单级交流放大器实验
实验二 单级交流放大器
实验一单级交流放大器一、实验目的l、掌握放大电路静态工作点的测试方法,进一步理解电路元件参数对静态工作点的影响,以及调整静态工作点的方法。
2、掌握测量电压放大倍数、输入电阻、输出电阻及最大不失真输出电压幅值的方法。
3、观察电路参数对失真的影响。
二、原理简介放大电路的用途非常广泛,单管放大电路是最基本的放大电路。
共射极单管放大电路是电流负反馈工作点稳定电路,它的放大能力可达到几十到几百倍,频率响应在几十赫兹到上千赫兹范围。
不论是单级或多级放大器它的基本任务是相同的,就是对信号给予不失真的、稳定的放大。
1、放大电路静态工作点的选择当对放大电路仅提供直流电源,不提供输入信号时,称为静态工作情况,这时三极管的各电极的直流电压和电流的数值,将和三极管特性曲线上的一点对应,这点常称为Q 点。
静态工作点的选取十分重要,它影响放大器的放大倍数、波形失真及工作稳定性等。
静态工作点如果选择不当会产生饱和失真或截止失真。
一般情况下,调整静态工作点,就是调整电路有关电阻,使I CQ和U CEQ达到合适的值。
由于放大电路中晶体管特性的非线性或不均匀性,会造成非线性失真,在单管放大电路中不可避免,为了降低这种非线性失真,必须使输入信号的幅值较小。
2、放大电路的基本性能当放大电路静态工作点调好后,输入交流小信号u i,这时电路处于动态工作情况,放大电路的基本性能主要由动态参数描述,包括电压放大倍数、频率响应、输入电阻、输出电阻。
这些参数必须在输出信号不失真的情况下才有意义。
基本性能测量的原理电路如图1-1所示.。
(1)电压放大倍数A u的测量用晶体管毫伏表测量图1-1中U i和Uo的值。
即:UiUoAu/(2)输入电阻R i的测量图1-1 交流放大电路实验原理图如图1-1所示,放大器的输入电阻R i 就是从放大器输入端看进去的等效电阻。
即; Ii Ui Ri /=通常测量R i 的方法是:在放大器的输入回路串一个已知电阻R ,选用R ≈R i (这里的R i 为理论估算值)。
单级交流放大电路实验报告
单级交流放大电路实验报告本实验的目的是通过实验操作,掌握单级交流放大电路的基本原理和性能特点,以及对单级放大电路进行性能参数测量和分析。
实验原理:单级交流放大电路是放大器的基本部件,它能够放大信号的幅度,并对信号进行滤波。
在实验中,我们使用的是共射放大电路。
共射放大电路的特点是输入和输出信号都进行交流耦合,这使得信号能够通过放大电阻的放大作用,输出的电压幅度得到放大。
实验步骤:1. 搭建单级交流放大电路,连接电路元件。
2. 使用函数发生器产生待放大的信号,并接入放大电路的输入端。
3. 调节函数发生器的频率和振幅,观察并记录放大电路输出端的波形。
4. 改变输入信号的频率和振幅,观察输出端的波形的变化情况。
5. 测量并记录实验中使用的电路元件的参数,如电阻、电容等。
6. 使用示波器测量并记录放大电路输入端和输出端的电压幅值、电流幅值以及相位差等参数。
7. 对实验数据进行分析和处理,计算并绘制放大电路的幅频特性曲线、相频特性曲线等。
实验结果和数据分析:根据实验所得数据,计算并绘制了单级交流放大电路的幅频特性曲线和相频特性曲线。
通过对比实验数据和理论结果,可以得出实验结果与理论结果基本吻合的结论。
实验结论:本实验成功搭建了单级交流放大电路,通过实验观察验证了放大电路的基本原理和性能特点。
实验结果表明,该单级交流放大电路能够放大信号的幅度,并对信号进行滤波。
实验结果与理论结果基本吻合,验证了单级交流放大电路的性能参数测量和分析方法的正确性。
实验心得:通过本次实验,我深刻理解了单级交流放大电路的原理和性能特点,并掌握了对单级放大电路进行性能参数测量和分析的方法。
实验过程中,我遇到了一些问题,如电路元件的选择和连接、实验数据的测量和记录等。
通过认真学习实验原理和操作步骤,我逐渐解决了这些问题,并取得了满意的实验结果。
这次实验对我今后的学习和研究具有重要意义,我将继续深入学习电路理论和实验技术,提高自己的实验能力和创新能力。
实验5 单级放大器交流特性的测试
实验5 单级放大器交流特性的测试一、实验目的1.学会测量放大器的电压放大倍数和幅频特性。
2.观察静态工作点对放大器输出波形的影响。
3.学会测量放大器的输入电阻和输出电阻。
二、实验原理1.放大器的电压放大倍数AV 及其测量电压放大倍数AV 的值 |AV | ,是输出电压与输入电压的比值。
即它以可通过公式计算,对本实验的电路 (图 1.5.3) 而言,有其中, 在实验中,|AV | 值可以通过晶体管毫伏表直接测量输出电压Vo 和输入电压 Vi 求得。
2. 放大器的输入电阻及其测量放大器的输入电阻是从放大器的输入端向放大器看进去的等效电阻。
在实验中,输入电阻可以采用“换算法”通过测量某些参量而求得。
其测量原理如图 1.5.1 所示。
