ,x y x y ==在()0,∞+单调递增, 所以ln y x x =+在区间()0,∞+内单调递增,故C 正确. 对于D :因为e x y =在定义域R 上单调递增,所以e x y =在区间()0,∞+内单调递增,故D 正确. 故选:CD . 10.ACD1cos 23()cos 22x f x xπ⎛⎫+- ⎪⎝⎭=-111cos 22cos 2222x x x ⎛⎫=+- ⎪ ⎪⎝⎭3112cos 224232x x x π⎛⎫-+=-+ ⎪⎝⎭, 则()f xA 正确;易知()f x 图象的对称中心的纵坐标为12,B 错误; 令2(Z)32x k k πππ-=+∈,得5(Z)122k x k ππ=+∈, 此即()f x 图象的对称轴方程,C 正确;由1()2032f x x π⎛⎫-+= ⎪⎝⎭,得sin 23x π⎛⎫-= ⎪⎝⎭当[0,2]x πÎ时,112,333x πππ⎡⎤-∈-⎢⎥⎣⎦,作出函数11sin ,33y x x ππ⎛⎫⎡⎤=∈- ⎪⎢⎥⎣⎦⎝⎭的图象,如图所示:所以方程sin 23x π⎛⎫-= ⎪⎝⎭[0,2]π上有4个不同的实根,即()f x 在[0,2]π上有4个零点,D 正确. 故选:ACD. 11.BCD方程2214x ym m +=-,当0404m m m m>⎧⎪->⎨⎪≠-⎩,即24m <<或02m <<时表示椭圆,故A 不正确;当24m <<时,40m m >->,则方程表示焦点在x 轴上的椭圆,故B 正确; 当()40m m -<,即4m >或0m <时,方程表示双曲线,故C 正确; 当4m m =-,即2m =时,方程为222x y +=,表示圆,故D 正确. 故选: BCD 12.CD()()111ln 0f x x x m m mx ⎛⎫=+-+≠ ⎪⎝⎭的定义域为()0,∞+()()()22111111mx x m f x x mx mx +--+'=--=, ①当0m <时,易得()f x 在()0,1上单调递增,在()1,+∞上单调递减, 所以当1x =时,函数取得极大值,且为最大值,最大值为()()max 1111f x f m==-<-,()f x 没有最小值,故A 错误,B 错误;②当01m <<时,易得()f x 在11,m ⎛⎫ ⎪⎝⎭上单调递增,在1,m ⎛⎫+∞ ⎪⎝⎭上单调递减,故C 正确;③当1m >时,易得()f x 在10,m ⎛⎫ ⎪⎝⎭上单调递减,在1,1m ⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,()1111f m=->-,x →+∞,()f x →-∞, 所以()()2g x f x =+恰有两个零点()2f x ⇔=-恰有两个解12f m ⎛⎫⇔=- ⎪⎝⎭,即()31ln 10m m m -+-=,令()()()31ln 11h m m m m m =-+->,则()12ln h m m m'=--, 设()()()12ln 1g m h m m m m '==-->,则()210mg m m-'=<,()h m '单调递减. 由()110h '=>且m →+∞,()h m '→-∞知,存在()01,m ∈+∞使得()00.h m '= 易得()h m 在()01,m 上单调递增,在()0,m ∞+上单调递减,由()120h =>且()()333331140h e e e =-+-=-<,知存在唯一的()310,e m m ∈使得()10h m =,故D 正确. 故选:CD13.2-()1114,4f --== ()()2111log 244f f f ⎛⎫-===- ⎪⎝⎭,故答案为:2- 14.0因为函数2()2=-+-f x x mx m 是偶函数,所以()()f x f x -=, 所以()()2222x m x m x mx m ---+-=-+-,得20mx =,所以0m =, 故答案为:0. 15.22解:由题知θ0=30,θ1=90,θ=50, ∴50=30+(90-30)e -0.05t , ∴e -0.05t =13, ∴-0.05t =ln 13,∴0.05t =ln 3, ∴t =ln 30.05=20×ln 3≈22. 故答案为:22 16.14解:因为()y f t ==()f t '⎫'=⎪⎭∴1(40)4f ='=. 故在40min t =时的瞬时降雨强度(某一时刻降雨量的瞬间变化率)为14mm/min. 故答案为:1417.(1){R 3N x x ≤ð,或}4x ≥,{}R 12M N x x ⋂=<<ð (2)[]2,318.(1)因为2221(sin cos )sin cos 2sin cos 12sin cos 25αααααααα+=++=+=, 所以242sin cos 25αα=-, 所以()2222449sin cos sin cos 2sin cos 12sin cos 12525αααααααα-=+-=-=+=, 所以7sin cos 5αα-=±.又因为α是第二象限角,所以sin 0α>,cos 0α<,所以7sin cos 5αα-=. (2)2log 5112-⎛⎫ ⎪⎝⎭221log 5log 522225-===. 19.(1)等差数列{}n a 中,2123312a a a a =++=,解得24a =,公差28282a d a -==-, 则()()224222n a a n d n n =+-=+-⨯=,因此,2224n a n n =⨯=, 依题意,24n nb a n ==,所以数列{}n b 的通项公式4n b n =,*n ∈N .(2)由(1)知,343n nn n c b n =⋅=⋅,则()21438344343n nn S n n -=⋅+⋅+⋅⋅⋅+-⋅+⋅,因此,()2313438344343n n n S n n +=⋅+⋅+⋅⋅⋅+-⋅+⋅,()()231113243333434(13)413363143nn n n n n n S n n n +++--=+++⋅⋅⋅+-⋅-⋅=--⋅=⨯-1(42)36n n +=--⋅-,所以()12133n n S n +=-+.20.(1)F 的坐标为(0,1),准线方程为1y =- (2)1y x =+,||8AB =(1)点(2,1)P 在抛物线2:2C x py =上,42p ∴=,2p ∴=, F ∴的坐标为(0,1),抛物线C 的准线方程为1y =-.(2)由题可知,直线l 经过(0,1)F 与(2,3)M ,l ∴的斜率31120k -==-,∴直线l 的方程为1y x =+, 设A ,B 的坐标分别为11(,)x y ,22(,)x y ,则由抛物线的定义可知12||2AB y y =++,又AB 的中点为(2,3)M ,12326y y ∴+=⨯=,||628.AB ∴=+=21.(1)5,245;(2)乙的购物比较经济合算 . (1)设甲每次购买这种物品的数量为m ,乙每次购买这种物品所花的钱数为n , 所以甲两次购买这种物品平均价格为,645m m m m +=+, 乙两次购买这种物品平均价格为,224564n n n =+. (2)设甲每次购买这种物品的数量为m ,乙每次购买这种物品所花的钱数为n , 所以甲两次购买这种物品平均价格为,2am bm a b m m ++=+, 乙两次购买这种物品平均价格为22n ab n n a b a b =++,22222()42()022()2()2()a b ab a b ab a b ab a b a b a b a b a b ++-+---===≥++++, 所以乙的购物比较经济合算.22.(1){1x x <-或}32x >(2)[]6,6-(1)由题意得3-和1是方程2(1)460a x x --+=的两个根,则有43116311a a ⎧-+=⎪⎪-⎨⎪-⨯=⎪-⎩,解得3a =, 所以不等式22(2)0x a x a +-->化为2230x x -->,(1)(23)0x x +->, 解得1x <-或32x >, 所以不等式的解集为{1x x <-或}32x >(2)由(1)可知2330x bx ++≥的解集为R ,所以24330b ∆=-⨯⨯≤,解得66b -≤≤,所以b 的取值范围为[]6,6-。
重庆一中2020-2021学年度初2023届第一次月考试题(图片版无答案)
或推理步骤.
27.(4 分)将 −9,1 2 , 21, 0, − π , − 22 , −3.1415,10% 填在下列集合中,
3
27
负数集合:{
...};
整数集合:{
...};
正分数集合:{
...};
非负整数集合:{
...};
28.(8 分)作图题 (1)(5 分)请将下列各数表示在数轴上,并用“ < ”比较它们的大小。
.
2
14.单项式 −4x2 yz 的系数是
.
15. a,b 两数的积与 c 的 2 倍的差用代数式表示是
.
16.如果一个 n 棱柱有 12 个顶点,则这个棱柱有
条侧棱.
