高中数学极值点偏移问题

合集下载

高中数学极值点偏移问题(解析版)

高中数学极值点偏移问题(解析版)

极值点偏移问题【典型例题】例1.已知函数f (x )=ln x -ax ,a 是常数且a ∈R .(1)若曲线y =f (x )在x =1处的切线经过点(-1,0),求a 的值;(2)若0<a <1e(e 是自然对数的底数),试证明:①函数f (x )有两个零点,②函数f (x )的两个零点x 1,x 2满足x 1+x 2>2e .【解析】(1)解:切线的斜率k =f (1)=1-af (1)=-a ,k =f (1)-01-(-1)=-a2,即1-a =-a2,解得a =2;(2)证明:①由f (x )=1x -a =0,得x =1a,当0<x <1a 时,f (x )>0;当x >1a 时,f (x )<0,∴f (x )在x =1a 处取得最大值f 1a=-ln a -1,f (1)=-a <0,∵0<a <1e ,∴f 1a =-ln a -1>0,f (x )在区间1,1a有零点,∵f (x )在区间0,1a 单调递增,∴f (x )在区间0,1a有唯一零点.由幂函数与对数函数单调性比较及f (x )的单调性知,f (x )在区间1a,+∞ 有唯一零点,从而函数f (x )有两个零点.②不妨设0<x 1<1a <x 2,作函数F (x )=f (x )-f 2a -x ,0<x <2a,则F 1a =0,F (x )=f (x )+f 2a -x =2(1-ax )2x (2-ax )≥0.∴F (x 1)<F 1a=0,即f (x 1)-f 2a -x 1 <0,f 2a-x 1 >f (x 1),又f (x 1)=f (x 2),∴f 2a-x 1 >f (x 2).∵0<x 1<1a<x 2,∴2a -x 1,x 2∈1a,+∞ ,∵f (x )在区间1a,+∞ 单调递减,∴2a -x 1<x 2,x 1+x 2>2a.又0<a <1e ,1a >e ,∴x 1+x 2>2e .例2.已知函数f (x )=ln x -ax (a ∈R ).(1)若曲线y =f (x )与直线x -y -1-ln2=0相切,求实数a 的值;(2)若函数y =f (x )有两个零点x 1,x 2,证明1ln x 1+1ln x 2>2.【解析】解:(1)由f (x )=ln x -ax ,得f (x )=1x-a ,设切点横坐标为x 0,依题意得1x 0-a =1x 0-1-ln2=ln x 0-ax 0,解得x 0=12a =1,即实数a 的值为1.(2)不妨设0<x 1<x 2,由ln x 1-ax 1=0ln x 2-ax 2=0,得ln x 2-ln x 1=a (x 2-x 1),即1a =x 2-x 1ln x 2-ln x 1,所以1ln x 2+1ln x 1-2=1ax 1+1ax 2-2=x 2-x 1ln x 2-ln x 11x 1+1x 2-2=x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1,令t =x 2x 1>1,则ln x 2x 1>0,x 2x 1-x 1x 2-2ln x 2x 1=t -1t-2ln t ,设g (t )=t -1t -2ln t ,则g(t )=t 2-2t +1t 2>0,即函数g (t )在(1,+∞)上递减,所以g (t )>g (1)=0,从而x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1>0,即1ln x 2+1ln x 1>2.例3.已知函数f (x )=x -e 2 (a -ln x )且f (e )=e4(其中e 为自然对数的底数).(Ⅰ)求函数f (x )的解析式;(Ⅱ)判断f (x )的单调性;(Ⅲ)若f (x )=k 有两个不相等实根x 1,x 2,证明:x 1+x 2>2e .【解析】解:(Ⅰ)f (e )=e 2a -12 =e 4,解得a =1,所以函数解析式为f (x )=x -e2(1-ln x );(Ⅱ)函数f (x )的定义域为(0,+∞),f (x )=1-ln x +x -e 2-1x =e2x-ln x ,设g(x)=e2x-ln x,g (x)=-e2x2-1x,在(0,+∞)上,g(x)<0恒成立,所以g(x)在(0,+∞)上单调递减,即f (x)在(0,+∞)上单调递减,又f (e)=0,则在(0,e)上f (x)>0,在(e,+∞)上f (x)<0.所以函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减;(Ⅲ)证明:构造函数F(x)=F(x)-f(2e-x),x∈(0,e),F (x)=f (x)+f (2e-x)=e2x-ln x+e2⋅12e-x-ln(2e-x)=ex(2e-x)-ln[x(2e-x)],设t=x(2e-x),当x∈(0,e)时,t∈(0,e),设h(t)=et-ln t,且h (t)=-et2-1t<0,可知h(t)在(0,e)上单调递减,且h(e)=0,所以h(t)>0在t∈(0,e)上恒成立,即F (x)>0在x∈(0,e)上恒成立,所以y=F(x)在(0,e)上单调递增,不妨设x1<x2,由(Ⅱ)知x1<e<x2F(x1)=f(x1)-f(2e-x1)<F(e)=f(e)-f(2e-e) =0,即f(x1)<f(2e-x1),因为f(x1)=f(x2),所以f(x2)<f(2e-x1),由(Ⅱ)知f(x)在(e,+∞)上单调递减,得x2>2e-x1,所以x1+x2>2e.例4.已知函数f(x)=e2x-a(x-1).(1)讨论函数f(x)的单调性;(2)若a>0,设f′(x)为f(x)的导函数,若函数f(x)有两个不同的零点x1,x2,求证:f′x1+x22<0.【解析】(1)解:f′(x)=2e2x-a,当a≤0时,f′(x)>0,函数f(x)在R上单调递增;当a>0时,令f′(x)>0,得x>12ln a2,令f′(x)<0,得x<12ln a2,所以f(x)在-∞,12ln a2上单调递减,在12ln a2,+∞上单调递增.(2)证明:由题意得e2x1-a(x1-1)=0e2x2-a(x2-1)=0,两式相减得a=e2x2-e2x1x2-x1,不妨设x1<x2,由f′(x)=2e2x-a,得f′x1+x22=2e x1+x2-e2x2-e2x1x2-x1=e x1+x2x2-x1[2(x2-x1)+e x1-x2-e x2-x1],令t=x2-x1,h(t)=2t-e t+e-t,因为当t>0时,h′(t)=2-e t-e-t=2-(e t+e-t)<0,所以h(t)在(0,+∞)上单调递减,所以当t>0时,h(t)<h(0)=0,又e x1+x2x2-x1>0,故f′x1+x22<0.例5.已知函数f(x)=12x2-(a+1)x+2(a-1)ln x,g(x)=-32x2+x+(4-2a)ln x.(1)若a>1,讨论函数f(x)的单调性;(2)是否存在实数a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,若存在,求出a的范围,若不存在,请说明理由;(3)记h(x)=f(x)+g(x),如果x1,x2是函数h(x)的两个零点,且x1<x2<4x1,h′(x)是h(x)的导函数,证明:h2x1+x23>0.【解析】解:(1)f(x)的定义域为(0,+∞),f (x)=x-(a+1)+2(a-1)1x =x2-(a+1)x+2(a-1)x=(x-2)[x-(a-1)]x,①若a-1=2,则a=3,f (x)=(x-2)2x>0,f(x)在(0,+∞)上单调递增;②若a-1<2,则a<3,而a>1,∴1<a<3,当x∈(a-1,2)时,f′(x)<0;当x∈(0,a-1)及(2,+∞)时f′(x)>0,所以f(x)在(a-1,2)上单调递减,在(0,a-1)及(2,+∞)单调递增;③若a-1>2,则a>3,同理可得f(x)在(2,a-1)上单调递减,在(0,2)及(a-1,+∞)单调递增.(2)假设存在a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,不妨设0<x1<x2,只要f(x2)-f(x1)x2-x1+a>0,即f(x2)+ax2>f(x1)+ax1,令g(x)=f(x)+ax,只要g(x)在(0,+∞)上为增函数,g(x)=12x2-x+2(a-1)ln xg (x)=x-1+2(a-1)x=x2-x+2(a-1)x=x-122+2a-94x,只要g′(x)≥0在(0,+∞)恒成立,只要2a-94≥0,a≥98,故存在a∈98,+∞时,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立.(3)证明:由题意知,h(x)=12x2-(a+1)x+2(a-1)ln x+-32x2+x+(4-2a)ln x=2ln x-x2-ax,h(x1)=2ln x1-x21-ax1=0,h(x2)=2ln x2-x22-ax2=0两式相减,整理得2ln x2x1+(x1-x2)(x1+x2)=a(x2-x1),所以a=2ln x2x1x2-x1-(x2+x1),又因为h (x)=2x-2x-a,所以h2x1+x23=62x1+x2-23(2x1+x2)-a=-2x2-x1lnx2x1-3x2x1-32+x2x1-13(x1-x2),令t=x2x1∈(1,4),φ(t)=ln t-3t-3t+2,则φ(t)=(t-1)(t-4)t(t+2)2<0,所以φ(t)在(1,4)上单调递减,故φ(t)<φ(1)=0,又-2x2-x1<0,-13(x1-x2)>0,所以h2x1+x23>0.例6.设函数f(x)=x2-a ln x,g(x)=(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数F(x)=f(x)-g(x)有两个零点x1,x2.(ⅰ)求满足条件的最小正整数a的值;(ⅱ)求证:F′x1+x22>0.【解析】解:(Ⅰ)f (x)=2x-ax=2x2-ax(x>0).⋯(1分)当a≤0时,f (x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间.⋯(2分)当a>0时,由f (x)>0,得x>2a2,f(x)<0,得0<x<2a2,所以函数f(x)的单调增区间为2a2,+∞,单调减区间为0,2a2.⋯(3分)(Ⅱ)(i)F (x)=2x-(a-2)-ax =2x2-(a-2)x-ax=(2x-a)(x+1)x(x>0).因为函数F(x)有两个零点,所以a>0,此时函数f(x)在a2,+∞单调递增,在0,a 2单调递减.⋯(4分)所以F(x)的最小值Fa2<0,即-a2+4a-4a ln a2<0.⋯(5分)因为a>0,所以a+4ln a2-4>0.令h(a)=a+4ln a2-4,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1=ln8116-1>0,所以存在a0∈(2,3),h(a0)=0.⋯(6分)当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.⋯(7分)又当a=3时,F(3)=3(2-ln3)>0,F(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.⋯(8分)(ii)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,即x21-(a-2)x1-a ln x1-x22+(a-2)x2+a ln x2=0,x21+2x1-x22-2x2=ax1+a ln x1-ax2-a ln x2=a(x1 +ln x1-x2-ln x2).所以a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.⋯(10分)因为Fa2=0,当x∈0,a2时,F (x)<0,当x∈a2,+∞时,F (x)>0,故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2,⋯(11分)即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2,也就是证ln x1x2<2x1-2x2x1+x2.⋯(12分)设t=x1x2(0<t<1).令m(t)=ln t-2t-2t+1,则m(t)=1t-4(t+1)2=(t-1)2t(t+1)2.因为t>0,所以m (t)≥0,⋯(13分)当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.⋯(14分)例7.设函数f(x)=x2-a ln x-(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个零点x1,x2(1)求满足条件的最小正整数a的值;(2)求证:fx1+x22>0.【解析】解:(Ⅰ)f′(x)=2x-(a-2)-ax=(2x-a)(x+1)x,(x>0).当a≤0时,f′(x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间;当a>0时,由f′(x)>0,得x>a2,f′(x)<0,得0<x<a2,所以函数f(x)的单调增区间为a2,+∞,单调减区间为0,a2;(Ⅱ)(1)由(Ⅰ)可知函数f(x)有两个零点,所以a>0,f(x)的最小值f a2<0,即-a2+4a-4a ln a2<0,∵a>0,∴a-4+4ln a2>0,令h(a)=a-4+4ln a2,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1>0∴存在a0∈(2,3),h(a0)=0,当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2-ln3)>0,f32=341-4ln32<0,f(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.(2)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,∴a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,因为f′a2=0,当x∈0,a2时,f′(x)<0;当x∈a2,+∞时,f′(x)>0.故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2.也就是证ln x1x2<2x1-2x2x1+x2.设x1x2=t∈(0,1).令m(t)=ln t-2t-2t+1,则m′(t)=1t-4(t+1)2=(t-1)2t(t+1)2.∵t>0,所以m (t)≥0,当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.例8.已知函数f(x)=e x-12ax2(a∈R),其中e为自然对数的底数,e=2.71828⋯.f(x0)是函数f(x)的极大值或极小值,则称x0为函数f(x)的极值点,极大值点与极小值点统称为极值点.(1)函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断函数f(x)的极值点的个数,并说明理由;(3)当函数f(x)有两个不相等的极值点x1和x2时,证明:x1x2<ln a.【解析】解:(1)f′(x)=e x-ax≥0在(0,+∞)上恒成立,即a≤e xx在(0,+∞)上恒成立,令g(x)=e xx,x∈(0,+∞),g′(x)=e x⋅x-e xx2=e x(x-1)x2,在(0,1)上,g′(x)<0,g(x)单调递减,在(1,+∞)上,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=e,所以a≤e.所以a的取值范围为(-∞,e].(2)f′(x)=e x-ax,令g(x)=e x-ax,则g′(x)=e x-a,①当a<0时,g′(x)=e x-a>0,f′(x)=e x-ax在(-∞,+∞)上单调递增,又f′(0)=1>0,f′1a=e1a-1<0,于是f′(x)=e x-ax在(-∞,+∞)上有一个零点x1,x(-∞,x1)x1(x1,+∞) f′(x)-0+f(x)↓极小值↑于是函数f(x)的有1个极值点,②当a=0时,f(x)=e x单调递增,于是函数f(x)没有极值点,③当0<a≤e时,由g′(x)=e x-a=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(x)≥0,当且仅当x=ln a时,取“=”号,所以函数f(x)在(-∞,+∞)上单调递增,所以函数f(x)没有极值点.④当a>e时,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(ln a)=a(1-ln a)<0,f′(0)=1>0,又因为a>ln a,所以f′(a)=e a-a2>a2-a2=0,于是,函数f′(x)在(-∞,ln a)和(ln a,+∞)上各有一个零点,分别为x2,x3,x(-∞,x2)x2(x2,x3)x3(x3,+∞) f′(x)+0-0+f(x)↑极大值↓极小值↑于是f(x)有2个极值点,综上,当a<0时,函数f(x)有1个极值点,当0≤a≤e时,函数f(x)没有极值点,当a>e时,函数f(x)有2个极值点.(3)证明:当函数f(x)有两个不等的极值点x1和x2时,由(2)知a>e且1<x1<ln a<x2,f′(x1)=f′(x2)=0,令F(x)=f′(x)-f′(2ln a-x),F′(x)=(e x-a)2 e x,由F′(x)=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) F′(x)+0+F(x)↑非极值点↑F(x1)<F(ln a)=0,即f′(x1)<f′(2ln a-x1),即f′(x2)<f′(2ln a-x1),因为x2>ln a,2ln a-x1>ln a,f′(x)在(ln a,+∞)上单调递增,所以x2<2ln a-x1,即x1+x2<2ln a,又x1+x2>2x1x2,所以x1x2<ln a.例9.已知函数f(x)=ln x-1x,g(x)=ax+b.(1)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)若直线g(x)=ax+b是函数f(x)=ln x-1x图象的切线,求a+b的最小值;(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2.(取e为2.8,取ln2为0.7,取2为1.4)【解析】(1)解:h(x)=f(x)-g(x)=ln x-1x-ax-b,则h (x)=1x+1x2-a,∵h(x)=f(x)-g(x)在(0,+∞)上单调递增,∴对∀x>0,都有h (x)=1x +1x2-a≥0,即对∀x >0,都有a ≤1x +1x2,∵1x +1x2>0,∴a ≤0,故实数a 的取值范围是(-∞,0];(2)解:设切点x 0,ln x 0-1x 0 ,则切线方程为y -ln x 0-1x 0=1x 0+1x 20(x -x 0),即y =1x 0+1x 20x -1x 0+1x 20 x 0+ln x 0-1x 0,亦即y =1x 0+1x 20x +ln x 0-2x 0-1,令1x 0=t >0,由题意得a =1x 0+1x 20=t +t 2,b =ln x 0-2x 0-1=-ln t -2t -1,令a +b =φ(t )=-ln t +t 2-t -1,则φ (t )=-1t +2t -1=(2t +1)(t -1)t,当t ∈(0,1)时,φ (t )<0,φ(t )在(0,1)上单调递减;当t ∈(1,+∞)时,φ (t )>0,φ(t )在(1,+∞)上单调递增,∴a +b =φ(t )≥φ(1)=-1,故a +b 的最小值为-1;(3)证明:由题意知ln x 1-1x 1=ax 1,ln x 2-1x 2=ax 2,两式相加得ln x 1x 2-x 1+x 2x 1x 2=a (x 1+x 2),两式相减得lnx 2x 1-x 1-x 2x 1x 2=a (x 2-x 1),即ln x2x 1x 2-x 1+1x 1x 2=a ,∴ln x 1x 2-x 1+x 2x 1x 2=ln x2x 1x 2-x 1+1x 1x 2 (x 1+x 2),即ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1,不妨令0<x 1<x 2,记t =x 2x 1>1,令F (t )=ln t -2(t -1)t +1(t >1),则F ′(t )=(t -1)2t (t +1)2>0,∴F (t )=ln t -2(t -1)t +1在(1,+∞)上单调递增,则F (t )=ln t -2(t -1)t +1>F (1)=0,∴ln t >2(t -1)t +1,则ln x 2x 1>2(x 2-x 1)x 1+x 2,∴ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1>2,又ln x 1x 2-2(x 1+x 2)x 1x 2<ln x 1x 2-4x 1x 2x 1x 2=ln x 1x 2-4x 1x 2=2ln x 1x 2-4x 1x 2,∴2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1,令G(x)=ln x-2x,则x>0时,G(x)=1x+2x2>0,∴G(x)在(0,+∞)上单调递增,又ln2e-22e=12ln2+1-2e≈0.85<1,∴G(x1x2)=ln x1x2-2x1x2>1>ln2e-22e,则x1x2>2e,即x1x2>2e2.