其测量方法是:在信号源与放大器之间串入一已知阻值的电阻R ,并分别测出电阻R 两端的电压 VS 和 Vi ,则可算出放大器的输入电阻为当 Vi =VS / 2 时,R i = R 。
所串入的电阻R 的阻值应与Ri 为同一数量级。
不能取得太大或太小。
R 取得太大则容易引入干扰,取得太小则测量误差较大。
3.输出电阻及其测量放大器的输出电阻是指将放大器的输入端短路,从放大器的输出端向放大器看进去的等效电阻。
和输入电阻一样,输出电阻也可以采用“换算法”通过测量放大器的某些参量而求得。
其测量原理如图 1.5.2 所示。
图中,放大器的输出端被等效为一个电压源 V o c 和一个输出电阻 R o 的串联。
通过测量放大器接入负载 R L 前后,输出电压 V o 的 值可以 求 得 输 出 电 阻 R o 。
具体测量方法是:在放大器的输入端加一个固定的信号电压Vi ,分别测量出 RL 断开时输出端的电压Voc 和RL 接入时输出端的电压Vo ,则输出电阻 Ro 可通过下式求得当 Vo = Voc / 2 时,Ro =RL 。
为了保证测量精度,RL 的阻值应与Ro 为同一数量级。
(1.5.1)i V V V A 0=beL c i V r R R V V A )//(0β-==(1.5.2))()(26)1(300mA I mV r E be β++= (1.5.3)(1.5.4) R V V V R V V I V R i s i R i i i i ⨯-===4.放大器的幅频特性及其测量放大器的幅频特性是指放大器的放大倍数随信号频率而变化的特性。
单级交流放大电路实验原理
单级交流放大电路实验原理1. 引言说到单级交流放大电路,首先得让我们把脑袋里的那些复杂的公式和电路图先放一边,轻松点儿想象一下。
想象你在家里放音乐,声音小得跟蚊子嗡嗡似的,听得你心烦意乱。
此时,你只需要一个简单的放大器,嘿,声音立马就能嗨起来!这就是单级交流放大电路的魅力所在,能把微弱的信号放大到听得见、看得见的程度,简直就像给声音穿上了“超级战衣”!2. 基本原理2.1 什么是单级交流放大电路?单级交流放大电路,听名字就知道是个放大器,不就是把小声音变大吗?不过,它可不简单哦。
这个小家伙主要由三部分构成:输入信号源、放大器本身和输出负载。
就好比一场表演,输入信号源就像是一个小演员,放大器是舞台,而输出负载则是观众们,只有演员在舞台上表演,才能让观众们开心地鼓掌。
简单来说,就是把输入的微弱信号经过放大器一番“修整”,最后在输出端放出更强的信号。
2.2 放大原理那么,它是怎么工作的呢?放大器的核心是一个叫做晶体管的“小东西”,这个晶体管就像是个调皮的孩子,能根据输入信号的变化来调节输出信号的大小。
你想想,输入的信号就像是小溪流水,而晶体管则是那块石头,流过的水被石头挡住,水流就会在石头后面聚集,形成更大的水流。
在这个过程中,电流的变化就能把小信号放大,变成大信号,哇,真是太神奇了!3. 实验步骤3.1 实验准备在实验之前,我们得先准备好一些必要的设备,像是电源、信号发生器、示波器和一些电阻、电容。
这些都是我们实验的“好帮手”,没它们可不行哦。
信号发生器就好比是个乐队指挥,给我们提供音乐;示波器则像是个观察员,让我们可以看到电流变化的样子。
准备好这些之后,我们就可以开始我们的“音乐会”了!3.2 连接电路接下来,最重要的就是把这些设备连接起来。
按照电路图把每个元件连接好,就像拼图一样,找对位置,才能把这幅画拼完整。
连接好之后,检查一遍,确保没有遗漏的地方。
然后,慢慢地给电路通电,哇,神奇的事情发生了!我们的输入信号在经过放大器之后,变得更强了,音量也随之提升,真是让人耳目一新。
实验一 单级交流放大电路(有数据)
一、实验目的
1、熟悉电子元器件和模拟电路实验箱,
2、掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3、学习测量放大电路Q点,AV,Ri,Ro的方法,了解共射极电路特性。
4、学习放大电路的动态性能。
二、实验仪器
1、示波器
2、信号发生器
3、数字万用表
三、实验电路原理
图1.l 基本放大电路
表2三极管饱和电流、电压测量结果
/
/
/
/V
/V
/V
/V
/V
/mA
/mA
/mA
0.77
817
5.1
3.28
3.82
3.18
0.64
0.10
1.71
0.01
1.77
0.09
1பைடு நூலகம்7
5.1
3.30
3.93
3.26
0.67
0.04
1.71
0.05
1.81
2、动态特性测试
实验电路如图1.2所示。
1)空载电压放大特性测试
图1.2 小信号放大电路
表3空载电压放大特性测试结果
实测
实测计算
/V
/V
/V
/mV
/V
0.63
6.09
0
492
1.104
224
2)f =1KHz,幅值为500mA,调整Rp的值,改变静态偏置,观察输出情况,分析原因。
/V
/V
/V
输出波形
0.67
0.40
12.02
0
截止失真
0.30
0.64