17.比较大小: −2 1 4
− 7 (用“>”“<”或“=”连接) 3
18.如果定义新的运算符号“#”为: a #b = a + 1 ,那么 (3# 2) # 2 =
有( ) A.1 个
B.2 个
C.3 个
D.4 个
9.如图所示的运算程席中,若开始输入的 x 值为 24,我们发现第 1 次输出的结果为 12,第
2 次输出的结果为 6,.....则第 1006 次输出的结果为(
)
A.6
B.3
C.24
10.若 x、y 互为相反数,且不等于零, n 为正整数.则正确的是( A. xn、yn 一定互为相反数
1. −4 的绝对值是(
)
A. 4
B. 1 4
C. −4
D. − 1 4
2. 用一个平面去截一个正方体,截面的形状不可能是(
A.三角形
B.正方形
C.六边形
) D. 圆
2021届重庆一中高高三上期第一次月考 数学试题
2020 年重庆一中高 2021 级高三上期第一次月考数学试题卷 2020.9本卷满分 150 分,考试时间 120 分钟一、单项选择题。
本大题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有1项是符合题目要求的.1. 设集合 A = {y |y =ln (1−x )} , B = {y |y =√4−2x },则 A ∩B= ( )A. [0,2)B. (0,2)C. [0,2]D. [0,1)2.a,b ∈(0,+∞), A =√a +√b , B =√a +b ,则 A ,B 的大小关系是() A. A<B B. A>B C. A ≤B D. A ≥ B3.已知直线 l 是曲线 y =√x +2x 的切线,则 l 的方程不可能是A.5x −2y +1=OB.4x −2y +1=OC.13x −6y +9=OD.9x − 4y + 4 = 04.中国传统扇文化有着极其深厚的底蕴。
一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为S 1 ,画面中剩余部分的面积为S 2,当 S 1 与S 2的比值为√5−12 时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为() A.(3−√5)π B. (√5−1)πC. (√5+1)πD. (√5−2)π 5. 若函数f (x )={a x ,2<x ≤a log a (x −2),x >a(其中a >0,且a ≠1)存在零点,则实数 a 的取值范围是 A.(12,1)U (1,3) B.(1,3] C.(2,3) D.(2,3]6. 己知0<ω≤2,函数f (x )=sin (ωx )−√3cos (ωx ),对任意x ∈R ,都有f (π3−x)=−f (x ),则 ω 的值为() A. 12 B. 1 C.32 D. 27. 函数f (x )=2cos x +sin 2x 的一个个单调递减区间是()A.(π4,π2)B.(0,π6)C.(π2,π)D. (5π6,π) 8.设函数 f (x )在 R 上存在导数f ′(x ),对任意的 x ∈R ,有f (x )+f (−x )=2cos x ,且在 [0,+∞)上有f ′(x )>−sin x ,则不等式 f (x )−f (π2−x)≥cos x −sin x 的解集是 A.(−∞,π4] B.[π4,+∞) C.(−∞,π6] D.[π6,+∞)二、多项选择题。
2020-2021学年重庆第一中学高一数学理月考试卷含解析
2020-2021学年重庆第一中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数零点个数为( )(A)1 (B)2 (C)3 (D)4参考答案:C2. 函数在上的最大值为()A.2 B.1 C. D.无最大值参考答案:3. 若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为()A.B.2 C.D.参考答案:A4. 设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a参考答案:B【考点】对数值大小的比较;有理数指数幂的化简求值.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出结论.【解答】解:∵,0<log32<1,lg(sin2)<lg1=0.∴a>1,0<c<1,b<0.∴b<c<a.故选B.【点评】本题考查了指数函数和对数函数的单调性,属于基础题.5. 一个算法的程序框图如上图所示,若该程序输出的结果是,则判断框中应填入的条件是()A.? B.?C.?D.?参考答案:D6. 若函数f(x)=lnx+2x﹣3,则f(x)的零点所在区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)参考答案:B【考点】函数零点的判定定理.【分析】判断函数的单调性与连续性,利用零点判定定理求解即可.【解答】解:函数f(x)=lnx+2x﹣3,在x>0时是连续增函数,因为f(1)=2﹣3=﹣1<0,f(2)=ln2+4﹣3=ln2+1>0,所以f(1)f(2)<0,由零点判定定理可知,函数的零点在(1,2).故选:B.7. 下列函数中,周期为2π的是()A.y=sin B.y=|sin| C.y=cos2x D.y=|sin2x|参考答案:B【考点】H1:三角函数的周期性及其求法.【分析】根据函数y=Asin(ωx+φ)的周期为,函数y=|Asin(ωx+φ)|的周期为?,得出结论.【解答】解:由于函数y=sin的最小正周期为=4π,故排除A;根据函数y=|sin|的最小正周期为=2π,故B中的函数满足条件;由于y=cos2x的最小正周期为=π,故排除C;由于y=|sin2x|的最小正周期为?=,故排除D,故选:B.【点评】本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,函数y=|Asin(ωx+φ)|的周期为?,属于基础题.8. 已知向量,,,的夹角为45°,若,则()A. B. C. 2 D. 3参考答案:C【分析】利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9. 设,,,则的大小关系是()A. B. C. D.参考答案:C10. 将函数的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移个单位,所得到的图象的解析式是()A. B. C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 如果一个等差数列前5项的和等于10,前10项的和等于50,那么它前15项的和等于 .参考答案:120略12. 已知一个扇形的周长为,圆心角为,则此扇形的面积为_________________.参考答案:略13. 已知tanα=3,则的值为.参考答案:【考点】GH:同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tanα=3,则==,故答案为:.14. 公元五世纪张丘建所著《张丘建算经》卷中第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织布的增加量为尺.(1匹=4丈,1丈=10尺)参考答案:设该女子织布每天增加尺,由题意知,尺,尺又由等差数列前项和公式得,解得尺15. 幂函数的图象经过点,则的值为__________.参考答案:216. (5分)一个正方体的顶点都在一个球面上,已知这个球的表面积为3π,则正方体的棱长.参考答案:1考点:点、线、面间的距离计算.专题:计算题;空间位置关系与距离.分析:先确定球的半径,再利用正方体的对角线为球的直径,即可求得结论.解答:∵球的表面积为3π,∴球的半径为∵正方体的顶点都在一个球面上,∴正方体的对角线为球的直径设正方体的棱长为a,则∴a=1故答案为:1点评:本题考查球的内接几何体,考查学生的计算能力,属于基础题.17._______________.参考答案:略三、解答题:本大题共5小题,共72分。
重庆一中2021届高三上学期第一次月考数学试题 Word版含答案
2020 年重庆一中高 2021 级高三上期第一次月考数学试题卷 2020.9本卷满分 150 分,考试时间 120 分钟一、单项选择题。
本大题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有1项是符合题目要求的.1. 设集合 A = {y |y =ln (1−x )} , B = {y |y =√4−2x },则 A ∩B= ( )A. [0,2)B. (0,2)C. [0,2]D. [0,1)2.a,b ∈(0,+∞), A =√a +√b , B =√a +b ,则 A ,B 的大小关系是() A. A<B B. A>B C. A ≤B D. A ≥ B3.已知直线 l 是曲线 y =√x +2x 的切线,则 l 的方程不可能是A.5x −2y +1=OB.4x −2y +1=OC.13x −6y +9=OD.9x − 4y + 4 = 04.中国传统扇文化有着极其深厚的底蕴。
一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为S 1 ,画面中剩余部分的面积为S 2,当 S 1 与S 2的比值为√5−12 时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为() A.(3−√5)π B. (√5−1)πC. (√5+1)πD. (√5−2)π 5. 若函数f (x )={a x ,2<x ≤a log a (x −2),x >a(其中a >0,且a ≠1)存在零点,则实数 a 的取值范围是 A.(12,1)U (1,3) B.(1,3] C.(2,3) D.(2,3]6. 己知0<ω≤2,函数f (x )=sin (ωx )−√3cos (ωx ),对任意x ∈R ,都有f (π3−x)=−f (x ),则 ω 的值为() A. 12 B. 1 C.32 D. 27. 函数f (x )=2cos x +sin 2x 的一个个单调递减区间是()A.(π4,π2)B.(0,π6)C.(π2,π)D. (5π6,π) 8.设函数 f (x )在 R 上存在导数f ′(x ),对任意的 x ∈R ,有f (x )+f (−x )=2cos x ,且在 [0,+∞)上有f ′(x )>−sin x ,则不等式 f (x )−f (π2−x)≥cos x −sin x 的解集是A.(−∞,π4]B.[π4,+∞)C.(−∞,π6]D.[π6,+∞)二、多项选择题。
人教新课标版数学高一-重庆一中2020至2021学年高一上学期期中数学试卷
