(完整版)上海市杨浦区2018高三数学二模(含解析)
上海2018届高三二模数学卷汇总(全)
宝山2018届高三二模数学卷一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1. 设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= .2. 设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 3. 某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).4. 函数()x x x f 4cos 4sin 2=的最小正周期为 .5. 已知球的俯视图面积为π,则该球的表面积为 .6. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 7. 在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示)8. 设无穷数列{}n a 的公比为q ,则2a ()n n a a a +⋅⋅⋅++=∞→54lim ,则=q .9. 若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 10. 设奇函数()f x 定义为R ,且当0x >时,2()1m f x x x=+-(这里m 为正常数). 若()2f x m ≤-对一切0x ≤成立,则m 的取值范围是 .11. 如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅u u u r u u u r 的值为 .12. 将实数z y x 、、中的最小值记为{}z y x ,,m in ,在锐角︒=∆60POQ ,1=PQ ,点T 在POQ ∆的边上或内部运动,且=TO {}TQ TO TP ,,m in ,由T 所组成的图形为M .设M POQ 、∆的面积为M POQ S S 、∆,若()2:1-=∆M POQ M S S S :,则=M S . 二.选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上将代表答案的小方格涂黑,选对得 5分,否则一律得零分.13. “1sin 2x =”是“6x π=”的 ( ) )(A 充分不必要条件. )(B 必要不充分条件. )(C 充要条件. )(D 既不充分也不必要条件.14.在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于 ( ))(A 160- )(B 160 )(C 150- )(D 15015.若函数()()f x x R ∈满足()1f x -+、()1f x +均为奇函数,则下列四个结论正确的是( ))(A ()f x -为奇函数 )(B ()f x -为偶函数 )(C ()3f x +为奇函数 )(D ()3f x +为偶函数16. 对于数列12,,,x x L 若使得0n m x ->对一切n N *∈成立的m 的最小值存在,则称该最小值为此数列的“准最大项”。
2018年浦东区高三二模数学(附解析)
上海市浦东新区2018届高三二模数学试卷2018.04一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)… 2n 11.Iimn n 12.不等式一X0的解集为x 13•已知{a n}是等比数列,它的前n项和为S n,且83 4,8,则S5 _________________4.已知f 1(x)是函数f(x) log2(x 1)的反函数,贝U f 1(2) ______5.Ox丄)9二项展开式中的常数项为____________xx 2cos6.椭圆_ (为参数)的右焦点坐标为_____________y v3sinx 2y 42x y 3 一7.满足约束条件的目标函数f 3x 2y的最大值为_____________x 0y 08.函数f(x) cos2x ' 3si n2x , x R的单调递增区间为29.已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水面的宽为________ 米10.一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为 __________11.已知f(x)是定义在R上的偶函数,且f (x)在[0,)上是增函数,如果对于任意x [1,2], f (ax 1) f (x 3)恒成立,则实数a的取值范围是 _______________12.已知函数f (x) x2 5x 7 ,若对于任意的正整数n,在区间[1,n -]上存在m 1个n实数a。
、a1、a2、、a m,使得f(a°) f(Q) f(a2) f (a m)成立,则m 的最大值为_________二.选择题(本大题共4题,每题5分,共20分)213.已知方程x px 1 0的两虚根为洛、X2,若|X1 X2I 1,则实数p的值为( )A. 3B. 、5C. - 3 , ■- 5D. , 514. 在复数运算中下列三个式子是正确的: (1 )1乙Z 2| | Z 1 |匕|;( 2) | Z 1Z 2 ||Z 1 | | Z 2 |;r r r r(3)(z i Z 2) Z 3 Z 1 (Z 2 Z 3),相应的在向量运算中,下列式子:(1) | a b| | a | |b|;(2)|a b| |a| |b| ; ( 3)(a b ) c a (b c ),正确的个数是( ) A. 0B. 1C. 2D. 315. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
上海市杨浦区2018届高考二模数学试题含答案
已知 A {x | y 2 x x 2 } , B {x | x 1} ,则 A B 等于( A. [0,1] U (2, )
B.
)
D.
[0,1) U (2, )源自C. [0,1][0, 2]
15. 已知 a12 b12 0 , a2 2 b2 2 0 ,则“
上海市杨浦区 2018 届高三二模数学试卷
2018.04
一. 填空题(本大题共 12 题,1-6 每题 4 分,7-12 每题 5 分,共 54 分) 1. 函数 y lg x 1 的零点是 2. 计算: lim
2n n 4n 1
3. 若 (1 3 x) n 的二项展开式中 x 2 项的系数是 54 ,则 n 4. 掷一颗均匀的骰子,出现奇数点的概率为
2
8. 若双曲线
x 2 16 y 2 2 1 ( p 0) 的左焦点在抛物线 y 2 2 px 的准线上,则 p 3 p
3 ,则 tan 2 y 的值为 5
9. 若 sin( x y )cos x cos( x y )sin x
10. 若 {an } 为等比数列, an 0 ,且 a2018
m , m) ,射线 OM 与 交于点 P,四边形 OAPB 能否为平行四边形? 3
若能,求此时 l 的斜率;若不能,说明理由.