4.75
0
实验一 单级交流放大电路 实验报告
实验一单级交流放大电路实验报告一.实验目的本实验的目的是通过模拟电路的组装,进一步学习单级交流放大电路的构成、工作原理和性能指标性质。
同时,通过实验验证理论计算和模拟仿真,提高实验操作技能。
二.实验原理电路的目的是输入的交流信号进行放大。
单级交流放大电路是一个只含有一个三极管的放大器,其结构简单,性能较好,并且在各种电子设备中都被广泛地应用。
单级交流放大电路将交流信号分为两个部分:直流部分和交流部分。
其中,直流部分只负责将输入信号的直流分量放大,而且是每一级交流放大电路中的共同部分,它不仅决定了放大器直流的工作点,而且主宰了整个电路灵敏度的大小。
交流部分仅放大输入信号的交流成分,直流部分不参与放大工作,不影响交流信号的放大过程。
三.实验内容与步骤1.准备工作:将所需电子元器件和工具放齐,无噪声的直流电源、数字万用表等。
2.按照电路图中的元器件连接方式将电路图所示的电子元器件组装成电路体系。
3.电源接通,开关正常,调节调节旋钮从小到大,使VCE < VCC,调整VCE上升到预设值,然后再根据调节旋钮上下调整交流信号,以使输出电压的原则尽可能小,且输出信号达到最大值,同时使输入的直流电压保持0.6V。
4.记录实验所得数据,并照片记录实验现象。
5.电路断电,拆卸电子元器件。
四.实验仪器1.7603B数字多用表2.单通道正弦信号发生器3.2SB561 transistor4.100Ω, 10KΩ, 1μF等电子元器件5.电源6.万用表等。
五.实验结果及分析1.量取输入、输出交流信号的幅度和相位,并计算其增益和相位差。
2.电路实验结果:图中的输入信号频率为1KHz,如图,当输入信号的幅值较小时,输出偏离了零点,因为它的漂移的结果。
随着输入信号的增强,输出波形向心移动,直到输入信号的峰值约为600mV时,在不失真、条件稳定和能力的范围内输出约为3.3 V。
当增益为27.71,相位差约为90度,这样的结果符合实际预期。
实验一单级交流放大电路有数据
实验一单级交流放大电路(有数据) 实验一:单级交流放大电路一、实验目的1.掌握单级交流放大电路的基本原理和组成。
2.学习使用示波器和电压表测量放大电路的输入输出电压。
3.通过实验数据分析放大电路的性能指标,如电压放大倍数、输入电阻、输出电阻等。
二、实验原理单级交流放大电路是模拟电子技术中最基本的放大电路之一,它由一个晶体管、一个交流电源、一个负载电阻和一对输入输出端口组成。
通过适当的选择晶体管和电阻等元件的参数,可以实现对交流信号的放大作用。
三、实验步骤1.搭建单级交流放大电路,确保电路连接正确无误。
2.接通电源,调整输入信号源,使输入信号源的幅度适中。
3.使用示波器和电压表分别测量输入输出电压,记录数据。
4.改变输入信号源的幅度,重复步骤3,记录数据。
5.改变负载电阻,重复步骤3和4,记录数据。
6.分析实验数据,计算放大倍数、输入电阻和输出电阻等性能指标。
7.根据实验结果,分析单级交流放大电路的性能特点。
四、实验数据分析等性能指标与输入信号幅度无关。
这是因为单级交流放大电路只包含一个晶体管和几个电阻元件,其性能指标主要由元件参数决定,而非输入信号幅度。
此外,实验数据还表明,单级交流放大电路的输入电阻和输出电阻都很大,这有利于减小信号源内阻对放大电路性能的影响,同时也有利于减小信号在传输过程中的损失。
然而,单级交流放大电路的放大倍数较大,可能会导致输出信号失真。
因此,在实际应用中需要根据具体需求选择合适的放大倍数。
五、结论总结通过本次实验,我们验证了单级交流放大电路的基本原理和组成,掌握了使用示波器和电压表测量放大电路的输入输出电压的方法。
通过数据分析发现,单级交流放大电路的性能指标主要由元件参数决定,而非输入信号幅度。
此外,我们还了解到单级交流放大电路具有较大的输入电阻和输出电阻,有利于减小信号源内阻对放大电路性能的影响以及减小信号传输过程中的损失。
然而,由于放大倍数较大可能导致输出信号失真,因此在实际应用中需要根据具体需求选择合适的放大倍数。
模拟电路实验 单级交流放大器
实验二单级交流放大器(一)一.实验目的1. 学习晶体管放大电路静态工作点的测试方法,进一步了解电路元件参数对静态工作点的影响,以及调整静态工作点的方法。
2. 进一步熟悉常用电子仪器的使用方法。
二.实验内容及步骤1. 调节静态工作点1.1 实验原理当外加输入信号为零时,在直流电源的作用下,三极管的基极回路和集电极回路均存在直流电流和直流电压,这些直流电流和电压在三极管的输入、输出特性上各自对应一个点,成为静态工作点。
