经济数学基础形成性考核册作业3参考答案

合集下载

电大经济数学基础形成性考核册及参考答案[1]

电大经济数学基础形成性考核册及参考答案[1]

电大经济数学基础形成性考核册及参考答案[1]关建字摘要:答案,矩阵,下列,百台,产量,成本,利润,求解,未知量,对称竭诚为您提供优质文档,本文为收集整理修正,共13页,请先行预览,如有帮助感谢下载支持经济数学基础形成性考核册及参考答案作业(一)(三)解答题1.计算极限x 2-3x +21(x -2)(x -1)x -2(1)lim==-=lim lim 2x →1x →1x →12x -1(x -1)(x +1)(x +1)x 2-5x +61(x -2)(x -3)x -3(2)lim 2=lim =lim =x →2x -6x +8x →2(x -2)(x -4)x →2(x -4)2(1-x -1)(1-x +1)1-x -1lim (3)lim=x →0x →0x x (1-x +1)=limx →0-x -11=lim=-2x (1-x +1)x →0(1-x +1)351-+2x 2-3x +5x x =1lim (4)lim =x →∞x →∞3x 2+2x +42433++2x x (5)lim5x sin 3x 33sin 3x==lim x →03x sin 5x 55x →0sin 5xx 2-4(x -2)(x +2)(6)lim=lim =4x →2sin(x -2)x →2sin(x -2)1⎧x sin +b ,x <0⎪x ⎪2.设函数f (x )=⎨a ,x =0,⎪sin xx >0⎪x ⎩问:(1)当a ,b 为何值时,f (x )在x =0处有极限存在?(2)当a ,b 为何值时,f (x )在x =0处连续.答案:(1)当b =1,a 任意时,f (x )在x =0处有极限存在;(2)当a =b =1时,f (x )在x =0处连续。

3.计算下列函数的导数或微分:(1)y =x +2+log 2x -2,求y '答案:y '=2x +2ln 2+x 2x 21x ln 2(2)y =ax +b,求y 'cx +d答案:y '=a (cx +d )-c (ax +b )ad -cb=22(cx +d )(cx +d )13x -513x -5,求y '12(3)y =答案:y ==(3x -5)-y '=-32(3x -5)3(4)y =答案:y '=x -x e x ,求y '12xax -(x +1)e x(5)y =e sin bx ,求d y答案:y '=(e )'sin bx +e (sin bx )'ax ax =a e ax sin bx +e ax cos bx ⋅b=e ax (a sin bx +b cos bx )dy =e ax (a sin bx +b cos bx )dx(6)y =e +x x ,求d y1x311答案:d y =(x -2e x )d x 2x (7)y =cos x -e -x ,求d y 答案:d y =(2x e -x -n 22sin x 2x)d x(8)y =sin x +sin nx ,求y '答案:y '=n sin n -1x cos x +cos nxn =n (sin n -1x cos x +cos nx )(9)y =ln(x +1+x 2),求y '答案:1-1x 1122'=y '=(x +1+x )=(1+)=(1+(1+x )2x )2x +1+x 2x +1+x 21+x 21+x 2x +1+x 2121(10)y =2cot 1x+1+3x 2-2xx,求y 'ln 21-21-6-x +x 答案:y '=126x 2sinx4.下列各方程中y 是x 的隐函数,试求y '或d y (1)x 2+y 2-xy +3x =1,求d y 答案:解:方程两边关于X 求导:2x2cot 1x 35+2yy '-y -xy '+3=0y -3-2xd x2y -x(2y -x )y '=y -2x -3,d y =(2)sin(x +y )+e xy =4x ,求y '答案:解:方程两边关于X 求导cos(x +y )(1+y ')+e xy (y +xy ')=4(cos(x +y )+e xy x )y '=4-ye xy -cos(x +y )4-y e xy -cos(x +y )y '=xy x e +cos(x +y )5.