重庆一中2020-2021学年高一上学期期中数学试卷一、选择题(每题5分,共50分.每题只有一个正确答案)1.(5分)以下表示正确的是()A.∅=0 B.∅={0} C.∅∈{0} D.∅⊆{0}2.(5分)函数f(x)=﹣ln(2﹣x)的定义域为()A.[﹣1,2)B.(﹣1,+∞)C.(﹣1,2)D.(2,+∞)3.(5分)函数的图象()A.关于y轴对称B.关于x轴对称C.关于原点对称D.关于直线y=x对称4.(5分)已知a=,b=log2,c=,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a5.(5分)已知幂函数f(x)的图象经过点(4,2),则f(x)的增区间为()A.(﹣∞,+∞)B.(﹣∞,0)C.(0,+∞)D.(1,+∞)6.(5分)x>1的充分不必要条件是()A.x>0 B.x≥1 C.x=0 D.x=27.(5分)已知f(+1)=x+2,且f(a)=3,则实数a的值是()A.±2 B.2C.﹣2 D.48.(5分)函数,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围为()A.(﹣5,4]B.(﹣5,3)C.(﹣1,4)D.(﹣1,3]9.(5分)已知函数y=lg[(a2﹣1)x2﹣2(a﹣1)x+3]的值域为R,则实数a的取值范围是()A.[﹣2,1]B.[﹣2,﹣1]C.(﹣2,1)D.(﹣∞,﹣2)∪[1,+∞)10.(5分)已知定义在R上的函数f(x)满足f[f(x)]=xf(x)+1,则方程f(x)=0的实根个数为()A.0B.1C.2D.4二、填空题(每小题5分,共25分)11.(5分)函数y=x2+1,x∈[﹣1,2]的值域为.12.(5分)已知函数f(x)=+a为奇函数,则常数a=.13.(5分)函数y=log2(4x﹣x2)的递增区间是.14.(5分)一元二次不等式ax2+bx+c>0的解集为,对于a,b,c有以下几个结论:①a>0,②b>0,③c>0,④a+b+c>0,⑤a﹣b+c>0.其中正确结论的序号是.15.(5分)已知函数f(x)=mx2﹣2(m+n)x+n,(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1﹣x2|的取值范围是.三、解答题(共75分)16.(13分)计算下列各式:(要求写出必要的运算步骤)(1);(2)3.17.(13分)已知集合A={x|x2﹣x﹣2>0},B={x|2x2+(2k+5)x+5k<0};(1)若k=﹣1时,求A∩B;(2)若A∪B=R,求实数k的取值范围.18.(13分)已知函数f(x)=x﹣,x∈(0,+∞),且f(2)=.(1)用定义证明函数f(x)在其定义域上为增函数;(2)若a>0,解关于x的不等式f(3x﹣2﹣1)<f(9ax﹣1).19.(12分)已知函数f(x)=ax2+2x+c,(a,c∈N*)满足①f(1)=5;②6<f(2)<11.(1)求函数f(x)的解析表达式;(2)若对任意x∈[1,2],都有f(x)﹣2mx≥1成立,求实数m的取值范围.20.(12分)已知函数f(x)=,a∈R.(1)若f(x)在[a,+∞)上为减函数,求a的取值范围;(2)若关于x的方程f(x)=(x+3)﹣1在(1,3)内有两不等实根,求a的取值范围.21.(12分)设函数f(x)满足:①对任意实数m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);②对任意m∈R,有f(1+m)=f(1﹣m);③f(x)不恒为0,且当x∈(0,1]时,f(x)<1.(1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并给出你的证明;(3)定义:“若存在非零常数T,使得对函数F(x)定义域中的任意一个x,均有F(x+T)=F(x),则称F(x)为以T为周期的周期函数”.试证明:函数f(x)为周期函数,并求出的值.重庆一中2020-2021学年高一上学期期中数学试卷参考答案与试题解析一、选择题(每题5分,共50分.每题只有一个正确答案)1.(5分)以下表示正确的是()A.∅=0 B.∅={0} C.∅∈{0} D.∅⊆{0}考点:集合的包含关系判断及应用.专题:集合.分析:本题考察集合与集合,集合与元素间的关系,要注意空集∅,然后注意判断.解答:解:A,空集∅只能等于集合,等于0,不正确,B,{0}中有一个元素0,不等于∅,不正确,C,{0}中没有元素∅,不能使用∈符号表示其关系,不正确,D,∅是任意集合的子集,D正确,故选:D.点评:∅是集合,但不含有任何元素,它是任意集合的子集.2.(5分)函数f(x)=﹣ln(2﹣x)的定义域为()A.[﹣1,2)B.(﹣1,+∞)C.(﹣1,2)D.(2,+∞)考点:对数函数的定义域.专题:函数的性质及应用.分析:根据函数f(x)的解析式,列出使函数解析式有意义的不等式组,求出解集即可.解答:解;∵函数f(x)=﹣ln(2﹣x),∴;解得﹣1≤x<2,∴f(x)的定义域为[﹣1,2).故选A.点评:本题考查了求函数定义域的问题,解题时应根据函数f(x)的解析式,列出使函数解析式有意义的不等式组,求出解集来.3.(5分)函数的图象()A.关于y轴对称B.关于x轴对称C.关于原点对称D.关于直线y=x对称考点:奇偶函数图象的对称性.专题:函数的性质及应用.分析:将函数进行化简,利用函数的奇偶性的定义进行判断.解答:解:因为═,所以f(﹣x)=2﹣x+2x=2x+2﹣x=f(x),所以函数f(x)是偶函数,即函数图象关于y轴对称.故选A.点评:本题主要考查函数奇偶性和函数图象的关系,利用函数奇偶性的定义判断函数的奇偶性是解决本题的关键.4.(5分)已知a=,b=log2,c=,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:判断a、b、c与1,0的大小,即可得到结果.解答:解:a=∈(0,1),b=log2<0,c=log>1.∴c>a>b.故选:C.点评:本题考查函数值的大小比较,基本知识的考查.5.(5分)已知幂函数f(x)的图象经过点(4,2),则f(x)的增区间为()A.(﹣∞,+∞)B.(﹣∞,0)C.(0,+∞)D.(1,+∞)考点:幂函数的单调性、奇偶性及其应用.专题:计算题;函数的性质及应用.分析:设幂函数f(x)=x n,代入点(4,2),解出n,再判断单调增区间.解答:解:设幂函数f(x)=x n,则4n=2,解得,n=,即有f(x)=,则有x≥0,则增区间为(0,+∞).故选C.点评:本题考查幂函数的解析式和单调区间,注意运用待定系数法,属于基础题.6.(5分)x>1的充分不必要条件是()A.x>0 B.x≥1 C.x=0 D.x=2考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用充分必要条件的定义判断.解答:解:根据充分必要条件的定义可判断:x=2,是x>1的充分不必要条件,故选:D点评:本题考查了充分必要条件的定义,属于容易题.7.(5分)已知f(+1)=x+2,且f(a)=3,则实数a的值是()A.±2 B.2C.﹣2 D.4考点:函数的值.专题:函数的性质及应用.分析:设,则x=(t﹣1)2,t≥1,从而f(t)=(t﹣1)2+2t﹣2=t2﹣1,由此能求出a.解答:解:∵f(+1)=x+2,且f(a)=3,设,则x=(t﹣1)2,t≥1,∴f(t)=(t﹣1)2+2t﹣2=t2﹣1,∴a2﹣1=3,解得a=2或a=﹣2(舍).故选:B.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.8.(5分)函数,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围为()A.(﹣5,4]B.(﹣5,3)C.(﹣1,4)D.(﹣1,3]考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:先画出函数的图象,得到x2+x3的值,求出x1的取值范围,从而得到答案.解答:解:画出函数f(x)的图象,如图示:,不妨设则x1<x2<x3,则x2+x3=4,﹣5<x1≤﹣1,∴﹣1<x1+x2+x3≤3,故选:D.点评:本题考查了函数的零点问题,考查了函数的对称性,是一道中档题.9.(5分)已知函数y=lg[(a2﹣1)x2﹣2(a﹣1)x+3]的值域为R,则实数a的取值范围是()A.[﹣2,1]B.[﹣2,﹣1]C.(﹣2,1)D.(﹣∞,﹣2)∪[1,+∞)考点:一元二次不等式的解法.专题:函数的性质及应用.分析:根据题意,应使对数函数的真数取到所有的正数,由此讨论真数的值域即可.解答:解;∵函数y=lg[(a2﹣1)x2﹣2(a﹣1)x+3]的值域为R,∴当a2﹣1=0时,a=1或a=﹣1,验证a=1时不成立;当a2﹣1≠0时,,解得﹣2≤a<﹣1;综上,﹣2≤a≤﹣1,∴实数a的取值范围是[﹣2,﹣1].故选:B.点评:本题考查了对数函数的应用问题,解题时应根据理解数函数的解析式以及定义域和值域是什么,属于基础题.10.(5分)已知定义在R上的函数f(x)满足f[f(x)]=xf(x)+1,则方程f(x)=0的实根个数为()A.0B.1C.2D.4考点:根的存在性及根的个数判断.分析:设设函数的零点为x0,则f(x0)=0,赋值思想:x=0,代入f[f(x)]=xf(x)+1可得f(1)=1,x=1,代入f[f(x)]=xf(x)+1可得:f[f(1)]=1×f(1)+1,即f(1)=1×1+1=2,与f(1)=1,矛盾,判断无零点.解答:解:∵f[f(x)]=xf(x)+1,∴设函数的零点为x0,则f(x0)=0,∴f[f(x0)]=x0f(x0)+1,f(0)=x0×0+1=1,把x=0代入f[f(x)]=xf(x)+1可得f(1)=1,x=1,代入f[f(x)]=xf(x)+1可得:f[f(1)]=1×f(1)+1,即f(1)=1×1+1=2,与f(1)=1,矛盾.∴函数f(x)无零点,方程f(x)=0的实根个数为0故选:A点评:本题考查了抽象函数的零点的求解判断,赋值思想,反正法,属于难题.二、填空题(每小题5分,共25分)11.(5分)函数y=x2+1,x∈[﹣1,2]的值域为[1,5].考点:二次函数的性质.专题:计算题;函数的性质及应用.分析:函数y=x2+1,x∈[﹣1,2]在[﹣1,0]上递减,在[0,2]上递增,计算即可得到最值和值域.解答:解:函数y=x2+1,x∈[﹣1,2]在[﹣1,0]上递减,在[0,2]上递增,则x=0取最小为1,x=﹣1时,y=2,x=2时,y=5.则最大为5.则值域为:[1,5].故答案为:[1,5].点评:本题考查二次函数在闭区间上的最值,注意对称轴和区间的关系,运用单调性解题,属于基础题和易错题.12.(5分)已知函数f(x)=+a为奇函数,则常数a=.考点:有理数指数幂的运算性质;函数奇偶性的性质.专题:函数的性质及应用.分析:运用函数的性质得出f(﹣x)=﹣f(x),f(0)=0,代入即可求解.解答:解:∵函数f(x)=+a为奇函数,∴f(﹣x)=﹣f(x),∴f(0)=0,+a=0,a=,故答案为:.点评:本题考查了函数的定义、性质,属于容易题.13.(5分)函数y=log2(4x﹣x2)的递增区间是(0,2].考点:对数函数的单调性与特殊点;二次函数的性质.专题:计算题.分析:由﹣x2+4x>0可求定义域,根据复合函数的单调性,要求函数y=log2(﹣x2+4x)的单调增区间,只要求t=﹣x2+4x在0<t≤4的单调增区间.解答:解:由﹣x2+4x>0,得0<x<4,(2分)即定义域为x∈(0,4).设t=﹣x2+4x(0<t≤4),则当x∈(0,2]时,t为增函数;(8分)又y=log2t(0<t≤4)也为增函数,(9分)故函数的单调递增区间为(0,2].(10分)故答案为:(0,2].点评:本题主要考查了对数函数域二次函数复合而成的复合函数的定义域、单调区间的求解,解题的关键是灵活利用对数函数的定义域及复合函数的单调性.14.(5分)一元二次不等式ax2+bx+c>0的解集为,对于a,b,c有以下几个结论:①a>0,②b>0,③c>0,④a+b+c>0,⑤a﹣b+c>0.其中正确结论的序号是(2),(3),(4).考点:一元二次不等式的应用.专题:计算题.