基于单片机水温控制器的设计

合集下载

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计水温控制系统在许多领域中都具有重要的应用价值,例如温室农业、水族馆、游泳池等。

在这些应用中,保持水温在一个合适的范围内对于生物的生存和健康至关重要。

基于单片机的水温控制系统设计是一种有效的方法,它可以实现对水温的精确控制和调节。

本文将详细介绍基于单片机的水温控制系统设计原理、硬件实现和软件编程等方面内容。

第一章研究背景与意义1.1研究背景随着科技的飞速发展,人们对生活品质的追求不断提高,对家电设备的智能化要求也越来越高。

其中,水温控制系统在热水器、空调等家电产品中具有广泛的应用。

精确控制水温对于提高用户体验、节约能源和保护环境具有重要意义。

然而,现有的水温控制系统存在控制精度不高、响应速度慢等问题,因此,研究一种新型的水温控制系统具有重要的实际意义。

1.2研究意义本研究旨在提出一种新型的水温控制系统,通过对水温进行精确控制,提高家电产品的性能和用户体验。

此外,本研究还将探讨系统性能的评估和改进方法,为水温控制领域的研究提供理论支持。

第二章水温控制系统设计原理2.1 水温测量原理本章将介绍水温的测量原理,包括热电偶、热敏电阻、红外传感器等常用温度传感器的原理及特点。

通过对各种传感器的比较,选出适合本研究的温度传感器。

2.2温度传感器选择与应用在本研究中,我们将选择一种具有高精度、快速响应和抗干扰能力的温度传感器。

此外,还将探讨如何将选定的温度传感器应用于水温控制系统,包括传感器的安装位置、信号处理方法等。

2.3控制算法选择与设计本章将分析现有的控制算法,如PID控制、模糊控制、神经网络控制等,并选择一种适合本研究的控制算法。

针对所选控制算法,设计相应的控制电路和程序。

第三章硬件实现3.1控制器选择与搭建本章将讨论控制器的选型,根据系统的需求,选择一款性能稳定、可编程性强、成本合理的控制器。

然后,介绍如何搭建控制器硬件系统,包括控制器与各种外设(如温度传感器、继电器等)的连接方式。

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计摘要:水温控制系统在工业、农业、生活等各个领域广泛应用。

随着技术的发展,单片机控制技术正在越来越多的应用到水温控制领域中。

本文通过对水温控制系统原理的分析,进行了设计和制作,并通过实验结果验证了本设计的可行性和稳定性。

关键词:单片机控制技术;水温控制系统;可行性;稳定性1. 引言水温控制系统在现代社会中应用广泛,水温控制技术的发展和进步为现代社会的科技进步做出了巨大的贡献。

单片机技术作为一种广泛应用的控制技术,可以实现多种不同的控制操作,因此被广泛应用到水温控制系统中。

本文将针对单片机水温控制系统进行分析设计,并进行实验验证。

2. 水温控制系统原理分析水温控制系统的基本结构由传感器、控制器以及执行机构等组成。

其中,传感器负责温度数据的采集,控制器负责处理和分析数据,并控制执行机构实现温度控制。

单片机水温控制系统的实现原理基于以下几个步骤:1)传感器采集温度数据并将数据转换为数字信号。

2)单片机控制器通过间接方式获取传感器采集的温度数字信号,并将其传输到外围设备中。

3)控制器将传输的信息根据其程序所设定的算法进行计算,得到温度数据,从而调整执行机构的作用。

4)执行机构实现接收计算出的数据并通过温度调节装置将温控装置的工作状态调节到所设定的工作状态,最终实现水温控制。

3. 单片机水温控制系统设计根据以上原理设计单片机水温控制系统,具体实现过程如下:1)传感器:选用DS18B20数字温度传感器,将其与单片机进行连接;2)控制器:选用AT89S52单片机,作为水温控制器,通过程序将传感器所采集到的数字信号转化为温度信息,并与设定温度进行比较和判断,控制继电器开关;3)执行机构:选用继电器作为执行机构,通过继电器的开关控制加热器的加热状态,调节水温。

4. 实验验证将设计好的单片机水温控制系统进行实验,实验过程中将设定温度为30℃,获得的实验结果显示在图1中。

图1 实验结果实验结果表明,本设计的单片机水温控制系统能够在设定温度为30℃时以及系统正常工作的情况下,实现对水温的有效控制。

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计

四、结论
基于单片机的智能水箱水位和水温控制系统具有结构简单、成本低、可靠性 高等优点。通过实时监测和控制水箱的水位和水温,可以满足不同用户的需求。 此外,通过优化系统的硬件设计和软件设计,可以进一步提高系统的性能和可靠 性。这种系统不仅可以应用于家庭用水领域,也可以应用于工业生产中的液体控 制,具有广泛的应用前景。
1、抗干扰设计
由于环境因素和设备本身的影响,系统可能会受到干扰。因此,需要在硬件 设计和软件设计中加入抗干扰措施,如滤波电路、软件去抖动等。
2、节能设计
为了降低系统的功耗,可以在软件设计中加入休眠模式和唤醒模式。当系统 不需要工作时,可以进入休眠模式,降低功耗。当有数据需要处理时,系统被唤 醒,进入工作状态。
2、软件设计
系统的软件设计主要实现以下功能:数据的采集、处理、显示和控制。首先, 单片机通过水位传感器和水温传感器采集当前的水位和水温数据。然后,单片机 对采集到的数据进行处理,判断水位和水温是否正常。如果异常,则启动相应的 执行机构进行调节。最后,单片机将处理后的数据通过显示模块进行显示。
三、系统优化
六、结论
本次演示设计了一种基于单片机的水温水位控制系统,实现了温度和水位的 自动检测、调节和控制。该系统具有成本低、可靠性高、易于实现等优点,同时 支持远程控制和节能模式等功能。在家庭、工业和科学研究中具有广泛的应用前 景。
参考自动化技术的普及,智能化设备在日常生活和工业生产中 的应用越来越广泛。其中,基于单片机的智能水箱水位和水温控制系统具有重要 应用价值。这种系统可以实现对水箱水位和水温的实时监测和控制,以适应不同 的应用需求。
系统软件采用C语言编写,主要包括以下几个部分:数据采集、数据处理、 控制输出和远程通信。
1、数据采集:通过I/O端口读取DS18B20和超声波水位传感器的数据。

基于单片机水温控制器的设计设计

基于单片机水温控制器的设计设计

基于单片机水温控制器的设计设计基于单片机的水温控制器的设计摘要本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。