【同步练习】1.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【解析】解:(Ⅰ)因为f(x)=ln x+2x-ax2,所以f′(x)=1x+2-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+2-2a=0,解得:a=3 2.验证:当a=32时,f′(x)=1x+2-3x=-(3x+1)(x-1)x(x>0),易得f(x)在x=1处取得极大值.(Ⅱ)因为g(x)=f(x)+(a-4)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(Ⅲ)证明:当a=-2时,f(x)=ln x+2x+2x2,因为f(x1)+f(x2)+3x1x2=x1+x2,所以ln x1+2x1+2x21+ln x2+2x2+2x22+3x1x2=x1+x2,即ln x1x2+2(x21+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以当x1+x2=12时,x1x2=1,此时不存在x1,x2满足条件,所以x1+x2>1 2.2.已知函数f(x)=ln x+x-ax2,a∈R.(1)若f(x)在x=1处取得极值,求a的值;(2)设g(x)=f(x)+(a-3)x,试讨论函数g(x)的单调性;(3)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=0,求证:x1+x2>12.【解析】(1)解:因为f(x)=ln x+x-ax2,所以f′(x)=1x+1-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+1-2a=0,解得:a=1.验证:当a=1时,f′(x)=1x+1-2x=-(x-1)(2x+1)x(x>0),易得f(x)在x=1处取得极大值.(2)解:因为g(x)=f(x)+(a-3)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(3)证明:当a=-2时,f(x)=ln x+x+2x2,因为f(x1)+f(x2)+3x1x2=0,所以ln x1+x1+2x12+ln x2+x2+2x22+3x1x2=0,即ln x1x2+2(x12+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以x1+x2≤-1,因为当x1+x2=12时,x1x2=1,不满足t∈(1,+∞),所以x1+x2>1 2.3.已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【解析】(1)解:由函数的解析式可得f (x)=1-ln x-1=-ln x,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由b ln a-a ln b=a-b,得-1a ln1a+1bln1b=1b-1a,即1a1-ln1a=1b1-ln1b,由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2-x1>1,先证2<x1+x2,即证x2>2-x1,即证f(x2)=f(x1)<f(2-x1),令h(x)=f(x)-f(2-x),则h′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2-x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e-x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e-x1),令φ(x)=f(x)-f(e-x),x∈(0,1),则φ (x)=-ln[x(e-x)],令φ′(x0)=0,x∈(0,x0),φ (x)>0,φ(x)单调递增,x∈(x0,1),φ (x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0+φ(x)=0,φ(1)=f(1)-f(e-1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1-ln x1)=x2(1-ln x2),又x1∈(0,1),故1-ln x1>1,x1(1-ln x1)>x1,故x1+x2<x1(1-ln x1)+x2=x2(1-ln x2)+x2,x2∈(1,e),令g(x)=x(1-ln x)+x,g′(x)=1-ln x,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1-ln x2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.4.已知函数f(x)=ln x-x.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a,b为两个不相等的正数,ln a-ln b=a-b,证明:ab<1.【解析】解:(I)f′(x)=1x-1=1-xx,x>0,当0<x<1时,f′(x)>0,函数f(x)单调递增,当x>1时,f′(x)<0,函数f(x)单调递减,故函数在(0,1)上单调递增,在(1,+∞)上单调递减,(II)证明:由ln a-ln b=a-b,得ln a-a=ln b-b,令x1=a,x2=b,则x1,x2是f(x)=x的两根,不妨令x1∈(0,1),x2∈(1,+∞),则0<x1<1,0<1x2<1,要证ab<1,即证x1<1x2,即f(x1)=f(x2)<f1x2,令h(x)=f(x)-f1x=2ln x+1x-x,则h′(x)=2x-1x2-1=-(x-1)2x2<0,所以h(x)在(1,+∞)单调递减,h(x)<h(1)=0,所以f(x1)=f(x2)<f1x2 ,所以ab<1,5.已知函数f(x)=xe-x(x∈R).(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x) >g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.【解析】解:(Ⅰ)解:f′(x)=(1-x)e-x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(-∞,1)1(1,+∞)f′(x)+0-f(x)增极大值减所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1 e.(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2于是F (x)=(x-1)(e2x-2-1)e-x当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2).因为x2>1,所以2-x2<1,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.6.已知函数f(x)=x-e a+x(a∈R).(1)若a=1,求函数f(x)在x=0处的切线方程;(2)若f(x)有两个零点x1,x2,求实数a的取值范围,并证明:x1+x2>2.【解析】解:(1)f(x)=x-e1+x的导数为f′(x)=1-e1+x,则函数f(x)在x=0处的切线斜率为1-e,又切点为(0,-e),则切线的方程为y=(1-e)x-e,即(e-1)x+y+e=0;(2)设函数g(x)=x-ln x+a,与函数f(x)具有相同的零点,g (x)=x-1x,知函数g(x)在(0,1)上递减,(1,+∞)上递增,当x→0,g(x)→+∞;可证当x∈(0,+∞)时,ln x<x-1,即-ln x=ln 1x≤1x-1,即此时g(x)=x-ln x+a<x+1x+a-1,当x→+∞时,g(x)→+∞,f(x)有两个零点,只需g(1)<0,即a<-1;证明:方法一:设函数F(x)=g(x)-g(2-x),(1<x<2)则F(x)=2x-2-ln x+ln(2-x),且F (x)=2(x-1)2x(x-2)<0对x∈(1,2)恒成立即当x∈(1,2)时,F(x)单调递减,此时,F(x)<F(1)=0,即当x∈(1,2)时,g(x)<g(2-x),由已知0<x1<1<x2,则1-x1∈(1,2),则有g(2-x1)<g(2-2+x1)=g(x1)=g(x2)由于函数g(x)在(1,+∞)上递增,即2-x1<x2,即x1+x2>2.方法二:故x2-x1=ln x2-ln x1=ln x2 x1.设x2x1=t,则t>1,且x2=tx1x2-x1=ln t,解得x1=ln tt-1,x2=t ln tt-1.x1+x2=(t+1)ln tt-1,要证:x1+x2=(t+1)ln tt-1>2,即证明(t+1)ln t>2(t-1),即证明(t+1)ln t-2t+2>0,设g(t)=(t+1)ln t-2t+2(t>1),g (t)=ln t+1t-1,令h(t)=g (t),(t>1),则h (t)=t-1t2>0,∴h(t)在(1,+∞)上单调增,g (t)=h(t)>h(1)=0,∴g(t)在(1,+∞)上单调增,则g(t)>g(1)=0.即t>1时,(t+1)ln t-2t+2>0成立,7.已知函数f(x)=axe x-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128⋯).(1)若f(x)仅有一个极值点,求a的取值范围;(2)证明:当0<a<12时,f(x)有两个零点x1,x2,且-3<x1+x2<-2.【解析】(1)解:f (x)=ae x+axe x-2(a-1)(x+1)=(x+1)(ae x-2a+2),由f (x)=0得到x=-1或ae x-2a+2=0(*)由于f(x)仅有一个极值点,关于x的方程(*)必无解,①当a=0时,(*)无解,符合题意,②当a≠0时,由(*)得e x=2a-2a,故由2a-2a≤0得0<a≤1,由于这两种情况都有,当x<-1时,f (x)<0,于是f(x)为减函数,当x>-1时,f (x)>0,于是f(x)为增函数,∴仅x=-1为f(x)的极值点,综上可得a的取值范围是[0,1];(2)证明:由(1)当0<a<12时,x=-1为f(x)的极小值点,又∵f(-2)=-2ae2-(a-1)=-2e2-1a+1>0对于0<a<12恒成立,f(-1)=-ae <0对于0<a<12恒成立,f(0)=-(a-1)>0对于0<a<12恒成立,∴当-2<x<-1时,f(x)有一个零点x1,当-1<x<0时,f(x)有另一个零点x2,即-2<x1<-1,-1<x2<0,且f(x1)=ax1e x1-(a-1)(x1+1)2=0,f(x2)=ax2e x2-(a-1)(x2+1)2=0,(#)所以-3<x1+x2<-1,下面再证明x1+x2<-2,即证x1<-2-x2,由-1<x2<0得-2<-2-x2<-1,由于x<-1,f(x)为减函数,于是只需证明f(x1)>f(-2-x2),也就是证明f(-2-x2)<0,f(-2-x2)=a(-2-x2)e-2-x2-(a-1)(-x2-1)2=a(-2-x2)e-2-x2 -(a-1)(x2+1)2,借助(#)代换可得f(-2-x2)=a(-2-x2)e-2-x2-ax2e x2=a[(-2-x2)e-2-x2-x2e x2],令g(x)=(-2-x)e-2-x-xe x(-1<x<0),则g (x)=(x+1)(e-2-x-e x),∵h(x)=e-2-x-e x为(-1,0)的减函数,且h(-1)=0,∴g (x)=(x+1)(e-2-x-e x)<0在(-1,0)恒成立,于是g(x)为(-1,0)的减函数,即g(x)<g(-1)=0,∴f(-2-x2)<0,这就证明了x1+x2<-2,综上所述,-3<x1+x2<-2.8.已知函数f(x)=e x-ax(a为常数),f′(x)是f(x)的导函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当x>0时,求证:f(ln a+x)>f(ln a-x);(Ⅲ)已知f(x)有两个零点x1,x2(x1<x2),求证:f/x1+x22<0.【解析】证明:(Ⅰ)∵f′(x)=e x-a.当a≤0时,则f′(x)=e x-a>0,即f(x)在R上是增函数,当a>0时,由f′(x)=e x-a=0,得x0=ln a.当x∈(-∞,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.即f(x)在(-∞,ln a)上是减函数,在(ln a,+∞)上是增函数,(Ⅱ)证明:设g(x)=f(ln a+x)-f(ln a-x)(x>0)=[e ln a+x-a(ln a+x)]-[e ln a-x-a(ln a-x)]= a(e x-e-x-2x),∴g′(x)=a(e x+e x-2)≥2a e x∙e-x-2a=0,当且仅当x=0时等号成立,但x>0,∴g′(x)>0,即g(x)在(0,+∞)上是增函数,所以g(x)>g(0)=0∴不等式f(x0+x)>f(x0-x)恒成立.(Ⅲ)由(I)知,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最小为f(ln a),且f(ln a)<0.设A(x1,0),B(x2,0),0<x1<x2,则0<x1<ln a<x2.由(II)得f(2ln a-x1)=f(ln a+ln a-x1)>f(x1)=0.∵2ln a-x1=ln a+(ln a-x1)>ln a,x2>ln a,且f(x)在(ln a,+∞)上是增函数又f(2ln a-x1)>0=f(x2),∴2ln a-x1>x2.于是x1+x22<ln a,∵f(x)在(-∞,ln a)上减函数,∴fx1+x22<0.9.设函数f(x)=e x-ax+a,a∈R,其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f (x1x2)<0.【解析】解:(1)∵f(x)=e x-ax+a,∴f (x)=e x-a,若a≤0,则f (x)>0,则函数f(x)是单调增函数,这与题设矛盾.∴a>0,令f (x)=0,则x=ln a,当f (x)<0时,x<ln a,f(x)是单调减函数,当f (x)>0时,x>ln a,f(x)是单调增函数,于是当x=ln a时,f(x)取得极小值,∵函数f(x)=e x-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),∴f(ln a)=a(2-ln a)<0,即a>e2,此时,存在1<ln a,f(1)=e>0,存在3ln a>ln a,f(3ln a)=a3-3a ln a+a>a3-3a2+a>0,又由f(x)在(-∞,ln a)及(ln a,+∞)上的单调性及曲线在R上不间断,可知a>e2为所求取值范围.(2)∵e x1-ax1+a=0 e x2-ax2+a=0 ,∴两式相减得a=e x2-e x1x2-x1,记x2-x12=s(s>0),则f′x1+x22=e x1+x22-e x2-e x1x2-x1=ex1+x222s[2s-(e s-e-s)],设g(s)=2s-(e s-e-s),则g (s)=2-(e s+e-s)<0,∴g(s)是单调减函数,则有g(s)<g(0)=0,而e x1+x222s>0,∴f′x1+x22<0.又f (x)=e x-a是单调增函数,且x1+x22>x1x2,∴f′(x1x2)<0.10.设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求f(x)的单调区间和极值点;(2)证明:f′(x1x2)<0(f′(x)是f(x)的导函数);(3)证明:x1x2<x1+x2.【解析】解:(1)设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,所以函数f(x)不单调,∵f (x)=e x-a=0有实数解,所以a>0,解得x=ln a,因为x<ln a,f (x)<0,f(x)单调递减,x>ln a时,f (x)>0,f(x)单调递增,且ln a是极小值点;f(ln a)极小值=e ln a-a ln a+a=2a2-ln a,由题意得,f(ln a)<0,所以a>e2,所以函数f(x)的单调递增区间(-∞,ln a),单调递减区间(ln a,+∞),极小值点是ln a,无极大值点,且a>e2.(2)证明:∵e x1-ax1+a=0 e x2-ax2+a=0 ,两式相减可得,a=e x2-e x1x2-x1,令s=ex2-x12(s>0),则fx1+x22=e x1+x22-e x2-e x1x2-x1,=e x1+x222s[2s-(e s-e-s)],令g(s)=2s-(e s-e-s),则g′(s)=2-(e s+e-s)<0,所以g(s)单调递减,g(s)<g(0)=0,而e x1+x222s>0,∴fx1+x22<0,又x1+x22>x1x2,∴f′(x1x2)<0;(3)证明:由e x1-ax1+a=0e x2-ax2+a=0,可得e x2-x1=x2-1x1-1,∴e(x2-1)-(x1-1)=x2-1 x1-1,令m=x1-1,n=x2-1,则0<m<1<n,∴e n-m=nm,设t=nm,则t>1,n=mt,∴e(t-1)m=t,∴m=ln tt-1,n=t ln tt-1,∴mn=t(ln t)2 (t-1)2,要证明:x1x2<x1+x2,等价于证明:(x1-1)(x2-1)<1,即证mn<1,即证t(ln t)2(t-1)2<1,即证ln tt-1<1t,即证ln t<t-1t ,令g(t)=2ln t-t+1t,(t>1),g′(t)=2t -1-1t2=-(t-1)2t2<0,∴g(t)在(1,+∞)上单调递减,∵t>1,故g(t)<0,∴2ln t-t+1t<0,∴ln t<t-1t,从而有:x1x2<x1+x2.11.已知函数f(x)=x2ln x+ax(a∈R)在x=1处的切线与直线x-y+2=0平行.(1)求实数a的值,并求f(x)的极值;(2)若方程f(x)=m有两个不相等的实根x1,x2,求证:x21+x22>2e.【解析】解:(1)函数f(x)的定义域为(0,+∞),f (x)=2x ln x+x-ax2,由题意知f′(1)=1-a=1,∴a=0.∴f′(x)=2x ln x+x=x(2ln x+1),令f′(x)=0,则x=e e,当x∈0,e e时,f′(x)<0;x∈e e,+∞时,f′(x)>0.∴f(x)的极小值为f ee=-12e,证明:(2)由(1)知f(x)=x2ln x,由f(x1)=f(x2)=m,得x12ln x1=x22ln x2,即2x12ln x1=2x22ln x2,所以x12ln x12=x22ln x22.∵x1≠x2,不妨设x1<x2,令t1=x12,t2=x22,h(t)=t ln t(t>0),则原题转化为h(t)=2m有两个实数根t1,t2(t1<t2),又h′(t)=1+ln t,令h′(t)>0,得t>e-1;令h′(t)<0,得t<e-1,∴h(t)在(0,e-1)上单调递减,在(e-1,+∞)上单调递增,又t→0+时,h(t)→0,h(1)=0,h(e-1)=-e-1,由h(t)图象可知,-e-1<2m<0,0<t1<e-1<t2<1.设g(t)=h(t)-h2e-t=t ln t-2e-tln2e-t,t∈0,1e,则g (t)=(ln t+1)--ln2e-t-1=2+ln t2e-t.当0<t<1e时,t2e-t=-t-1e2+1e2<1e2,则g′(t)<0∴g(t)在0,1 e上单调递减.又∵g1e=h1e -h2e-1e=0∴t∈0,1e时,g(t)>0,得到g(t1)=h(t1)-h2e-t1>0,即h(t1)>h2e-t1,又∵h(t1)=h(t2),∴h(t2)>h2e -t1,又0<t1<1e,则2e-t1>1e,且1>t2>1e,h(t)在1e,+∞上单调递增,∴t2>2e -t1,即t1+t2>2e,即x12+x22>2e.。