21. 记函数 f ( x) 的定义域为 D. 如果存在实数 a 、 b 使得 f ( a x) f ( a x) b 对任意满 足 a x D 且 a x D 的 x 恒成立,则称 f ( x) 为 函数. (1)设函数 f ( x)
1 1 ,试判断 f ( x) 是否为 函数,并说明理由; x 1 ,其中常数 t 0 ,证明: g ( x) 是 函数; 2 t
杨浦区高三二模数学答案
2019年杨浦区高三二模数学答案杨浦区2018学年度第二学期高三年级模拟质量调研 数学学科试卷评分标准2019.4.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号,并将查对后的条形码贴在指定地点上.本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有2题,满分54分,第题每题 4分,第~12 题每题分)17考生应在答题纸的相应地点直接填写结果.321.2.543.34.5.56.7.[1 2]. 29. 110.2a11.412.155|1 |2235二、选择题(此题共有题,满分20分,每题 5分)每题有且只有一个正确选项,考生应在答题纸的相应地点,将代表正确选项的小方格涂黑13.C14.A15.A16.D三、解答题(本大题共有 5题,满分 76分)解答以下各题一定在答题纸的相应地点写出必要的步骤.17(此1分小题分小8分题满分4,第满分,第题满分).解:(1)由于函数ytanx的定义域为{x|x k,kZ}2分2所以函数f x 的定义域为{x|xk,kZ}6分(2)f(x)(1sinx)2sinxcosxcosx2sinxcosx2sin2xsin2x1cos2x12sin(2x),10分4令f(x)2,即sin(2x)22由x(0,)得,2x7),12分44故2x或3,即x或(舍).14分4441/612019年杨浦区高三二模数学答案18.(此题满分14分,第1小题满分7分,第2小题满分7分)解:(1)p(5)12001025950,3分p(5)的实质意义是:当地铁的发车时间隔为5分钟时,地铁载客量为950;7分(2)当2t10时,Q720060(10t)2336036060(t36)840,t t-6012840120等号建立当且仅当t6;10分当10t20时,Q6120033603603840360t t3840-3602410等号建立当且仅当t113分故当发车时间间隔为6分钟时,该线路每分钟的净利润最大,最大净利润为120元.14分19.(此题满分14分,第小题满分6分,第2小题满分8分)解:(1)由已知,该“堑堵”的底面是等腰直角三角形,且斜边长为2,相应的高为1棱柱的侧24分棱长为故该堑堵的体积为1222;6分2(2)V BAACC2V BAAC2V A21ABC ACBCAA11111321(AC 2BC2)1AB2433等号建立的充要条件是AC BC2;8分以C为原点,CB,CA,CC1为坐标轴建系,则B(2,0,0),C1(0,0,2),A1(0,2,2),2/622019年杨浦区高三二模数学答案则CB(2,0,0),CA 1 (0,2,2),设面A 1BC 的法向量为n 1 (a,b,c),2a 0,令c1,得n 1 (0,2,1),故2c2b0,同理可得,面 A 1BC 1的法向量为n 2(2,0,1),12分故n 1与n 2的夹角知足:cos1,3由图可知,所求二面角为锐角,故所求为arccos 114分320.(此题满分 16分,第1小题满分 4分,第2小题满分 5分,第3小题满分 7分)解:(1 )解法一:不如假定C 在第一象限,令C(2cos,3sin)(0),2则S2cos23sin3s in(2 ),2分由2(0,),得S(0,43 ];4分解法二:不如假定 Cx 0,y 0在第一象限,则x02y0211分43有12x02y02所以x0y033分43S 4x0y04得S(0,43];4分(2)解法一:直线l的方程为y mk(x1),代入3x24y2120,( 4k23)x28k(mk)x4(mk)2120,6分64k2(mk)24(4k23)[4(mk)212]48[4k2(mk)23]0,即4k2(mk)230,7分又M为中点,故4k(mk)1,得m3,4k3,k8分4k代入4k2(mk)20得,(2k1)(2k1)(4k23),3/632019年杨浦区高三二模数学答案而(2k1)(4k23),故2k0,即k19分2解法二:设P x1,y1,Qx2,y2,22y123x1x2则,x1y11,x221两式相减整理得x124y1y2 343即k3x1x24y1y2x1x21,y1y2m,由题意得22于是k36分4m中点M12m21解得0m(要说明原因,不然扣2分)1,m在椭圆内部,则34故k 19分2(3)当x 0 0时,EF 1RF 2EF 2RF 1 ,所以,存在实数知足条件, 则1;10分直线ER 的方程为y0(x x0) x0(y y 0)0,3则R(x0,0),12分|EF 1|2|RF 2|2(x 01)2y 02 (1 1x0)2414分故|EF 2|2|RF 1|2(x 01)2y02(1 1x0)4(x 01)233x 02(4x 0)2(4x 0)2(4x 0)4 132(4x 0)2(4x 0)2 (4x 0)2(x 0 1)34x所以,1。
上海市杨浦区2018高三数学二模(含解析)
上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 2. 计算:2lim41n nn →∞=+3. 若(13)n x +的二项展开式中2x 项的系数是54,则n =4. 掷一颗均匀的骰子,出现奇数点的概率为5. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为6. 若复数z 满足1z =,则z i -的最大值是7. 若一个圆锥的主视图(如图所示)是边长为3、3、2的三角形, 则该圆锥的体积是8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p = 9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为10. 若{}n a 为等比数列,0n a >,且20182a =,则2017201912a a +的最小值为 11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =.若B 为钝角,1cos24C =-,则ABC ∆的面积为 12. 已知非零向量OP uu u r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++uuu r uu u r uuur ,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==uu r uuu r uu u r uuu r uu r uu u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤uuu u r uu u r恒成立,则实数k 的最小值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2πC. 2π- D. 3π-14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈U 且}x A B ∉I .已知2{|2}A x y x x ==-,{|1}B x x =>,则A B ⨯等于( )A.[0,1](2,)+∞UB. [0,1)(2,)+∞UC.[0,1]D. [0,2]15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( ) A. 1arccos 3B. 2arccosC. 3arccosD. 6arccos三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用, 据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系 式21608002y x x =-+-. (1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45o,请你确定点E 的位置,并证明你的结论.19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和; (2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列.20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两 个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅u u u r u u u u r的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值; (3)若l 过点(,)3mm ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形? 