分析:由题意知:x=,x=2是方程ax2+bx+c=0的两根,由韦达定理可得到系数a,b,c之间的关系.结合函数的图象可以解决.解答:解:由题意,x=,x=2是方程ax2+bx+c=0的两根,且开口向下,利用函数的图象可知,f(1)>0,f(﹣1)<0,又对称轴为,∴b>0,故答案为:(2),(3),(4)点评:本题主要考查一元二次不等式的运用,应注意不等式的解集与方程解之间的关系,同时应正确利用函数的图象.15.(5分)已知函数f(x)=mx2﹣2(m+n)x+n,(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1﹣x2|的取值范围是[,2).考点:二次函数的性质.专题:计算题;函数的性质及应用.分析:由f(0)•f(1)>0,即n(m+n)<0,再由二次方程的韦达定理,得到|x1﹣x2|===2=2,再由﹣1<<0,即可得到范围.解答:解:函数f(x)=mx2﹣2(m+n)x+n,(m≠0)满足f(0)•f(1)>0,即有n(﹣m﹣n)>0,即n(m+n)<0,由于x1,x2是方程f(x)=0的两根,则4(m+n)2﹣4mn>0,x1+x2=,x1x2=,则|x1﹣x2|===2=2,由于n(m+n)<0,即有<﹣1,则﹣1<<0,当,取得最小值2=,→0时,|x1﹣x2|→2,则有|x1﹣x2|∈[,2).故答案为:[,2).点评:本题考查二次函数的值域的求法,考查二次方程的韦达定理和运用,考查运算能力,属于中档题.三、解答题(共75分)16.(13分)计算下列各式:(要求写出必要的运算步骤)(1);(2)3.考点:对数的运算性质.专题:函数的性质及应用.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣62+﹣+1=﹣36+64﹣+1=32.(2)原式=•log43=+===1.点评:本题考查了指数幂与对数的运算法则和换底公式,属于基础题.17.(13分)已知集合A={x|x2﹣x﹣2>0},B={x|2x2+(2k+5)x+5k<0};(1)若k=﹣1时,求A∩B;(2)若A∪B=R,求实数k的取值范围.考点:子集与交集、并集运算的转换.专题:集合.分析:(1)先解出A=(﹣∞,﹣1)∪(2,+∞),将k=﹣1带入集合B并解得B=(),所以进行交集的运算即可得到A∩B;(2)2x2+(2k+5)x+5k=0的两实数根为﹣k,,所以通过讨论k可得到B=,所以根据A∪B=R即可得到k<﹣2,所以便求出了k的取值范围.解答:解:(1)由已知得,A=(﹣∞,﹣1)∪(2,+∞);当k=﹣1时,B={x|2x2+3x﹣5<0}=;∴;(2)由于方程2x2+(2k+5)x+5k=0的两根为﹣k,;∴;∵A∪B=R;∴;∴k<﹣2;∴实数k的取值范围为(﹣∞,﹣2).点评:考查解一元二次不等式,集合的交集运算,以及并集的概念及运算.18.(13分)已知函数f(x)=x﹣,x∈(0,+∞),且f(2)=.(1)用定义证明函数f(x)在其定义域上为增函数;(2)若a>0,解关于x的不等式f(3x﹣2﹣1)<f(9ax﹣1).考点:指数函数综合题.专题:函数的性质及应用.分析:(1)得m=1,根据,判断出即可.(2)等价于0<3x﹣2﹣1<9ax﹣1,求解,分类讨论分解即可得出解集.解答:解:(1)由得m=1,∴.对任0<x1<x2,即f(x2)>f(x1),故f(x)在定义域(0,+∞)上为增函数;(2)由(1)知,f(3x﹣2﹣1)<f(9ax﹣1)等价于0<3x﹣2﹣1<9ax﹣1,即.当1﹣2a>0即时,由于,此时;当1﹣2a=0即时,x>2;当1﹣2a<0,即时,,此时x>2;所以当时,不等式解集为;当时;解集为(2,+∞).点评:本题考查了指数函数的性质,运用不等式求解问题,分类讨论,属于中档题.19.(12分)已知函数f(x)=ax2+2x+c,(a,c∈N*)满足①f(1)=5;②6<f(2)<11.(1)求函数f(x)的解析表达式;(2)若对任意x∈[1,2],都有f(x)﹣2mx≥1成立,求实数m的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)f(1)=5可得c=3﹣a.①,由6<f(2)<11,得6<4a+c+4<11,②联立①②可求得a,c,进而可得函数f(x)的解析表达式;(2)法一:设g(x)=f(x)﹣2mx﹣1=x2﹣2(m﹣1)x+1,x∈[1,2],则由已知得:当m﹣1≤1即m≤2时,g min(x)=g(1)=4﹣2m≥0,解得m的取值范围.(2)法二:不等式f(x)﹣2mx≥1恒成立等价于2m﹣2≤x+在[1,2]上恒成立.只需求出(x+)min.解答:解:(1)∵f(1)=5∴5=a+c+2,即c=3﹣a,又∵6<f(2)<11∴6<4a+c+4<11,∴∴,又∵a∈N*,∴a=1,c=2.所以f(x)=x2+2x+2.(2)法一:设g(x)=f(x)﹣2mx﹣1=x2﹣2(m﹣1)x+1,x∈[1,2],则由已知得:当m﹣1≤1即m≤2时,g min(x)=g(1)=4﹣2m≥0,此时m≤2;当1<m﹣1<2即2<m<3时,△≤0,解得:无解;当m﹣1≥2即m≥3时,g min(x)=g(2)=9﹣4m≥0,此时无解.综上所述,m的取值范围为(﹣∞,2].法二:由已知得,在x∈[1,2]上恒成立.由于在[1,2]上单调递增,所以,故2(m﹣1)≤2,即m≤2.点评:本题考查二次函数的性质、二次不等式恒成立,考查转化思想,属中档题.20.(12分)已知函数f(x)=,a∈R.(1)若f(x)在[a,+∞)上为减函数,求a的取值范围;(2)若关于x的方程f(x)=(x+3)﹣1在(1,3)内有两不等实根,求a的取值范围.考点:复合函数的单调性;对数函数图象与性质的综合应用.专题:函数的性质及应用;不等式的解法及应用.分析:(1)由真数在[a,+∞)上为增函数且恒大于0列不等式组求得a的取值范围;(2)由对数的运算性质化简,得到ax2﹣4ax+2=0在(1,3)内有两不等实根,然后借助于“三个二次”的结合列不等式组得答案.解答:解:(1)要使f(x)在[a,+∞)上为减函数,一方面g(x)=x2﹣2(2a﹣1)x+8递增,另一方面g(x)>0,∴2a﹣1≤a且g(a)=a2﹣2a(2a﹣1)+8>0,解得;(2)由已知得=(x+3)﹣1在(1,3)内有两不等实根,即x2﹣4ax+2=0在(1,3)内有两不等实根,令F(x)=x2﹣4ax+2,则,即,解之得.点评:本题考查了复合函数的单调性,考查了对数的运算性质,训练了利用“三个二次”的结合求解参数的范围,是中档题.21.(12分)设函数f(x)满足:①对任意实数m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);②对任意m∈R,有f(1+m)=f(1﹣m);③f(x)不恒为0,且当x∈(0,1]时,f(x)<1.(1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并给出你的证明;(3)定义:“若存在非零常数T,使得对函数F(x)定义域中的任意一个x,均有F(x+T)=F(x),则称F(x)为以T为周期的周期函数”.试证明:函数f(x)为周期函数,并求出的值.考点:函数的周期性;抽象函数及其应用.专题:计算题;函数的性质及应用.分析:(1)由于f(x)不恒为0,故存在x0,使f(x0)≠0,令m=x0,n=0,可得f(0),令m=n=1,即得f(1);(2)令m=0,n=x,由条件,即可得到奇偶性;(3)由f(1+m)=f(1﹣m)得f(﹣x)=f(2+x),又f(x)为偶函数,则f(x+2)=f(x),即f (x)以2为周期的周期函数,运用周期,即可得到所求值.解答:解:(1)由于f(x)不恒为0,故存在x0,使f(x0)≠0,令m=x0,n=0,则f(x0)+f(x0)=2f(x0)f(0),则f(0)=1.令m=n=1,则f(2)+f(0)=2f2(1),又f(0)=f(2),则f2(1)=1,则f(1)=±1,由已知,f(1)<1,故f(1)=﹣1;(2)令m=0,n=x,得,f(x)+f(﹣x)=2f(0)f(x)=2f(x),即有f(﹣x)=f(x),即有f(x)为偶函数;(3)由f(1+m)=f(1﹣m)得f(﹣x)=f(2+x),又f(x)为偶函数,则f(x+2)=f(x),即f(x)以2为周期的周期函数,令m=n=,f()+f(0)=2f2(),即f()+1=2f2(),再令m=,n=得,f(1)+f()=2f()f(),即f()﹣1=2f()f().而f()<1,解得,f()=,f()=﹣,由条件得,f()=f(),f()=f(),故f()+f()+…+f()=0,f(x)以2为周期的周期函数,则=336×0+f()=f()=.点评:本题考查函数的周期性和奇偶性及运用,考查运算能力,考查抽象函数的解决方法:赋值法,属于中档题.。
2020-2021学年重庆市某校高一(上)第一次月考数学试卷(有答案)
2020-2021学年重庆市某校高一(上)第一次月考数学试卷一、单选题(本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列关系正确的是()A.{0}∈{0, 1, 2}B.{0, 1}≠{1, 0}C.{0, 1}⊆{(0, 1)}D.⌀⊆{0, 1}2. 已知集合A={1, 3a},B={a, b},若A∩B={13},则a2−b2=()A.0B.43C.89D.2√233. 设x>0,y>0,M=x+y1+x+y ,N=x1+x+y1+y,则M,N的大小关系是()A.M=NB.M<NC.M>ND.不能确定4. 若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补,记φ(a, b)=√a2+b2−a−b,那么φ(a, b)=0是a与b互补的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5. 已知不等式ax2−bx−1≥0的解集是{x|−12≤x≤−13},则不等式x2−bx−a<0的解集是()A.{x|2<x<3}B.{x|x<2或x>3}C.{x|13<x<12}D.{x|x<13x>12}6. 若a>0,b>0且a+b=7,则4a +1b+2的最小值为()A.89B.1 C.98D.102777. 关于x的不等式x2−(a+1)x+a<0的解集中恰有两个整数,则实数a的取值范围是()A.−2<a≤−1或3≤a<4B.−2≤a≤−1或3≤a≤4C.−2≤a<−1或3<a≤4D.−2<a<−1或3<a<48. 下列说法正确的是()A.若命题p,¬q都是真命题,则命题“(¬p)∨q”为真命题B.命题“若x+y≠5,则x≠2或y≠3”与命题“若x=2且y=3,则x+y=5”真假相同C.“x=−1”是“x2−5x−6=0”的必要不充分条件D.命题“∀x>1,2x>0”的否定是“∃x0≤1,2x0≤0”二、多选题(本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对的得3分,有选错的得0分)下列各不等式,其中不正确的是()A.a2+1>2a(a∈R)B.|x+1x|≥2(x∈R,x≠0)C.√ab ≥2(ab≠0) D.x2+1x2+1>1(x∈R)下列不等式中可以作为x2<1的一个充分不必要条件的有()A.x<1B.0<x<1C.−1<x<0D.−1<x<1下列命题正确的是()A.∃a,b∈R,|a−2|+(b+1)2≤0B.∀a∈R,∃x∈R,使得ax>2C.ab≠0是a2+b2≠0的充要条件D.若a≥b>0,则a1+a ≥b1+b给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A.集合M={−4, −2, 0, 2, 4}为闭集合B.正整数集是闭集合C.集合M={n|n=3k, k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合三、填空题(本大题共4小题,每小题5分,共20分)已知集合A={x∈Z|x2−4x+3<0},B={0, 1, 2},则A∩B=________.若“x>3”是“x>a“的充分不必要条件,则实数a的取值范围是________.若不等式ax2+2ax−4<0的解集为R,则实数a的取值范围是________.已知x>0,y>0,且x+3y=xy,若t2+t<x+3y恒成立,则实数t的取值范围是________四、解答题:(本大题共6小题,共70分。