1.2 实验电路1.3实验步骤按电路图连接好电路,将输入端对地短路,调节好电位器RW,使Vc=Ec/2,测表中要求测的静态工作点的值,计入表中,再计算出电流的值,在测Rb2的值时,应将它与三极管断开,并且切断电流,按下式计算静态工作点IB=(Ec- Vb)/Rb (Rb=Rb1+Rb2)IC=(Ec-Vc)/Rc1.4实验数据Vc(V)Ve(V)Vb(V)IB(μA)IC(mA)RW(Ω)6.000.76229.63280K2. 测量电压放大倍数及观察输入输出电压相位关系2.1 实验电路2.2 实验步骤在实验步骤1的基础上,将输入与地断开,接入f=1khz、Vi=5mv 的正弦波信号,负载电阻分别是Rl=2kΩ和Rl=∞,用示波器测量输出电压的值,并观察输入电压和输出电压的波形,并画出波形,并把数据记录在表格中A=V0/Vi2.3实验数据RL(Ω)Vi(mV)V0(V)A2K51200∞52.0400电压波形图3. 观察RC=3K,RL=2K时对放大倍数的影响。
3.1 实验电路3.2 实验步骤在实验步骤2的基础上,把RC换成3K,重新测定放大倍数,将数据填入表格。
3.3 实验数据RC(Ω)Vi(V)VO(V)A20.005120030.0051.22404. 观察负载电阻对放大倍数的影响4.1 实验电路4.2 实验步骤在实验步骤2的基础上,把负载电压2K换成5.1K,重新测定放大倍数,把数据填入表格。
单级交流放大电路实验报告
单级交流放大电路实验报告一、实验目的1、掌握单级交流放大电路的工作原理和基本结构。
2、学习使用电子仪器测量电路的性能参数,如电压放大倍数、输入电阻、输出电阻等。
3、熟悉放大器静态工作点的调试方法,了解静态工作点对放大器性能的影响。
4、观察放大器输出信号的失真情况,分析产生失真的原因及解决方法。
二、实验原理单级交流放大电路是由一个晶体管(如三极管)组成的基本放大电路。
它的主要作用是将输入的小信号进行放大,输出一个较大的信号。
在三极管放大器中,要使三极管能够正常放大信号,必须给三极管设置合适的静态工作点。
静态工作点是指在没有输入信号时,三极管的基极电流、集电极电流和集电极发射极电压的值。
通过调节基极电阻和集电极电阻的大小,可以改变静态工作点的位置。
放大器的电压放大倍数是衡量其放大能力的重要指标,它等于输出电压与输入电压的比值。
输入电阻是从放大器输入端看进去的等效电阻,输出电阻是从放大器输出端看进去的等效电阻。
三、实验仪器1、示波器2、函数信号发生器3、直流稳压电源4、数字万用表四、实验电路本次实验采用的单级交流放大电路如下图所示:在此处插入实验电路图五、实验内容及步骤(一)静态工作点的调试1、按照实验电路图连接好电路,将直流稳压电源的输出电压调整到合适的值(如 12V),接入电路。
2、调节电位器 Rb,使三极管的基极电压 Vb 达到预定的值(例如2V)。
3、用万用表测量三极管的集电极电流 Ic 和集电极发射极电压 Vce,计算静态工作点的参数。
(二)测量电压放大倍数1、将函数信号发生器的输出端连接到放大器的输入端,设置输入信号的频率为 1kHz,峰峰值为 10mV。
2、用示波器同时观察输入信号和输出信号的波形,测量输出信号的峰峰值 Vopp。
3、计算电压放大倍数 Av = Vopp / 10mV。
(三)测量输入电阻1、在放大器的输入端串联一个已知电阻 Rs(例如1kΩ)。
2、测量输入信号的电压 Vi 和电阻 Rs 两端的电压 Vs。
单级交流放大电路实验报告
单级交流放大电路实验报告实验名称:单级交流放大电路实验报告实验教材:《电子技术基础》实验目的:1. 了解单级交流放大电路的工作原理和基本构成;2. 学会测量单级交流放大电路的放大倍数和频率响应;3. 培养实验操作能力和分析问题的能力。
实验器材:1. 电压表;2. 万用表;3. 信号发生器;4. 示波器;5. 电阻、电容等元件;6. 晶体管等半导体器件。
实验步骤:1. 按照图1的电路连接,调节信号发生器的频率为1kHz,输出电压为0.1Vrms,用万用表测量输入信号的电压和输出信号的电压,并计算电路的放大倍数;2. 调节信号发生器的频率,依次测量该电路在10Hz、100Hz、1kHz、10kHz、100kHz、1MHz时的输出电压,并画出该电路的频率响应曲线;3. 改变电路中电容的容值,重复步骤1和步骤2,比较不同电容容值对电路的影响。
实验结果:1. 在1kHz时,电路的输入电压为0.1Vrms,输出电压为0.8Vrms,电路的放大倍数为8;2. 该电路的频率响应曲线如图2所示;3. 当电容值增大时,电路的低频响应增强,放大倍数增大。
实验分析:1. 在实验过程中,我们通过测量电路的输入和输出电压,以及计算电路的放大倍数,了解了单级交流放大电路的基本工作原理;2. 通过绘制频率响应曲线,我们发现该电路在低频和高频时放大倍数较小,在中频时放大倍数较大;3. 改变电容的容值可以改变电路的频率响应特性,这对于设计一个满足特定要求的放大电路具有重要意义。
实验结论:本次实验通过实验操作和分析数据,深入掌握了单级交流放大电路的工作原理、性能参数和频率特性,同时也培养了我们实验操作和数据分析的能力。
该电路在电子技术中应用广泛,研究和设计该电路对于我们掌握电子技术有很大帮助。
单级交流放大电路实验报告数据处理