若能,求此时l 的斜率;若不能,说明理由.21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满 足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x =-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 【解析】lg 1010x x -=⇒=2. 计算:2lim41n nn →∞=+【解析】123. 若(13)n x +的二项展开式中2x 项的系数是54,则n =【解析】223544n C n =⇒=4. 掷一颗均匀的骰子,出现奇数点的概率为 【解析】125. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为【解析】三个交点为(1,1)、(0,0)、(2,0),所以最大值为3 6. 若复数z 满足1z =,则z i -的最大值是【解析】结合几何意义,单位圆上的点到(0,1)的距离,最大值为27. 若一个圆锥的主视图(如图所示)是边长为3、3、2的三角形, 则该圆锥的体积是【解析】13V π=⋅⋅=8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p = 【解析】2234164p p p +=⇒= 9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为 【解析】3sin 5y =-,3tan 4y =±,24tan 27y =±10. 若{}n a 为等比数列,0n a >,且20182a =,则2017201912a a +的最小值为【解析】2019201720182220172019201820182124a a a a a a ++=≥=11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =. 若B 为钝角,1cos24C =-,则ABC ∆的面积为【解析】2a =,4c =,21cos212sin sinC C C =-=-⇒=cos C =sin A =cos A =sin sin()B A C =+=,1242S =⨯⨯=12. 已知非零向量OP uu u r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++uuu r uu u r uuur ,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==uu r uuu r uu u r uuu r uu r uu u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时, 不等式12||||F F k PQ ≤uuu u r uu u r 恒成立,则实数k 的最小值为 【解析】建系,不妨设(1,0)P -,(1,0)Q ,∴1(,0)1m M m -+,3m ≥,11[,1)12m m -∈+, ∴3FP MP FQ MQ =≥,设(,)F x y ,∴2222(1)9(1)x y x y ++≥-+,即2259()416x y -+≤,点F 在此圆内, ∴12max 33||242F F =⨯=uuu u r ,33224k k ≤⇒≥二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2πC. 2π- D. 3π-【解析】T π=,2ω=,()122f ππϕ=⇒=-,选C14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈U 且}x A B ∉I .已知{|A x y =,{|1}B x x =>,则A B ⨯等于( )A.[0,1](2,)+∞UB. [0,1)(2,)+∞UC.[0,1]D. [0,2]【解析】[0,2]A =,[0,)A B =+∞U ,(1,2]A B =I ,选A 15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 【解析】11220a b a b =推出直线平行或重合,选B16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )A. 1arccos 3B. arccos 3C.D.【解析】设三条棱a b c ≤≤,∴454ab ac bc ++=,6a b c ++=,222272a b c ++=,222224522[(6)]a b c a bc a a a ++≥+=+--,整理得2430a a -+≤,∴12a ≤≤,∴最短棱长为1,体对角线长为2,cos θ==,选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用, 据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系 式21608002y x x =-+-. (1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大? 【解析】(1)要使营运累计收入高于800元,令80080060212>-+-x x , ……2分 解得8040<<x .………………………………………5分 所以营运天数的取值范围为40到80天之间 .………………………………7分(2)6080021+--=x x x y 6020≤-= …………………………………9分 当且仅当18002x x=时等号成立,解得400x = …………………………12分所以每辆单车营运400天时,才能使每天的平均营运利润最大,最大为20元每天 .…14分18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45o,请你确定点E 的位置,并证明你的结论. 【解析】以D 为坐标原点,建立如图所示的坐标系,则(0,0,0)D ,(1,0,0)A ,(1,1,0)B , C (0,1,0) ,D 1(0,1,2) ,A 1(1,0,1),设(1,,0)E m (01)m ≤≤(1)证明:1(1,0,1)DA =u u u u r,1(1,,1)ED m =--u u u u r ………2分111(1)0()110DA ED m ⋅=⨯-+⨯-+⨯=u u u r u u u u r ………4分 所以DA 1⊥ED 1. ……………6分另解:1ADA AE 平面⊥,所以D A AE 1⊥. ……………2分 又11AD D A ⊥,所以AE D D A 11平面⊥. ……………………………4分 所以11DA ED ⊥……………………………6分(2)以A 为原点,AB 为x 轴、AD 为y 轴、AA 1为z 轴建立空间直角坐标系…………7分 所以)1,0,0(1A 、)0,1,0(D 、)0,1,1(C 、)1,1,0(1D ,设t AE =,则)0,0,(t E ………8分设平面CED 1的法向量为),,(z y x =,由⎪⎩⎪⎨⎧=⋅=⋅001CD n 可得⎩⎨⎧=--=+-0)1(0y x t z x , 所以⎩⎨⎧-==xt y xz )1(,因此平面CED 1的一个法向量为)1,1,1(-t ………10分由直线1DA 与平面1CED 所成的角是45o ,可得||||45sin 11n DA =︒ ……11分可得1)1(12|11|222+-+⋅+-=t t ,解得21=t ………13分 由于AB =1,所以直线1DA 与平面1CED 所成的角是45o时,点E 在线段AB 中点处. …14分19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和;(2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列. 【解析】(1)14-=n n a S ,所以n n a S 41=+.两式相减得1144-+-=-n n n n a a S S .即1144-+-=n n n a a a………2分所以)2(2211-+-=-n n n n a a a a ,即12-=n n b b ,………3分又8412==a S ,所以6122=-=a S a ,得22121=-=a a b ………4分因此数列{}n b 为以2为首项,2为公比的等比数列.nn b 2=,前n 项和为221-+n …7分(2)当n = 2时,1222a a S μλ+=,所以μλ2623+=+. 又32λμ+=,可以解得12λ=,1μ= ………9分 所以12-+=n n n a a n S ,n n n a a n S ++=++1121,两式相减得111221-++-+-+=n n n n n a a a n a n a 即112221-++-=-n n n a a n a n . 猜想1+=n a n ,下面用数学归纳法证明: ………10分① 当n = 1或2时,1121+==a ,1232+==a ,猜想成立;② 假设当k n ≤(2,*≥∈k N k )时,1k a k =+ 成立则当1+=k n 时,2))1(22(12)22(1211+=++--=+--=-+k k k k k a a k k a k k k 猜想成立. 由①、②可知,对任意正整数n ,1+=n a n .