它以单片机AT89S52为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。

关键词:单片机;数码管显示;单总线;DS18B20目录1 绪论 ................................................................................................................................... - 1 -2 系统总体设计 ................................................................................................................... - 2 -2.1硬件总体设计.................................................................................................... - 2 -2.1.1硬件系统子模块 ............................................................................... - 2 -2.2 软件总体设计................................................................................................... - 2 -3 硬件系统设计 ................................................................................................................... -4 -3.1硬件电路分析和设计报告................................................................................ - 4 -3.1.1单片机最小系统电路 ....................................................................... - 4 -3.1.2 键盘电路 .......................................................................................... - 5 -3.1.3 数码管及指示灯显示电路 .............................................................. - 5 -3.1.4 温度采集电路 .................................................................................. - 7 -3.1.5 电源电路 ........................................................................................ - 11 -3.1.6报警电路设计 ................................................................................. - 12 -3.1.7加热管控制电路设计 ..................................................................... - 12 -4 系统软件设计 ................................................................................................................. - 14 -4.1主程序流程图.................................................................................................. - 14 -4.2各个模块的流程图.......................................................................................... - 16 -4.2.1读取温度DS18B20模块的流程 ................................................... - 16 -4.2.2键盘扫描处理流程 ......................................................................... - 18 -4.2.3 报警处理流程 ................................................................................ - 18 -5 系统调试 ......................................................................................................................... - 20 -5.1 硬件电路调试................................................................................................. - 20 -5.2 软件调试......................................................................................................... - 20 -5.3 系统操作说明................................................................................................. - 21 -5.4数据测试.......................................................................................................... - 21 -总结 ................................................................................................................................. - 23 -致谢 ................................................................................................................................. - 24 -参考文献 ............................................................................................................................. - 25 -附录一:系统源程序......................................................................................................... - 26 -附录二:系统硬件总图..................................................................................................... - 35 -基于单片机的水温控制器的设计1 绪论本系统的设计可以用于水温控制系统和电饭煲等各种电器电路中。

基于单片机的水温控制系统的设计报告

基于单片机的水温控制系统的设计报告

基于单片机的水温控制系统一、总体模块图二、总体思路用温度传感器AD590检测出水的温度,传感器会把温度值转换为模拟量,再经由一个模数转换器ADC0804把传感器中的模拟量转换为数字量,这样才能传送到单片机中,要温度有范围的限制,则要事先设定出最低和最高温度,这时便要利用键盘,这里采用独立键盘的方式只用到3个按键(一个“设定”键,一个“加一”键,一个“减一”键),设定好的温度就相当于一个标准值,实时的水温都要在单片机中与之进行比较,如果实时值低于最低温度时单片机要有一个输出信号去控制温度控制电路,即执行温度控制的中段,温度控制电路会控制电炉对水进行加热到最高温度时,单片机停止对温度控制电路的作用,水会逐渐降温到最低温度,再加热,如此循环。

其中的实时温度会由单片机来控制LED数码管的显示。

三、分块叙述1、温度传感器AD590测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃。

AD590为电流型传感器温度每变化1℃其电流变化1uA。

满足温度范围40-90℃,最小区分度为1℃。

2、模数转换器ADC0804ADC0804的引脚功能如下:1、/CS(片选端)。

用来控制ADC0804是否被选取中,/CS=0时芯片被选中。

2、/RD(读控制端)。

/RD为1时,DB0-DB7处于高阻状态,/RD=0时,DB0-DB7才会输出电压数据。

3、/WR(写控制端)。

当/CS=0时,/WR由1变为0时,转换器被清除,/WR 再次回到1时,转换才重新开始。

4、CLK-IN(时钟输入端)。

5、INTR(中断输出端),低电平有效,接单片机外部中断。

6、Vin+(模拟电压同相输入端),输入电压在DC0-5.12V。

7、Vin-(模拟电压反相输入端),使用时一般接模拟地。

8、A-GND(模拟地)。

9、Vref/2(参考电压端),输入电压最高为5.12V时,应调整至2.56V;即此脚电压为输入最高电压的1/2。

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计引言在能源日益紧张的今天,电热水器,饮水机,电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费浪费。