求下列函数的二阶导数:(1)y =ln(1+x ),求y ''22-2x 2答案:y ''=22(1+x )(2)y =1-x x,求y ''及y ''(1)3-1-答案:y ''=x 2+x 2,y ''(1)=14453作业(二)(三)解答题1.计算下列不定积分3x (1)⎰xd xe3xx 3x 3xe 答案:⎰xd x =⎰()d x =+c 3e e ln e(2)⎰(1+x )2xd x113-(1+x )2(1+2x +x 2)答案:⎰d x =⎰d x =⎰(x 2+2x 2+x 2)d x x x42=2x +x 2+x 2+c35x2-4d x (3)⎰x +21x2-4d x =⎰(x -2)d x =x 2-2x +c答案:⎰2x +2(4)351⎰1-2xd x 答案:1111d x -ln1-2x +c ==-d(1-2x )⎰1-2x ⎰221-2x2(5)x 2+x d x 3211222答案:⎰x2+x d x =⎰2+x d(2+x )=(2+x )+c 322⎰(6)⎰sinx xd x答案:⎰sinx xd x =2⎰sin xd x =-2cos x +c(7)x sin⎰xd x 2答案:x sin ⎰x xd x =-2⎰xdco s d x 22x x x x +2⎰co s d x =-2x cos +4sin +c 2222=-2x cos (8)ln(x +1)d x 答案:ln(x +1)d x ==(x +1)ln(x +1)-2.计算下列定积分(1)⎰⎰⎰ln(x +1)d(x +1)⎰(x +1)dln(x +1)=(x +1)ln(x +1)-x +c⎰2-11-x d x答案:⎰12-11-x d x =1x21211252+==(x -x )+(x -x )(1-x )d x (x -1)d x -11⎰-1⎰12221(2)⎰2ed x x 22答案:⎰1121e x x -e d x ==-e d ⎰1x x21x1121=e -e(3)⎰e 31x 1+ln xd xe 311d(1+ln x )=2(1+ln x )21+ln x答案:⎰e 31x 1+ln x1d x =⎰1e 31=2π(4)⎰20x cos 2x d x ππππ111122--sin 2xdx 答案:⎰2x cos 2x d x =⎰2xd sin 2x =x sin 2x 0=⎰0002222(5)⎰e1x ln x d xe答案:⎰01x ln x d x =e 21e12122e (e +1)==ln x d x x ln x -x d ln x 1⎰⎰11422(6)⎰4(1+x e-x)d x40答案:⎰(1+x e)d x =x -⎰xd e =3-xe -x414-x -x4+⎰0e -x d x =5+5e -44作业三三、解答题1.计算(1)⎢⎡-21⎤⎡01⎤⎡1-2⎤=⎢⎥⎢⎥⎥⎣53⎦⎣10⎦⎣35⎦⎡02⎤⎡11⎤⎡00⎤(2)⎢⎥⎢00⎥=⎢00⎥0-3⎦⎣⎦⎣⎦⎣⎡3⎤⎢0⎥(3)[-1254]⎢⎥=[0]⎢-1⎥⎢⎥⎣2⎦23⎤⎡-124⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥02.计算-122143-61⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦23⎤⎡-124⎤⎡245⎤⎡7197⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥=⎢7120⎥-⎢610⎥0解-122143-61⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦⎢⎣0-4-7⎥⎦⎢⎣3-27⎥⎦⎡515=⎢⎢111⎢⎣-3-2⎡23-1⎤⎡123⎤3.设矩阵A =⎢⎢111⎥,B =⎢112⎥,求AB 。