单级交流放大电路实验报告数据处理单级交流放大电路实验报告数据处理一、引言在电子学实验中,单级交流放大电路是一种常见的电路结构。
本实验旨在通过搭建单级交流放大电路,测量并处理实验数据,探究电路的放大特性和频率响应。
二、实验原理单级交流放大电路由放大器和耦合电容组成。
放大器是核心部件,可以实现信号的放大。
耦合电容则用于隔离直流信号,只传递交流信号。
三、实验步骤1. 搭建电路根据实验原理,按照电路图搭建单级交流放大电路。
确保电路连接正确,电路元件无损坏。
2. 测量电压增益使用数字万用表测量输入信号和输出信号的电压,计算电压增益。
记录测量结果,并进行数据处理。
3. 测量频率响应通过改变输入信号的频率,测量输出信号的幅值,绘制频率响应曲线。
根据实验数据,分析电路的频率特性。
四、实验数据处理1. 电压增益计算根据测得的输入信号电压Vin和输出信号电压Vout,计算电压增益Av = Vout /Vin。
将计算结果记录在表格中。
2. 频率响应曲线绘制根据测得的不同频率下的输出信号幅值,绘制频率响应曲线。
横轴表示频率,纵轴表示输出信号幅值。
通过曲线的形状和变化趋势,分析电路的频率特性。
3. 频率响应分析根据绘制的频率响应曲线,分析电路在不同频率下的放大特性。
观察曲线的波动情况,判断电路是否存在共振或衰减现象。
结合实验原理,解释曲线变化的原因。
五、实验结果与讨论根据实验数据处理的结果,得到电路的电压增益和频率响应曲线。
通过对数据的分析,可以得出以下结论:1. 电压增益随着输入信号频率的增加而逐渐减小,说明电路对高频信号的放大能力较弱。
2. 频率响应曲线呈现出一定的波动,说明电路在特定频率下存在共振或衰减现象。
3. 在频率响应曲线中,可以观察到电路的截止频率。
截止频率是指电路对输入信号的放大能力下降至一半的频率。
六、结论通过本次实验,我们成功搭建了单级交流放大电路,并进行了数据处理和分析。
实验结果表明,电路的电压增益随着频率的增加而减小,同时存在一定的频率响应特性。
实验二单级交流放大器实验
实验一常用电子仪器的使用一、实验目的1、学习电子线路实验中各种常用电子仪器的使用方法。
2、初步掌握用双踪示波器观察波形及测量信号参数的方法二、实验仪器1、函数信号发生器2、双踪示波器3、交流毫伏表4、数字万用表5、模拟电路实验箱三、预习要求1、认真阅读本书附录部分各仪器使用说明,熟悉常用电子仪器的使用方法。
2、熟悉实验内容,计算表1—4中待测数据的理论值。
四、实验内容1、练习数字万用表的使用方法(1) 用数字万用表的直流电压档测量模拟电路实验箱上的+12V、-12V的直流稳压源的输出电压值,可调稳压源的最大值和最小值,以及直流信号源的最大值和最小值,与实验箱上的标称值相比较,结果填入表1-1中。
(2)用数字万用表的欧姆档测量实验箱上标称为2k、3k电阻的实际阻值,将结果填入表1-2中。
2、练习函数信号发生器和双踪示波器的使用方法(1)将函数信号发生器和双踪示波器按图1-1所示电路进行连接。
(2)调节信号发生器各控制旋钮,使之输出频率为lkHz、峰—峰值为2V的正弦信号,同时将信号发生器的直流分量旋钮和占空比旋钮旋到“Off'’位置。
图1—1 示波器与函数信号发生器的连接(3)校准示波器后用示波器观察由信号发生器输出的正弦信号的波形,并测量该正弦信号的周期T和峰—峰值Vp-p,与信号发生器的表头指示值相比较,将结果填入表l—3中。
(4)调节信号发生器的“直流分量”旋钮,使上述输出的正弦信号带上一定的直流分量。
将示波2器的“AC-GND-DC”选择开关分别放到AC档上和DC档上,观察示波器屏幕上显示波形的变化,分析示波器的AC档和DC档的区别。
3、练习交流毫伏表的使用方法将函数信号发生器和交流毫伏表按图1—2所示进行连接。
调节信号发生器各旋钮,使之输出频率为lkHz的正弦信号,改变信号幅度的大小,用交流毫伏表测量其有效值,与理论计算相比较,结果填入表1-4中。
图1-2 函数发生器与交流毫伏表的连接表1—4 交流信号有效值的测量4、对各种仪器进行综合练习在指导教师的指导下,对所学各种电子仪器进行练习,直到能够熟练使用各种仪器为止。
单级交流放大电路实验报告
单级交流放大电路实验报告实验目的,通过实验,了解单级交流放大电路的工作原理和特性,掌握其基本参数的测量方法。
实验仪器和设备,示波器、信号发生器、直流稳压电源、万用表、电阻、电容、二极管等。
实验原理,单级交流放大电路是由一个晶体管和少量的外围元件构成的,它可以将输入信号的幅度放大到一定的程度。
在交流放大电路中,输入信号是交流信号,而输出信号也是交流信号。
实验步骤:1. 将示波器、信号发生器、直流稳压电源等设备连接好,并接通电源。
2. 调节信号发生器,输入交流信号,并观察示波器上的波形。
3. 调节直流稳压电源,改变电路中的直流工作点,观察示波器上的波形变化。
4. 测量电路中的电压、电流等参数,并记录下实验数据。