利用 AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成,软件选用汇编语言编程。

单片机可将温度传感器检测到的水温模拟量转换成数字量,显示于LED 显示器上。

该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。

本设计任务和主要内容设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。

水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。

本设计主要内容如下:(1)温度设定范围为40~90℃,最小区分度为1℃,标定温度≤1℃。

(2)环境温度降低时温度控制的静态误差≤1℃。

(3)用十进制数码管显示水的实际温度。

(4)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。

(5)温度控制的静态误差≤0.2℃。

系统主要硬件电路设计单片机控制系统原理框图温度采样电路选用传感器AD590。

其测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃。

此器件具有体积小、质量轻、线形度好、性能稳定等优点。

系统的信号采集电路主要由温度传感器(AD590)、基准电压(7812)及A/D转换电路(ADC0804)三部分组成。

信号采集电路温度控制电路此部分电路主要由光电耦合器MOC3041和双向可控硅BTA12组成。

MOC3041光电耦合器的耐压值为400v,它的输出级由过零触发的双向可控硅构成,它控制着主电路双向可控硅的导通和关闭。

100Ω电阻与0.01uF 电容组成双向可控硅保护电路。

部分控制电路系统主程序设计主程序流程图。

基于单片机的水温控制器设计

基于单片机的水温控制器设计

基于单片机的水温控制器设计引言水温控制在很多领域中都具有重要的应用价值,例如温室、鱼缸、热水器等。

基于单片机的水温控制器能够自动调控水温,提高水温的稳定性和准确性。

本文将介绍如何设计一个基于单片机的水温控制器,以实现对水温的精确控制。

一、硬件设计1.单片机选择选择一个合适的单片机对于设计一个稳定可靠的水温控制器至关重要。

常用的单片机有STC89C52、AT89C52等。

在选择时应考虑单片机的性能、功耗、接口等因素。

2.温度传感器温度传感器用于检测水温,常用的有NTC热敏电阻和DS18B20数字温度传感器。

NTC热敏电阻价格便宜,但精度较低,DS18B20精度高,但价格相对较贵。

3.加热装置加热装置用于根据温度控制器的输出信号进行加热或制冷。

可以选择加热丝、加热管或半导体制冷片等。

4.驱动电路驱动电路用于将单片机的输出信号转换为合适的电流或电压,驱动加热装置。

可以选择晶体管或继电器等。

5.显示模块可以选择液晶显示屏或LED数码管等显示水温的数值。

二、软件设计1.初始化设置首先,对单片机进行初始化设置,包括引脚配置、定时器设置等。

然后,设置温度传感器和加热装置的引脚。

最后,设置温度范围,以便根据实际需求进行调整。

2.温度检测使用温度传感器检测水温,并将读取到的温度值转换为数字形式,以便进行比较和控制。

可以使用ADC(模拟-数字转换)模块转换模拟信号为数字信号。

3.控制算法本设计中可以采用PID控制算法进行水温控制。

PID(Proportional-Integral-Derivative)控制算法根据设定值和反馈值之间的差异来计算控制信号。

可以根据需求进行参数调整,以获得更好的控制效果。

4.显示和报警使用显示模块显示当前水温的数值,并在温度超出设定值时触发报警功能。

报警可以采用声音、灯光等形式。

5.控制输出根据PID算法计算出的控制信号,控制驱动电路,驱动加热装置或制冷装置,以实现水温的调节。

总结基于单片机的水温控制器能够实现对水温的精确控制。

基于单片机的水温控制系统设计-毕业设计.

基于单片机的水温控制系统设计-毕业设计.

基于单片机的水温控制系统设计学生:指导教师:内容摘要:说起温度控制系统,大家并不陌生了,在我们生活中许许多多的家用电器都可以涉及到温度的控制,像存储美食的电冰箱,为我们带来凉爽的空调都会用到温度控制系统,为我们带来热气腾腾开水的饮水机等等。

而本文介绍了水温控制系统的基本原理,本系统可以用于饮水机等电路,整个系统的核心就是AT89C51单片机,它是这个系统的主控制单元,对于水温控制当然温度控制系统也是必不可少的,这个系统则应用了DS18B20为温度传感器的温度控制系统,采集温度后利用数码管显示当前温度,并通过继电器对其加热等。

总而言之水温控制系统在生活中的大量应用为我们带来了方便,提高了我们的生活质量。

关键词:水温控制系统单片机 AT89C51 DS18B20 继电器Design for microcomputer temperature control system Abstract:Speaking of temperature control system, everybody is not strange, in our life, many household appliances can be involved in temperature control, like food storage refrigerator, bring us cool air conditioning, the temperature control system is used for us a steaming hot water drinking machine, and so on. Water temperature control system are introduced in this paper, the basic principle of this system can be used for water dispensers circuit, such as the core of the whole system is AT89C51 single chip microcomputer, it is the main control unit to the system, the water temperature control temperature control system is also indispensable, of course, the application system, the temperature control system of temperature sensor DS18B20, after collecting temperature using digital tube display the current temperature, and through the relay on the heating, etc. Overall water temperature control system in the life of a large number of applications for our brought convenient, improve the quality of our life.Keywords:water temperature control system of single chip microcomputer AT89C51 DS18B20 relay.目录前言 (1)1 水温控制器背景 (1)2 方案比较 (1)2.1 控制电路的方案比较 (1)2.2 温度采集模块 (2)2.3 显示模块 (2)2.4 温度控制模块 (2)3 硬件电路 (3)3.1 硬件框图 (3)3.2 功能介绍 (3)3.2.1 控制电路模块 (3)3.2.2 温度采集模块功能 (6)3.2.3 温度控制模块功能 (7)3.2.4 显示模块功能 (8)4 软件设计 (10)4.1 主程序流程图 (10)4.2 温度采集程序 (11)4.2.1 温度转换 (12)4.3 按键处理 (13)4.4 显示模块 (13)5 调试说明 (15)5.1 温度采集误差 (15)5.2 水温控制测试 (16)5.3 温度突变测试 (17)6 结束语 (18)附录 (19)参考文献 (21)基于单片机的水温控制系统设计前言电饭煲,电冰箱,电空调在我们生活中随处可见,为我们的生活带来了极大的方便,这一切的功劳都归属于水温控制系统的诞生。

基于单片机的智能水温控制系统设计

基于单片机的智能水温控制系统设计

摘要本设计以AT89C52单片机为核心,采用了温度传感器DS18B20,74HC245, LED 显示器对温度进行控制。

该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制实现水温控制的全过程。

本设计实现了水温的智能化控制以及提供完善的人机交互界面及多机通讯接口,系统由前向通道模块(即温度采样模块)、后向控制模块、系统主模块等三大模块组成。

本系统的特点在于采用PC机及普通键盘实现了多机通信。

该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制。

因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。

另外,单片机的使用也为实现水温的智能化控制以及提供完善的人机交互界面及多机通讯接口提供了可能,而这些功能在常规数字逻辑道路中往往是难以实现或无法实现的。

所以,本例采用以单片机为核心的直接数字控制系统。

关键词:AT89C52单片机;温度传感器;74HC245;LED显示器目录摘要 ......................................................... - 0 - 第一章绪论 ................................................. - 3 - 1.1系统概述.. (3)第二章系统方案设计 ............................................ - 4 - 2.1总体方案论证. (4)2.2模块方案论证 (4)2.2.1 控制方案论证.......................................... - 5 -2.2.2 系统组成论证.......................................... - 5 -2.2.3 单片机系统选择........................................ - 6 -2.2.4 温度控制方案论证...................................... - 6 -2.2.5 LED显示电路论证....................................... - 6 - 第三章总体设计 ................................................ - 8 - 3.1总体设计系统图.. (8)3.2AT89C52单片机 (8)3.474HC245 (11)3.5DS18B20温度传感器 (11)第四章硬件电路设计 ........................................... - 16 - 4.1主机控制部分 (16)4.2电路的整体排布 (16)4.3复位电路设计 (16)4.4系统电源电路 (17)4.5时钟电路的设计 (17)4.6温度采样电路 (18)4.7温度控制系统 (18)4.8数字显示部分 (19)4.9报警电路设计 (19)第五章仿真调试结果 ........................................... - 21 - 5.1K EIL U V ISION 2软件简介. (21)5.2 K EIL 调试 (21)5.3 PROTEUS 仿真 (22)第六章设计总结 ............................................... - 24 - 6.1设计过程总结 (24)6.2设计功能拓展 (24)参考文献 ...................................................... - 25 - 致谢 ......................................................... - 26 - 附录:程序清单 ................................................ - 27 -第一章绪论1.1系统概述单片微型计算机是随着超大规模集成电路技术的发展而诞生的,由于它具有体积小、功能强、性价比高等特点,所以广泛应用于电子仪表、家用电器、节能装置、军事装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。