经济数学基础形成性考核册及参考答案

经济数学基础形成性考核册及参考答案

(5) y = e ax sin bx ,求 dy
答案: dy = eax (a sin bx + b cos bx)dx
1
(6) y = e x + x x ,求 dy
答案: dy = ( 1
x−
1
1
e x )dx
2
x2
(7) y = cos x − e−x2 ,求 dy
答案: dy = (2xe− x2 − sin x )dx 2x
D. 1 dx = d x x
答案:C 3. 下列不定积分中,常用分部积分法计算的是( ).
A. ∫ cos(2 x +1)dx , ∫ B. x 1 − x2 dx C. ∫ x sin 2xdx
答案:C
4. 下列定积分计算正确的是(
).
∫ D. x dx
1+ x2
1
∫ A. 2xdx = 2 −1
x x →0+
1
C. lim x sin = 1
x→ 0
x
siБайду номын сангаас x
D. lim
=1
x x →∞
3. 设 y = lg2 x ,则 d y = ( ).答案:B
A. 1 dx 2x
B. 1 dx x ln10
C. ln10 dx x
D. 1 dx x
4. 若函数 f (x)在点 x0 处可导,则( )是错误的.答案:B
2 =2
12
0 −1 1 0 −1 0
123 1 2 3 B = 1 1 2 = 0 -1 -1 =0
011 0 1 1
所以 AB = A B = 2 × 0 = 0
⎡1 2 4⎤ 4.设矩阵 A = ⎢⎢2 λ 1⎥⎥ ,确定 λ 的值,使 r ( A) 最小。

经济学基础形考任务3答案

经济学基础形考任务3答案

形考任务3(第十章至第十三章)任务说明:本次形考任务包含填空题(22道,共20分),选择题(15道,共20分),判断题(15道,共20分),计算题(3道,共10分),问答题(3道,共30分)。