极值点偏移四种解题方法

极值点偏移四种解题方法

极值点偏移四种解题方法极值点偏移是数学中一个重要的概念,它指的是极值点在函数图像上偏移的现象。

本文将介绍四种解决极值点偏移问题的解题方法。

下面是本店铺为大家精心编写的5篇《极值点偏移四种解题方法》,供大家借鉴与参考,希望对大家有所帮助。

《极值点偏移四种解题方法》篇1一、定义法定义法是解决极值点偏移问题的一种基本方法。

该方法的主要思路是利用函数的定义式,通过分析函数在某一点处的导数值,来判断该点是否为极值点。

如果函数在某一点处的导数值等于零,则该点为极值点。

如果函数在某一点处的导数值不存在,则该点也可能是极值点。

二、导数法导数法是解决极值点偏移问题的另一种基本方法。

该方法的主要思路是利用函数的导数,通过分析函数在某一点处的导数值,来判断该点是否为极值点。

如果函数在某一点处的导数值等于零,则该点为极值点。

如果函数在某一点处的导数值不存在,则该点也可能是极值点。

三、极值判定法极值判定法是解决极值点偏移问题的一种重要方法。

该方法的主要思路是利用函数的极值判定条件,通过分析函数在某一点处的极值条件,来判断该点是否为极值点。

如果函数在某一点处满足极值条件,则该点为极值点。

四、图像法图像法是解决极值点偏移问题的一种直观方法。

该方法的主要思路是通过绘制函数的图像,来判断函数的极值点是否偏移。

如果函数的图像在某一点处发生变化,则该点可能是极值点。

如果函数的图像在某一点处出现拐点,则该点可能是极值点。

综上所述,极值点偏移四种解题方法分别为定义法、导数法、极值判定法和图像法。

《极值点偏移四种解题方法》篇2极值点偏移是高中数学中常见的问题之一,通常出现在导数相关的题目中。

极值点偏移指的是,在可导函数的一个区间内,如果存在一个极值点,且该极值点左右两侧的增减速度不同,那么这个极值点可能会偏移到区间的中点,从而造成函数图像的不对称。

解决极值点偏移问题的方法有很多种,以下是四种常见的解题方法: 1. 构造函数法:该方法的本质是构造一个新的函数,使得新函数的导数与原函数的导数之间存在一定的关系。

高中数学培优点04 极值点偏移问题(2大考点+强化训练)(习题版)

高中数学培优点04 极值点偏移问题(2大考点+强化训练)(习题版)

培优点04极值点偏移问题(2大考点+强化训练)极值点偏移是指函数在极值点左右的增减速度不一样,导致函数图象不具有对称性,极值点偏移问题常常出现在高考数学的压轴题中,这类题往往对思维要求较高,过程较为烦琐,计算量较大,解决极值点偏移问题,有对称化构造函数法和比值代换法,二者各有千秋,独具特色.【知识导图】【考点分析】考点一:对称化构造函数规律方法对称化构造函数法构造辅助函数(1)对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x ).(2)对结论x 1x 2>x 20型,方法一是构造函数F (x )=f (x )-fF (x )的单调性获得不等式;方法二是两边取对数,转化成ln x 1+ln x 2>2ln x 0,再把ln x 1,ln x 2看成两变量即可.考点二:比值代换规律方法比值代换法是指通过代数变形将所证的双变量不等式通过代换t =x 1x 2化为单变量的函数不等式,利用函数单调性证明.【例2】.(2022·全国·模拟预测)设函数()()ln f x x ax a =-∈R .(1)若3a =,求函数()f x 的最值;(2)若函数()()g x xf x x a =-+有两个不同的极值点,记作12,x x ,且12x x <,求证:12ln 2ln 3x x +>.【强化训练】4.(2023·唐山模拟)已知函数f (x )=x e 2-x.(1)求f (x )的极值;(2)若a >1,b >1,a ≠b ,f (a )+f (b )=4,证明:a +b <4.5.(2022·全国甲卷)已知函数f (x )=exx-ln x +x -a .(1)若f (x )≥0,求a 的取值范围;(2)证明:若f (x )有两个零点x 1,x 2,则x 1x 2<1.6.(2023·沧州模拟)已知函数f (x )=ln x -ax -1(a ∈R ).若方程f (x )+2=0有两个实根x 1,x 2,且x 2>2x 1,求证:x 1x 22>32e3.(参考数据:ln 2≈0.693,ln 3≈1.099)7.(2023·淮北模拟)已知a 是实数,函数f (x )=a ln x -x .(1)讨论f (x )的单调性;(2)若f (x )有两个相异的零点x 1,x 2且x 1>x 2>0,求证:x 1x 2>e 2.8.(2023·南宁模拟)已知函数f (x )=e x-ax 22,a >0.(1)若f (x )过点(1,0),求f (x )在该点处的切线方程;(2)若f (x )有两个极值点x 1,x 2,且0<x 1<x 2,当e<a <e22时,证明:x 1+x 2>2.9.(2023·聊城模拟)已知函数f (x )=ln x +ax(a ∈R ),设m ,n 为两个不相等的正数,且f (m )=f (n )=3.(1)求实数a 的取值范围;(2)证明:a 2<mn <a e 2.。