2020年重庆一中高2021级高三上期第一次月考数学试题及答案
2020 年重庆一中高 2021 级高三上期第一次月考数学试题卷 2020.9本卷满分 150 分,考试时间 120 分钟一、单项选择题。
本大题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有1项是符合题目要求的.1. 设集合 A = {y |y =ln (1−x )} , B = {y |y =√4−2x },则 A ∩B= ( )A. [0,2)B. (0,2)C. [0,2]D. [0,1)2.a,b ∈(0,+∞), A =√a +√b , B =√a +b ,则 A ,B 的大小关系是() A. A<B B. A>B C. A ≤B D. A ≥ B3.已知直线 l 是曲线 y =√x +2x 的切线,则 l 的方程不可能是A.5x −2y +1=OB.4x −2y +1=OC.13x −6y +9=OD.9x − 4y + 4 = 04.中国传统扇文化有着极其深厚的底蕴。
一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为S 1 ,画面中剩余部分的面积为S 2,当 S 1 与S 2的比值为√5−12 时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为() A.(3−√5)π B. (√5−1)πC. (√5+1)πD. (√5−2)π 5. 若函数f (x )={a x ,2<x ≤a log a (x −2),x >a(其中a >0,且a ≠1)存在零点,则实数 a 的取值范围是 A.(12,1)U (1,3) B.(1,3] C.(2,3) D.(2,3]6. 己知0<ω≤2,函数f (x )=sin (ωx )−√3cos (ωx ),对任意x ∈R ,都有f (π3−x)=−f (x ),则 ω 的值为() A. 12 B. 1 C.32 D. 27. 函数f (x )=2cos x +sin 2x 的一个个单调递减区间是()A.(π4,π2)B.(0,π6)C.(π2,π)D. (5π6,π) 8.设函数 f (x )在 R 上存在导数f ′(x ),对任意的 x ∈R ,有f (x )+f (−x )=2cos x ,且在 [0,+∞)上有f ′(x )>−sin x ,则不等式 f (x )−f (π2−x)≥cos x −sin x 的解集是A.(−∞,π4]B.[π4,+∞)C.(−∞,π6]D.[π6,+∞)二、多项选择题。
重庆市第一中学校2022-2023学年高一上学期第一次月考数学试题
重庆市第一中学校2022-2023学年高一上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知命题p :()1,x ∃∈+∞,使215x +>,则( )A .命题p 的否定为“()1,x ∃∈+∞,使215x +≤”B .命题p 的否定为“(],1x ∃∈-∞,使215x +≤”C .命题p 的否定为“()1,x ∀∈+∞,使215x +≤”D .命题p 的否定为“(],1x ∀∈-∞,使215x +≤”2.已知集合{}20,21,31A a a a =+++,若1A -∈,则实数a =( )A .-1B .-2C .-3D .-1或-2 3.已知集合{}==32,Z M x x n n ∈-,{}==6+1,Z N x x n n ∈,则=M N ⋃( ) A .M B .N C .∅ D .Z 4.已知x >1,则141y x x =+-的最小值为( ) A .16 B .8 C .4 D .25.重庆一中计划面向高一学生开设“科技与创新”,“人文与阅读”两类选修课,为了解学生对这两类选修课的兴趣,对高一某班共46名学生调查发现,喜欢“科技与创新”类的学生有34名,喜欢“人文与阅读”类的学生有18名,两类均不喜欢的有6名,则只喜欢“科技与创新”类选修课的学生有( )名.A .34B .22C .12D .6 6.设实数a ,b ,c ,d 满足110a b <<,d <c <0,则下列不等式一定成立的是( )A .b >a >0B .22ad bc <C .a -c >b -dD .c d a b>7.若对于任意实数x ,[]x 表示不超过x 的最大整数,例如1=,1=,[]1.62-=-,那么“[][]=x y ”是“1x y -<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.已知实数x ,y 满足2243x y xy +-=,则( )A .1xy ≥B .22x y +≤C .2x y +≥D .2244x y +≤二、多选题9.已知p :“x ∀∈R ,()2110x a x -++>恒成立”为真命题,下列选项可以作为p 的充分条件的有( )A .0a -3<<B .3a ≤-或1a ≥C .01a <<D .31a -<<10.已知集合{}2=23>0A x x x --,{}2=++0B x ax bx c ≤(0a ≠),若A B ⋃=R ,{}=3<4A B x x ⋂≤,则( )A .0a <B .63bc a >-C .关于x 的不等式20ax bx c -+>解集为{<4x x -或}>1xD .关于x 的不等式20ax bx c -+>解集为{}4<<1x x -11.已知0,0a b >>,且+=1a b ,则说法正确的为( )A B .222a b +的最小值为34 C .22ab a b +的最大值为14 D .1114a b ++的最小值为9812.已知有限集{}12,,,(2,)N n A a a a n n =≥∈,如果A 中元素(1,2,3,,)i a i n =⋯满足1212n n a a a a a a +++=⨯⨯⨯,就称A 为“完美集”下列结论中正确的有( )A .集合{11--不是“完美集”B .若1a 、2a 是两个不同的正数,且{}12,a a 是“完美集”,则1a 、2a 至少有一个大于2C .n =2的“完美集”个数无限D .若*N i a ∈,则“完美集”A 有且只有一个,且n =3三、填空题13.已知集合{}=2+10A x x ≤,{}2=23+9<0B x x x --,则()R A B ⋂=______. 14.关于x 的不等式203x x +≤-的解集为______.15.已知集合+3=<0-4x A x x ⎧⎫⎨⎬⎩⎭,(){}2=2+2+7+7<0B x x k x k ,若A B ⋂中恰有一个整数,则实数k 的取值范围为______.16.已知a >b >0,且a +b =1,则411()a b b a b a b b++---的最小值为______.四、解答题17.已知全集(){}2=45<0U x x x x ∈--N ,集合{}21,2,A m =,{}2=5+4=0B x x x -. (1)若2+1U a B ∈且a U ∈,求实数a 的值;(2)设集合()=U C A B ⋂,若C 的真子集共有3个,求实数m 的值.18.已知集合2{|0,0}x x ax b a ++=>有且仅有两个子集.(1)求222a b -的最大值;(2)当且仅当12x x x <<时,函数2y x ax b =++的图像落在直线y c =的下方,且122128x x b x x b c++=-,求c 的值. 19.已知集合(){}=,=2+1,R M a b b a a ∈,()()(){}22=,=2+2312,R N x y y m m x m x x ---∈. (1)当m =1时,求M N ;(2)若15m ≤-,求关于x 的不等式0y ≤的解集. 20.北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入()216006x -万作为技改费用,投入1505x ⎛⎫+ ⎪⎝⎭万元作为宣传费用.试问:当该商品改革后的销售量a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.21.对于函数32(1)(1)(0)y mx ax b x b a =++-+-≠,若存在0x ∈R ,使得320000(1)(1)mx ax b x b x ++-+-=成立,则称0x 为函数32(1)(1)(0)y mx ax b x b a =++-+-≠的“囧点”.(1)当m =2,a =-3,b =2时,求函数32(1)(1)(0)y mx ax b x b a =++-+-≠的“囧点”;(2)当m =0时,对任意实数b ,函数32(1)(1)(0)y mx ax b x b a =++-+-≠恒有“囧点”,求a 的取值范围.22.若实数x ,y ,m 满足x m y m -<-,则称x 比y 接近m ,(1)请判断命题:的真假,并说明理由;(2)已知x >0,y >0,若222224xy xy p x y x y =+++,证明:1比p ; (3)判断:“x 比y 接近m ”是“232x y m y x+->-”的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分又不必要条件),并加以证明.答案:1.C 2.B 3.A 4.B 5.B 6.D 7.A 8.D 9.ACD 10.BC 11.ACD12.BCD 13.13,2⎡⎤--⎢⎥⎣⎦ 14.(][),12,3-∞⋃ 15.[)1,2 16.12 17.(1)1(2)m = 18.(1)2 (2)4 19.(1)13,0,,422M N ⎧⎫⎛⎫⎛⎫⋂=-⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭ 20.(1)40元 (2)当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.21.(1)“囧点”1=1x ,212x =- (2)10a -≤<22.(1)命题:”为真,理由略 (2)证明略(3)“x 比y 接近m ”是“31x y m x y+-<--”必要不充分条件,证明见解析。
【月考试卷】2020-2021学年上学期高一年级数学第一次月考试卷含答案(内容:必修1)
15 . 已 知 函 数 是 定 义 在 上 的 奇 函 数 , 当
时,
,则 __________. 16.已知集合 A {x | ax 1 0},且 2 A,3 A,则 a 的取值范围是
xa
_______.
三、解答题(本大题共 6 个小题,共 70 分,解答应写出文字说明, 证明过程或演算步骤) 17.(本小题满分 10 分)设集合 A={a2,a+1,-3},B={a-3,2a -1,a2+1},A∩B={-3},求实数 a 的值.