任务要求:下载任务附件,作答后再上传,由教师评分。

任务成绩:本次形考任务成绩占形成性考核成绩的20%,任务附件中题目是百分制。

教师在平台中录入的成绩=百分制成绩*20%一、填空题(22道,共20分)1.国内生产总值的计算方法主要有支出法、收入法以及部门法。

2.GDP-折旧= NDP。

3.名义国内生产总值是指按当年价格计算的国内生产总值。

4.物价水平普遍而持续的上升称为通货膨胀。

5.长期中的失业是指自然失业,短期中的失业是指周期性失业。

6.经济增长的源泉是资源的增加,核心是技术进步。

7.生产一单位产量所需要的资本量被称为资本—产量比率。

8.根据新古典经济增长模型,决定经济增长的因素是资本的增加、劳动的增加和技术进步。

9.根据货币数量论,在长期中通货膨胀发生的惟一原因是货币量增加。

10.摩擦性失业是经济中由于正常的劳动力流动而引起的失业。

11.效率工资是指企业支付给工人的高于市场均衡工资的工资。

12.总需求曲线是一条向右下方倾斜的曲线,短期总供给曲线是一条向右上方倾斜的线。

13.在影响总需求的财产效应、利率效应和汇率效应中,利率效应最重要。

14.在短期,价格的粘性引起物价与总供给同方向变动。

15.根据总需求-总供给模型,总供给不变时,总需求减少,均衡的国内生产总值减少,物价水平下降。

16.平均消费倾向与平均储蓄倾向之和等于1 ,边际消费倾向与边际储蓄倾向之和等于 1 。

17.消费函数图中的45°线表示在这条线上任何一点都是收入等于消费,在简单的凯恩斯主义模型中,45°线上表示任何一点都是总支出等于总供给。

18.净现值是指一笔投资未来所带来的收益的现值与现在投入的资金现值的差额。

19.加速原理表明投资的变动取决于产量变动率。

国开电大《经济数学基础3》形考任务形成性考核三答案

国开电大《经济数学基础3》形考任务形成性考核三答案

"试题1:标准答案1:"试题2:下列函数中,可以作为随机变量_X_密度函数的是( ).标准答案2:"试题3:设随机变量_Y_~_B_(_n_,_p_),且_E_(_Y_)=2.4,_D_(_Y_)=1.44,则参数_n_,_p_为( )A. _n_=6,_p_=0.6B. _n_=8,_p_=0.3C. _n_=6,_p_=0.4答案3:n=6,p=0.4"试题4:设随机变量_X_~_N_(_a_,_d_)(_d_>0),则( )~_N_(0,1).A. _Z_=_d_2(_X_-_a_)B. _Z_=_dX_+_a_C.标准答案4:""试题5:A.1B. 1/2C. 3/8答案5:3/8"试题6:设随机变量_X_,且_E_(_X_)存在,则_E_(_X_)是( ).A. 确定常数B. _X_的函数C. 随机变量答案6:确定常数"试题7:设二维离散型随机变量(_X_,_Y_)的联合概率分布为_P_(_X_=_xi_,_Y_=_yj_)=_pij_则随机变量_X_的边缘概率分布为_P_(_X_=_xi_)=(?? ) 答案7:"试题8:设(_X_,_Y_)是二维连续型随机变量,其联合密度函数为_f_(_x_,_y_),_X_,_Y_的边缘密度函数分别为_fX_(_x_),_fY_(_y_),则_E_(_XY_)=(?? ).答案8:"试题9:答案9:对试题10:设_X_服从区间[2,5]上的均匀分布,则_E_(_X_)=3.5.( )答案10:对试题11:设随机变量_X_的方差存在,则_X_的方差_D_(_X_)的计算公式为_E_[_X__-__E_(_X_)].( )答案11:错试题12:答案12:对。

经济数学基础形考答案

经济数学基础形考答案

电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 25.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。

它包括:⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。

春电大《经济数学基础》形成性考核册及参考答案

春电大《经济数学基础》形成性考核册及参考答案

春电大《经济数学基础》形成性考核册及参考答案作业()(一)填空题 .___________________sin lim=-→xxx x .答案: .设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案: .曲线x y =在)1,1(的切线方程是 .答案:2121+=x y .设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 .设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 . 函数212-+-=x x x y 的连续区间是( )答案: .),1()1,(+∞⋃-∞ .),2()2,(+∞-⋃--∞.),1()1,2()2,(+∞⋃-⋃--∞ .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ . 下列极限计算正确的是( )答案: .1lim=→xx x .1lim 0=+→xx x.11sinlim 0=→x x x .1sin lim =∞→xx x. 设y x =lg2,则d y =( ).答案: .12d x x .1d x x ln10 .ln10x x d .1d xx . 若函数 ()在点处可导,则( )是错误的.答案:.函数 ()在点处有定义 .A x f x x =→)(lim 0,但)(0x f A ≠.函数 ()在点处连续 .函数 ()在点处可微 .当0→x 时,下列变量是无穷小量的是( ). 答案: .x2 .xxsin .)1ln(x + .x cos (三)解答题 .计算极限()=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x )1(2lim 1+-→x x x 21-()8665lim 222+-+-→x x x x x )4)(2()3)(2(lim 2----→x x x x x )4(3lim 2--→x x x 21 ()x x x 11lim--→)11()11)(11(lim 0+-+---→x x x x x)11(lim+--→x x x x 21)11(1lim 0-=+--→x x()=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x ()=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →53()=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:()当b a ,为何值时,)(x f 在0=x 处有极限存在? ()当b a ,为何值时,)(x f 在0=x 处连续.答案:()当1=b ,a 任意时,)(x f 在0=x 处有极限存在; ()当1==b a 时,)(x f 在0=x 处连续。