………13分 所以11=-+n n a a 为常数,所以数列{}n a 是等差数列.………14分另解:若23a =,由12212a a a a +=+λμ,得562=+λμ,又32+=λμ,解得112==,λμ. ………9分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+,两式相减得:111122n n n n n n na a a a a ++-+=-+-,即11(1)(2)20n n n n a n a a +-----=所以 21(1)20n n n na n a a ++---= ………11分相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+= 所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+=所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-L L L ,因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………14分20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两 个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅u u u r u u u u r的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值; (3)若l 过点(,)3mm ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形? 若能,求此时l 的斜率;若不能,说明理由.【解析】(1)椭圆99:22=+Ωy x ,两个焦点)22,0(1F 、)22,0(2-F ,设),(y x K 所以8)22,()22,(2221-+=---⋅--=⋅y x y x y x KF KF由于9922=+y x ,所以2299x y -=,188)99(22221+-=--+=⋅x x x KF KF …3分由椭圆性质可知11≤≤-x ,所以]1,7[21-∈⋅KF KF……………5分(2)设直线b kx y l +=:(0,0≠≠k b ),),(11y x A ,),(22y x B ,),(00y x M , 所以21x x 、为方程222)(9m b kx x =++的两根,化简得02)9(2222=-+++m b kbx x k ,所以922210+-=+=k kb x x x ,99922200+=++-=+=k bb k b k b kx y . ……………8分 kx y k OM 900-==,所以直线OM 的斜率与l 的斜率的乘积等于9-为定值. …………10分(3)∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 设),(p p y x P 设直线m m x k y l +-=)3(:(0,0≠≠k m ),即m mkkx y +-=3.由(2)的结论可知x ky OM 9:-=,代入椭圆方程2229m y x =+得8192222+=k k m x p …12分由(2)的过程得中点)9)3(9,9)3((22+-+--k km m k k mk m M , ……………14分 若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以p x x =02,得819)93(4222222+=+-k k m k mk mk ,解得74±=k 所以当l的斜率为44OAPB 为平行四边形. ……………16分21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满 足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x =-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论. 【解析】(1)1()1f x x=-是ψ函数 . ……1分 理由如下:1()1f x x=-的定义域为{|0}x x ≠, 只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立.由()()f a x f a x b -++=,得112b a x a x +-=-+,即2()()a x a xb a x a x ++-+=-+. 所以22(2)()2b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-= 从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立. 所以1()1f x x=-是ψ函数. …………4分 (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,即1122a xa xb tt-++=++恒成立.所以22(2)(2)a x a x a x a x t t b t t +-+-+++=++, ……5分 化简得,22(1)(22)(2)2a x a x a bt b t t +--+=+-.所以10bt -=,22(2)20a b t t +-=. 因为0t ≠,可得1b t=,2log ||a t =,即存在实数a ,b 满足条件,从而1()2x g x t=+是ψ函数. …………10分(3)函数)(x h 的图象关于直线x m =(m 为常数)对称,所以)()(x m h x m h +=- (1), ……………12分 又因为b x a h x a h =++-)()( (2), 所以当a m ≠时,)]2([)22(a m x m h a m x h -++=-+ 由(1) )]([)2()]2([x a a h x a h a m x m h -+=-=-+-= 由(2) )()]([x h b x a a h b -=---= (3)所以)22(]22)22[()44(a m x h b a m a m x h a m x h -+-=-+-+=-+ (取a m x t 22-+=由(3)得)再利用(3)式,)()]([)44(x h x h b b a m x h =--=-+.所以()f x 为周期函数,其一个周期为a m 44-. ……………15分 当a m =时,即)()(x a h x a h +=-,又)()(x a h b x a h +-=-, 所以2)(bx a h =+为常数. 所以函数)(x h 为常数函数, 2)()1(bx h x h ==+,)(x h 是一个周期函数. ……………17分综上,函数)(x h 为周期函数 ……………18分(其他解法参考评分标准,酌情给分)。
2018杨浦二模
2018杨浦区初三数学二模(满分150分,考试时间100分钟)2018.4一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列各数是无理数的是( )(A)︒60cos (B)1.3 (C)半径为1cm 的圆周长 (D )38 2.下列运算正确的是( )(A )m n m 2=⋅ (B )632)(m m = (C )33)(mn mn = (D )326m m m =÷ 3.若y x 33->,则下列等式一定成立的是( )(A) 0>+y x (B )0>-y x (C )0<+y x (D )0<-y x 4.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图1所示,其中阅读时间是8-10小时的组频数和组频率分别是( )(A)15和0.125 (B )15和0.25 (C)30和0.125 (D )30和0.255.下列图形是中心对称图形的是( )(A) (B) (C) (D) 6.如图2,半径为1的圆1O 与半径为3的圆2O 内切,如果半径为2的圆与圆1O 和圆2O 都相切,那么这样的圆的个数是( ) (A )1 (B) 2 (C) 3 (D)40.1500.1250.1000.0750.0500.025小时数(个)频率组距图112108642(图2)O 2O 1二、填空题:(本大题共12题,每题4分,满分48分) 7.计算=+-+)()(b a b b a a . 8.当0,0,a b <>时,化简=b a 2 . 9. 函数211++-=x xy 中,自变量x 取值范围是 . 10. 如果反比例函数x k y =的图像经过点),2(1y A 与),3(2y B ,那么21y y的值等于 . 11. 三人中至少两人性别相同的概率是 . 12. 25位同学10秒钟跳绳的成绩汇总如下表;人数 1 2 3 4 5 10 次数15825101720那么跳绳的中位数是 .13.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟。
【高三数学试题精选】2018高三理科二模数学试卷(杨浦等区附答案)
2018高三理科二模数学试卷(杨浦等区附答案)
5 c 高三年级静安、杨浦、青浦、宝区高考模拟考试
数学试卷(理科) 201804
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.已知全集,集合,则