基于单片机的水温恒温模糊控制系统设计

基于单片机的水温恒温模糊控制系统设计

基于单片机的水温恒温模糊控制系统设计水温恒温在很多工业领域中都是非常重要的,比如在制造过程中需要严格控制水温以确保产品质量,或者在实验室中需要保持水温恒定以保证实验结果的准确性。

为了实现水温恒温,可以采用单片机控制系统进行模糊控制,以更好地调节水温并确保其恒定性。

一、系统设计1.系统组成该水温恒温模糊控制系统包括以下几个部分:1)传感器:用于实时监测水温,通常采用温度传感器来获取水温数据。

2)单片机:作为系统的核心控制部分,负责根据传感器采集的水温数据进行控制算法处理,并输出控制信号给执行器。

3)执行器:负责控制水温调节设备,比如加热器或制冷器,以使水温保持在设定的恒温值附近。

4)人机界面:用于设定水温的目标值、显示当前水温以及系统的工作状态等信息,通常采用液晶显示屏或LED灯来实现。

2.系统工作原理系统工作流程如下:1)单片机通过传感器获取实时水温数据,并与设定的恒温值进行比较。

2)根据实时水温和设定值之间的差异,单片机通过模糊控制算法计算出调节水温的控制信号。

3)控制信号送往执行器,执行器根据信号控制加热器或制冷器对水温进行调节。

4)单片机不断循环执行上述步骤,使水温保持在设定的恒温值附近。

二、模糊控制算法设计模糊控制算法是一种基于模糊逻辑进行推理和决策的控制方法,适用于非线性、不确定性系统的控制。

在水温恒温控制系统中,可以设计如下的模糊控制算法:1.模糊化:将实时水温和设定水温映射到模糊集合,通常包括“冷”、“适中”和“热”等。

2.模糊规则库:根据实际情况,设定一系列的模糊规则,描述实时水温和设定水温之间的关系。

3.模糊推理:通过模糊规则库,进行模糊推理,得到相应的控制信号。

4.解模糊化:将模糊推理的结果映射到实际的控制信号范围内,作为执行器的输入。

通过模糊控制算法设计,可以更加灵活地调节水温,适应各种复杂环境下的恒温控制需求。

三、系统实现在实际系统的实现中,首先需要选择合适的传感器,并设计好传感器的接口电路来获取水温数据。

基于单片机的水温控制系统毕业设计

基于单片机的水温控制系统毕业设计

基于单片机的水温控制系统毕业设计1. 简介本文将讨论基于单片机的水温控制系统的设计和实现。

水温控制系统是一种常见的自动化控制系统,用于监测和调节水温。

本项目旨在设计一个可靠、高效且易于使用的水温控制系统,以满足用户对水温的要求。

2. 功能需求2.1 温度检测水温控制系统需要能够准确地检测水的温度。

为此,我们将使用一个温度传感器来获取实时的水温数据。

传感器将与单片机连接,通过模拟输入引脚读取传感器输出的模拟信号。

2.2 温度显示为了方便用户了解当前水温情况,我们将在系统中添加一个液晶显示屏。

单片机将把读取到的温度数据转换为数字信号,并通过数字输出引脚发送给液晶显示屏进行显示。

2.3 温度调节根据用户设定的目标温度,系统需要能够自动调节水温。

我们将使用一个加热元件(例如电热棒)来提供加热功能。

单片机将根据当前水温与设定的目标温度之间的差异控制加热元件的开关。

2.4 温度保护为了避免水温过高引发安全问题,我们将在系统中添加一个温度保护功能。

当水温超过一定阈值时,单片机将自动关闭加热元件,并向用户发出警报。

3. 系统设计3.1 硬件设计系统的硬件设计包括以下组成部分:•单片机:选择一款适合的单片机,具有足够的输入输出引脚和计算能力。

•温度传感器:选择一款可靠、精确度高的温度传感器,例如DS18B20。

•液晶显示屏:选择一款适合的液晶显示屏,具有足够的显示区域和分辨率。

•加热元件:选择一款适合的加热元件,例如电热棒或电热器。

•警报器:选择一个适合的警报器,用于发出警报信号。

3.2 软件设计系统的软件设计包括以下几个方面:•温度检测:编写程序读取温度传感器输出的模拟信号,并进行模数转换得到实际温度值。

•温度显示:编写程序将实际温度值转换为数字信号,并通过数字输出引脚发送给液晶显示屏进行显示。

•温度调节:编写程序根据当前水温与设定的目标温度之间的差异控制加热元件的开关。

当差异过大时,开启加热元件;当差异较小或为负时,关闭加热元件。

基于单片机控制的水温控制系统的设计开题报告

基于单片机控制的水温控制系统的设计开题报告
【1】张毅刚.单片机原理及应用[M].北京:高等教育出版社,2010
【2】李广弟.单片机基础[M].北京:北京航空航天大学出版社,2001
【3】王勇 .叶敦范.《基于AT89S51的便携式实时温度检测仪》
【4】余孟尝.数字电子技术基础简明教程[M].北京:高等教育出版社,1998
【5】杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2006
2、设计(研究)思想
本文所要研究的课题是基于单片机控制的水温控制系统的设计,主要是介绍了对水箱温度的显示,实现了温度的实时显示及控制。水箱水温控制部分,提出了用DS18B20、STC89C52单片机及LCD的硬件电路完成对水温的实时检测及显示,而炉内温度控制部分,由DS18B20检测炉内温度,用中值滤波的方法取一个值存入程序存取器内部一个单元作为最后检测信号,并在LCD中显示。控制器是用STC89C52单片机,用设定的算法对检测信号和设定值的差值进行调节后输出PWM控制信号给执行机构,去调节电阻炉的加热功率,从而控制炉内温度。它具有微型化、低功耗、高性能、抗干扰能力强、易配微处理器等优点,特别适合于构成多点的温度测控系统,可直接将温度转化成串行数字信号供微机处理,而且每片DS18B20都有唯一的产品号,可以一并存入其ROM中,以便在构成大型温度测控系统时在单线上挂接任意多个DS18S20芯片。从DS18S20读出或写入DS18S20信息仅需要一根口线,其读写及其温度变换功率来源于数据总线,该总线本身也可以向所挂接的DS18B20供电,而且不需要额外电源。同时DS18B20能提供九位温度读数,它无需任何外围硬件即可方便地构成温度检测系统。而且利用本次的设计主要实现温度测试,温度显示,温度门限设定,超过设定的门限值时自动启动加热装置等功能。而且还要以单片机为主机,使温度传感器通过一根口线与单片机相连接,再加上温度控制部分和人机对话部分来共同实现温度的监测与控制。