极值点偏移的问题(含答案)

极值点偏移的问题(含答案)

极值点偏移的问题(含答案)1.已知 $f(x)=\ln x-ax$,其中 $a$ 为常数。

1)若函数 $f(x)$ 在 $x=1$ 处的切线与 $x$ 轴平行,求$a$ 的值;2)当 $a=1$ 时,比较 $f(m)$ 和 $f(1)$ 的大小;3)$f(x)$ 有两个零点 $x_1$ 和 $x_2$,证明:$x_1\cdotx_2>e^2$。

变式:已知函数 $f(x)=\ln x-ax^2$,其中 $a$ 为常数。

1) 讨论 $f(x)$ 的单调性;2) 若有两个零点 $x_1$ 和 $x_2$,试证明:$x_1\cdotx_2>e$。

2.已知 $f(x)=x^2+ax+\sin (\pi x)$,$x\in(0,1)$。

1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。

3.已知 $f(x)=\ln x-ax^2+x$,其中 $a\in R$。

1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。

4.设 $a>0$,函数 $f(x)=\ln x-ax$,$g(x)=\ln x-\frac{2(x-1)}{x+1}$。

1)证明:当 $x>1$ 时,$g(x)>0$ 恒成立;2)若函数 $f(x)$ 无零点,求实数 $a$ 的取值范围;3)若函数$f(x)$ 有两个相异零点$x_1$ 和$x_2$,求证:$x_1\cdot x_2>e^2$。

高中数学专题 微专题13 极值点偏移问题

高中数学专题 微专题13 极值点偏移问题

由 f′(x)=1-1x+ln x-2x+a=0 得
a=2x+1x-ln x-1,
所以直线 y=a 与函数 g(x)=2x+1x-ln x-1 的图象有两个交点,

g(x)

2x

1 x

பைடு நூலகம்
ln
x-1

g′(x)

2

1 x2

1 x

2x2-x-1 x2

2x+1x-1
x2
,x∈(0,+∞),
当x∈(0,1)时,g′(x)<0,g(x)单调递减, 当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,因此g(x)min=g(1)=2, 当x→0时,g(x)→+∞, 当x→+∞时,g(x)→+∞, 作出y=g(x)的大致图象,如图所示. 所以若有两个交点,只需a>2,即a的取值范围为 (2,+∞).
(2)设x1,x2是函数f(x)的两个极值点,证明:x1+x2>2.
因为x1,x2是函数f(x)的两个极值点, 所以f′(x1)=f′(x2)=0,由(1)可知g(x1)=g(x2)=a,不妨设0<x1<1<x2, 要证明x1+x2>2,只需证明x2>2-x1, 显然2-x1>1, 由(1)可知,当x∈(1,+∞)时,g(x)单调递增,所以只需证明g(x2)>g(2 -x1), 而g(x1)=g(x2)=a, 所以证明g(x1)>g(2-x1)即可, 即证明函数h(x)=g(x)-g(2-x)>0在x∈(0,1)时恒成立,
123
(2)若f′(x0)=0(f′(x)为f(x)的导函数),方程f(x)=m有两个不相等的实数 根x1,x2,求证:x1+x2>2x0.

专题11 极值点偏移问题 - 2021年高考数学二轮经典专题深度解读(解析版)

专题11 极值点偏移问题 - 2021年高考数学二轮经典专题深度解读(解析版)

专题11 极值点偏移问题一、极值点偏移的概念1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图1.图 1 图 2 图 32.若≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图2、图3.(1)若,则,即函数在区间上极(小)大值点右(左)偏; (2)若,则,即函数在区间上极(小)大值点右(左)偏.证明:(1)因为对于可导函数,在区间上只有一个极大(小)值点,则函数的单调递增(减)区间为,单调递减(增)区间为,由于,有,且,又,故,所以,即函数极(小)大值点右(左)偏;二、极值点偏移的求解方法:利用对称构造函数(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造一元差函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2> ,则令F (x )=f (x )-f (注意:x 0为极值点);(3)对F(x)求导,判断导数符号,即利用导数讨论F (x )的单调性;(4)比较大小:即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系;(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求;[注意] 若要证明f ′的符号,还需进一步讨论与x 0的大小,得出所在的单调区间,从而得出该处导数值的考点剖析)2()(201x x f x f -<)2()(201x x f x f ->b x x a <<<21)2()(201x x f x f -<2012)(x x x -><正负.三、极值点偏移问题求解另一种方法:利用对数平均不等式求解对数平均不等式:),0,0(2ln ln b a b a ba b a b a ab ≠>>+<-+<,利用换元法将双变量问题转化为单变量问题,再构造函数求导数,利用单调性证明不等式的成立。

高考数学:极值点偏移问题与拐点偏移问题

高考数学:极值点偏移问题与拐点偏移问题

极值点偏移问题与拐点偏移问题【考点预测】1.极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。

若函数f (x )在x =x 0处取得极值,且函数y =f (x )与直线y =b 交于A (x 1,b ),B (x 2,b )两点,则AB 的中点为M x 1+x 22,b ,而往往x 0≠x 1+x 22。

如下图所示。

图1 极值点不偏移图2 极值点偏移极值点偏移的定义:对于函数y =f (x )在区间(a ,b )内只有一个极值点x 0,方程f (x )的解分别为x 1、x 2,且a <x 1<x 2<b ,(1)若x 1+x 22≠x 0,则称函数y =f (x )在区间(x 1,x 2)上极值点x 0偏移;(2)若x 1+x 22>x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0左偏,简称极值点x 0左偏;(3)若x 1+x 22<x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0右偏,简称极值点x 0右偏。

【方法技巧与总结】1.对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2>x 20,则令F (x )=f (x )-f 2x 0x.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.【注意】若要证明f x 1+x 22 的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2.应用对数平均不等式x1x2<x1-x2ln x1-ln x2<x1+x22证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到x1-x2ln x1-ln x2;③利用对数平均不等式来证明相应的问题.3.比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【题型归纳目录】题型一:极值点偏移:加法型题型二:极值点偏移:减法型题型三:极值点偏移:乘积型题型四:极值点偏移:商型题型五:极值点偏移:平方型题型六:拐点偏移问题【典例例题】题型一:极值点偏移:加法型例1.(2022•浙江期中)已知函数f(x)=x-ln x-a有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)证明:x1+x2>a+1.例2.(2022•汕头一模)已知函数f(x)=x-ln x-a有两个相异零点x1,x2(x1<x2).(1)求a的取值范围;(2)求证:x1+x2<4a+23.例3.(海淀区校级月考)已知函数f(x)=(x-2)e x+a(x-1)2,a∈R.(Ⅰ)求曲线y=f(x)在点P(1,f(1))处的切线方程;(Ⅱ)若a≥0,求f(x)的零点个数;(Ⅲ)若f(x)有两个零点x1,x2,证明:x1+x2<2.例4.(2022•江门一模)已知函数f(x)=ln|x-1|-ax,a∈R是常数.(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程,并证明对任意a∈R,切线经过定点;(Ⅱ)证明:a<0时,设x1、x2是f(x)的两个零点,且x1+x2>2.题型二:极值点偏移:减法型例5.(2022•七星区校级月考)已知函数f(x)=x ln x-a2x2+1.(1)若f(x)在(0,+∞)上单调递减,求a的取值范围;(2)若f(x)在x=1处的切线斜率是12,证明f(x)有两个极值点x1x2,且3ln2<|ln x2-ln x1|<3.例6.(2022•常熟市月考)设函数f(x)=ln x,g(x)=a(x-1),其中a∈R.(1)若a=1,证明:当x>1时,f(x)<g(x);(2)设F(x)=f(x)-g(x)e x,且0<a<1e,其中e是自然对数的底数.①证明F(x)恰有两个零点;②设x0如为F(x)的极值点,x1为F(x)的零点,且x1>x0,证明:3x0-x1>2.例7.(2022•黄州区校级模拟)已知函数f(x)=ax ln x-(a+1)ln x,f(x)的导数为f (x).(1)当a>-1时,讨论f (x)的单调性;(2)设a>0,方程f(x)=3e-x有两个不同的零点x1,x2(x1<x2),求证:x1+e>x2+1e.例8.(2022•道里区校级二模)已知函数f(x)=mx ln x-(m+1)ln x,f (x)为函数f(x)的导数.(1)讨论函数f (x)的单调性;(2)若当m>0时,函数f(x)与g(x)=3e-x的图象有两个交点A(x1,y1),B(x2,y2)(x1<x2),求证:x2+1e<x1+e.题型三:极值点偏移:乘积型例9.(2021春•汕头校级月考)已知,函数f(x)=ln x-ax,其中a∈R.(1)讨论函数f(x)的单调性;(2)若函数f(x)有两个零点,(i)求a的取值范围;(ii)设f(x)的两个零点分别为x1,x2,证明:x1x2>e2.例10.(2022•攀枝花模拟)已知函数f(x)=ln x+bx-a(a∈R,b∈R)有最小值M,且M≥0.(Ⅰ)求e a-1-b+1的最大值;(Ⅱ)当e a-1-b+1取得最大值时,设F(b)=a-1b-m(m∈R),F(x)有两个零点为x1,x2(x1<x2),证明:x1⋅x22>e3.例11.(2022•张家口二模)已知函数f(x)=e x-a ln xx-a(e是自然对数的底数)有两个零点.(1)求实数a的取值范围;(2)若f(x)的两个零点分别为x1,x2,证明:x1x2>e2e x1+x2.例12.(2022•武进区校级月考)已知函数f (x )=ln x +12x 2-ax .(1)若函数f (x )在x =1处的切线与x 轴平行,求a 的值;(2)若存在t ∈[-1,1],使不等式f (x )≤tx -(a -1)ln x 对于x ∈[1,e ]恒成立,求a 的取值范围;(3)若方程f (x )=12x 2有两个不等的实数根x 1、x 2,试证明x 1x 2>e 2.题型四:极值点偏移:商型例13.已知函数f (x )=x -e x a (a >0)有两个相异零点x 1、x 2,且x 1<x 2,求证:x 1x 2<e a.例14.(2022•新疆模拟)已知函数f(x)=ln x-ax+12x2.(1)当a=52时,求f(x)的单调区间;(2)已知a≥433,x1,x2(x1>x2)为函数f(x)的两个极值点,求y=2(x1-x2)x1+x2-lnx1x2的最大值.例15..(2021春•湖北期末)已知函数f(x)=ae-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性:(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤(2e+1)⋅ln2e2e-1,求x2x1的最大值.例16.(2022•宁德三模)已知函数f(x)=ae-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性:(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤2ln3,求x2x1的最大值.题型五:极值点偏移:平方型例17.(2022•广州一模)已知函数f(x)=x ln x-ax2+x(a∈R).(1)证明:曲线y=f(x)在点(1,f(1))处的切线l恒过定点;(2)若f(x)有两个零点x1,x2,且x2>2x1,证明:x21+x22>4e.例18.(2022•浙江开学)已知a∈R,f(x)=x⋅e-ax(其中e为自然对数的底数).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)若a>0,函数y=f(x)-a有两个零点x,x2,求证:x21+x22>2e.例19.(2021秋•泉州月考)已知函数f(x)=ln x+1 ax.(1)讨论f(x)的单调性;(2)若(ex1)x2=(ex2)x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.例20.(2022•开封三模)已知函数f(x)=ln x mx2.(1)讨论f(x)的单调性;(2)若m=2,对于任意x1>x2>0,证明:(x21⋅f(x1)-x22⋅f(x2))⋅(x21+x22)>x1x2-x22.题型六:拐点偏移问题例21.已知函数f(x)=2ln x+x2+x.(1)求曲线y=f(x)在点(1,f(1))处的切线方程.(2)若正实数x1,x2满足f(x1)+f(x2)=4,求证:x1+x2≥2.例22.已知函数f(x)=12a x2-1+1a2x+1a Inx(a∈R).(1)当a>0时,讨论函数f(x)的单调性;(2)当a=12时,设g(x)=f(x)+6x,若正实数x1,x2,满足g(x1)+g(x2)=4,求证:x1+x2≥2.例23.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【过关测试】1.(2022·天津河东·二模)已知函数f x =x2a-2ln x(a∈R且a≠0).(1)a=2,求函数f x 在2,f2处的切线方程.(2)讨论函数f x 的单调性;(3)若函数f x 有两个零点x1、x2x1<x2,且a=e2,证明:x1+x2>2e.2.(2022·河北·沧县中学高二阶段练习)已知函数f x =x+3x+2ln x-a a∈R有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)求证:x1x2>1.3.(2022·江苏泰州·模拟预测)已知函数f x =e x-ax2+bx-1,其中a,b为常数,e为自然对数底数,e =2.71828⋅⋅⋅.(1)当a=0时,若函数f x ≥0,求实数b的取值范围;(2)当b=2a时,若函数f x 有两个极值点x1,x2,现有如下三个命题:①7x1+bx2>28;②2a x1+x2>3x1x2;③x1-1+x2-1>2;请从①②③中任选一个进行证明.(注:如果选择多个条件分别解答,按第一个解答计分)4.(2022·湖北武汉·模拟预测)已知函数f x =x-ln x(1)求证:当x>1时,ln x>2x-1x+1;(2)当方程f x =m有两个不等实数根x1,x2时,求证:x1+x2>m+15.(2022·浙江绍兴·模拟预测)已知函数f x =e x-2x-a+1(其中ex-a+2,g x =x2+a-1≈2.71828是自然对数的底数)(1)试讨论函数f x 的零点个数;(2)当a>1时,设函数h x =f x -g x 的两个极值点为x1、x2且x1<x2,求证:e x2-e x1<4a+2.e x-k(x-1),x>-1,k∈R.6.(2022·安徽淮南·二模(理))已知函数f(x)=1-2x+1(1)若k=0,证明:x∈(-1,0)时,f(x)<-1;(2)若函数f(x)恰有三个零点x1,x2,x3,证明:x1+x2+x3>1.7.(2022·湖南·岳阳一中一模)已知函数f x =a ln x+2-x a∈R.(1)讨论f(x)的单调性和最值;(2)若关于x的方程e x=2m-1m ln mx+2(m>0)有两个不等的实数根x1,x2,求证:e x1+e x2>2 m.8.(2022·山东·青岛二中高三期末)已知函数f x =x1-a ln x,a∈R.(1)讨论f(x)的单调性;(2)若x∈0,12时,都有f x <1,求实数a的取值范围;(3)若有不相等的两个正实数x1,x2满足1+ln x21+ln x1=x2x1,证明:x1+x2<ex1x2.9.(2021·广东·新会陈经纶中学高三阶段练习)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a+1b.10.(2022·全国·高三专题练习)已知函数f x =-e x-ax2a∈R.(1)当a=0时,求曲线y=f x 在点1,f1处的切线方程;(2)当a>0时,若函数g x =xe x+f x ,求g x 的单调区间;(3)当a>0时,若函数h x =f x +2e x-ax恰有两个不同的极值点x1、x2,且x1<x2,求证:x1+x22<ln2a.11.(2022·全国·高三专题练习)已知函数f(x)=a-1-xe x(x>0)(e为自然对数的底数,a∈R).(1)求f(x)的单调区间和极值;(2)若存在x1≠x2,满足f x1=f x2,求证:x1+x2>4aa+2.12.(2022·全国·高三专题练习)已知函数f(x)=x-a-1x+a,a∈R.(1)若f(1)=2,求a的值;(2)若存在两个不相等的正实数x1,x2,满足f(x1)=f(x2),证明:①2<x1+x2<2a;②x2x1<a2+1.13.(2022·四川省泸县第二中学模拟预测(文))已知函数f(x)=x-x.e x(1)求f(x)的单调区间;(2)已知a,b∈R,且a≠b,若ae a+b+be a=ae b+be a+b,求证:a+b>0.。