2.若复数满足(是虚数单位),则
3.已知直线的倾斜角大小是,则
4.若关于的二元一次方程组有唯一一组解,则实数的取值范围是
5.已知函数和函数的图像关于直线对称,
则函数的解析式为
6.已知双曲线的方程为,则此双曲线的焦点到渐近线的距离为7.函数的最小正周期
8.若展开式中含项的系数等于含项系数的8倍,则正整数9.执行如图所示的程序框图,若输入的值是,则输出的值是10.已知圆锥底面半径与球的半径都是,如果圆锥的体积恰好也与球的体积相等,
那么这个圆锥的母线长为.
11.某中学在高一年级开设了门选修,每名学生必须参加这门选修中的一门,对于该年级的
甲、乙、丙名学生,这名学生选择的选修互不相同的概率是 (结果用最简分数表示).
12.各项为正数的无穷等比数列的前项和为,若,则其比的取值范围是
13.已知两个不相等的平面向量, ( )满足| |=2,且与-的夹角为120°,。
2018年上海杨浦区高三二模试卷(附答案)
杨浦区2017学年度第二学期高三年级模拟质量调研语文学科试卷〔答案做在答题卡上〕〔满分150分钟,时间150分钟〕 2018年4月一、积累运用〔10分〕1、按要求填空。
〔5分〕〔1〕,长安不见使人愁。
〔李白《登金陵凤凰台》〕〔2〕,尽西风,季鹰归未。
〔辛弃疾《水龙吟·》〕〔3〕韩愈在《师说》中客观的指出弟子不一定不与老师,老师也不一定比弟子贤能,其原因在于“,〞。
[考点]默写,高中必背古诗文[解析]略[答案]1、总为浮云能蔽日 2、休说鲈鱼堪脍登建康赏心亭 3、闻道有先后术业有专攻2、按要求选择。
〔5分〕〔1〕同学们在毕业二十年后聚会,各自事业有成,班主任想要用一句古诗词来表达此刻的喜悦激动的心情,恰当的一句是〔〕。
A、芳林新叶催陈叶,流水前波让后波。
B、长风破浪会有时,直挂云帆济沧海。
C、江山代有才人出,各领风骚数百年。
D、宝剑锋从磨砺出,梅花香自苦寒来。
[考点]课外文学常识积累。
[解析]从语境来判断,班主任应该是想感慨学生很出色,比他自己都还优秀,是赞学生,所以选A.[答案]A〔2〕填入下面语段空白处的语句,最恰当的是〔〕?这在很多人看来是一个不可理喻,甚至有点蠢的问题,但却是我们必须弄明白的问题。
电影是人类历史上最伟大的发明之一,自然有其独特的魅力所在。
可是作为最古老的艺术形式之一的戏剧也不能被我们忘记,因为其生动的现场总是充满了震撼人心的力量,让我们站在生活之上俯瞰生活。
A、有了戏剧,为什么会出现电影这项发明B、有了电影,为什么人们还需要看戏剧电影和戏剧C、哪一种艺术形式最终会永远被人铭记D、电影和戏剧对于我们日常生活的意义究竟在哪里?[考点]语境判断[解析]由这“可是作为最古老的艺术形式之一的戏剧也不能被我们忘记〞,可判断,问的是,戏剧和电影的问题,选B比较合适。
[答案]B二、阅读〔70分〕(一)阅读下文,完成第3-7题。
〔15分〕①任何文字都是为了满足交际需要,适应口语发展而创造出来的。
2018届上海市杨浦区高三学业质量调研(二模)理科数学试题及答案
杨浦区2018学年度第二学期高三年级学业质量调研数学学科试卷(理科)考生注意:1.答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上2.本试卷共有23道题,满分150分,考试时间120分钟一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分 1.函数()f x =的定义域是 .2.若集合()(){}22,1,,,2x A x y y B x y x Z y Z ⎧⎫⎪⎪=+<=∈∈⎨⎬⎪⎪⎩⎭,则AB的元素个数为 . 3.若42321xx=,则x 的值是 .4.62x ⎛ ⎝的展开式中的常数项的值是 .5.某射击选手连续射击5枪命中环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为.6.对数不等式()()331log log 0x a x +->的解集是1,93⎛⎫⎪⎝⎭,则实数a 的值为 . 7.极坐标方程sin 3πρθ⎛⎫=-⎪⎝⎭所表示的曲线围成的图形面积为 .8.如图,根据该程序框图,若输出的y 为2,则输入的x 的值为 .9.若正数,a b 满足3ab a b =++,则ab 的取值范围是 .10.已知12,e e 是不平行的向量,设1212,a e ke b ke e =+=+,则a 与b 共线的充要条件是实数k 等于 . 11.已知方程()210x px p R -+=∈的两根为12x x 、,若121x x-=,则实数p 的值为 .12.已知从上海飞往拉萨的航班每天有5班,现有甲、乙、丙三人选在同一天从上海出发去拉萨,则他们之中正好有两个人选择同一航班的概率为 .13.已知*N n ∈,在坐标平面中有斜率为n 的直线nl 与圆222xy n +=相切,且nl 交y 轴的正半轴于点nP ,交x 轴于点nQ ,则2lim2n n x P Q n →∞的值为 .14.对于自然数*N 的每一个非空子集,我们定义“交替和”如下:把子集中的元素从大到小的顺序排列,然后从最大的数开始交替ACB∙∙∙地加减各数,例如{}1,2,4,6,9的交替和是964216-+-+=;则集合{}1,2,3,4,5,6,7的所有非空子集的交替和的总和为 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15.“2a ≤-”是“函数()()21R f x xax x =++∈只有一个零点”的 ( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.在复平面中,满足等式112z z +--=的z 所对应点的轨迹是( )A.双曲线B.双曲线的一支C.一条射线D.两条射线17.设反比例函数()1f x x=与二次函数()2g x axbx =+的图像有且仅有两个不同的公共点()()1122,,,A x y B x y ,且12xx <,则12y y =A.2或12B.2-或12- C.2或12-18.如图,设店A在圆上按逆时针方向旋转一周,点P 弦AP 的长为d ,则函数()d f l =的图像大致是( )A. B. C.D.三 .解答题(本大题满分74)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.ABC19.(本题满分12分)如图,一条东西走向的大江,其河岸A 处有人要渡江到对岸B 处,江面上有一座大桥AC ,已知B 在A 的西南方向,C 在A 的南偏西15︒,10BC =公里.现有两种渡江方案:方案一:开车从大桥AC 渡江到C 处,然后再到B 处; 方案二:直接坐船从A 处渡江到对岸B 处.若车速为每小时60公里,船速为每小时45公里(不考虑水流速度),为了尽快到达B 处,应选择哪个方案?说明理由.20.(本题满分14分,其中第一小题7分,第二小题7分) 在棱长为1的正方体1111ABCD A B C D -中,点E 是棱BC 的中点,点F 是棱CD上的动点.(1)试确定点F 的位置,使得1D E ⊥平面1AB F ; (2)当1D E ⊥平面1AB F 时,求二面角1CEF A --的大小(结果用反三角函数表示).A 1C21.(本题满分14分,其中第一小题4分,第二小题5分,第三小题5分) 已知函数()()31R 31x x t f x t ⋅-=∈+是奇函数. (1)求t 的值;(2)求()f x 的反函数()1f x -;(3)对于任意的0m >,解不等式:()131logxf x m-+>.22.(本题满分16分,其中第一小题5分,第二小题5分,第三小题6分) 数列{}na 满足11a=,2a r =(0r >),令1n n n b a a +=⋅,{}n b 是公比为()0,1q q q ≠≠-的等比数列,设212nn n ca a -=+.(1)求证:()11n nc r q -=+⋅;(2)设{}nc 的前n 项和为nS ,求1lim n nS →∞的值;(3)设{}nc 前n 项积为nT ,当12q =-时,nT 的最大值在8n =和9n =的时候取到,求n 为何值时,nT 取到最小值.23.(本题满分18分,其中第一小题6分,第二小题6分,第三小题6分) 已知抛物线()2:20C ypx p =>的焦点F ,线段PQ 为抛物线C 的一条弦.(1)若弦PQ 过焦点F ,求证:11FP FQ+为定值; (2)求证:x 轴的正半轴上存在定点M ,对过点M 的任意弦PQ ,都有2211MPMQ +为定值;(3)对于(2)中的点M 及弦PQ ,设PM MQ λ=,点N 在x 轴的负半轴上,且满足()NM NP NQ λ⊥-,求N 点坐标.。
杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷及答案