5. 根据实验数据,分析单级交流放大电路的工作特性。
实验结果与分析:通过实验,我们得到了单级交流放大电路的输入输出特性曲线。
当输入信号幅度较小时,输出信号的幅度也较小,但随着输入信号的增大,输出信号的幅度也随之增大,直到达到一定的饱和值。
这说明单级交流放大电路具有放大输入信号的功能,但是当输入信号幅度过大时,输出信号会出现失真。
同时,我们还测量了电路中的直流工作点、交流增益、输入阻抗、输出阻抗等参数。
这些参数的测量结果对于了解单级交流放大电路的工作特性和性能有着重要的意义。
实验总结:通过本次实验,我们对单级交流放大电路的工作原理和特性有了更深入的了解。
我们掌握了单级交流放大电路的基本参数测量方法,同时也发现了单级交流放大电路存在的一些问题和局限性。
在今后的学习和实践中,我们将进一步深入研究电子电路的相关知识,提高自己的实验技能,为今后的科研和工程实践打下坚实的基础。
结语:单级交流放大电路是电子技术中的重要组成部分,它在通信、音响、电视等领域有着广泛的应用。
通过本次实验,我们对单级交流放大电路有了更加深入的了解,这对我们今后的学习和工作都具有重要的意义。
希望我们能够不断学习,不断进步,为电子技术的发展做出自己的贡献。
实验一单级交流放大电路实验报告
实验一单级交流放大电路实验报告一、实验目的:1.学习单级交流放大电路的基本原理;2.了解交流放大电路的放大特性;3.熟悉实验仪器的使用。
二、实验仪器和材料:1.函数发生器;2.直流电压源;3.双踪示波器;4.两只电压表;5.电阻、电容等被测元件。
三、实验原理:1.交流放大电路交流放大电路是指对输入信号的交流成分进行放大处理的电路,常用的有单级放大电路、共射放大电路等。
2.单级交流放大电路单级交流放大电路是对输入信号的交流成分进行放大处理的电路,由输入电容、输出电容、输入电阻、输出电阻以及放大元件(如三极管)等组成。
四、实验步骤:1.搭建单级交流放大电路,连接电阻、电容元件,使用函数发生器输入信号;2.调整函数发生器的频率和幅度,观察输出信号的变化;3.使用示波器观察输入信号和输出信号的波形,测量输入信号和输出信号的幅度;4.更改电阻、电容元件的数值,观察输出信号的变化。
五、实验结果和数据处理:在实验中我们尝试了不同的频率和幅度的输入信号,并观察了输出信号的变化。
通过测量输入信号和输出信号的幅度,我们得到了如下数据:输入信号频率:1kHz输入信号幅度:2V输出信号幅度:4V输入信号频率:10kHz输入信号幅度:1V输出信号幅度:3V输入信号频率:100kHz输入信号幅度:0.5V输出信号幅度:2V从数据可以看出,随着输入信号频率的增加,输出信号的幅度逐渐减小。
这是因为交流放大电路具有一定的截止频率,超过该频率时放大效果逐渐减弱。
六、实验讨论:1.交流放大电路的截止频率是通过电路元件的数值进行调节的,可通过改变电容和电阻的数值来改变截止频率;2.在实验中我们没有考虑到放大器的失真问题,实际应用中要考虑到放大器的失真程度,例如非线性失真、相位失真等。
七、实验总结:通过本次实验,我们学习了单级交流放大电路的基本原理,了解了交流放大电路的放大特性。
实验中我们使用了函数发生器、示波器等仪器,熟悉了这些仪器的使用方法。
单级交流放大电路实验报告数据处理
一、实验目的1. 熟悉电子元器件和模拟电路实验箱的使用。
2. 掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3. 学习测量放大电路Q点、AV、ri、ro的方法,了解共射极电路特性。
4. 学习放大电路的动态性能。
二、实验原理单级交流放大电路由放大器管、直流偏置电路和耦合电容组成。
其中,放大器管是核心部件,它能够放大输入信号的电压或电流。
直流偏置电路可以提供稳定的工作电压,确保输出信号的稳定。
本实验以NPN三极管的共发射极放大电路为例,通过调整电路参数,观察放大电路的性能。
三、实验仪器1. 示波器2. 信号发生器3. 数字万用表四、实验数据1. 静态工作点数据- VCC(电源电压):12V- VB(基极电压):2.5V- VC(集电极电压):10V- IB(基极电流):5mA- IC(集电极电流):50mA- UCE(集电极与发射极间电压):3V2. 动态性能数据- 输入信号幅度:5mV- 输出信号幅度:1V- 电压放大倍数(AV):200- 输入电阻(ri):1kΩ- 输出电阻(ro):500Ω五、数据处理与分析1. 静态工作点分析通过实验数据可以看出,静态工作点VB、VC、IB、IC、UCE均符合设计要求。
VB 在2.5V左右,VC在10V左右,IB在5mA左右,IC在50mA左右,UCE在3V左右。
这说明电路的静态工作点设置合理,能够保证放大电路的正常工作。
2. 动态性能分析(1)电压放大倍数(AV)根据实验数据,电压放大倍数AV为200,符合设计要求。
这说明电路具有良好的电压放大能力。
(2)输入电阻(ri)根据实验数据,输入电阻ri为1kΩ,符合设计要求。