经济数学基础形成性考核册参考答案

经济数学基础形成性考核册参考答案

经济数学基础形成性考核册参考答案经济数学基础作业1一、填空题: 1、0; 2、1;3、x -2y +1=0;4、2x ;5、-2π;二、单项选择题: 1、D ; 2、B ; 3、B ; 4、B ; 5、B ; 三、解答题 1、计算极限(1)解:原式=1lim→x )1)(1()2)(1(+---x x x x=1lim→x 12+-x x=21(2)解:原式=2lim→x )4)(2()3)(2(----x x x x=2lim→x 43--x x=-21(3)解:原式=0lim→s xx x )11(11+---=lim →s 111+--x=-21(4)解:原式=∞→s lim 22423531xx x x +++-=21(5)解:∵x 0→时,xx sm x x sm 5~53~3∴0lim→x xsm xsm 53=0lim→x xx53=53(6)解:2lim→x )2sin(42--x x =2lim →x 242--x x=2lim→x (x+2)=4 2、设函数: 解:0lim →x f(x)=0lim →x (sin x1+b)=b+→0lim x f(x)=+→0lim x xxsin 1≤(1)要使f(x)在x=0处有极限,只要b=1, (2)要使f(x)在x=0处连续,则-→0lim x f(x)=+→0lim x =f(0)=a即a=b=1时,f(x)在x=0处连续 3、计算函数的导数或微分: (1)解:y '=2x +2xlog 2+2log1x(2)解:y '=2)()()(d cx cb ax d cx a ++-+=2)(d cx bc ad +-(3)解:y '=[)53(21--x ]'=-21)53(23--x ·(3x-5)' =-23)53(23--x(4)解:y '=x21-(e x+xe x)=x21-e x -xe x(5)解:∵y '=ae ax sinbx+be ax cosbx =e ax (asmbx+bcosbx) ∴dy=e ax (asmbx+bcosbx)dx(6)解: ∵y '=-21xe x1+23x 21∴dy=(-21xex1+23x)dx(7)解:∵y '=-x21+sin x +xex22-∴dy=(xex22--x21 sin x )dx(8)解:∵y '=nsin n -1x+ncosnx∴dy=n(nsin n -1+ cosnx)dx(9)解:∵y '=)1221(1122xx xx ++++=211x+∴dxxdy 211+=(10)解:xxxxxotxxxxy y 652321cot226121116121ln 1csc1222--+-⋅='-++=4、(1)解:方程两边对x 求导得 2x+2yy '-y-xy '+3=0 (2y-x)y '=y -2x -3 y '=xy x y ---232∴dy=dxxy x y ---232(2)解:方程两边对x 求导得:Cos(x+y )·(1+y ')+e xy (y+xy ')=4 [cos(x+y)+xe xy ]y '=4-cos(x+y)-ye xy y '=xyxey x yexy y x ++-+-)cos()cos(45.(1)解:∵y '=22212)1(11Xx x x+='+∙+2222)1(22)1(1)12(X XX X XX Y +∙-+='+=''=222)1()1(2X X +-(2)解:)()1(2121'-='-='-xxxx xy=x x21212123----)(212122'-=''---xx yx x41432325--+14143)1(=+=''y经济数学基础作业2一、填空题:1、2x ln 2+2 2、sinx+C3、-C x F +-)1(2124、ln(1+x 2)5、-211x+二、单项选择题: 1、D 2、C 3、C 4、D 5、B三、解答题:1、计算下列不定积分: (1)解:原式=⎰dx e x )3(= Cee x +3ln )3(=Cx e +-13ln )3((2)解:原式=dxXXXX X)21(2⎰++=Cxxx +++523422221(3)解:原式=⎰++-dxx x x 2)2)(2(=⎰-dx x )2( =Cx x+-222(4)解:原式=-⎰--)21(21121x d x=-x 21ln 21-+C (5)解原式=⎰+2212)2(21dxx=⎰++)2()2(212212x d x=C x ++232)2(31(6)解:原式=Z ⎰xd x sin=-2cos C x + (7)解:原式=-2⎰2cos x xd=-2xcos ⎰+dxx x 2cos 22 =-2xcos Cx smx ++242(8)解:原式=⎰++)1()1ln(x d x=(x+1)ln(x+1)-⎰++)1ln()1(x d x =(x+1)ln(x+1)-x+c2、计算下列积分 (1)解:原式=⎰⎰-+--dx x dx x )1(12)1(11=(x-12)2(11)222x xx-+-=2+21=25(2)解:原式=⎰-xde x 1121=121xe -=e e -(3)解:原式=⎰+x d xeln ln 1113=⎰++-)1(ln )ln 1(1213x d x e=1)ln 1(2321ex +=4-2 =2(4)解:原式=xxdsm 22102⎰π=⎰-xdxsm xxsm 2021022122ππ=02cos 412πx=21-(5)解:原式=⎰xx xde2ln 1=dxxx e e xx⎰--12211ln 22=⎰-dx xe e 2122=14222exe-=)414(222--ee=412+e(6)解:原式=⎰⎰-+dxxedx x404=4+⎰--x xde 04=⎰-----)(0444x d exexx=04444xee----=14444+----e e =455--e经济数学基础作业3一、填空题: 1. 3 2. -723. A 与B 可交换4. (I-B )-1A5. 3100210001-二、单项选择题:1.C2.A3.C4.A5.B三、解答题 1、解:原式=⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯-⨯+⨯-0315130501121102 =⎥⎦⎤⎢⎣⎡53212、解:原式=⎥⎦⎤⎢⎣⎡⨯-⨯⨯-⨯⨯+⨯⨯+⨯0310031002100210 =⎥⎦⎤⎢⎣⎡00003、解:原式=[]24)1(50231⨯+-⨯+⨯+⨯- =[]02、计算:解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142301215427401277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-------7724300012675741927 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423012121553、设矩阵:解:222321013211023210132)2(21)1(110111132=--=--+---=A011211321==B0=∙=∴B A AB4、设矩阵:解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110214742101112421λλ要使r (A )最小。