高中数学专题---极值点偏移问题

高中数学专题---极值点偏移问题

高中数学专题--- 极值点偏移问题基本方法: 极值点偏移的含义:对定义域内任意自变量x 都有()(2)f x f m x =-,则函数()f x 关于直线x m =对称:可以理解为函数()f x 在对称轴两侧,函数值变化快慢相同. 若()f x 为单峰函数,则x m =必为()f x 的极值点. 如二次函数()f x 的顶点就是极值点0x ,若()f x c =的两根的中点为122x x +,则刚好有1202x x x +=,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数()f x 的极值点为m ,且函数()f x 满足定义域内x m =左侧的任意自变量x 都有()(2)f x f m x >-或()(2)f x f m x <-,则函数()f x 极值点m 左右侧变化快慢不同. 故单峰函数()f x 定义域内任意不同的实数12,x x 满足12()()f x f x =,则122x x +与极值点m 必有确定的大小关系:若122x x m +<,则称为极值点左偏;若122x x m +>,则称为极值点右偏. 如图,函数()e xx f x =的极值点01x =刚好在方程()f x c =的两根中点122x x +的左边,我们称之为极值点左偏.极值点偏移问题的一般题设形式:1. 函数()f x 存在两个零点12,x x 且12x x ≠,求证:1202x x x +>(0x 为函数()f x 的极值点);2. 若函数()f x 中存在12,x x 且12x x ≠满足12()()f x f x =,求证:1202x x x +>(0x 为函数()f x 的极值点);3. 若函数()f x 存在两个零点12,x x 且12x x ≠,令1202x x x +=,求证:0()0f x '>;4. 若函数()f x 中存在12,x x 且12x x ≠满足12()()f x f x =,令1202x x x +=,求证:0()0f x '>.方法一:①利用对称性构造函数 ⅰ)求出函数()f x 的极值点0x ;ⅱ)构造一元差函数0()()(2)F x f x f x x =--或0()(2)()F x f x x f x =--; ⅲ)确定函数()F x 的单调性;ⅳ)结合0()0F x =,判断()F x 的符号,从而确定0(2)f x x -、()f x 的大小关系; ⅴ)再结合102,2x x x -或201,2x x x -的大小和函数()f x 的单调性得出所求结论. 方法二:②双变量转化单变量,构造函数不等式从代数层面来看,极值点偏移问题是条件不等式的证明:在等量条件12()()f x f x =的约束条件下求证12,x x 的二元不等式一个自然的想法是:能否将双变量的条件不等式化为单变量的函数不等式呢? 方法③:利用对数平均不等式对数平均不等式的介绍与证明:两个正数a和b的对数平均定义:()(,)ln ln ()a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(,)2a bL a b +≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立. 只证:当a b ≠(,)2a bL a b +<. 不失一般性,可设a b >. 证明如下: (i(,)L a b <……①不等式①1ln ln ln2ln(1)aa b x x xb x⇔-<⇔<<-=>其中构造函数1()2ln(),(1)f x x x xx=-->,则22211()1(1)f xx xx'=--=--.因为1x>时,()0f x'<,所以函数()f x在(1,)+∞上单调递减,故()(1)0f x f<=,从而不等式①成立;(ii)再证:(,)2a bL a b+<……②不等式②2(1)2()ln ln ln(1)aa b a ba baa b bb--⇔->⇔>++2(1)ln(1)xxx-⇔>+(1)x其中构造函数2(1)()ln,(1)(1)xg x x xx-=->+,则22214(1)()(1)(1)xg xx x x x-'=-=++.因为1x>时,()0g x'>,所以函数()g x在(1,)+∞上单调递增,故()(1)0g x g>=,从而不等式②成立;综合(i)(ii)知,对,a b+∀∈R,都有对数平(,)2a bL a b+≤成立,当且仅当a b=时,等号成立.一、典型例题1. 已知函数()e()xf x x x-=∈R.(1)求函数()f x的单调区间和极值;(2)已知函数()y g x=的图象与函数()y f x=的图象关于直线1x=对称,证明:当1x>时,()()f xg x>;(3)如果12x x≠,且12()()f x f x=,证明122x x+>.2. 已知函数()()()22e1xf x x a x=-+-有两个零点.(1)求a的取值范围;(2)设1x,2x是()f x的两个零点,证明:122x x+<.二、课堂练习1. 已知函数()()2ln 21f x a x x a x =-+-()a ∈R 有两个不同的零点. (1)求a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,证明:122x x a +>.2. 已知函数()ln g x x bx =-,若()g x 有两个相异零点12,x x ,求证:12ln ln 2x x +>.三、课后作业1. 已知函数()ln f x x x m =--(m 为常数).(1)求函数()f x 在1,e e⎡⎤⎢⎥⎣⎦的最小值;(2)设12,x x 是函数()f x 的两个零点,且12x x <,证明:121x x ⋅<.2. 已知函数()e 23x f x x m =-++,1212,()x x x x ≠是函数()f x 的两个零点. (1)求m 的取值范围; (2)求证120x x +<.3. 已知函数()()2ln g x a x x =--,已知关于x 的方程()0g x =有两个实根12,x x ,求证:126x x a+>.。

极值点偏移四种题型的解法及例题

极值点偏移四种题型的解法及例题

极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。

在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。

而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。

本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。

1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。

在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。

但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。

比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。

举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。

解:求导得 $f'(x)=3x^2-6x$。

令导数为零,得到 $x=0$ 或 $x=2$。

根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。

但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。

也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。

这就是极值点偏移的思想。

2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。

当我们遇到优化问题时,常常需要求解函数的极值点。

而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。

举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。

解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。

则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。

问题转化为求 $x+y$ 的最大值。

高中数学:极值点偏移问题有什么好的解决办法?

高中数学:极值点偏移问题有什么好的解决办法?

⾼中数学:极值点偏移问题有什么好的解决办法?1. 所谓的极值点偏移,就是函数在极值点左右的增减速度不⼀样,导致函数的图象不具有对称性。

如果极值点左侧的增减速度快于右侧,则极值点左偏,反之,则极值点右偏。

2. 极值点偏移问题常常出现在⾼考数学的压轴题当中,这类题往往思维要求较⾼,过程较为繁琐,计算量较⼤,具有相当的难度,因此常常令考⽣望⽽⽣畏。

3. 解决极值点偏移问题,构造对称函数和利⽤对数平均不等式是两种典型的⽅法,⼆者各有千秋,独具特⾊。

4. 极值点偏移问题是近⼏年⾼考中的热点问题,在各地的⾼考模拟试卷中也时常出现,并由此衍⽣出⼀系列的压轴题,⽐如拐点偏移就是其中最典型的⼀种。

⼀·极值点偏移问题:⼆·构造对称函数:构造对称函数是处理极值点偏移问题的基本⽅法,其步骤总结如下:三·对数平均不等式:1·对数平均不等式:我们已经学习过算术平均数,⼏何平均数,调和平均数和平⽅平均数,由这些平均数之间构成的⼤⼩关系称之为均值不等式,⽽今天我们介绍的对数平均数不外乎是⼀种新的平均数,它是均值不等式中的⼀环⽽已。

【评注】对数平均不等式也称之为”A-L-G“不等式,它是均值不等式的加强版,其放缩功能更加精细,因此在⾼考压轴题中具有强⼤功效。

2·对数平均不等式的⼏何意义:对数平均不等式具有明确的⼏何意义,这⾥需要借助定积分加以说明,⽂科考⽣可以直接略过。

四·⾼考中的极值点偏移问题:对于极值点偏移问题,⽆论是构造对称函数,还是利⽤对数平均不等式,⼆者皆较为程式化,最终殊途同归。

以上,祝你好运。

2023年高考数学复习:极值点偏移问题

2023年高考数学复习:极值点偏移问题

能力 提升
极值点偏移问题的解法
(1)(对称化构造法)构造辅助函数:对结论 x1+x2>2x0 型,构造 函数 F(x)=f(x)-f(2x0-x);对结论 x1x2<x20型,构造函数 F(x) =f(x)-f xx20,通过研究 F(x)的单调性获得不等式. (2)(比值代换法)通过代数变形将所证的双变量不等式通过代 换 t=xx12化为单变量的函数不等式,利用函数单调性证明.
由于g(x)在(1,+∞)上单调递减,故只要证g(x2)<g(2-x1), 由于g(x1)=g(x2)=0,故只要证g(x1)<g(2-x1), 令 H(x)=g(x)-g(2-x)=exx-2e-2-xx(x<1), 则 H′(x)=1-ex x-1e-2-xx=e2-x-eex21-x, 因为x<1,所以1-x>0,2-x>x,所以e2-x>ex,即e2-x-ex>0, 所以H′(x)>0,所以H(x)在(-∞,1)上单调递增. 所以H(x1)<H(1)=0,即有g(x1)<g(2-x1)成立,所以x1+x2>2.
∴x2<e21x1,∴x1x2<e12.
方法二 f(x1)=f(x2)即x1ln x1=x2ln x2,
令 t=xx21>1,则 x2=tx1, 代入上式得 x1ln x1=tx1(ln t+ln x1),得 ln x1=1tl-n tt. ∴x1x2<e12⇔ln x1+ln x2<-2⇔2ln x1+ln t<-2⇔21t-ln tt+ln t<-2⇔ln t-2tt+-11>0. 设 g(t)=ln t-2tt+-11(t>1), 则 g′(t)=ttt-+1122>0.

高中数学复习:极值点偏移问题判定定理

高中数学复习:极值点偏移问题判定定理

单调递减.
(2)当 时,函数

由(1)可知
在区间
上单调递增,
又易知
,且
,不妨设

要证
,只需证

只需证
,即证

即证

构造函数


所以





时,
,所以函
在区间(0,1]上单调递增,


所以
得证,从而
.
【点睛】
本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、 分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究 函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把 问题转化为函数的最值问题.