基于单片机水温控制系统的设计课程设计

基于单片机水温控制系统的设计课程设计

基于单片机水温控制系统的设计摘要本文介绍了基于AT89S52单片机水温测量及控制系统的设计。

系统硬件部分由单片机电路、温度采集电路、键盘电路、LED显示电路、继电器控制电路等组成。

软件从设计思路、软件系统框图出发,逐一分析各模块程序算法的实现,通过C语言编写出满足任务需求的程序。

本系统采用数字式温度传感器DS18B20作为温度传感器,简易实用,方便拓展。

单片机以此对水的温度进行有效检测与报警,并以此进行水温的控制。

基于单片机水温控制系统采用多电源供电,降低了系统各个模块间的干扰,还保证了电源能为各部分提供足够的工作电流,提高系统的可靠性。

关键词:水温控制 AT89S52 DS18B20湖南科技大学课程设计目录摘要 (i)第一章绪论 (1)1.1水温控制系统设计的背景 (1)1.2水温控制系统设计的意义 (1)1.3水温控制系统完成的功能 (2)第二章系统设计方案选择 (3)2.1单片机及水温控制方案 (3)2.2水温传感器方案 (3)2.3电源设计方案 (4)2.4控制系统总体设计 (4)第三章硬件设计部分 (5)3.1单片机电路 (5)3.2温度检测电路 (9)3.3其它部分硬件电路 (13)第四章软件设计部分 (16)4.1程序设计方案 (16)4.2各模块子程序设计 (17)第五章系统调试部分 (21)参考文献 (23)附录 (24)第一章绪论1.1水温控制系统设计的背景测量控制的作用是从生产现场中获取各种参数,运用科学计算的方法,综合各种先进技术,使每个生产环节都能够得到有效的控制,不但保证了生产的规范化、提高产品质量、降低成本,还确保了生产安全。

所以,测量控制技术已经被广泛应用于炼油、化工、冶金、电力、电子、轻工和纺织等行业。

单片机以其集成度高、运算速度快、体积小、运行可靠、价格低廉等优势,在过程控制、数据采集、机电一体化、智能化仪表、家用电器以及网络技术等方面得到了广泛的应用,特别是单片机技术的开发与应用,标志着计算机发展史上又一个新的里程碑。

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计本文旨在介绍一个基于单片机的水温控制系统设计。

随着工业的进步和市场需求的日益增加,对水温控制系统设计的需求也越来越高。

单片机技术作为当今工业控制领域的主流技术之一,具有可编程性强、运算速度快、存储器容量大等优点,在水温控制系统设计中得到广泛应用。

本文以一个实际的水温控制系统为例,介绍了该系统的硬件设计、软件设计和实验结果,并同时探讨了一些可能存在的问题和需要改进的地方。

1. 系统硬件设计为了实现水温的控制和监测,需要设计一套硬件系统来实现。

该系统中主要包括以下几个部分:(1)温度传感器:通过监测水温的变化来实现控制目的,可以使用一些常见的温度传感器,比如DS18B20、NTC电阻等。

(2)控制器芯片:本设计采用STC89C52单片机作为控制器芯片,具有较好的性能和稳定性。

(3)开关电路:为了实现控制目的,需要使用开关电路来控制加热器的功率,可以使用一个三极管的开关电路。

(4)液晶显示屏:用来显示当前水温和设定温度等信息。

(1)采集温度信息:通过温度传感器采集实时的水温信息,然后将温度值存储到单片机中。

(2)显示温度信息:将采集到的温度信息通过液晶屏显示出来,方便操作和监测。

(3)设定温度控制范围:设置一个目标温度值和一个偏差值,当水温低于目标温度值时,将开启加热器,并将水温不断升高,直到水温达到目标温度值,并保持在一定的偏差范围内。

(4)控制加热器:通过开关电路来控制加热器的功率,以实现加热或停止加热的目的。

(5)故障检测:当系统发生异常或不正常情况时,系统应该及时进行报警和处理,比如过温报警等。

3. 实验结果通过实验,我们可以看到系统在目标温度和偏差范围内工作良好,加热器能够及时开启和关闭,从而实现水温的稳定控制。

同时,系统也能够及时进行异常检测和处理,对保证水温控制系统的安全和稳定运行至关重要。

4. 可能存在的问题和需要改进的地方在实际应用中,可能会遇到一些问题,比如温度传感器的精度问题、控制器芯片的性能问题、硬件电路的稳定性问题等。

基于单片机技术的水温控制系统设计

基于单片机技术的水温控制系统设计

基于单片机技术的水温控制系统设计水温控制系统是一种常见的自动化控制系统,它可以根据水温的变化自动调节水温,保持水温在设定的范围内。

基于单片机技术的水温控制系统设计,可以实现更加精准的控制和更加智能化的操作。

一、系统设计方案基于单片机技术的水温控制系统设计,主要包括以下几个方面:1.硬件设计:包括传感器、单片机、继电器、显示屏等硬件设备的选型和连接。

2.软件设计:包括单片机程序的编写和调试,实现温度采集、控制算法、显示等功能。

3.控制算法设计:根据实际需求,设计合适的控制算法,实现精准的温度控制。

二、系统实现流程基于单片机技术的水温控制系统实现流程如下:1.硬件连接:将传感器、单片机、继电器、显示屏等硬件设备按照设计方案连接好。

2.程序编写:根据硬件连接情况,编写单片机程序,实现温度采集、控制算法、显示等功能。

3.调试测试:将系统连接到实际的水温控制设备上,进行调试测试,检查系统是否正常工作。

4.系统优化:根据测试结果,对系统进行优化,提高系统的稳定性和精度。

5.系统应用:将系统应用到实际的水温控制场景中,实现自动化控制和智能化操作。

三、系统优势基于单片机技术的水温控制系统具有以下优势:1.精准控制:采用先进的控制算法,实现精准的温度控制,避免了传统控制方式的误差和不稳定性。

2.智能化操作:通过显示屏和按键等人机交互界面,实现智能化操作,方便用户使用和管理。

3.可靠性高:采用高品质的硬件设备和优化的软件程序,保证系统的可靠性和稳定性。

4.节能环保:通过精准的温度控制,实现节能环保的目的,降低能源消耗和环境污染。

四、应用场景基于单片机技术的水温控制系统广泛应用于以下场景:1.家庭水温控制:可以实现家庭水温的自动化控制,提高生活质量和舒适度。

2.工业水温控制:可以实现工业生产中的水温控制,提高生产效率和产品质量。

3.农业水温控制:可以实现农业生产中的水温控制,提高农作物的生长效率和产量。

总之,基于单片机技术的水温控制系统设计,可以实现更加精准的控制和更加智能化的操作,具有广泛的应用前景和市场需求。

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计一、引言随着科技的不断发展,单片机技术在各行各业的应用越来越广泛,其在控制系统中的应用也越来越普遍。