杨浦区2018学年度第⼀学期⾼三年级模拟质量调研数学学科试卷及答案杨浦区2018学年度第⼀学期⾼三年级模拟质量调研数学学科试卷及答案 2018.12.考⽣注意: 1.答卷前,考⽣务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2.本试卷共有21道题,满分150分,考试时间120分钟.⼀、填空题(本⼤题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考⽣应在答题纸的相应位置填写结果. 1.设全集{}=1,2,3,4,5U ,若集合{}3,4,5A =,则U A =e ▲.2.已知扇形的半径为6,圆⼼⾓为3π,则扇形的⾯积为▲. 3.已知双曲线221x y -=,则其两条渐近线的夹⾓为▲________.4. 若nb a )(+展开式的⼆项式系数之和为8,则n = ▲________.5. 若实数,x y 满⾜ 221x y +=,则xy 的取值范围是▲________.6. 若圆锥的母线长=l )(5cm ,⾼)(4cm h =,则这个圆锥的体积等于▲________()3cm . 7. 在⽆穷等⽐数列{}n a 中,121lim()2n n a a a →∞+++=,则1a 的取值范围是▲________. 8. 若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+. 且B A ?,则实数a 的取值范围为▲________.9. 在⾏列式中,第3⾏第2列的元素的代数余⼦式记作,则的零点是▲________10. 已知复数1cos 2()i z x f x =+,2cos )i z x x =++ (,R x λ∈,i 为虚数单位).在复平⾯上,设复数12,z z 对应的点分别为12,Z Z ,若?=∠9021OZ Z ,其中O 是坐标原点,则函数()f x 的最⼩正周期▲________. 11. 当a x <<0时,不等式2)(1122≥-+x a x 恒成⽴,则实数a 的最⼤值为▲________. 274434651xx--()f x 1()y f x =+12. 设d 为等差数列}{n a 的公差,数列}{n b 的前n 项和n T ,满⾜)N ()1(21*∈-=+n b T n n n n ,且25b a d ==. 若实数)3,N }(|{*32≥∈<<=∈+-k k a x a x P m k k k ,则称m 具有性质k P .若n H 是数列}{n T 的前n 项和,对任意的*N ∈n ,12-n H 都具有性质k P ,则所有满⾜条件的k 的值为▲________.⼆、选择题(本题共有4题,满分20分,每题5分)每题有且只有⼀个正确选项,考⽣应在答题纸的相应位置,将代表正确选项的⼩⽅格涂⿊.13. 下列函数中既是奇函数,⼜在区间[-1,1]上单调递减的是 ………( ). x x f arcsin )(=. lg y x =.()f x x =-.()cos f x x =14. 某象棋俱乐部有队员5⼈,其中⼥队员2⼈. 现随机选派2⼈参加⼀个象棋⽐赛,则选出的2⼈中恰有1⼈是⼥队员的概率为 ………( )()A .310()B .35()C .25()D .2315. 已知x x f θsin log )(=,,设sin cos ,2a f θθ+??=b f =,sin 2sin cosc f θθθ=+,则c b a ,,的⼤⼩关系是 ………( )()A .b c a ≤≤.()B .a c b ≤≤. ()C .a b c ≤≤.()D .c b a ≤≤.16. 已知函数nx x m x f x ++?=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是………( )()A . [0,4) ()B . [1,4)- ()C . [3,5]- ()D . [0,7)()A ()B ()C ()D )2,0(πθ∈三、解答题(本⼤题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1⼩题满分6分,第2⼩题满分8分)如图,PA ⊥平⾯ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:⽆论点E 在边BC 的何处,都有AF PE ⊥.18. (本题满分14分,第1⼩题满分7分,第2⼩题满分7分)在ABC ?中,⾓,,A B C 所对的边分别为,,a b c ,且5cos 13B =.(1)若4sin 5A =,求cos C ;(2)若4b =,求证:5-≥?BC AB .19. (本题满分14分,第1⼩题满分6分,第2⼩题满分8分)上海某⼯⼚以x 千克/⼩时的速度匀速⽣产⼀种产品,每⼀⼩时可获得的利润是)315(xx -+元,其中101≤≤x .(1)要使⽣产该产品2⼩时获得的利润不低于30元,求x 的取值范围;(2)要使⽣产900千克该产品获得的利润最⼤,问:该⼚应选取何种⽣产速度?并求最⼤利润.20. (本题满分16分,第1⼩题满分4分,第2⼩题满分5分,第3⼩题满分7分)如图,已知点P 是y 轴左侧(不含y 轴)⼀点,抛物线x y C 4:2=上存在不同的两点B A ,,满⾜PB PA ,的中点均在抛物线C 上.(1)求抛物线C 的焦点到准线的距离;(2)设AB 中点为M ,且),(),,(M M P P y x M y x P ,证明:M P y y =;(3)若P 是曲线221(0)4y x x +=<上的动点,求PAB ?⾯积的最⼩值.21. (本题满分18分,第1⼩题满分4分,第2⼩题满分5分,第3⼩题满分9分)记⽆穷数列{}n a 的前n 项中最⼤值为n M ,最⼩值为n m ,令2n nn M m b +=,其中*N ∈n . (1) 若2cos2n n n a π=+,请写出3b 的值; (2) 求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3) 若对任意n ,有||2018n a <, 且||1n b =,请问:是否存在*K ∈N ,使得对于任意不⼩于K 的正整数n ,有1n n b b += 成⽴?请说明理由.青浦区2018学年第⼀学期⾼三年级期终学业质量调研测试数学参考答案及评分标准 2018.12说明1.本解答列出试题⼀种或⼏种解法,如果考⽣的解法与所列解法不同,可参照解答中评分标准的精神进⾏评分.2.评阅试卷,应坚持每题评阅到底,不要因为考⽣的解答中出现错误⽽中断对该题的评阅.当考⽣的解答在某⼀步出现错误,影响了后续部分,但该步以后的解答未改变这⼀题的内容和难度时,可视影响程度决定后⾯部分的给分,但是原则上不应超出后⾯部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第17题⾄第21题中右端所注的分数,表⽰考⽣正确做到这⼀步应得的该题分数. 4.给分或扣分均以1分为单位.⼀.填空题(本⼤题满分54分)本⼤题共有12题,1-6每题4分,7-12每题5分考⽣应在答题纸相应编号的空格内直接填写结果. 1.{}1-; 2.“若a b <,则22am bm <”; 3.()2,3-;4.43; 5.12π;67.(0,4)(4,8); 8.32;9. 80; 10. 14;11.10,2;12.1,3??.⼆.选择题(本⼤题满分20分)本⼤题共有4题,每题有且只有⼀个正确答案,考⽣应在答题纸的相应编号上,将代表答案的⼩⽅格涂⿊,选对得5分,否则⼀律得零分. 13. A ;14. D ; 15.C ;16. C .三.解答题(本⼤题满分74分)本⼤题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共2⼩题,第(1)⼩题6分,第(2)⼩题8分. 解:(1)在正四棱柱1111ABCD A B C D -中,∵1AA ⊥平⾯ABCD ,AD ?≠平⾯ABCD ,∴1AA AD ⊥,故14AA =,∴正四棱柱的侧⾯积为(43)448??=,体积为2(3)436?=.(2)建⽴如图的空间直⾓坐标系O xyz -,由题意可得(0,0,0)D ,(3,3,0)B ,1(3,0,4)A ,(0,0,0)D ,3(,0,2)2E ,1(0,0,4)AA =,3(,3,2)2BE =--,设1AA 与BE 所成⾓为α,直线BE 与平⾯ABCD 所成⾓为θ,则11cos ||||AA BEAA BE α?===⼜1AA是平⾯ABCD 的⼀个法向量,故sin cos θα==,θ=.所以直线BE 与平⾯ABCD所成的⾓为arcsin61.【另法提⽰:设AD 中点为G ,证EBG ∠即为BE 与平⾯ABCD 所成的⾓,然后解直⾓三⾓形EBG ,求出EBG ∠】arctan 1518.(本题满分14分)第(1)⼩题满分8分,第(2)⼩题满分6分.解:(1),1,01BP t CP t t ==-≤≤45DAQ θ∠=?-,1tan(45)1tDQ tθ-=?-=+, 12111t tCQ t t-=-=++所以211t PQ t +===+ 故221111211t t l CP CQ PQ t t t t t+=++=-++=-++=++ 所以△CPQ 的周长l 是定值2(2)111221ABP ADQ ABCD t t S S S S t ??-=--=--?+正⽅形122(1)221t t=-++≤+当且仅当1t =时,等号成⽴所以摄像头能捕捉到正⽅形ABCD 内部区域的⾯积S⾄多为22hm19.(本题满分14分)本题共2⼩题,第(1)⼩题6分,第(2)⼩题8分. 解:(1)因为函数()3g x x =是函数()3m=+在区间[)+∞4,上的弱渐近函数,所以()()1mf xg x x-=≤ ,即m x ≤在区间[)+∞4,上恒成⽴,即444m m ≤?