(3)确定函数 的单调性;
(4)结合
,判断 的符号,从而确定

的大小关系.
口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2.抽化模型
答题模板:若已知函数
满足
, 为函数
的极值点,求证:

(1)讨论函数 的单调性并求出 的极值点;
假设此处 在
上单调递减,在
上单调递增.
(2)构造
【详解】
(1)由题意,函数
的定义域为

可得


,则
①当
时,
,可得


在区间
上单调递增.
. 恒成立,
②当
或 时,
,令
,得

(i)当
时,

所以

专题07 极值点偏移问题 (解析版)

专题07 极值点偏移问题 (解析版)

导数及其应用 专题七:极值点偏移问题一、知识储备1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。

若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210xx x +≠。

如下图所示。

图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。

2、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.[提醒] 若要证明122x x f +⎛⎫'⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负. 二、例题讲解1.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性;(2)当1m =时,若在()f x 定义域内存在两实数1x ,2x 满足12x x <且()()12f x f x =,证明:122x x +>.【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得m x m =,当0mx m <<时,()0f x '>,当m x m >时,()0f x '<,于是得()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减;(2)分析 :如图:1201x x <<< 要证122x x +> 只需证:122x x -<由于101x <<,则112x <-即只需证1212x x <-< 如图,只需证12(2)()f x f x ->;由于()()12f x f x = 只需证11(2)()f x f x ->此时可构造函数()()(2)F x f x f x =--(即用x 替代了上式1x ) 只需证:在01x <<,()()(2)0F x f x f x =--<。

高考数学中极值点偏移

高考数学中极值点偏移

高考数学中极值点偏移3.1.极值点偏移现象(1).已知函数)(x f 的图象的极值点为0x ,若c x f =)(的两根的中点刚好满足1202x x x +=即极值点在两根的正中间,此时极值点没有偏移,函数)(x f 在0x x =两侧,函数值变化快慢相同,如图(1).(2).若1202x x x +≠,则极值点偏移,此时函数)(x f 在0x x =两侧的函数值变化快慢不同,如图(2)(3).3.2.证明方法:构造偏移函数解决极值点偏移. (1)极值点偏移题目特征: ①.函数()f x 的极值点为0x ;②.函数()()12f x f x =,然后证明:1202x x x +>或1202x x x +<. (2)极值点偏移的的纯偏移型解法步骤:①.构造一元差函数()()()02F x f x f x x =--或是()()()00F x f x x f x x =+--; ②.对差函数()F x 求导,判断单调性;③.结合()00F =,判断()F x 的符号,从而确定()f x 与()02f x x -的大小关系; ④.由()()()()()1200200202_____2f x f x f x x x f x x x f x x ==--+-=-⎡⎤⎡⎤⎣⎦⎣⎦的大小关系,得到()()102____2f x f x x -,(横线上为不等号); ⑤.结合()f x 单调性得到102____2x x x -,进而得到120___2x x x +. 2.3.应用实例.例4.(2021新高考1卷)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 证明:(1)函数的定义域为()0,∞+,又()1ln 1ln f x x x '=--=-, 当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<, 故()f x 的递增区间为()0,1,递减区间为()1,+∞. (2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=, 故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,设1211,x x a b ==,由(1)可知不妨设1201,1x x <<>.因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<, 故21x e <<.先证:122x x +>,若22x ≥,122x x +>必成立. 若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<, 故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<. 设()()()2,12g x f x f x x =--<<,(构造偏移函数) 则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦, 因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=, 故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立, 综上,122x x +>成立.视角4.双变量极值与比值代换例5.已知函数()12ln f x x a x x=--有两个不同的极值点1x 、()212x x x >. (1)求实数a 的取值范围;(2)若3a >,求证:11x >,且()()121242ln 23f x f x x x -<-+. 解:(1)()12ln f x x a x x=--,定义域为()0,∞+,()2221212a x ax f x x x x-+'=-+=. 由题意可知,方程2210x ax -+=在()0,∞+上有两个不等的实根1x 、2x ,则212128010202a x x a x x ⎧⎪∆=->⎪⎪=>⎨⎪⎪+=>⎪⎩,解得a >因此,实数a的取值范围是()+∞;(2)由题意可知,1x 、2x 为方程2210x ax -+=的两个实根,由于12x x >,则14a x +=,当3a >1>,11x ∴=>,由(1)可知1212212a x x x x ⎧+=⎪⎪⎨⎪=⎪⎩,()()()()()112121221211212121221212112ln22ln x x x a f x f x x x x x x x x x x x x x x x x x x x x ---+---==-+++++()1122111122224142ln 2ln 1x x x x x x x x x x x x ⎛⎫- ⎪-⎝⎭=-=-++,211222x x x =>,令122x t x =>,设()()412ln 1t h t t t -=-+,2t >. ()()()()2222182011t h t t t t t --'=-=<++,所以,函数()y h t =在()2,+∞上单调递减, 所以,()()422ln 23h t h <=-,因此,()()121242ln 23f x f x x x -<-+. 除了用比值代换外,双变量极值问题亦可用对数均值不等式予以证明,即 对数均值不等式:若),0(,+∞∈y x ,则2ln ln yx x y x y xy +<--<.例6.(2018全国1卷)已知函数x a x xx f ln 1)(+-=. (1)讨论)(x f 的单调性;(2)若)(x f 存在两个极值点21,x x ,证明:2)()(2121-<--a x x x f x f .(1)略.(2)证明:由(1)可得,当2>a 时,)(x f 存在两个极值点21,x x . 且21,x x 是导函数22'1)(x ax x x f +--=的两零点,故121=x x .由于1)ln (ln 11)ln (ln 11)()(212121212121212121---+-=---+--=--x x x x a x x x x x x a x x x x x x x f x f ,由对数均值不等式可知111)ln (ln 12121212121--<---+-x x x x a x x x x a x x ,代入121=x x 可得:2)()(2121-<--a x x x f x f ,证毕.。