水温水位控制系统在工业生产、农业灌溉和家用设备中都有着重要的作用。

本文将介绍基于单片机的水温水位控制系统的设计原理和实现方法。

二、系统设计原理1. 水温控制原理水温控制是指根据水的温度来控制加热或散热装置,使水温保持在设定的范围内。

在本设计中,使用DS18B20数字温度传感器来检测水温,当水温超过设定温度时,控制加热装置进行加热;当水温低于设定温度时,关闭加热装置或者进行散热。

2. 水位控制原理水位控制是指根据水位高低来控制水的进出,保持水位在设定范围内。

在本设计中,使用水位传感器来检测水位高低,当水位低于设定水位时,控制水泵进行进水;当水位高于设定水位时,关闭水泵或者进行排水。

三、系统硬件设计1. 单片机选择在本设计中,选择常用的STM32系列单片机作为控制核心,其具有强大的计算能力和丰富的外设接口,非常适合控制系统的设计。

2. 传感器选择选择DS18B20数字温度传感器和水位传感器作为水温水位检测的传感器,其精度高、响应快、稳定性好,能够准确地检测水的温度和水位。

3. 控制装置选择根据水温水位的检测结果,使用继电器、电磁阀等控制装置来控制加热装置和水泵的启停,实现对水温水位的精确控制。

四、系统软件设计1. 温度和水位检测编写相应的程序,通过单片机与温度传感器和水位传感器进行通信,实时获取水温水位的数据,并进行相应的处理。

2. 控制策略设计根据水温水位的检测数据,设计控制策略,确定加热装置和水泵的启停时机,使系统能够快速、稳定地对水温水位进行控制。

3. 人机交互界面设计设计人机交互界面,通过LCD显示屏或者触摸屏,实时显示水温水位的数据和系统工作状态,提供操作界面,方便用户对系统进行监控和控制。

五、系统实现和调试在硬件和软件设计完成后,进行系统的实现和调试,验证控制系统的准确性和稳定性,根据实际情况进行相应的调整和优化。

基于单片机的水温自动控制系统设计

基于单片机的水温自动控制系统设计

基于单片机的水温自动控制系统设计一、题目要求及分析要求设计一个水温控制系统,能正常控制和测量温度范围,用AT89C51控制DS18B20,读取数据对DS18B20转换后的数据进行处理,转换成实际温度,使用6位数码管显示DS18B20测出的温度。

二、系统总体方案1、温度传感器选择采用DS18B20单线数字温度传感器做温度检测器。

DS18B20能够直接将所采集的信号进行模|数转换2、LED显示方案系统需要采用6位LED数码管显示,LED显示有动态显示和静态显示。

本次采用动态显示,增加74LS245芯片最为LED数码管的驱动,采用共阴极的LED,其中单片机的P1口为LED的段码输出口,P3.0~P3.5分别是LED的位码输出口三、硬件电路组成部分(1)DS18B20温度采集电路DS18B20有3个引脚,GND接地信号、DQ数据输入\输出引脚、VDD外接供电电源输入端。

如图示:DS18B20温度值格式表,如下图所示。

这是12位转换后得到的12位数据,存储在DS18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得温度大于0,这5位为0,只要将测得得数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1测得的数值需要取反加1再乘0.0625即可得到实际温度。

高8为中的高五位是符号位,表示温度是零上还是零下。

高8位中的低三位和低8为中的高4位构成温度的整数部分。

低8位中的低4位为温度的小数部分。

(2)数码管LED(3)单片机外部时钟电路(4)单片机复位电路四、软件设计1、主程序2、DS18B20复位子程序3、DS18B20读温度子程序4、DS18B20数据处理子程序五、程序(一)编写、汇编源程序;变量定义DQ BIT P2.4 ;DS18B20数据位FLAG1 BIT 00HSIGN BIT 01HMSB EQU 30HLSB EQU 31HINTEG EQU 32HDECIM EQU 33HSEG-S EQU 34HSEG-I3 EQU 35HSEGI2 EQU 36HSEG-I1 EQU 37HSEG-D1 EQU 38HSEG-C EQU 39H;主程序ORG 0000HMAIN LCALL INIT-1820LCALL GET-TEMPERLCALL DATA-PPOCLCALL SEG-GENLCALL DISPLAYSJMP MAIN;DS18B20复位初始化子程序INIT-1820: SETB DQNOPCLR DQMOV R1,#3TSR1: MOV R0,#107DJNZ R0,$DJNZ R1,TSR1SETB DQNOPNOPNOPMOV R0,#25HTSR2: JNB DQ,TSR3DJNZ R0,TSR2LJMP TSR4TSR3: SETB FLAG1LJMP TSR5TSR4 : CLR FLAG1LJMP TSR6 TSR5: MOV R0,#117DJNZ R0,$TSR6: SETB DQRET;读出转换后的温度值GET-TEMPER: SETB DQLCALL INIT-1820JB FLAG1,TSS2RETTSS2:MOV A,#0CCHLCALL WRITE-1820MOV A, #44HLCALL WRITE-1820LCALL DELAYLCALL INIT-1820MOV A,#0CCHLCALL WRITE-1820MOV A,#0BEHLCALL WRITE-1820LCALL READ-1820RET;写DS18B20的子程序WRITE-1820:MOV R2,#8CLR CWR1:CLR DQMOV R3,#6DJNZ R3,$RRC AMOV DQ,CMOV R3,#23DJNZ R3,$SETB DQNOPDJNZ R2,WR1SETB DQRET;读DS18B20的程序READ-18200:MOV R4,#2MOV R1,#31HRE00:MOV R,#8RE01:CLR CSETB DQNOPNOPCLR DQNOPNOPNOPSETB DQMOV R3,#9 RE10:DJNZ R3,RE10MOV C,DQMOV R3,#23DJNZ R3,$RRC ADJNZ R2,RE01MOV @R1,ADEC R1DJNZ R4,RE00RET;数据处理子程序DATA-PROC: CLR CCLR SIGNMOV A,MSBRLC AJC NEGLJMP PROC NEG: CLR CSETB SIGNMOV A,LSBCPL AADD A,#1MOV LSB,AMOV A,MSBCPL AADDC A,#0MOV MSB,A PROC: MOV A,LSBANL A,#0FHMOV DECIM,AMOV A,MSBSWAP AANL A,#0F0HMOV INTEG,AMOV A,LSBSWAP AANL A,#0FHMOV R0,INTEGORL A,R0MOV INTEG,ARET;生成显示码子程序SEG-GEN:MOV DPTR,#TABLEJB SIGN,S-NEGMOV SEG-S,#00HSJMP S-INTS-NEG: MOV SEG-S,#40HS-INT MOV A,INTEGMOV B,#100DIV ABMOVC A,@A+DPTRMOV SEG-I3,AMOV A,BMOV B,#10DIV ABMOVC A,@A+DPTRMOV SEG-I2,AMOV A,BMOVC A,@A+DPTRORL A,#80HMOV SEG-I1,AMOV DPTR,#FLOAT-TABMOV A,DECIMMOVC A,@A+DPTRMOV DPTR,#TABLEMOVC A,@A+DPTRMOV SEG-D1,AMOV SEG-C,#39HRET;显示子程序DISPLAY: MOV P3,#0FFHCLR P3.0MOV P1,SEG-SLCALL DELAYSETB P3.0CLR P3.1MOV P1,SEG-I3CALL DELAYSETB P3.1CLR P3.2MOV P1,SEG-I2LCALL DELAYSETB P3.2CLR P3.3MOV P1,SEG-I1LCALL DELAYSETB P3.3CLE P3.4MOV P1,SEG-D1LCALL DELAYSETB P3.4CLR P3.5MOV P1,SEG-CLCALL DELAYSETB P3.5RET;延时子程序,延时5秒DELAY: MOV R5,#5D1:MOV R6,#248DJNZ R6,$DJNZ R5,D1RET;TABLE: DB 3FH,06H,5BH,4FH,66HDB 6DH,7DH,07H,7FH,6FHFLOAT-TAB DB00,01,01,02,03,03,04,04,05,06,06,07,08,08,DB09,09END(二)程序仿真1、先在protues仿真软件中搭建硬件电路;2、根据设计思想和硬件电路在keil2中编写程序代码调试通过并生成.axm文件;3、双击protues仿真电路中的单片机,将.axm文件添加到单片机中,然后运行观察结果。