经济数学基础形成性考核参(全)

经济数学基础形成性考核参(全)

经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1..答案:0 2.答案:1 3.答案:2121+=x y 4..答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1.2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos(三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

经济数学基础形考作业参考完整答案

经济数学基础形考作业参考完整答案

【经济数学基础】形考作业一答案:(一)填空题1. 答案:02.设,在处连续,则.答案:13.曲线在地切线方程是 .答案:4.设函数,则.答案:5.设,则(二)单项选择题1. 函数,下列变量为无穷小量是( D )A. B.C. D.2. 下列极限计算正确地是( B )A. B.C. D.3. 设,则( B ).A. B. C. D.4. 若函数f (x)在点x0处可导,则( B )是错误地.A.函数f (x)在点x0处有定义 B.,但C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微5.若,则 B )A.1/ B.-1/ C. D.(三)解答题1.计算极限(1)(2)(3)(4)(5)(6)2.设函数,问:(1)当为何值时,在处有极限存在?(2)当为何值时,在处连续.答案:(1)当,任意时,在处有极限存在;(2)当时,在处连续.3.计算下列函数地导数或微分:(1),求答案:(2),求答案:(3),求答案:(4),求答案:(5),求答案:(6),求答案:(7),求答案:(8),求答案:(9),求答案:(10),求答案:4.下列各方程中是地隐函数,试求或(1),求答案:(2),求答案:5.求下列函数地二阶导数:(1),求答案:(2),求及答案:,【经济数学基础】形考作业二答案:(一)填空题1.若,则.答案:2. .答案:3. 若,则 .答案:4.设函数.答案:05. 若,则.答案:(二)单项选择题1. 下列函数中,( D )是x sin x2地原函数.A.cos x2 B.2cos x2 C.-2cos x2 D.-cos x2 2. 下列等式成立地是( C ).A. B.C. D.3. 下列不定积分中,常用分部积分法计算地是( C ).A., B. C. D.4. 下列定积分计算正确地是( D ).A. B.C. D.5. 下列无穷积分中收敛地是( B ).A. B. C. D.(三)解答题1.计算下列不定积分(1)=(2)=(3)=(4)=(5)=(6)=(7)=(8)=2.计算下列定积分(1)=(2)=(3)=2 (4)=(5)=(6)=【经济数学基础】形考作业三答案:(一)填空题1.设矩阵,则地元素.答案:32.设均为3阶矩阵,且,则=. 答案:3. 设均为阶矩阵,则等式成立地充分必要条件是 .答案:4. 设均为阶矩阵,可逆,则矩阵地解.答案:5. 设矩阵,则.答案:(二)单项选择题1. 以下结论或等式正确地是( C ).A.若均为零矩阵,则有B.若,且,则C.对角矩阵是对称矩阵D.若,则2. 设为矩阵,为矩阵,且乘积矩阵有意义,则为( A )矩阵.A. B.C. D.3. 设均为阶可逆矩阵,则下列等式成立地是( C ). ` A., B.C. D.4. 下列矩阵可逆地是( A ).A. B.C. D.5. 矩阵地秩是( B ).A.0 B.1 C.2 D.3三、解答题1.计算(1)=(2)(3)=2.计算解= 3.设矩阵,求.解因为所以4.设矩阵,确定地值,使最小.解:→→∴时,达到最小值.5.求矩阵地秩.解:∴.6.求下列矩阵地逆矩阵:(1)解:∵∴(2)A =.解:∵∴7.设矩阵,求解矩阵方程.解:∴X =四、证明题1.试证:若都与可交换,则,也与可交换.证明:(1)∵∴与可交换.(2)∵∴也与可交换.2.试证:对于任意方阵,,是对称矩阵.证明:(1)∵∴是对称矩阵.(2)∵∴是对称矩阵.(3)∵∴是对称矩阵.3.设均为阶对称矩阵,则对称地充分必要条件是:.证明:充分性:∵∴∴对称必要性:∵对称,∴∴对称地充分必要条件是:.4.设为阶对称矩阵,为阶可逆矩阵,且,证明是对称矩阵.证明:∵为阶对称矩阵为阶可逆矩阵∴=∴是对称矩阵.【经济数学基础】形考作业四答案:(一)填空题1.函数地定义域为(1,2)∪(2,4]2. 函数地驻点是 x=1 ,极值点是 x=1 ,它是极小值点.3.设某商品地需求函数为,则需求弹性 .答案:4.行列式.答案:45. 设线性方程组,且,则时,方程组有唯一解.答案:(二)单项选择题1. 下列函数在指定区间上单调增加地是( B ).A.sin x B.e x C.x 2 D.3 –x 2. 设,则( C ).A.1/x B.1/ x 2 C.x D.x 23. 下列积分计算正确地是( A ).A.B.C. D.4. 设线性方程组有无穷多解地充分必要条件是( D ).A. B. C. D.5. 设线性方程组,则方程组有解地充分必要条件是( C ).A. B.C. D.三、解答题1.求解下列可分离变量地微分方程:(1)解:∴原微分方程地通解为:(2)解:∴原微分方程地通解为:2. 求解下列一阶线性微分方程:(1)解:∴∴∴y=(2)解:两端分别积分:∴3.求解下列微分方程地初值问题:(1) ,解:两端积分:∵y(0)=0 ∴c=∴(2),解:两端积分:∵∴C=-e∴4.求解下列线性方程组地一般解:(1)解:所以,方程地一般解为(其中是自由未知量)(2)解:∴(其中是自由未知量)5.当为何值时,线性方程组有解,并求一般解.解:→当λ=8时,方程组有解,其一般解为:(其中是自由未知量)6.为何值时,方程组有唯一解、无穷多解或无解.解:→→当且时,方程组无解;当时,方程组有唯一解;当且时,方程组无穷多解.7.求解下列经济应用问题:(1)设生产某种产品个单位时地成本函数为:(万元),求:①当时地总成本、平均成本和边际成本;②当产量为多少时,平均成本最小?解:①(万元)(万元/单位)(万元/单位)当时地总成本、平均成本和边际成本分别为185(万元);18.5(万元/单位);11(万元/单位).②=16当产量q=20个单位时可使平均成本达到最低16(万元/单位).(2).某厂生产某种产品件时地总成本函数为(元),单位销售价格为(元/件),问产量为多少时可使利润达到最大?最大利润是多少.解:L(q)=pq-c(q)=(14-0.01q)q-(20+4q+)=14q--20-4q-=-+10q-20当时,q=250针对此这实际问题可知,当产量为250个单位时可使利润达到最大,且最大利润为(元).(3)投产某产品地固定成本为36(万元),且边际成本为(万元/百台).试求产量由4百台增至6百台时总成本地增量,及产量为多少时,可使平均成本达到最低.解:先求成本函数 c(x)= ∵x=0时,c=36(万元)∴c(x)= C(4)=212(万元) C(6)=312(万元) 当产量由4百台增至6百台时,总成本地增量为100(万元)∴当(百台)时可使平均成本达到最低为52(万元/百台).(4)已知某产品地边际成本=2(元/件),固定成本为0,边际收益,求:①产量为多少时利润最大?②在最大利润产量地基础上再生产50件,利润将会发生什么变化?解:①当时,x=500针对此实际问题知道,当产量x=500件时,利润最大.②即利润将减少25元.。