2023届高考数学导数满分通关:极值点偏移问题概述

2023届高考数学导数满分通关:极值点偏移问题概述

专题23 极值点偏移问题概述一、极值点偏移的含义函数f (x )满足内任意自变量x 都有f (x )=f (2m -x ),则函数f (x )关于直线x =m 对称.可以理解为函数f (x )在对称轴两侧,函数值变化快慢相同,且若f (x )为单峰函数,则x =m 必为f (x )的极值点x 0,如图(1)所示,函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点则刚好满足x 1+x 22=x 0,则极值点在两根的正中间,也就是极值点没有偏移.图(1) 图(2) 图(3)若x 1+x 22≠x 0,则极值点偏移.若单峰函数f (x )的极值点为x 0,且函数f (x )满足定义域内x =m 左侧的任意自变量x 都有f (x )>f (2m -x )或f (x )<f (2m -x ),则函数f (x )极值点x 0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f (x )定义域内任意不同的实数x 1,x 2,满足f (x 1)=f (x 2),则x 1+x 22与极值点x 0必有确定的大小关系:若x 0<x 1+x 22,则称为极值点左偏;若x 0>x 1+x 22,则称为极值点右偏.深层理解1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图(1).2.若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图(2)(3).(1)极值点左偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)>f '(x 0)=0.(2)极值点右偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)<f '(x 0)=0.二、极值点偏移问题的一般题设形式(1)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,令x 0=x 1+x 22,求证:f '(x 0)>0; (4)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f '(x 0)>0. 三、极值点偏移问题的一般解法 1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0. (2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,通过研究F (x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.若要证明f ′⎝⎛⎭⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而极值点左偏得出该处导数值的正负.2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立. 只证:当a b ≠(, )2a bL a b +<.不失一般性,可设a b >.证明如下: (1)(, )L a b < ①不等式①1ln ln ln2ln (1)a a b x x x b x ⇔-<⇔<<-=>其中 构造函数1()2ln (), (1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1, )+∞上单调递减, 故()(1)0f x f <=,从而不等式①成立; (2)再证:(, )2a bL a b +<②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=>+++其中构造函数2(1)()ln , (1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++. 因为1x >时,()0g x '>,所以函数()g x 在(1, )+∞上单调递增, 故()(1)0g x g <=,从而不等式②成立;综合(1)(2)知,对, a b +∀∈R ,(, )2a bL a b +≤≤成立,当且仅当a b =时,等号成立.[例1] (2010天津)已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间和极值;(2)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>2.解析 (1)f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1, ∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )有极大值f (1)=1e,f (x )无极小值.(2)方法一 (对称化构造法)分析法 欲证x 1+x 2>2,即证x 1>2-x 2,由(1)可设0<x 1<1<x 2,故x 1,2-x 2∈(0,1), 又因为f (x )在(0,1)上单调递增,故只需证f (x 1)>f (2-x 2),又因为f (x 1)=f (x 2), 故也即证f (x 2)>f (2-x 2),构造函数F (x )=f (x )-f (2-x ),x ∈(1,+∞), 则等价于证明F (x )>0对x ∈(1,+∞)恒成立.由F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, 则F (x )在(1,+∞)上单调递增,所以F (x )>F (1)>0,即已证明F (x )>0对x ∈(1,+∞)恒成立,故原不等式x 1+x 2>2亦成立. 综合法 构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0,∴F (x )在(1,+∞)上为增函数,∴F (x )>F (1)=0,故当x >1时,f (x )>f (2-x ),(*) 由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2,将x 2代入(*)式可得f (x 2)>f (2-x 2),又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增,∴x 1>2-x 2,∴x 1+x 2>2. 总结提升 本题(2)证明的不等式中含有两个变量,对于此类问题一般的求解思路是将两个变量分到不等式的两侧,然后根据函数的单调性,通过两个变量之间的关系“减元”,建立新函数,最终将问题转化为函数的最值问题来求解.考查了逻辑推理、数学建模及数学运算等核心素养.在求解此类问题时,需要注意变量取值范围的限定,如本题中利用x 1,2-x 2,其取值范围都为(0,1),若将所证不等式化为x 1>2-x 2,则x 2,2-x 1的取值范围都为(1,+∞),此时就必须利用函数h (x )在(1,+∞)上的单调性来求解.对于x 1+x 2型不等式的证明常用对称化构造法去解决,书写过程可用分析法或用综合法.方法二 (比值代换法)设0<x 1<1<x 2,f (x 1)=f (x 2)即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0,设g (t )=ln t -2(t -1)t +1 (t >1),∴g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,∴当t >1时,g (t )为增函数,∴g (t )>g (1)=0,∴ln t -2(t -1)t +1>0,故x 1+x 2>2.总结提升 对于(2)的证明,也经常用比值代换法证明.比值代换的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.方法三 (对数均值不等式法)设0<x 1<1<x 2,f (x 1)=f (x 2),即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2, 可得,1=x 1-x 2ln x 1-ln x 2,利用对数平均不等式得,1=x 1-x 2ln x 1-ln x 2<x 1+x 22,即证,x 1+x 2>2.总结提升 对于(2)的证明,也可用对数均值不等式法证明,用此法往往可秒证.但必须用前给出证明. [例2] 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.思维引导(2) 证明x 1x 2>e 2,想到把双变量x 1,x 2转化为只含有一个变量的不等式证明. 解析 (1)f ′(x )=1x -a =1-ax x (x >0),①若a ≤0,则f ′(x )>0,不符合题意;②若a >0,令f ′(x )=0,解得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e . 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)法一:对称化构造法1由x 1,x 2是方程f (x )=0的两个不同实根得a =ln x x ,令g (x )=ln xx ,g (x 1)=g (x 2),由于g ′(x )=1-ln xx 2,因此,g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,设1<x 1<e<x 2,需证明x 1x 2>e 2,只需证明x 1>e 2x 2∈(1,e),只需证明f (x 1) > f (e 2x 2), 即f (x 2)>f (e 2x 2),即f (x 2)-f (e 2x 2)>0.令h (x )=f (x )-f (e 2x )(x ∈(1,e)),h ′(x )=(1-ln x )( e 2-x 2)x 2e 2>0.故h (x )在(1,e)上单调递增,故h (x ) <h (0)=0.即f (x )<f (e 2x ),令x =x 1,则f (x 2)=f (x 1) <f (e 2x 1)因为x 2,e 2x 1∈(e ,+∞) ,f (x )在(e ,+∞)上单调递减,所以x 1>e 2x 2,即x 1x 2>e 2.对称化构造法2由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根. 令t 1=ln x 1,t 2=ln x 2.设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.g ′(x )=(1-x )e -x ,易得g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,所以函数g (x )在x =1处取得极大值g (1)=1e.当x →-∞时,g (x )→-∞;当x →+∞时,g (x )→0且g (x )>0.由g (t 1)=g (t 2),t 1≠t 2,不妨设t 1<t 2,作出函数g (x )的图象如图所示,由图知必有0<t 1<1<t 2, 令F (x )=g (1+x )-g (1-x ),x ∈(0,1],则F ′(x )=g ′(1+x )-g ′(1-x )=xe x +1(e 2x -1)>0,所以F (x )在(0,1]上单调递增,所以F (x )>F (0)=0对任意的x ∈(0,1]恒成立, 即g (1+x )>g (1-x )对任意的x ∈(0,1]恒成立.由0<t 1<1<t 2,得1-t 1∈(0,1],所以g [1+(1-t 1)]=g (2-t 1)>g [1-(1-t 1)]=g (t 1)=g (t 2), 即g (2-t 1)>g (t 2),又2-t 1∈(1,+∞),t 2∈(1,+∞),且g (x )在(1,+∞)上单调递减, 所以2-t 1<t 2,即t 1+t 2>2.总结提升 上述解题过程就是解决极值点偏移问题的最基本的方法,共有四个解题要点: (1)求函数g (x )的极值点x 0;(2)构造函数F (x )=g (x 0+x )-g (x 0-x ); (3)确定函数F (x )的单调性;(4)结合F (0)=0,确定g (x 0+x )与g (x 0-x )的大小关系.其口诀为:极值偏离对称轴,构造函数觅行踪,四个步骤环相扣,两次单调紧跟随. 法二:比值换元法1不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令t =x 1x 2(t >1),则不等式变为ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.总结提升 用比值换元法求解本题的关键点有两个.一个是消参,把极值点转化为导函数零点之后,需要利用两个变量把参数表示出来,这是解决问题的基础,若只用一个极值点表示参数,如得到a =ln x 1x 1之后,代入第二个方程,则无法建立两个极值点的关系,本题中利用两个方程相加(减)之后再消参,巧妙地把两个极值点与参数之间的关系建立起来;二是消“变”,即减少变量的个数,只有把方程转化为一个“变量”的式子后,才能建立与之相应的函数,转化为函数问题求解.本题利用参数a 的值相等建立方程,进而利用对数运算的性质,将方程转化为关于x 1x 2的方程,通过建立函数模型求解该问题,这体现了对数学建模等核心素养的考查.该方法的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:(1)联立消参:利用方程f (x 1)=f (x 2)消掉解析式中的参数a . (2)抓商构元:令t =x 1x 2,消掉变量x 1,x 2,构造关于t 的函数h (t ).(3)用导求解:利用导数求解函数h (t )的最小值,从而可证得结论. 比值换元法2由题知a =ln x 1x 1=ln x 2x 2,则ln x 2ln x 1=x 2x 1,设x 1<x 2,t =x 2x 1(t >1),则x 2=tx 1,所以ln tx 1ln x 1=t ,即ln t +ln x 1ln x 1=t ,解得ln x 1=ln t t -1,ln x 2=ln tx 1=ln t +ln x 1=ln t +ln t t -1=t ln tt -1.由x 1x 2>e 2,得ln x 1+ln x 2>2,所以t +1t -1ln t >2,所以ln t -2(t -1)t +1>0,令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.法三:差值换元法由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根.设t 1=ln x 1,t 2=ln x 2,设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.由g (t 1)=g (t 2),得t 11e t -=t 22e t -,化简得21e t t -=t 2t 1,①不妨设t 2>t 1,由法二知,0<t 1<1<t 2.令s =t 2-t 1,则s >0,t 2=s +t 1,代入①式,得e s =s +t 1t 1,解得t 1=s e s -1.则t 1+t 2=2t 1+s =2s e s -1+s ,故要证t 1+t 2>2,即证2s e s -1+s >2,又e s -1>0,故要证2se s -1+s >2,即证2s +(s -2)(e s -1)>0,②令G (s )=2s +(s -2)(e s -1)(s >0),则G ′(s )=(s -1)e s +1,G ″(s )=s e s >0,故G ′(s )在(0,+∞)上单调递增,所以G ′(s )>G ′(0)=0,从而G (s )在(0,+∞)上单调递增, 所以G (s )>G (0)=0,所以②式成立,故t 1+t 2>2.总结提升 该方法的关键是巧妙引入变量s ,然后利用等量关系,把t 1,t 2消掉,从而构造相应的函数,转化所证问题.其解题要点为:(1)取差构元:记s =t 2-t 1,则t 2=t 1+s ,利用该式消掉t 2. (2)巧解消参:利用g (t 1)=g (t 2),构造方程,解之,利用s 表示t 1. (3)构造函数:依据消参之后所得不等式的形式,构造关于s 的函数G (s ). (4)转化求解:利用导数研究函数G (s )的单调性和最小值,从而证得结论.函数的极值点偏移问题,其实质是导数的应用问题,解题的策略是把含双变量的等式或不等式转化为仅含一个变量的等式或不等式进行求解,解题时要抓住三个关键量:极值点、根差、根商.[例3] 已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设f (x )的两个零点是x 1,x 2,求证:f ′⎝⎛⎭⎫x 1+x 22<0.解析 (1)函数f (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), f ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,f ′(x )>0,则f (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 则f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)法一:构造差函数法由(1)易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减,不妨设0<x 1<1a <x 2, f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a ⇔x 1+x 2>2a ,故要证f ′⎝⎛⎭⎫x 1+x 22<0,只需证x 1+x 2>2a 即可.构造函数F (x )=f (x )-f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , F ′(x )=f ′(x )-⎣⎡⎦⎤f ⎝⎛⎭⎫2a -x ′=f ′(x )+f ′⎝⎛⎭⎫2a -x =2ax (ax -2)+2x (2-ax )=2(ax -1)2x (2-ax ), ∵x ∈⎝⎛⎭⎫0,1a ,∴F ′(x )=2(ax -1)2x (2-ax )>0,∴F (x )在⎝⎛⎭⎫0,1a 上单调递增, ∴F (x )<F ⎝⎛⎭⎫1a =f ⎝⎛⎭⎫1a -f ⎝⎛⎭⎫2a -1a =0,即f (x )<f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , 又x 1,x 2是函数f (x )的两个零点且0<x 1<1a <x 2,∴f (x 1)=f (x 2)<f ⎝⎛⎭⎫2a -x 1, 而x 2,2a -x 1均大于1a ,∴x 2>2a -x 1,∴x 1+x 2>2a ,得证.法二:对数平均不等式法易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 不妨设0<x 1<1a <x 2,f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a .因为f (x )的两个零点是x 1,x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以ln x 1-ln x 2+2(x 1-x 2)=a (x 21-x 22+x 1-x 2),所以a =ln x 1-ln x 2+2(x 1-x 2)x 21-x 22+x 1-x 2,以下用分析法证明,要证x 1+x 22>1a , 即证x 1+x 22>x 21-x 22+x 1-x 2ln x 1-ln x 2+2(x 1-x 2),即证x 1+x 22>x 1+x 2+1ln x 1-ln x 2x 1-x 2+2,即证2x 1+x 2<ln x 1-ln x 2x 1-x 2+2x 1+x 2+1,只需证2x 1+x 2<ln x 1-ln x 2x 1-x 2,即证x 1+x 22>x 1-x 2ln x 1-ln x 2,根据对数平均不等式,该式子成立,所以f ′⎝⎛⎭⎫x 1+x 22<0.法三:比值代换法因为f (x )的两个零点是x 1,x 2,不妨设0<x 1<x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以a (x 22-x 21)+(a -2)(x 2-x 1)=ln x 2-ln x 1,所以ln x 2-ln x 1x 2-x 1=a (x 2+x 1)+a -2,f ′(x )=1x -2ax +2-a ,f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2-a (x 1+x 2)-(a -2)=2x 1+x 2-ln x 2-ln x 1x 2-x 1=1x 2-x 1⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎫x 2x 1-11+x 2x 1-ln x 2x 1, 令t =x 2x 1(t >1),g (t )=2(t -1)1+t -ln t ,则当t >1时,g ′(t )=-(t -1)2t (t +1)2<0,。

高中数学极值点偏移问题

高中数学极值点偏移问题

高中数学极值点偏移问题极值点偏移问题极值点偏移问题是指可导函数 $y=f(x)$ 在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,方程 $f(x)=m$ 的解分别为$x_1,x_2$ 且 $ax$,则称函数 $f(x)$ 在区间 $(a,b)$ 上极值点$x$ 右偏移。

极值点偏移的判定定理是指对于可导函数 $y=f(x)$ 在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,方程 $f(x)=m$ 的解分别为 $x_1,x_2$ 且 $a<x_1<x_2<b$,有以下判定条件:1)若 $f(x_1)<f(2x-x_2)$,则极值点偏移为峰偏右。

2)若 $f(x_1)>f(2x-x_2)$,则极值点偏移为谷偏左。

3)若 $f(x_1)>f(2x-x_2)$,则极值点偏移为峰偏左。

4)若 $f(x_1)<f(2x-x_2)$,则极值点偏移为谷偏右。

拓展内容:1)若 $f(a+x)=f(b-x)$,则函数 $f(x)$ 的图像关于直线$x=\dfrac{a+b}{2}$ 对称;特别地,若 $a+b=2a$,则函数$f(x)$ 的图像关于直线 $x=a$ 对称。

2)若函数$f(x)$ 满足$\forall x\in(0,a)$ 有下列之一成立:① $f(x)$ 在 $(0,a)$ 递增,在 $(a,2a)$ 递减,且 $f(a-x))f(a+x)$($f(x))f(2a-x)$)。

② $f(x)$ 在 $(0,a)$ 递减,在 $(a,2a)$ 递增,且 $f(a-x)>((<)f(2a-x)$)。

则函数 $f(x)$ 在 $(0,2a)$ 的图像关于直线 $x=a$ 偏移(偏对称,俗称峰谷偏函数)。

其中,①极大值左偏(或右偏)也称峰偏左(或右);②极小值偏左(或偏右)也称谷偏左(或右)。

已知函数y=f(x)满足f(x1)=f(x2),x1和x2为函数y=f(x)的极值点,证明:x1+x2>2x首先,求函数f(x)的极值点x。

培优提能4 高中数学极值点偏移问题

培优提能4 高中数学极值点偏移问题

(-)

-+1=
( +)(-)

,
令 f′(x)>0,解得 x>1,故函数 f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
故 f(x)min=f(1)=e+1-a,要使得 f(x)≥0 恒成立,仅需 e+1-a≥0,
故 a≤e+1,故 a 的取值范围是(-∞,e+1].
+
提醒:若要证明 f′(

)的符号问题,还需进一步讨论
在的单调区间,从而得出该处导数值的正负.
+

+
与 x0 的大小,得出


触类旁通 1

(2022·全国甲卷)已知函数 f(x)= -ln x+x-a.
(1)若f(x)≥0,求a的取值范围;
(1)解:f(x)的定义域为(0,+∞),f′(x)=

>0,

-

+
设 =t,则 t>1,即证 ln t-
>0,

即 ln t+ +-1>0,
令 h(t)=ln t+


-1(t>1),则 h′(t)= -
+

( +)

=
( +) -
( +)

=
( -)

( +)