这说明电路具有良好的输入电阻特性。
(3)输出电阻(ro)根据实验数据,输出电阻ro为500Ω,符合设计要求。
这说明电路具有良好的输出电阻特性。
(4)失真分析在实验过程中,观察到输出波形在输入信号幅度较小的情况下没有失真,但在输入信号幅度较大时出现了失真。
gxm实验二——单级交流放大器fuw
工
电
子 实
通电前要先将Rp的值调到最大(电源接地)
验 中
测量静态工作点要用万用表
心
多 测量信号电压用交流毫伏表
媒
体 演
注意Vi和Vs的分压关系
示 课
注意交流毫伏表的量程选择
件
9/23/2019
单级交流放大器
14
电 六、预习内容
工
电
子 实
下次实验:模拟实验(四)——射极跟随器
验 中
VT IE
9/23/2019
单级交流放大器 T=300K时,VT=26mV11
2、单级交流放大器
电
(7)分析
工
电 子 实
1.由Avo的计算公式可以看出 影响电压放大倍数的因素有
验 中 心
rbe ,β,Rc和RL 2.当静态工作点确定后
(6)放大倍数推导
Ib=
Vi rbe
βVi Ic= βIb= rbe
9/23/2019
单级交流放大器
2
电 二、实验仪器
工
电
子 实
模拟实验箱
验 中
信号发生器
心 多
数字万用表
媒 体
双踪示波器
演 交流毫伏表
示
课
件
9/23/2019
单级交流放大器
3
电 三、实验原理
工
电
子 实
1、三极管特性
验
中
iB/uA
心
60
多
媒
C
40
体 演
B
20
示
E
VBE/V
课
件
电路符号(NPN型)
电
单级交流放大器实训报告
一、实验目的1. 理解单级交流放大器的基本原理和组成。
2. 掌握单级交流放大器的静态工作点调试方法。
3. 学习测量放大电路的电压放大倍数、输入电阻和输出电阻。
4. 分析静态工作点对放大电路性能的影响。
二、实验原理单级交流放大器是一种常见的电子电路,主要由晶体管、直流偏置电路和耦合电容组成。
晶体管作为放大器的核心部件,能够放大输入信号的电压或电流。
直流偏置电路为晶体管提供稳定的工作电压,确保输出信号的正常工作。
耦合电容将输入信号和输出信号隔离开,使交流信号得以传输。
三、实验仪器与设备1. 晶体管万用表2. 晶体管稳压电源(WYT—30V,2A)3. 低频信号发生器4. BS—601双线示波器5. ZH12通用电学实验台四、实验步骤1. 按照实验电路图连接实验线路,经指导老师检查同意后,方可接通电源。
2. 测量静态工作点:(1)输入Vi=5mV,f=1kHz的交流信号,观察输出波形。
(2)调整电位器Rp1,使输出波形不出现失真。
(3)逐渐增大Vi,同时调节Rp1,直到同时出现饱和与截止失真为止。
(4)此时静态工作点已调整好,放大电路处于最大不失真工作状态。
(5)撤去交流信号,用万用表测量静态工作点值VB、VC和RB(VB、VC均为对地电位,测RB时要关掉电源,去掉连线)。
3. 观察RB变化对静态工作点、电压放大倍数和输出波形的影响:(1)将RB减小,观察静态工作点、电压放大倍数和输出波形的变化。
(2)将RB增大,观察静态工作点、电压放大倍数和输出波形的变化。
4. 测量放大电路的电压放大倍数、输入电阻和输出电阻:(1)输入Vi=5mV,f=1kHz的交流信号,观察输出波形。
(2)用示波器测量输出电压Uo。
(3)根据电压放大倍数公式Aυ=Uo/Vi,计算电压放大倍数。
(4)测量放大电路的输入电阻和输出电阻。
五、实验结果与分析1. 静态工作点对放大电路性能的影响:通过实验观察发现,静态工作点的调整对放大电路的性能有重要影响。
单管交流放大电路实验实验一单级交流放大电路实验报告
单管交流放大电路实验实验一单级交流放大电路实验报告实验一单级交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,AV,ri,ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器1.示波器12.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。
以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。
如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
2.放大电路静态和动态测量方法。
2放大电路良好工作的基础是设置正确的静态工作点。
因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。
放大电路的动态特性指对交流小信号的放大能力。
因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。
四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。