18.(本小题满分 12 分)
已知集合
.
(1)若 (2的取值范围.
试卷第 3 页,总 5 页
19.(本小题满分 12 分) 已知函数 f(x)是定义域为 R 的奇函数,当 x>0 时,f(x)=x2-2x. (1)求出函数 f(x)在 R 上的解析式; (2)画出函数 f(x)的图象.
围是 ( )
A. a 0 B. a 0 C. a 10 D. a 10 9.下面四个函数:
x, x 0,
① y 3x ② y
1 x2 1
③
y
x2
2x
10
④
y
{
1
,
x
0.
.其中值域为
x
R 的函数有( )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
10.已知函数 f x { 2x,x 0 ,若 f a f 1 0,则实数 a 的值等
A. {x|0<x<2}
B. {x|1<x≤2}
C. {x|0≤x≤1,或 x≥2} D. {x|0≤x≤1,或 x>2}
4.已知 f(x)=
,则 f[f(3)]= ( )
2020-2021学年重庆市一中高一上学期期中数学试卷
考点:对数式运算公式
3.C
【解析】
试题分析:A中函数定义域为 ,并且满足 ,函数为偶函数;B中函数定义域为 , 且 ,函数为非奇非偶函数;C中函数定义域为 ,并且满足 ,函数为奇函数;D中函数定义域为 ,满足 ,函数为偶函数,故选C
考点:函数奇偶性
4.A
【解析】
试题分析: ,
,所以 是 的充分不必要条件,故选A
考点:1.函数单调性;2.不等式恒成立问题
【方法点睛】求解此类题目一般有两种思路:其一,当函数的单调区间比较容易求时首先求得其单调区间,将题目中给定的区间与单调区间对比,确定子集关系,从而得到参数范围;其二,利用函数的导数与单调区间的关系,如函数 在区间 上为增函数(减函数),则有 在该区间上 恒成立,转化为不等式恒成立问题,通过分离参数法求得其范围,本题求解时要注意当 时真数恒为正的限定
A、 B、 C、 D、
11.已知函数 在区间 上单调递增,那么实数 的取值范围是()
A、 B、 C、 D、
12.对于任意 ,函数 的值非负,则实数 的最小值为()
A、 B、-5C、-3D、-2
二、填空题
13.将函数 的图象向上平移1个单位,再向右平移2个单位后得到函数 ,那么 的表达式为__________.
考点:充分条件与必要条件
5.D
【解析】
试题分析:由幂函数定义可知 或 ,当 时,函数式为 ,满足在实数集 上单调,当 时,函数式为 ,不满足在实数集 上单调,所以 ,故选D
考点:幂函数及单调性
6.B
【解析】
试题分析:由 可知当 时有 ,所以函数 在实数集 上是增函数, ,结合选项 为 ,故选B
考点:函数单调性比较大小
2020-2021学年高一上学期第一次月考数学试题 Word版含解析 (1)
榆林市十二中高一年级第一次阶段性检测试题数学一、选择题1. 7-的倒数是( ) A. 7B.17C. 17-D. 7-【★答案★】C 【解析】 【分析】利用倒数定义可得★答案★. 【详解】解:7-的倒数是17-. 故选:C.【点睛】本题考查倒数的定义,是基础题.2. 如图所示,已知//2043AC ED C CBE BED ∠=︒∠=︒∠,,,的度数是( )A. 63︒B. 83︒C. 73︒D. 53︒【★答案★】A 【解析】 【分析】根据图形,利用平行线和三角形的几何性质,得到BED ∠的度数. 【详解】//AC ED ,CAE BED ∴∠=∠,CAE ∠是ABC 的外角,204363CAE C CBE ∴∠=∠+∠=+=.故选:A【点睛】本题考查平行线,三角形外角的几何性质,属于基础题型.3. 某种花粉的直径约为0.000036毫米,数据0.000036用科学记数法表示为( ) A. 63.610-⨯ B. 53.610-⨯ C. 50.3610-⨯ D. 60.3610-⨯【★答案★】B【解析】 【分析】本题可根据科学计数法的表示方法得出结果. 【详解】结合科学计数法可知:50.000036 3.610-=⨯,故选:B.【点睛】本题考查根据科学计数法表示数,科学计数法是指将数表示为()10110na a ⨯≤<的形式,体现了基础性,是简单题.4. 早晨气温是3℃-,到中午时气温上升了5℃,则中午时的气温是( ) A. 8-℃ B. 2-℃C. 2℃D. 8℃【★答案★】C 【解析】 【分析】直接相加可得★答案★.【详解】早晨气温是3-℃,到中午时气温上升了5℃,则中午时的气温是3-℃+5℃=2℃, 故选:C.【点睛】本题考查了实数的加法,属于基础题. 5. 计算323()x y -的结果是( ) A. 96x y B. 96x y -C. 65x yD. 65x y -【★答案★】B 【解析】 【分析】根据整数指数幂运算公式计算结果. 【详解】根据运算公式可知()33296x y x y -=-.故选:B【点睛】本题考查整数指数幂的运算,属于基础题型.6. 如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC ,则ABC 中AC 边上的高是( )A.352B.322C.3510D.355【★答案★】D 【解析】 【分析】 先求出ABCS和AC ,再利用面积公式求ABC 中AC 边上的高.【详解】解:由图知1132212211222ABCS=⨯-⨯⨯⨯-⨯⨯=,2215AC =+=,则ABC 中AC 边上的高352553ABC S h AC ===. 故选:D.【点睛】本题考查三角形面积公式的应用,是基础题. 7. 将直线312y x =-沿x 轴向左平移4个单位,则平移后的直线与y 轴交点的坐标是( ) A. ()05,B. ()03,C. ()05-,D. ()07-,【★答案★】A 【解析】 【分析】首先求平移后的函数,再求与y 轴的交点坐标.【详解】根据图象平移规律:“左加右减”的规律,可知向左平移4个单位后函数为()3341522y x x =+-=+ 当0x =时,5y =,所以直线与y 轴的交点坐标是()0,5. 故选:A【点睛】本题考查函数的的图象平移,属于基础题型.8. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,5AE =,且2EO BE =,则OA 的长为( )A.5 B. 25 C. 35D.151313【★答案★】C 【解析】 【分析】设BE x =,可得出5DE x =,证明出ABEDAE ,可求得x 的值,进而可求得OA 的长.【详解】在矩形ABCD 中,AC 与BD 相交于点O ,由矩形的性质可得1122OA AC BD ==, 设BE x =,22EO BE x ==,3OB BE EO x ∴=+=,则5DE OD OE x =+=,AE BD ⊥,则90AEB BAD ∠=∠=,90ABE BAE ABE ADE ∠+∠=∠+∠=,BAE ADE ∴∠=∠,又AEB DEA ∠=∠,ABEDAE ∴△△,则AE BEDE AE=,则225AE BE DE x =⋅=, 即2525x =,解得5x =,因此,13352OA BD x ===. 故选:C.【点睛】本题考查利用三角形相似计算线段长,考查计算能力,属于中等题. 9. 如图,在半径为3的O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点.E 若E是BD 的中点,则AC 的长是( )A.532B. 33C. 32D. 42【★答案★】D 【解析】【分析】连接OD 交AC 于点M ,先证明BCE DEM ≅,可得BC DM =,再由132DM OM BC BC +=+=,可得2BC =,最后利用勾股定理可得解. 【详解】连接OD 交AC 于点M ,因为D 是AC 的中点,所以M 为AC 的中点,所以OD AC ⊥, 又因为BC AC ⊥,所以//OD BC .因为E 是BD 的中点,所以BE DE =,结合BEC DEM ∠=∠,可得BCE DEM ≅, 所以BC DM =, 则132DM OM BC BC +=+=,解得2BC =, 所以2236442AC AB BC =-=-=.故选:D.【点睛】本题主要考查了圆的几何性质,属于中档题10. 在平面直角坐标系中,将抛物线223y x x =--向上(下)或向左(右)平移m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( ) A. 1B. 2C. 3D. 6【★答案★】A 【解析】 【分析】根据函数的解析式画出函数的图象即可得到★答案★.【详解】当0x =时,3y =-,所以函数图象与y 轴的交点为()0,3-, 当0y =时,1x =-或3x =,所以函数图象与x 轴的交点为()1,0-,()3,0. 如图所示:由图知:函数图象至少向右平移一个单位恰好过原点,故m 的最小值为1. 故选:A【点睛】本题主要考查二次函数的图像,根据题意画出二次函数的图像为解题关键,属于简单题.二、填空题11. 不等式53x -≥的正整数解为______. 【★答案★】1,2 【解析】 【分析】解一次不等式即可得解.【详解】由53x -≥,得2x ≤, 正整数解为:1,2. 故★答案★为:1,2.【点睛】本题主要考查了解一次不等式,属于基础题.12. 如图,正五边形ABCDE 中,F 、G 分别是BC 、AB 的中点,AF 与EG 相交于点H ,则EHF ∠=__________.【★答案★】108︒ 【解析】 【分析】根据多边形内角和求出内角,利用EAG ABF ≅证明 EGA AFB ∠=∠,再利用AGH AFB △证明=AHG ABF ∠∠可得★答案★.【详解】正五边形ABCDE 中, 108FAB ∠=,因为,,EA AB AG FB EAG ABF ==∠=∠,所以EAG ABF ≅, 所以EGA AFB ∠=∠,又=GAH FAB ∠∠,所以 AGH AFB △,所以==108AHG ABF ∠∠. 故★答案★为:108.【点睛】本题考查了正多边形的内角,三角形的全等、相似,图形的关系. 13. 如图,点A 是反比例函数ky x=图象上一点,点B 在y 轴正半轴上,连接AO ,AB ,且9042OAB OA AB ∠=︒==,,,则k =______.【★答案★】325【解析】 【分析】先计算OB 的长度,再利用等面积公式计算AC ,得到CO 长度,进而得到点A 的坐标,代入函数后得到k 的值.