故函数 h(t)在(1,+∞)上单调递增,所以 h(t)>h(1)=0,即有 ln t+
由 f(x1)=f(x2)=0⇒

数学高考专题极值点偏移

数学高考专题极值点偏移

极值点偏移专题(一)1、极值点偏移以函数函数为例,极值点为0,如果直线与它的图像相交,2x y =1=y 交点的横坐标为和,我们简单计算:.也就是说极值点刚好位1-10211=+-于两个交点的中点处,此时我们称极值点相对中点不偏移.当然,更多的情况是极值点相对中点偏移,下面的图形能形象地解释这一点.那么,如何判断一道题是否属于“极值点偏移”问题呢?其具体特征就是:2、主元法破解极值点偏移问题2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.例1.(2016全国1-21)已知函数有两个零点.()()()221xf x x e a x =-+- (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明:. ()f x 122x x +<(1)解析:详细解答⑴方法一:由已知得:()()()()()'12112x x f x x e a x x e a =-+-=-+①若,那么,只有唯一的零点,不合题意; 0a =()()0202x f x x e x =⇔-=⇔=()f x 2x =②若,那么,所以当时,,单调递增0a >20x x e a e +>>1x >()'0f x >()f x 当时,,单调递减,即:1x <()'0f x <()f xx(),1-∞1()1,+∞ ()'f x-+()f x ↓ 极小值 ↑故在上至多一个零点,在上至多一个零点()f x ()1,+∞(),1-∞由于,,则,()20f a =>()10f e =-<()()210f f <根据零点存在性定理,在上有且仅有一个零点. ()f x ()1,2而当时,,,1x <x e e <210x -<-<故()()()()()()()222212111x f x x e a x e x a x a x e xe =-+->-+-=-+--则的两根,, ,因为()0f x =11t =+21t =12t t <,故当或时,0a >1x t <2x t >()()2110a x e x e -+-->因此,当且时,1x <1x t <()0f x >文末获取Word文档又,根据零点存在性定理,在有且只有一个零点.()10f e =-<()f x (),1-∞此时,在上有且只有两个零点,满足题意.()f x R ③ 若,则,02ea -<<()ln 2ln 1a e -<=当时,,,()ln 2x a <-()1ln 210x a -<--<()ln 2220a x e a e a -+<+=即,单调递增;()()()'120x f x x e a =-+>()f x 当时,,,即()ln 21a x -<<10x -<()ln 2220a x e a e a -+>+=,单调递减;()()()'120x f x x e a =-+<()f x 当时,,,即,单调递增.1x >10x ->()ln 2220a x e a e a -+>+=()'0f x >()f x 即:x()(),ln 2a -∞- ()ln 2a -()()ln 2,1a -1()1,+∞ ()'f x +0 -+()f x ↑ 极大值 ↓ 极小值 ↑而极大值()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦故当时,在处取到最大值,那么1x ≤()f x ()ln 2x a =-()ln 2f a -⎡⎤⎣⎦恒成立,即无解()()ln 20f x f a -<⎡⎤⎣⎦≤()0f x =而当时,单调递增,至多一个零点,此时在上至多一个零点,1x >()f x ()f x R 不合题意.④ 若,那么2ea =-()ln 21a -=当时,,,即,单()1ln 2x a <=-10x -<()ln 2220a x e a e a -+<+=()'0f x >()f x 调递增当时,,,即,单()1ln 2x a >=-10x ->()ln 2220a x e a e a -+>+=()'0f x >()f x 调递增又在处有意义,故在上单调递增,此时至多一个零点,不合题()f x 1x =()f x R 意.⑤ 若,则2ea <-()ln 21a ->当时,,,即,单1x <10x -<()ln 212220a x e a e a e a -+<+<+=()'0f x >()f x 调递增当时,,,即,单()1ln 2x a <<-10x ->()ln 2220a x e a e a -+<+=()'0f x <()f x 调递减当时,,,即,()ln 2x a >-()1ln 210x a ->-->()ln 2220a x e a ea -+>+=()'0f x >单调递增,即:()f xx(),1-∞1()()1,ln 2a - ()ln 2a -()()ln 2,a -+∞ ()'f x +0 -+()f x ↑ 极大值 ↓ 极小值 ↑故当时,在处取到最大值,那么()ln 2x a -≤()f x 1x =()1f e =-()0f x e -<≤恒成立,即无解()0f x =当时,单调递增,至多一个零点,此时在上至多一个零()ln 2x a >-()f x ()f x R 点,不合题意.综上所述,当且仅当时符合题意,即的取值范围为.0a >a ()0,+∞简要解析(Ⅰ)方法二:.'()(1)2(1)(1)(2)x xf x x e a x x e a =-+-=-+(i )设,则,只有一个零点.0a =()(2)xf x x e =-()f x (ii )设,则当时,;当时,.所以在0a >(,1)x ∈-∞'()0f x <(1,)x ∈+∞'()0f x >()f x 上单调递减,在上单调递增.(,1)-∞(1,)+∞又,,取满足且,则 (1)f e =-(2)f a =b 0b <ln2a b <, 223()(2)(1)()022a fb b a b a b b >-+-=->故存在两个零点.()f x (iii )设,由得或.0a <'()0f x =1x =ln(2)x a =-若,则,故当时,,因此在上单调递2ea ≥-ln(2)1a -≤(1,)x ∈+∞'()0f x >()f x (1,)+∞增.又当时,,所以不存在两个零点.1x ≤()0f x <()f x 若,则,故当时,;当时,2ea <-ln(2)1a ->(1,ln(2))x a ∈-'()0f x <(ln(2),)x a ∈-+∞.因此在单调递减,在单调递增.又当时,'()0f x >()f x (1,ln(2))a -(ln(2),)a -+∞1x ≤,所以不存在两个零点.综上,的取值范围为.()0f x <()f x a (0,)+∞⑵ 方法一:由已知得:,不难发现,,()()120f x f x ==11x ≠21x ≠故可整理得:()()()()121222122211xx x e x e a x x ---==--设,则,那么, ()()()221x x e g x x -=-()()12g x g x =()()()2321'1x x g x e x -+=-当时,,单调递减;当时,,单调递增. 1x <()'0g x <()g x 1x >()'0g x >()g x 设,构造代数式:0m > ()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设, ()2111mm h m e m -=++0m >则,故单调递增,有.()()2222'01m m h m e m =>+()h m ()()00h m h >=因此,对于任意的,.0m >()()11g m g m +>-由可知、不可能在的同一个单调区间上,不妨设,则()()12g x g x =1x 2x ()g x 12x x <必有121x x <<令,则有110m x =->()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦而,,在上单调递增,因此:121x ->21x >()g x ()1,+∞()()121222g x g x x x ->⇔->整理得:.122x x +<(2)方法二:不妨设,由(1)知,12x x <,在上单调递减,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞()f x (),1-∞所以等价于,即. 122x x +<()()122f x f x >-()()222f x f x >-由于,而,()()22222221x f x x ea x --=-+-()()()2222221x f x x e a x =-+-所以.()()()222222222x x f x f x x e x e ---=---令,则,()()22xx g x xex e -=---()()()21x x g x x e e -'=--所以当时,,而,1x >()0g x '<()10g =故当时,.从而,故. 1x >()()10g x g <=()()2220g x f x =-<122x x +<(二)对解析的分析本问待证是两个变量的不等式,官方解析的变形是,借助于函数的特性及其122x x <-单调性,构造以为主元的函数.由于两个变量的地位相同,当然也可调整主元变形为2x ,同理构造以为主元的函数来处理.此法与官方解析正是极值点偏移问题的处212x x <-1x 理的通法.不妨设,由(1)知,,在12x x <()()()121,1,1,,21,x x x ∈-∞∈+∞-∈+∞()f x 上单调递增,所以等价于,即. ()1,+∞122x x +<()()212f x f x <-()()1120f x f x --<令,则()()()()()2221xx u x f x f x xex e x -=--=--<,()()()210x x u x x e e -'=-->所以,即, ()()10u x u <=()()()21f x f x x <-<所以; ()()()1212f x f x f x =<-所以,即.212x x <-122x x +<变式、(2010年天津理科21题)已知函数()()xf x xe x R -=∈(Ⅰ)求函数的单调区间和极值;()f x (Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当()y g x =()y f x =1x =时,1x >()()f x g x > (Ⅲ)如果,且,证明.12x x ≠12()()f x f x =122x x +>解:(21)本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力,满分14分 (Ⅰ)解:f ′,令f ′(x )=0,解得x =1()(1)xx x e-=-当x 变化时,f ′(x ),f (x )的变化情况如下表 X(),1-∞ 1()1,+∞f ’(x ) + 0 -f (x )极大值所以f (x )在()内是增函数,在()内是减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一:极值点偏移(俗称峰谷偏)问题的定义
对于可导函数在区间(a,b)上只有一个极大(小)值点,方程(f(x)=m)的解分别为且<<b.
则称函数f(x)在区间(a,b)上极值点偏移;
(1)则称函数f(x)在区间(a,b)上极值点偏移;
(2)则称函数f(x)在区间(a,b)上极值点偏移;
二:极值点偏移的判定定理
对于可导函数在区间(a,b)上只有一个极大(小)值点,方程
的解分别为且<<b.
(1)若则即函数f(x)在区间(a,b)上极大值点右偏;
(即峰偏右)
(2)若则即函数f(x)在区间上(a,b)极小值点左偏;
(即谷偏左)
(3)若则即函数f(x)在区间上(a,b)极大值点左偏;
(即峰偏左)
(4)若则即函数f(x)在区间上(a,b)极小值点右偏;
(即谷偏右)
x= x=
y=m
x
y=f(x) x= x=
拓展:
1) 若)()(x b f x a f -=+,则)(x f 的图象关于直线2
b
a x +=
对称;特别地,若)()(x a f x a f -=+(或f(x)=f(2a-x)),则)(x f 的图象关于直线a x =对称 2) 若函数f(x)满足
有下列之一成立:
①f(x)在
递增,在(a,2a)递减,且f(a-x)<(>)f(a+x)(f(x)<(>)f(2a-x))
②f(x)在(0,a)递减,在(a,2a)递增,且f(a-x)>(<)f(x+a)(f(x)>(<)f(2a-x))
则函数f(x)在(0,2a)的图象关于直线x=a 偏移(偏对称)(俗称峰谷偏函数)其中① 极大
值左偏(或右偏)也称峰偏左(或右)②极小值偏左(或偏右)也称谷偏左(或右); 性质: 1)
)(x f 的图象关于直线a x =对称若

<=>
,(
=0,
);
2)已知函数是满足条件的极大值左偏(峰偏左)若则

,及
极值点偏移解题步骤: ①求函数f(x)的极值点; ②构造函数F(x)=f(x+)-f( (F(x)=f(
)-f(
,
F(x)=f(x+)-f(
, F(x)=f(x)-f(
)确定F(x)单调性
③结合F(0)=0(F(-)=0,F(判断F(x)符号从而确定f(x+),f(
( f(x+)
与f( f(x)与f(的大小关系;
答题模式: 已知函数y=f(x)满足,为函数y=f(x)的极值点,求证:
①求函数f(x)的极值点; ②构造函数F(x)=f(x+)-f(
确定F(x)单调性
③判断F(x)符号从而确定f(x+),f( 的大小关系;
假设F(x)在(0,+单调递增则F(x)>F(0)=0,从而得到x>0时f(x+)>f(

1.(2016年全国I 高考)已知函数有两个零点. 设x 1,x 2是的两个零点,证明:+x 2<
2. 2. (2010年高考天津卷理科21)(本小题满分14分)
已知函数f(x)=xe -x
(x ∈R ).
(Ⅰ) 求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明当x>1时,f(x)>g(x)
(Ⅲ)如果12,x x ≠且12()(),f x f x =证明122x x +> 证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)2
x e
-
令F(x)=f(x)-g(x),即2()(2)x
x F x xe x e --=+-
于是22
'()(1)(1)x x F x x e
e --=--
当x>1时,2x-2>0,从而2x-2
e 10,0,F x e -->>又所以’(x)>0,从而函数F (x )在[1,+
∞)是增函数。

又F(1)=-1-1
e e 0-=,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x). Ⅲ)证明:(1)
若121212(1)(1)0,)), 1.x x x x x x --=I ===≠12由()及f(x f(x 则与矛盾。

(2)若121212(1)(1)0,)),.x x x x x x -->I ==≠12由()及f(x f(x 得与矛盾。

根据(1)(2)得1212(1)(1)0,1, 1.x x x x --<<>不妨设
由(Ⅱ)可知,)2f(x >)2g(x ,则)2g(x =)2f(2-x ,所以)2f(x >)2f(2-x ,从而
)1f(x >)2f(2-x .因为21x >,所以221x -<,又由(Ⅰ)可知函数f(x)在区间(-∞,1)
内事增函数,所以1x >22x -,即12x x +>2.
3. 已知函数.(I )讨论的单调性; (II )设,证明:当时,;
(III )若函数的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:(x 0)<0. 解:(I )
(i )若单调增加. (ii )若且当
所以单调增加,在单调减少. (II )设函数则 当.
故当,………………8分
(III)由(I)可得,当的图像与x轴至多有一个交点,
故,从而的最大值为
不妨设
由(II)得从而
由(I)知,
4.已知函数 (m若f(x)有两个极值点且求证::
5. 已知函数 =(a若f(x)有两个不同零点且其极值点为求证:①


(已知函数 =(a,其图象与轴交于A()B()两点且求证:)
6. 已知函数 =(a若f(x)有两个不同零点且
求证:
7. 已知函数 =(a若f(x)有两个不同零点且求证:
-1
8. 已知函数 = f(求证:①

9.已知函数 =(a若f(x)有两个不同零点且
求证:
10. 已知函数 = f(求证:
11. 已知函数 =(a若f(x)有两个不同零点且求证:
12. 已知函数 =(a若f(x)=c有两个不同根求证:
13. 已知函数 =(a
①令g(x)在(0,3)单调递增求a范围;
②当a=2时,函数h(x)=f(x)-mx的图象与轴交于A(B(且又是h(x)导函数,满足证明
14.已知函数 (k
①若;
②若对都有f(x)求k范围;
③若且 f(证明:;
15. 已知函数(a

②f(x)的极值点为若存在且求证:;
16. 已知函数 (a);

②若f(x) 存在两个极值点,证明: ;
17. 已知函数与g(x)=3-在(1,1)处有相同切线;
①若y=2(x+n) 与y=f(x)图象有两个交点,求n范围;
②若两个极值点,证明:;
18. 已知函数(a

②若f(x)=g(x)+(a+1)有两个不同零点, 证明:;
19. 已知函数 ,(a;

②若f(x)=lng(x)-a与y=m,(m图象有两个交点A、B,线段A、B中点为证明:
;
20. 已知函数图象的一条切线为x轴;
①求a值;
②令g(x)=若存在满足证明:
21. 已知函数F(x)与f(x)=lnx关于直线y=x对称;
①若xf(x)对恒成立,求a最大值;
②设f(x)在(1,)的实根,
若在区间(1,)上存在
求证:
22.已知函数, (a;
①若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值
②若函数f(x)在R上单调递增,求实数a的取值范围;
③如果函数g(x)=f(x)-(a-恰有两个不同的极值点证明:;
23.已知函数-(a-2)x-alnx (a;

②设函数若使得成立求实数a取值范围;
③若方程f(x)=c有两个不等的实数根,求证:
24. 已知函数
①若使得对上f(x)恒成立求实数a的取值范围;
②若g(x)=f(x)-ax-有两个不同零点求证:;
25.已知函数
①当时讨论y=f(x)在)上的单调性;
②y=f(x)有两个不同零点且求证:。

相关文档
最新文档