-≤≤(2)()()2f x g x x x -==[)2,+x ∈∞,()()22(f x g x x x ∴-==-A DCBθP Q45令2()()()2(x xh x f x g x x=-===任取12≤<,则2212311x x≤-<-≤<120xx<<12()()h x h x><即函数()()()2(h x f x g x x=-=在区间[)2,+∞上单调递减,所以(()()0,4x-∈-,⼜([]0,41,1-?-,即满⾜()2g x x=使得对于任意的[)2,x∈+∞有()()1f xg x-≤恒成⽴,所以函数()2g x x=是函数()f x=在区间[)2,+∞上的弱渐近函数.20.(本题满分16分)本题共3⼩题,第(1)⼩题4分,第(2)⼩题6分,第(3)⼩题6分.解:(1)242a a=?=,⼜双曲线的渐近线⽅程为y=,所以bba==双曲线的标准⽅程是22412x y-=.(2)法⼀:由题不妨设11()A x,22(,)B x,则1212(,)22x xP+,由P在双曲线上,代⼊双曲线⽅程得124x x?=;法⼆:当直线AB的斜率不存在时,显然2x=±,此时124xx?=;当直线AB的斜率存在时,设直线AB的⽅程为(0,t k k=+≠≠则由y kx tAy=+?=同理y kx tBy=+?=此时223,33kt t P k k ?? ?--??代⼊双曲线⽅程得224(3)t k =-,所以212243t x x k ?==-(3)①对称中⼼:原点;对称轴⽅程:,y y x = =②顶点坐标:3,22??,322??-- ? ???;焦点坐标:(,(1,-实轴长:2a =、虚轴长:22b =、焦距:24c =③范围:()0,,2,x y ?≠∈-∞+∞?④渐近线:0,3x y x ==21.(本题满分18分)本题共3⼩题,第(1)⼩题4分,第(2)⼩题6分,第(3)⼩题8分.解:(1)因为数列{}n b 是“Γ数列”,且11b =,3k =、4d =、0c =,所以当1n ≥,n *∈N 时,310n b +=,⼜*2016672N 3=∈,即20170b =, 20182017044b b d =+=+=,20192018448b b d =+=+= (2)因为数列{}n b 是“Γ数列”,且12b =,4k =、2d =、1c =()()()414344341434243434312336n n n n n n n n n n b b cb b b d b b d b b d b d +---------=-=?+-=+-=+-==则数列前4n 项中的项43n b -是以2为⾸项,6为公差的得差数列,易知{}4n b 中删掉含有43n b -的项后按原来的顺序构成⼀个⾸项为2公差为2的等差数列,41543()n n S b b b -∴=+++()()()()23467846454442414+n n n n n n b b b b b b b b b b b b -----++++++++++++2(1)3(31)26(3)2212822n n n n n n n n --=+++=+ 43nn S λ≤?,43nn S λ∴≤,设2412833n n n n S n n c +==,则()max n c λ≥,22211112(1)8(1)12824820333n n n n n n n n n n n c c +++++++-++-=-=当1n =时,2248200n n -++>,12c c <;当2n ≥,n *∈N 时,2248200n n -++<,1n n c c +<,∴123c c c <>>,∴()2max 649n c c ==,即()2max 649n c c λ≥==(3)因为{}n b 既是“Γ数列”⼜是等⽐数列,设{}n b 的公⽐为1n nb q b +=,由等⽐数列的通项公式有1n n b bq -=,当m *∈N 时,21k m k m b b d ++-=,即()11km km km bq bq bq q d +-=-=① 1q =,则0d =,n b b =;② 1q ≠,则()1kmd qq b=-,则kmq 为常数,则1q =-,k 为偶数,2d b =-,()11n n b b -=-;经检验,满⾜条件的{}n b 的通项公式为n b b =或()1 1n n b b -=-.。
最新-上海市杨浦区2018届高三4月质量调研(二模)理科数
杨浦区2018学年度第二学期高三年级学业质量调研数学理 2018.04.12一、填空题1.函数()f x =的定义域为 .2.已知线性方程组的增广矩阵为11334a -⎛⎫⎪⎝⎭,若该线性方程组的解为12-⎛⎫⎪⎝⎭,则实数a = .3.计算2123lim 1n nn →∞+++++= .4.若向量a、b满足||1,||2a b ==,且a与b的夹角为π3,则||a b +=.5.若复数1234,12z i z i =+=-,其中i 是虚数单位,则复数12||z z i+的虚部为 . 6.61(x-的展开式中,常数项为.7.已知ABC △的内角A 、B 、C 所对应边的长度分别为a 、b 、c ,若a cb ac a b b--=,则角C 的大小是 .8.已知等比数列{}n a 的各项均为正数,且满足:174a a =,则数列2{log }n a 的前7项之和为 .9.在极坐标系中曲线C :2cos ρθ=上的点到(1,π)距离的最大值为 .10.袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是 .11.已知双曲线2214y x -=的右焦点为F ,过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点P ,M 在直线PF 上,且满足0OM PF ⋅=,则||||PM PF = .12.现有5位教师要带三个班级外出参加志愿者服务,要求每个班级至多两位老师带队,且教师甲、乙不能单独带队,则不同的带队方案有 .(用数字作答)13.若关于x 的方程54(4)|5|x x m xx+--=在(0,)+∞内恰有三个相异实根,则实数m 的取值范围为 .14.课本中介绍了应用祖暅原理推导棱锥体积公式的做法.祖暅原理也可用来求旋转体的体积.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为221425x y +=,将此椭圆绕y 轴旋转一周后,得一橄榄状的几何体(图2),其体积等于 .二、选择题15.下列函数中,既是奇函数,又在区间(0,)+∞上递增的是( )A.||2x y = B.ln y x = C.13y x = D.1y x x=+16.已知直线l 的倾斜角为α,斜率为k ,则“π3α<”是“k <( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件 17.设x ,y ,z 是互不相等的正数,则下列等式中不恒成立的是( )A.2211x x x x++≥C.1||2x y x y-+-≥ D.||||||x y x z y z --+-≤18.已知命题:“若a ,b 为异面直线,平面α过直线a 且与直线b 平行,则直线b 与平面α的距离等于异面直线a ,b 之间的距离”为真命题.根据上述命题,若a ,b 为异面直线,且它们之间的距离为d ,则空间中与a ,b 均异面且距离也均为d 的直线c 的条数为( )A0条 B.1条 C.多于1条,但为有限条D.无数多条 三、解答题19.如图,底面是直角三角形的直三棱柱111ABC A B C -中,1112AC BC AA ===,D 是棱1AA 上的动点.(1)证明:1DC BC ⊥; (2)求三棱锥1C BDC -的体积.20.某菜农有两段总长度为20米的篱笆PA 及PB ,现打算用它们和两面成直角的墙OM 、ON 围成一个如图所示的四边形菜园OAPB (假设OM 、ON 这两面墙都足够长).已知|PA |=|PB |=10 (米),π4AOP BOP ∠=∠=,OAP OBP ∠=∠.设OAP θ∠=,四边形OAPB 的面积为S .(1)将S 表示为θ的函数,并写出自变量θ的取值范围; (2)求出S 的最大值,并指出此时所对应θ的值.21.已知函数2()log (21)x f x ax =++,其中a ∈R .(1)根据a 的不同取值,讨论()f x 的奇偶性,并说明理由; (2)已知a >0,函数()f x 的反函数为1()f x -,若函数1()()y f x f x -=+在区间[1,2]上的最小值为21log 3+,求函数()f x 在区间[1,2]上的最大值.22.已知椭圆C :22221(0)x y a b a b+=>>的焦距为F 与短轴的两个端点组成一个正三角形.若直线l 与椭圆C 交于11(,)A x y 、22(,)B x y ,且在椭圆C 上存在点M ,使得:3455OM OA OB =+(其中O为坐标原点),则称直线l 具有性质H . (1)求椭圆C 的方程;(2)若直线l 垂直于x 轴,且具有性质H ,求直线l 的方程; (3)求证:在椭圆C 上不存在三个不同的点P 、Q 、R ,使得直线PQ 、QR 、RP 都具有性质H .23.已知数列{}n a 和{}n b 满足:11,(1)(1),n n a na n a n n n λ+==+++∈*N ,且对一切n ∈*N ,均有12(2)n a n bb b =.