【详解】如下图,过点A 作y 轴的垂线,交y 轴于点C , 由题意可知224225OB ,因为OB AC AB OA ⨯=⨯,所以455AC =,在Rt ACO 中,224585455CO ⎛⎫=-= ⎪ ⎪⎝⎭,即4585,55A ⎛⎫ ⎪ ⎪⎝⎭,代入函数k y x =,可得458532555k xy ==⨯=故★答案★为:325【点睛】本题考查反比例函数,重点考查数形结合,计算能力,属于基础题型.14. 如图,菱形ABCD 中,对角线6AC =,8BD =,M 、N 分别是BC 、CD 的中点,P 是线段BD 上的一个动点,则PM PN +的最小值是_____.【★答案★】5 【解析】 【分析】本题首先可作点N 关于线段BD 的对称点1N ,得出1PM PN PM PN +=+,然后根据三角形的两边之和大于第三边得出当P 移动到线段1MN 上时1PM PN +最小,最后求出线段1MN 的长,即可得出结果.【详解】因为四边形ABCD 是菱形,BD 、AC 是对角线, 所以N 关于线段BD 的对称点1N 在线段AD 上, 因为N 是线段CD 的中点,所以1N 是线段AD 的中点, 如图,作点N 关于线段BD 的对称点1N ,连接1MN ,1NN ,因为P 是线段BD 上的一个动点,所以1PNPN ,1PM PN PM PN +=+,根据三角形的两边之和大于第三边可知, 当P 移动到线段1MN 上时,1PM PN +最小, 因为M 是BC 中点,1N 是线段AD 的中点, 所以此时点P 在线段BD 、AC 交点处,1MN AB ,因为6AC =,8BD =,所以22522AC BD AB ,故15MN AB ,即PM PN +的最小值是5,故★答案★为:5.【点睛】本题考查两线段之和的最小值的求法,考查三角形的两边之和大于第三边的性质的应用,考查菱形的相关性质,考查数形结合思想,考查推理能力,是中档题.三、解答题15. 计算:02112tan60( 3.14)()1222π--︒--+-+. 【★答案★】5 【解析】 【分析】根据特殊角的三角函数值,指数的运算直接计算即可.【详解】解:原式23143231435=--++=--++=. 【点睛】本题考查基本的计算能力,是基础题.16. 计算:2821333a a a a a ++⎛⎫+-÷ ⎪++⎝⎭. 【★答案★】11a a -+ 【解析】 【分析】本题可通过完全平方公式以及平方差公式进行化简计算.【详解】()()()22833821333331a a a a a a a a a a +-++++⎛⎫+-÷=⨯ ⎪+++⎝⎭+()()()()()222221189111111a a a a a a a a a +-+--====++-++. 【点睛】本题考查完全平方公式以及平方差公式在计算中的应用,合理使用公式可以使计算更方便,考查学生的计算能力,是简单题.17. 如图,已知ABC ,利用尺规在BC 上找一点P ,使得ABP △与ACP △均为直角三角形(不写作法,保留作图痕迹)【★答案★】★答案★见解析 【解析】 【分析】构造全等三角形,圆规以B 为圆心,以BA 为半径作圆弧,以C 为圆心,以CA 为半径作圆弧,交于点D ,连接AD 交BC 于点P ,【详解】用圆规以B 为圆心,以BA 为半径作圆弧,以C 为圆心,以CA 为半径作圆弧,交于点D ,连接AD 交BC 于点P ,如图,点P 为所作.【点睛】本题考查尺规作图,重点考查平面几何图形的形状,属于基础题型.18. 已知:如图,MS PS MN SN PQ SN ⊥⊥⊥,,,垂足分别是S 、N 、Q ,且MS SP =.求证:MN SQ =.【★答案★】证明见解析【解析】 【分析】首先求出M PSQ ∠=∠,进而利用AAS 证明MNS ≌SQP ,由MNS ≌SPQ ,从而出MN SQ =,即可解答.【详解】因为90MSN QSP ∠+∠=,90MSN M ∠+∠=,所以M PSQ ∠=∠90P QSP ∠+∠=,所以MSN P ∠=∠,又因为MS SP =,所以MNS ≌SQP ,即MN SQ =.【点睛】本题主要考查了全等三角形的判定,解题的关键是掌握角角边证明两个三角形全等. 19. 今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间20t ≤分钟的学生记为A 类,20分钟40t <≤分钟记为B 类,40分钟60t <≤分钟记为C 类,60t >分钟记为D 类.收集的数据绘制如图两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了______名学生进行调查统计,抽查的学生每天的运动时间的中位数落______类; (2)将条形统计图补充完整,并求扇形统计图中D 类所对应的扇形圆心角的度数;(3)学校要求学生在家主动锻炼身体的时间必须超过20分钟才能达标,若该校共有3000名学生,请你估计该校达标学生约有多少人?【★答案★】(1)50,B ;(2)条形统计图★答案★见解析,36︒;(3)2100人. 【解析】 【分析】(1)由A 类的比例可得总数,根据中位数的定义可得第二个空;(2)根据总数可得D 类的数据,从而可补全条形图,由比例可求圆心角; (3)先计算超过20分钟的比例,乘以总数即可得解.【详解】1()这次共抽取了1530%50÷=名学生进行调查统计,抽查的学生每天的运动时间的中位数落B 类, 故★答案★为:50,B ;2D ()类有学生:50152285(---=人),补充完整的条形统计图如图所示,扇形统计图中D 类所对应的扇形圆心角的度数是:53603650︒⨯=︒; 5015330002100(50-⨯=()人), 因此,该校达标学生约有2100人.【点睛】本题主要考查了条形图和扇形图的应用,属于基础题.20. 数学实践活动小组到附近的湿地公园测量园内雕塑的高度.如图,用测角仪在A 处测得雕塑顶端点C 的仰角为30,再往雕塑方向前进4m 至B 处,测得仰角为45.问该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)【★答案★】()232+米 【解析】 【分析】过点C 作CD AB ⊥,交AB 的延长线于点D ,在ABC 中,利用正弦定理求得AC 的长,再由sin30CD AC =即可得解.【详解】如图,过点C 作CD AB ⊥,交AB延长线于点D ,在ABC 中,()62sin sin 4530sin 45cos30cos 45sin 304ACB -∠=-=-=, 18045135ABC ∠=-=,由正弦定理sin135sin15AC AB=得()24sin1352431sin15624AB AC ⨯===+-,在Rt ACD △中,30A ∠=,90ADC ∠=,因此,()12312CD AC ==+米.答:该雕塑的高度为()232+米.【点睛】本题考查利用测量高度问题,考查了正弦定理的应用,考查计算能力,属于中等题. 21. 温州瓯()ou 柑,声名远播,某经销商欲将仓库的120吨瓯柑运往A 、B 两地销售,运往A 、B 两地的瓯柑(吨)和每吨的运费如下表.设仓库运往A 地的瓯柑为x 吨,且x 为整数. 瓯柑(吨) 运费(元/吨) A 地 x 20 B 地30(1)设仓库运往A ,B 两地的总运费为y 元. ①将表格补充完整. ②求y 关于x 的函数表达式.(2)若仓库运往A 地的费用不超过运往A 、B 两地总费用的13,求总运费的最小值. 【★答案★】(1)①表格★答案★见解析;②103600y x =-+;(2)最小值为3090元. 【解析】【分析】(1)①由总重量为120即可填表;②分别计算运费求和即可; (2)先根据()1201036003x x ≤-+,解得3607x ≤,再根据运费函数的单调性结合x 是整数即可得最值.【详解】1()①将表格补充完整为: 瓯柑(吨) 运费(元/吨) A 地 x20 B 地120x -30y ②关于x 的函数表达式为()3012020103600y x x x =-+=-+;2()依题意有()1201036003x x ≤-+, 解得3607x ≤, 103600y x =-+,y 随x 的增大而减少,x 是整数,∴当51x =时,3090y =最小值.因此,总运费的最小值为3090元.【点睛】本题主要考查了一次函数的应用求最值,属于基础题.22. 传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(花生馅记为A ,黑芝麻馅记为B ,草莓馅记为)C .(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,求都是草莓馅的概率是多少? 【★答案★】(1)14;(2)25. 【解析】 【分析】(1)根据事件的等可能性即可得解;(2)列表表示所有基本事件,利用古典概型公式求解即可.【详解】1()所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为14;2()列表如下:花黑草草草草花(花,黑)(花,草)(花,草)(花,草)(花,草)黑(黑,花)(黑,草)(黑,草)(黑,草)(黑,草)草(草,花)(草,黑)(草,草)(草,草)(草,草)草(草,花)(草,黑)(草,草)(草,草)(草,草)草(草,花)(草,黑)(草,草)(草,草)(草,草)草(草,花)(草,黑)(草,草)(草,草)(草,草)由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是2 5 .【点睛】本题主要考查了古典概型的求解,属于基础题.23. 如图,O是ABC的外接圆,AC为直径,过C点作O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.(1)求证:BM与O相切(2)若2sin33A BM==,,求AB的长.【★答案★】(1)证明见解析;(2)5. 【解析】【分析】(1)连接OB ,OB OC =,以及根据90ABC ∠=,利用直角三角形的性质得到MB MC =,再根据角的关系证明OB BM ⊥;(2)由(1)可知26DC BM ==,再结合条件得到9AD =,再利用A BCD ∠=∠,即2sin 3BCD ∠=,得到BD ,最后再计算AB . 