电大【经济数学基础】形成性考核册参考答案

电大【经济数学基础】形成性考核册参考答案

电大【经济数学基础】形成性查核册参照答案《经济数学基础》形成性查核册(一)一、填空题1. limxsin x __________ _________ .答案: 1x 0x2.设 f ( x) x 2 1, x0 ,在 x 0处连续,则 k ________ .答案 1k,x3.曲线 yx +1 在 (1,1) 的切线方程是 . 答案 :y=1/2X+3/2 4.设函数 f (x 1) x 2 2x 5 ,则 f (x)____________ .答案 2x5.设 f ( x)x sin x ,则 f ( π__________ .答案 :)2 2二、单项选择题1. 当 x时,以下变量为无量小量的是(D )x 21 D . sin xA . ln(1 x)B .1 C . ex 2xx2. 以下极限计算正确的选项是(B )A. lim x1 B. limx1 C. lim x sin11D. limsin x1x 0xx 0xx 0xxx3. 设 y lg2 x ,则 d y (B ).A .1dx B . 1 dx C . ln10dx D . 1dx2x x ln10x x4. 若函数 f (x)在点 x 0 处可导,则 ( B )是错误的.A .函数 f (x)在点 x 0 处有定义B . lim f ( x)A ,但 Af (x 0 )x x 0C .函数 f (x)在点 x 0 处连续D .函数 f ( x)在点 x 0 处可微1 ) x ,则 f ( x)(B ).5.若 f (xA .11C .1 1xB .D .x2x 2x三、解答题1.计算极限 本类题查核的知识点是求简单极限的常用方法。

它包含:⑴利用极限的四则运算法例;⑵利用两个重要极限;⑶利用无量小量的性质( 有界变量乘以无量小量仍是无量小量 )⑷利用连续函数的定义。

( 1) limx 2 3x 2 x2 1x 1剖析:这道题查核的知识点是极限的四则运算法例。

经济数学基础形成性考核册及参考答案作业(三)

经济数学基础形成性考核册及参考答案作业(三)

经济数学基础形成性考核册及参考答案作业(三)(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X . 答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠答案C2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯ 答案A3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 答案C4. 下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 答案A 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( ). A .0 B .1 C .2 D .3 答案B三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

电大经济数学基础形成性考核册答案[]

电大经济数学基础形成性考核册答案[]

电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D )A .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =(B ).A .12d x x B .1d x x ln10C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x时,下列变量是无穷小量的是( C ).A .x2 B .xx sin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim)2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-='∴dx e xx dy x )123(12-=(7)2e cos xx y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx -+-∴dx xe xxdyx )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:0322=+'--'⋅+y x y y y x 32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导:4)()1)(cos(='+⋅+'++y x y e y y x xy xy xy ye y x y xe y x -+-='++)cos(4])[cos( 所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2)212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3.若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2.答案:c x F +--)1(212 4.设函数___________d )1ln(d d e 12=+⎰x x x .答案:0 5.若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,(D )是x sin x 2的原函数. A .21cos x 2B .2cos x 2C .-2cos x 2D .-21cos x 22. 下列等式成立的是( C ). A .)d(cos d sin x xx =B .)1d(d ln x x x =C .)d(22ln 1d 2x xx =D .x x xd d 1= 3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x x xd 124. 下列定积分计算正确的是(D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x x x+-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x xd 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 cos2- (+) 0 sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x(+)0 2cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) xln x(-)x 122x∴ 原式=⎰-e e xdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)xx e -(-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe =154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是.答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵XBX A =+的解______________=X .答案:A B I1)(--5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). `A .111)(---+=+B A B A ,B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB =4. 下列矩阵可逆的是(A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