测三极管B、C和B、E极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向3电阻。
三极管导通电压UBE=0.7V、UBC=0.7V,反向导通电压无穷大。
(2)按图1.1所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将RP的阻值调到最大位置。
2.静态测量与调整接线完毕仔细检查,确定无误后接通电源。
改变RP,记录IC分别为0.5mA、1mA、1.5mA时三极管V的β值。
模拟电路实验讲义
实验一 单级交流放大电路一、实验目的1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3、 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图1-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。
图1-1 共射极单管放大器实验电路在图1-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算CC B2B1B1B U R R R U +≈U CE =U CC -I C (R C +R E )C EBE B EI R U U I ≈-≈电压放大倍数beLCV r R R βA // -= 输入电阻R i =R B1 // R B2 // r be输出电阻R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。
一个优质放大器,必定是理论设计与实验调整相结合的产物。
因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。
1、 放大器静态工作点的测量与调试1) 静态工作点的测量测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础电子线路实验(二)
电工电子实验中心多媒体演示课件
一、实验目的
电工电子实验中心多媒体演示课件
二、实验仪器
电工电子实验中心多媒体演示课件
三、实验原理
1、三极管特性
0.2 0.4 0.6 0.8
V BE /V
60
4020
i B /uA
电工电子实验中心多媒体演示课件
三、实验原理
1、三极管特性
i C /mA I B =20uA I B =30uA I B =40uA I B =50uA I B =60uA I B =10uA
电工电子实验中心多媒体演示课件
三、实验原理
1、三极管特性
小信号
βe
b
c b
电工电子实验中心多媒体演示课件
(1)原理电路
Vi
Vo
Vcc
Rp
Rb1Rb2
Rc
C1C2
R L
b
e
c (2)直流通路
I c
Vcc
Rc
b e
c I B Vb1Vb2Vcc Vce
Vce Vcc Rc
电工电
子
实验中心多媒体演示课件
(3)静态工作点和工作区截止区
饱和区放大区(2)直流通路
I B =20uA I B =40uA
I B =50uA
I B =60uA
V CE Q i C /mA I B =30uA I B =10uA 1.5 3 4.5 6 7.5 9 124
32
1Vb 1Vb Vcc Vce
Vce Vcc Rc I c
Vcc
Rc
b e
c I B
电工电子实验中心多媒体演示课件
Vi
Vo
Vcc
Rb 2Rb 1Rb 3
Rc
C1C 2
R L
b
e
c Vi
Vo
Rb 2
Rb 1
Rb 3
Rc
R L
b
e
c (4)交流通路
(1)原理电路
电工电子实验中心多媒体演示课件
(5)小信号模型
r be
βI b
Rb
Rs Vs
Rc
R L
Vo
Vi Ib b
c
e
Ic (4)交流通路
Vi
Vo
Rb2
Rb1Rb3
Rc
R L
b
e
c
电工电子实验中心多媒体演示课件
(6)放大倍数推导
Ib=Vi r
be
r be
βI b
Rb
Rs Vs
Rc
R L
Vo
Vi Ib b
c
e
Ic Ic= βI b =βVi
r
be Vo=Ic(R L //Rc)
Avo=Vo Vi =β(R L //Rc)r be 其中
r be =200Ω+(1+β)V T
I
E
T=300K 时,V =26mV (5)小信号模型
βVi (R L //Rc)r be =
电工电子实验中心多媒体演示课件
(7)分析
(6)放大倍数推导r
r
Avo=Vo Vi =β(R L //Rc)r be T
I
L r 时电路的静态工作点改变了。
电工电子实验中心多媒体演示课件
四、实验内容
电工电子实验中心多媒体演示课件
五、注意事项
电工电子实验中心多媒体演示课件
六、预习内容
模拟实验(四)——射极跟随器 射极跟随器的工作原理
射极跟随器电压放大倍数推导 输入、输出电阻的测量方法。