【详解】证明:1()连接OBOB OC OBC OCB =∴∠=∠AC 是直径,90ABC ∴∠=,点M 是CD 中点,BM CM DM MBC MCB ∴==∴∠=∠CD 是O 切线909090ACD OCB MCB OBC MBC ∴∠=︒∴∠+∠=︒∴∠+∠=︒即OB BM ⊥,且OB 是半径BM ∴是O 的切线(2)90DBC ∠=︒,点M 是CD 的中点2263CD CD BM sinA AD∴==== 990AD A ACB ACB BCD A BCD∴=∠+∠=∠+∠=︒∴∠=∠2453BD sin BCD BD AB AD BD CD ∠∴==∴=∴=-= 【点睛】本题考查圆的综合问题,解题的关键是掌握圆周角定理,切线的性质,相似三角形的判断与性质,属于中档题型.24. 如图所示,在平面直角坐标系中,O 为坐标原点,且AOB 是等腰直角三角形,90AOB ∠=︒,点()2,1A ,()1,2B -.(1)求经过A ,O ,B 三点的抛物线的函数表达式;(2)在(1)所求的抛物线上,是否存在一点P ,使四边形ABOP 的面积最大?若存在,求出点P的坐标;若不存在,请说明理由. 【★答案★】(1)25766y x x =-;(2)存在,11,3⎛⎫- ⎪⎝⎭.【解析】 【分析】(1)首先根据题意设抛物线解析式为2y ax bx =+()0a ≠,从而得到1422a ba b =+⎧⎨=-⎩,再解方程组即可.(2)首先根据题意得到点P 在线段OA 的下方,过P 作//PE y 轴交AO 于点E ,从而得到直线AO 解析式为12y x =,P 点坐标为257,66t t t ⎛⎫- ⎪⎝⎭,得到255(1)66PE t =--+,从而得到21552(1)266AOP S PE PE t =⨯==--+△,则可得到2510(1)63ABOP AOB AOP S S S t =+=--+△△,再根据二次函数的性质即可得到★答案★.【详解】(1)因为抛物线过O 点,所以可设抛物线解析式为2y ax bx =+()0a ≠, 因为抛物线的图象经过A ,B所以1422a b a b =+⎧⎨=-⎩,解得:5676a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以经过A ,O ,B 三点的抛物线解析式为25766y x x =-; (2)存在,理由如下:因为四边形ABOP ,所以点P 在线段OA 的下方, 过P 作//PE y 轴交AO 于点E ,如图所示:设直线AO 解析式为y kx =,因为()2,1A ,所以12k =,故直线AO 解析式为12y x =, 设P 点坐标为257,66t t t ⎛⎫- ⎪⎝⎭,则1,2E t t ⎛⎫⎪⎝⎭,所以2221575555(1)2666366PE t x t t t t ⎛⎫=--=-+=--+ ⎪⎝⎭, 故21552(1)266AOP S PE PE t =⨯==--+△, 由()2,1A ,()1,2B -可求得5OA OB ==,1522AOB S AO BO =⋅=△, 所以22555510(1)(1)66263ABOP AOB AOP S S S t t =+=--++=--+△△, 所以当1t =时,四边形ABOP 的面积最大,此时P 点坐标为11,3⎛⎫- ⎪⎝⎭,综上可知存在使四边形ABOP的面积最大的点P ,其坐标为11,3⎛⎫- ⎪⎝⎭.【点睛】本题主要考查二次函数的综合应用,考查学生分析问题,解决问题的能力,属于中档题. 25. 问题提出(1)如图①,在ABC 中,6BC =,D 为BC 上一点,4=AD ,则ABC 面积的最大值是______. 问题探究(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值. 问题解决(3)如图③,ABC 是葛叔叔家的菜地示意图,其中30AB =米,40BC =米,50AC =米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD ,且满足60.ADC ∠=︒你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由. 【★答案★】(1)12;(2)9;(3)能,这个四边形鱼塘周长的最大值为170(米).【解析】 【分析】1()当AD BC ⊥时,ABC的面积最大;2()由题意矩形邻边之和为6,设矩形的一边为m ,另一边为6m -,可得()26(3)9S m m m =-=--+,利用二次函数的性质解决问题即可;3()由题意,10060AC ADC =∠=︒,,即点D 在优弧ADC 上运动,当点D 运动到优弧ADC 的中点时,四边形鱼塘面积和周长达到最大值,此时ACD △为等边三角形,计算出ADC 的面积和AD 的长即可得出这个四边形鱼塘面积和周长的最大值. 【详解】解:1()如图①中,64BC AD ==,,∴当AD BC ⊥时,ABC 的面积最大,最大值164122=⨯⨯=.故★答案★为12.2()如图②中,矩形的周长为12, ∴邻边之和为6,设矩形的一边为m ,另一边为6m -,()26(3)9S m m m ∴=-=--+, 10-<,3m ∴=时,S 有最大值,最大值为9.3()如图③中,50AC =米,40AB =米,30BC =米,222AC AB BC ∴=+90ABC ∴∠=︒,作AOC △,使得120AOC OA OC ∠=︒=,,以O 为圆心,OA 长为半径画60O ADC ∠=︒,,∴点D 在优弧ADC 上运动,当点D 是优弧ADC 的中点时,四边形ABCD 面积取得最大值, 设'D 是优弧ADC 上任意一点,连接''AD CD ,,延长'CD 到F ,使得''D F D A =,连接AF ,则1302AFC ADC ∠=︒=∠, ∴点F 在D 为圆心DA 为半径的圆上,DF DA ∴=,DF DC CF +≥,''DA DC D A D C ∴+≥+,''DA DC AC D A D C AC ∴++≥++,∴此时四边形ADCB 的周长最大,最大值40305050170(=+++=米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题属于四边形综合题,考查了矩形的性质,四边形的面积,三角形的三边关系等知识,解题的关键是学会利用辅助圆解决问题,学会用转化的思想思考问题,属于中考压轴题.感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年重庆一中高2023级高一上定期练习
数学试题卷
一、选择题:本题共8小题,每小题共5分,共40分.在每小题给出的四个选项中,只有一个符合题目要求.
1.已知全集}{0,1,2,3,4,5U =,集合}{3,4,5A =,}{04B x N x =∈<<,则()U C A B =
( ). A. }{04x x << B. }{1,2,3,4 C. }{03x x << D. }{0,1,2,3
2.已知集合()}{()}{2,2,,264,A x y y x B x y y x x ==-==-+则A B 的子集个数为(
). A.2 B.3 C.4 D.7
3.已知命题p:至少有一个正数x ,使230,x x +=则( ).
A.命题p 的否定为“](,0,x ∀∈-∞都有230x x +≠”
B. 命题p 的否定为“()0,,x ∀∈+∞都有230x x +≠”
C. 命题p 的否定为“()0,,x ∃∈+∞使230x x +≠”
D. 命题p 的否定为“](,0,x ∃∈-∞使230x x +≠”
4.已知函数{221,0
((2)),0(),x x f f x x f x -≤->=则(2)f =( ).
A.-1
B.0
C.1
D.7
5.若关于x 的不等式220ax x a ++-<的解集为R ,则实数a 的取值范围是( ).
A. 1a <
B. 10a <<
C. 11a ≤≤
D. 1a >
6.若)1f x =+,则函数()f x =( ).
A. 2,1x x x -≥
B. 21,0x x x ++≥
C. 2,0x x x +≥
D. 2,0x x x -≥
7.设[]x 表示不大于实数x 的最大整数,例如[][]33, 1.72,=-=-则对任意实数x ,有(
)
. A. [][]x x -=- B. []12x x ⎡⎤+=⎢⎥⎣⎦ C. [][]122x x x ⎡⎤
++=⎢⎥⎣⎦ D. [][]22x x =
8.小明在如图1所示的跑道(跑道由两个半圆,及连接半圆的两条线段构成)上匀速跑步,他从点A 出发,沿逆时针方向经过点B 跑到点C ,共用时30s .他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为()t s ,他与教练的直线距离为()y m ,表示y 与t 函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( ).
A.点M
B.点N
C.点P
D.点Q
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,有选错的得0分,部分选对的得3分.
9.下列各组函数中两个函数相等的有( ) A. 2
(),()x f x g x x x == B. {2222,2
2,2()2,()x x x x x x f x x x g x ++≥---<-=++=
C. ()()f x g x x ==
D. ()()f x g x ==10.以下函数在区间()0,+∞上单调递增的有( )
A. ()f x
=()f x =()2f x x =- D. 21()1f x x x =-+ 11.命题p :[]22,1,10x x mx ∀∈---+-≤为真命题的充分条件是( )
A. 2m ≥-
B. 52
m ≥- C. 10m -≤≤ D. 2m ≤- 12.已知正实数,,a b c 满足,a b c >>且4,a c -=则以下正确的有( )
A. 2244a a b b ->-
B. 11a b a b >++
C. 114
a b >-≤三、填空题:本题共4小题,每小题5分,共20分.
13.已知集合}{20,,2,A m m =+且1A ∈,则实数m =______
14.已知函数()y f x =的定义域为[]3,1,-则函数2(21)1
f x y x +=-的定义域为______。