(电大2019年秋)经济数学基础形成性考核册参考答案

(电大2019年秋)经济数学基础形成性考核册参考答案

5经济数学基础形成性考核册参考答案一、填空题: 1.02.13.x 2y 10 4.2x 5•—2二、 单项选择: 1.D2.B3.B4.B5.C三、 计算题: 1、计算极限⑴原式 lim (X 1)(x 2)x 1(x 1)(x 1)x 2lim x 1x 11(2). 原式=呢(x-2)(x-3) (x-2)(x-4)(3).原式=00(上 1 X 1)(1 X x(" x 1)1)=x m1 .1 x55x_ 1 =2(4).原式=1 2x x3 4 3sin3x (5).原式=5-3x sin 5x x x1 3x 2(6).原式= limx 2sin(x 2) x 2 lim (x 2)_ X 2 \/sin(x 2)limx=42.(1) lim x 0当 alim x 0有⑵.当 f (x) b, b 1时,a b 1 时, f(x) 1 lim f(x) f(0)x 0有 f(x)1 f(0) 1函数f(x)在x=0处连续. 3•计算下列函数的导数或微分 (1). 2x 2xl n2 (2). xln 2 a(cx d) c(ax b)⑶. (cx d)232ad bc(cx d)2(4).3(3x 5) 21 ( x----- (e 2、x xxe_1_ 2 x xxe xey(5). T••• dy(6).•- y••• dy ⑺.••• y(e ax ) (sin bx axae sin bx e ax (sin bxe ax (as inbx 1 1 —ex x (\x2sin e ax (sin bx)be ax cosbx bcosbx)bcosbx )dxJx 21e x )dx(x )e x 2( x sin x 小 x 22xe 2 x.r~sin x x 2, ------- 2xe )dx 2 xn 1(8) y nsin x cosx ncosnx• dy (x 2)1(2y x)y y 2x 3所以 dy -竺卫dx2y x(2)方程两边对x 求导:cos(x y)(1 y) e xy (y xy)[cos(x y) xe xy ] y 4 cos(x 所以y 4 coS(x E 疔 cos(x y) xe xy3.求下列函数的二阶导数:2xy(1)(9) yx 1 x 21 x . 1x 21 (x1 x 2) y(10)x 1 x 21 1 xcos12 xIn 2 x1 x2 .1 x 2 —厂(1 1 ~2x2.下列各方程中 (1)方程两边对2x 2y y(cos 1) x cos 1 x (x 2) 1 6® y是x 的隐函数,试求y 或dy x 求导:y xy 3 0 2 x ln2 sin 丄x 1 2 . x 3 (1)4y) ye xy2(1 x 2) 2x 2x2 2x 2 (x(1 122\2x )1 x 2)(13 22 2x ) 1 x 2经济数学基础作业 2、填空题: 1.2x In 2 2 2. sin x c 3.(12、x ) c 4. 05.11 x 2二、单项选择: 1.D 2.C 3.C 4.D 5.B二、计算题: 1、计算极限 原式=(―) e 3 x (-)x e =恳exdx3x e x (l n3 1)原式=(x1= 2x 2原式=(x 1 原式=_2 1原式=_2 2,x x 2)dx32 2)dx 2 5 -x 25 1x 2d(1 2x) 1 2x2 x 2d(22xi ln2)2x= 3(2 x 2) 原式=2sin xd x2 cos x (-)1(+) 02cos 仝2••• (+) x.xsin 2 4sin2x•••原式=2xcos-(-)(8) T (+) 4si n^ c•••原式=xl n(x 1) xln(x 1) (1= xln(x 2.计算下列定积分: 1 1) x .dx1丄)dxx 1 In (x 1) (1) 2 1(X 原式=1 (1 x)dx 1 2 2 = 2 (—x 2x)2 2212e 匚原式=1笃(1x1=e x21 x )dx 1e 21)dxe 3x原式=1 ------------------- d (1 In x)x 、1 In x3e2 1 cos2x 1sin2x 2 1—cos2x 4 1c o s2x )24 1 2 ••• (+)(+)o 2 1 In x (-)11原式=(xsin2x 2 = 14 •••(+)1 4 In x (-)x 2x 2 1 2 原式= — x 2ln x2 2_ e_ =2⑹•原式=4xe1 e . xdx2 1 1(e 2 1)4 x dxxx又••• (+)(-)1 (+)04o4 0x x 4(xe e )o5e 4 15e 4经济数学基础作业 3一、填空题 1. 3.2.72.3. A, B 可交换•4. (I B) 1 2A .5.(2) 解:原式=0 0、单项选择题 2 C . 2. A . 3. C . 4. A. 5. B三、解答题7 19 7 24 5515 2 2 .解:原式 = 712 0 61 0 = 11147327321456 1156 65 6 03 .解:A B= 2 4 624 42 4 01 011 0 01 0 01 24②①(2)1244 .解: A1③①(1)47(②,③)21 1 014(3)解:原式=010 0e x dx 故:原式=51 . (1)解:原式=1 31 2 4 ③ ②(4)0 140 ! 9 4所以当9 4时, 秩r ( A )最小为 2。

电大经济数学基础形成性考核册答案

电大经济数学基础形成性考核册答案

电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =(B ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x(2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim22=--→x x x 原式=2)2sin(2lim 2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f (0)f (x )lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a e dy ax)cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导: 所以 dx xy x y dy ---=232(2) 方程两边对x 求导:所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='(2)212321212121)(-----='-='x x x xy作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e 12=+⎰x x x.答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数.A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ). A .)d(cos d sin x xx =B .)1d(d lnxx x =C .)d(22ln 1d 2x xx =D .x x xd d 1= 3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x x xd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ).A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x x x +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx(-) 1 cos2- (+) 0 sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e 2121⎰答案:原式=⎰-212211)(xdx x e x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 2⎰π答案:∵ (+)x (+)0 2cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21=)1(414122122+=-e x e e (6)x x xd )e1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe-(-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe=154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n阶矩阵,)(B I -可逆,则矩阵XBX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是(C ). `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB = D .BA AB =4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡22115. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3 三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

电大《经济数学基础》参考答案

电大《经济数学基础》参考答案

电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案13.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x x C .1x e - D . x x sin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。

它包括: ⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档