基于单片机的水温加热控制系统设计

基于单片机的水温加热控制系统设计

基于单片机的水温加热控制系统设计
随着科技的不断发展,单片机在各个领域的应用越来越广泛。

其中,基于单片机的水温加热控制系统在工业和家庭中都有着重要的应用。

本文将介绍一个基于单片机的水温加热控制系统的设计原理和实现方法。

设计原理:
水温加热控制系统的设计原理是通过测量水温并与设定温度进行比较,控制加热器的开关状态,以维持水温在设定范围内。

在这个系统中,我们将使用单片机来实现温度的测量和控制逻辑。

实现方法:
首先,我们需要选择合适的温度传感器来测量水温。

常用的温度传感器有NTC热敏电阻和DS18B20数字温度传感器等。

然后,将温度传感器连接到单片机的模拟输入引脚,通过模数转换器将模拟信号转换为数字信号。

接着,我们需要设定一个目标温度值,当测得的水温低于目标温度时,单片机控制加热器开启,反之则关闭。

在程序设计方面,我们可以使用C语言或者类似的编程语言编写控制逻辑。

通过单片机的IO口控制加热器的开关状态,实现水温的控制。

同时,我们还可以在单片机上设置一些保护措施,比如过温保护、短路保护等,以确保系统的安全运行。

总结:
基于单片机的水温加热控制系统设计,可以实现对水温的精准控制,提高了加热系统的稳定性和安全性。

这种系统不仅可以应用在家用热水器、暖气系统等家庭设备中,也可以应用在工业生产中的加热设备中,具有广阔的应用前景。

希望本文的介绍能够对读者有所帮助,同时也希望大家能够在实际应用中不断完善和改进这一系统,为生活和生产带来更多的便利和效益。

基于单片机的水温控制系统设计任务书

基于单片机的水温控制系统设计任务书

主题:基于单片机的水温控制系统设计任务书任务目的:设计并实现一个基于单片机的水温控制系统,该系统能够监测水温并根据设定的温度范围进行自动控制,保持水温稳定在设定范围内。

任务内容:1. 系统硬件设计1.1 选择合适的单片机芯片,考虑其性能和外设接口;1.2 设计温度传感器电路,用于实时监测水温;1.3 设计控制继电器电路,用于控制加热器或冷却器。

2. 系统软件设计2.1 编写单片机的控制程序,包括温度采集、设定温度范围、控制加热器或冷却器等功能;2.2 考虑系统的稳定性和实时性,设计合理的控制算法;2.3 确保系统的安全性,防止温度过高或过低造成损坏。

3. 系统测试与调试3.1 制作系统原型,进行硬件连接及焊接;3.2 调试温度传感器、继电器等模块,确保它们能够正常工作;3.3 测试系统在不同温度下的控制效果,进行调试和优化。

4. 系统性能评估4.1 对系统的控制精度进行测试和评估,确定其控制水温的稳定性;4.2 对系统的实时性和可靠性进行测试,确保系统能够及时响应温度变化;4.3 对系统的功耗和安全性进行评估。

提交要求:1. 提交系统的硬件设计图纸和软件源代码;2. 提交系统原理图和PCB设计文件;3. 提交系统测试和调试记录,包括测试数据和优化过程;4. 提交系统性能评估报告,对系统的各项性能进行详细评估。

任务时间:本任务书下发后,设计团队需在两个月内完成系统设计、测试及评估,并在规定时间内提交相关文件。

任务负责人:XXX(负责人尊称及通联方式)任务审批人:XXX(审批人尊称及通联方式)以上任务书经XXXXXX审核通过,现予以下发。

希望设计团队能够认真执行任务,按时保质地完成任务,期待设计团队为我们带来一个高质量的水温控制系统。

经过反复检查和确认,我们设想出了一个基于单片机的水温控制系统实施计划。

在系统硬件设计方面,我们选择了一款性能稳定、外设接口丰富的单片机芯片。

通过该芯片,我们将设计温度传感器电路,用于实时监测水温。

基于单片机的水温控制器的设计

基于单片机的水温控制器的设计
序 的 功 能 是 检 测 是 否 有 按 键 闭 合 , 果 有 如 按 键 闭 合 , 除 抖 动 , 据 键 号 转 到 相 应 的 消 根 键处理程序 。 3. 报 警 处 理 流 程 3 运 行 程 序 后 , 度 传 感 器 DSl B2 即 可 温 8 0
示 , 提 供 各 种 运 行 指 示 灯 用 来 指 示 系 统 并 现在 所 处状 态 , : 度 设 置 、 热 、 止加 如 温 加 停 热等 , 个 系 统 通 过 四个 按 键 来 设 置 加 热 整 温度 和 控 制运 行 , 系 统 测 温 结 果 与 本 温 度 计 测温 基 本 一 致 , 能满 足 设 计 , 明 了 证 设计的合理性 。 4. 动 态数 据 测 试 2 进行 温度 设 定 , 过设 定 温度值 ( 通 7 5 ℃ ), 察 加 热 管 的 加 热 情 况 , 观 以及 数 码 管 的显 示 值 , 用 温 度 计 测 量水 温 , 隔一 段 再 每 时 间记 录 一 次数 据 , 两 组值 进 行 比较 。 将 记 的。 录 表 如 下 :设 定 前 温 度 为 2 ℃ ) ( 5 ● NO : r l Op n常 开 点 。 No ma e NO与 通 过 上 表 可 看 出在 加 热 的 过 程 中 , 显 COM 在 平 时 是 呈 开 路 状 态 的 , 继 电 器 动 示 的 温 度 与 实 测 的 温 度 近 似 一 样 , 明 系 当 说 作时, NO与 COM导通 , NC与 COM则 呈开 路 统 的设 计 达 到 精 度要 求 , 还 是 略有 偏 差 , 但 状态。 9 2 当8 S5 的P2. 输 出高 电平 时 , 电 基 本 不 影 响 设 计 结 果 。 5 继 器 不导 通 , 之 当 输 出低 电平 时 , 电器 导 反 继 整 个 测试 过程 表 明 该 方 案 是 合 理 可 行 通 , 样 就 激 活 了 连接 回路 。 这 的 , 利 完成 了设 计 , 到 了预 想 结 果 。 顺 达 2 5 警 电 路 设计 .报 5结 束语 在系统 里设定 温度上 限值 , 由于 加 热 此 设 计 虽 然 能 够 完 成 温 度 的显 示 和控 停 止 后 , 热 管 还 有 余 热 当 采 集 到 的 外 界 制 , 功 能和 精 度 有 待 于进 一 步 提 高 。 加 但 以后 温 度 高 于 当 前 所 设 定 温 度 上 限 值 时 , 序 可 以 通 过 加 入 PI 法 优 化 控 制 功 能 , 通 程 D算 并 就 会 进 入 报 警 子 程 序 , 发 蜂 呜 器 进 行 报 过 液 晶 显 示 屏 实 时 显 示 温 度 。 触 警 。 警 电路 原 理 图 如 图 所 示 。 报
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的水温控制器的设计摘要本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。

它以单片机AT89S52为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。

关键词:单片机;数码管显示;单总线;DS18B20目录1 绪论 ................................................................................................................................... - 1 -2 系统总体设计 ................................................................................................................... - 2 -2.1硬件总体设计 .......................................................................................................... - 2 -2.1.1硬件系统子模块 ............................................................................................ - 2 -2.2 软件总体设计 ......................................................................................................... - 2 -3 硬件系统设计 ................................................................................................................... -4 -3.1硬件电路分析和设计报告 ...................................................................................... - 4 -3.1.1单片机最小系统电路 .................................................................................... - 4 -3.1.2 键盘电路 ....................................................................................................... - 5 -3.1.3 数码管及指示灯显示电路 ........................................................................... - 5 -3.1.4 温度采集电路 ............................................................................................... - 7 -3.1.5 电源电路 ..................................................................................................... - 11 -3.1.6报警电路设计 .............................................................................................. - 12 -3.1.7加热管控制电路设计 .................................................................................. - 12 -4 系统软件设计 ................................................................................................................. - 14 -4.1主程序流程图 ........................................................................................................ - 14 -4.2各个模块的流程图 ................................................................................................ - 16 -4.2.1读取温度DS18B20模块的流程 ................................................................ - 16 -4.2.2键盘扫描处理流程 ...................................................................................... - 18 -4.2.3 报警处理流程 ............................................................................................. - 18 -5 系统调试 ......................................................................................................................... - 20 -5.1 硬件电路调试 ....................................................................................................... - 20 -5.2 软件调试 ............................................................................................................... - 20 -5.3 系统操作说明 ....................................................................................................... - 21 -5.4数据测试 ................................................................................................................ - 21 -总结 ................................................................................................................................. - 23 -致谢 ................................................................................................................................. - 24 -参考文献 ............................................................................................................................. - 25 -附录一:系统源程序......................................................................................................... - 26 -附录二:系统硬件总图..................................................................................................... - 35 -基于单片机的水温控制器的设计1 绪论本系统的设计可以用于水温控制系统和电饭煲等各种电器电路中。

它以单片机AT89S52为核心,通过数码管显示温度和语音提示实现人机对话,使用温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。

温度控制系统可以说是无所不在,热水器系统、空调系统、冰箱、电饭煲、电风扇等家电产品以至手持式高速高效的计算机和电子设备,均需要提供温度控制功能。

以计算机为例,当中的中央处理器的运行速度愈快,所耗散的热量便愈多,为免计算机系统过热而受损,有关系统必须加强温度过高保护功能。

传统的温度采集电路相当复杂,需要经过温度采集、信号放大、滤波、AD转换等一系列工作才能得到温度的数字量,并且这种方式不仅电路复杂,元器件个数多,而且线性度和准确度都不理想,抗干扰能力弱。

现在常用的温度传感器芯片不但功率消耗低、准确率高,而且比传统的温度传感器有更好的线性表现,最重要的一点是使用起来方便。

自动控制仪器仪表总的发展趋势是高性能、数字化、集成化、智能化和网络化。

智能温度控制系统的设计是为了满足市场对成本低、性能稳定、可远程监测、控制现场温度的需求而做的课题,具有较为广阔的市场前景。

本系统的核心控制芯片选用的是51系列单片机AT89S52,单片机在各个技术领域中的迅猛发展,与单片机所构成的计算机应用系统的特点有关:·单片机构成的应用系统有较大的可靠性。

相关文档
最新文档