(1)求证:数列{}n a n为等差数列,并求数列{}n a 的通项公式;(2)若2λ=,求数列{}n b 的前n 项和n S ;(3)设()n n n n na b c n a b -=∈*N ,记数列{}n c 的前n 项和为n T ,问:是否存在正整数λ,对一切n ∈*N ,均有4n T T ≥恒成立.若存在,求出所有正整数λ的值;若不存在,请说明理由.19、(1)证明:因为直三棱柱111ABC A B C -中,CC 1⊥平面ABC ,所以,CC 1⊥BC ,又底面ABC 是直角三角形,且AC =BC =1,所以AC ⊥BC , 又1ACCC =C ,所以,BC ⊥平面ACC 1A 1,所以,BC ⊥DC 1(2)11C BDC B CDC V V --==111211323⨯⨯⨯⨯=20(1)在三角POB 中,由正弦定理,得:103sin()sin44OB ππθ=-,得OB =10(cos sin θθ+) 所以,S =121010(cos sin )sin 2θθθ⨯⨯⨯+=2100(sin cos sin )θθθ+,(2)S =2100(sin cos sin )θθθ+=250(2sin cos 2sin )θθθ+ =50(sin 2cos 21)θθ-+=)504πθ-+所以,21、(1)当a =-12时,21()log (21)2x f x x =-++,定义域为R ,21()log (21)2xf x x --=++2112log ()22x x x +=+=221log (21)log 22x x x ++-=21log (21)2x x -++=()f x ,偶函数。
高三数学-2018年上海市杨浦区高三模拟测试[转载] 精品
2018年上海市杨浦区高三模拟测试(数学试卷)考生注意:1. 答题前,考生务必将学校、姓名、班级、学号等填写清楚;2. 本试卷共有22道试题,满分150分,考试时间120分钟。
请考生用钢笔或圆珠笔书写,请不要将答案写在试卷的密封线以内;3. 新教材试点学校的考生请注意试卷最后的符号说明。
一、填空题 (本大题满分48分) 本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1. 若集合⎭⎬⎫⎩⎨⎧<-+=023x x x A ,集合}1|1|{>-=x x B ,则A ⋃B =__________。
2. 若向量},5{t =,}1,3{-=,并且+与垂直,则实数t 的值为__________。
3. 若函数y =8x 的图象经过点⎪⎭⎫⎝⎛a ,32,则log a 8的值是__________。
4. 若数列{log 3a n }为等差数列,并且log 3a 1+log 3a 2+…+log 3a 10=10,则a 5⋅a 6=__________。
5. 方程x 5+lg x =100的近似解为__________(精确到0.1)。
6. (理) 若二项式nx x ⎪⎭⎫ ⎝⎛+231(n 为正整数)展开式中只有第6项的系数最大,则展开式的常数项的值为__________。
(文) 无穷等比数列{a n },公比为q ,并且21)(lim 32=+++∞→n n a a a ,则首项a 1的范围是__________。
7. 如图,三棱锥A -BCD 中,AC ⊥平面BCD ,∠BCD =90︒,BC =8,CD =34,E 、F 分别是AB 、CD 的中点,且EF =8,EF 与BC 所成的角为60︒,则三棱锥A -BC D 的体积V =__________。
ABDCEF8. 若双曲线1922=-m y x 的渐近线的方程为x y 35±=,则双曲线焦点F 到渐近线的距离为__________。
上海市四区(静安宝山杨浦青浦)2018届高三数学模拟考试
四区2018学年度第二学期高三模拟数学试卷(理科)考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上.2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.若函数()1f x =的反函数为()1f x -,则()11f -= .2.若复数z 满足211z i i=+-,(其中i 为虚数单位),则z = . 3.已知全集U R =,函数12-=x y 的定义域为集合A ,则=A C U .4.第一届现代奥运会于1896年在希腊瑞典举行,此后每4年举行一次. 奥运会如因故不能 举行,届数照算.2008年北京奥运会是第 届.5. 已知口袋里装有同样大小、同样质量的16个小球,其中8个白球、8个黑球,则从口袋中任意摸出8个球恰好是4白4黑的概率为 . (结果精确到001.0)6.直线l 的一个方向向量(12)d =,,则直线l 与02=+-y x 的夹角大小为 . (结果用反三角函数值表示)7. 若圆的极坐标方程θθρcos sin +=,则该圆的半径是 . 8. 已知某随机变量ξ的概率分布律如右表,其中0,0x y >>,则随机变量ξ的数学期望=ξE . 9.用一个与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为 .10. 用铁皮制作一个无盖的圆锥形容器(如图),已知该圆锥的母线与底面所在平面的夹角为45,容器的高为10cm,(衔接部分忽略不计)则制作该容器需要的铁皮为 2cm .(结果精确到1.0 2cm )45o10cm11.已知过抛物线C :22y px =(0p >)焦点F 的直线l 和y 轴正半轴交于点A ,并且l 与C 在第一象限内的交点M 恰好为线段AF 的中点,则直线l 的倾斜角为___________.(结果用反三角函数值表示)12.若把()()()nx x x ++⋅⋅⋅+++++11112展开成关于x 的多项式,其各项系数和为n a(*N n ∈),则21lim1n n na a →∞-=- .13.若正实数y x ,满足:211111=+++y x ,则y x 的取值范围为 . 14.设双曲线1422=-y x 的右焦点为F ,点1P 、2P 、…、n P 是其右上方一段(522≤≤x ,0≥y )上的点,线段F P k 的长度为k a ,(n k ,,3,2,1 =).若数列{}n a 成等差数列且公差)55,51(∈d ,则n 最大取值为 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15.“3>x ”是“03>-x ”的 ………( ).()A 充分非必要条件 ()B 必要非充分条件()C 充要条件()D 既非充分又非必要条件16.执行如图所示的程序框图,输出的S 值为 ………( ).()A 3 ()B 6- ()C 10 ()D 15-17.直线3y kx =+与圆()()22324x y -+-=相交于,M N 两 点,若MN ≥则k 的取值范围是 ………( ).()A 3[,0]4- ()B [)∞+⋃⎥⎦⎤ ⎝⎛-∞-,043,()C [ ()D 2[,0]3-18. 已知点O 为ABC ∆6=2=,则⋅ 的值为……( ).()A 16 ()B 16- ()C364 ()D 364- 三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 . 已知)(2)14(log )(2R ∈++=x kx x f x 是偶函数.(1)求实数k 的值;(2)若函数m x f x F -=)()(的一个零点在区间)21,0(内,求实数m 的取值范围.20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分 . 如图,在四棱锥P ABCD -中,已知AC 与BD 交于点O ,⊥PA 平面A B C D ,底面A B C D 是边长为4的菱形,120BAD ∠=︒,4=PA .(1)求证:⊥BD 平面PAC ;(2)若点E 在线段BO 上,且二面角A PC E --的大小为60,求线段OE 的长.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 . 已知向量)sin ,)62(sin(x x π+=,)sin ,1(x n =,n m x f ⋅=)(.(1)求函数()y f x =的最小正周期及单调递减区间;(2)记△ABC 的内角C B A ,,的对边分别为c b a ,,.若212)2(+=Bf , 3,5==c b ,求a 的值.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆)0(1:2222>>=+Γb a b y a x 的右焦点为)0,1(F ,M 点的坐标为),0(b ,O 为坐标原点,△OMF 是等腰直角三角形.(1)求椭圆Γ的方程;(2)设经过点)2,0(C 作直线AB 交椭圆Γ于A 、B 两点,求△B O A 面积的最大值; (3)是否存在直线l 交椭圆于P ,Q 两点, 使点F 为△PQM 的垂心(垂心:三角形三 边高线的交点)?若存在,求出直线l 的方程;若不存在,请说明理由.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.如果无穷数列{}n a 满足下列条件:①122++≤+n n n a a a ;②存在实数M ,使M a n ≤. 其中*∈N n ,那么我们称数列{}n a 为Ω数列.(1)设数列{}n b 的通项为n n n b 25-=,且是Ω数列,求M 的取值范围; (2)设{}n c 是各项为正数的等比数列,n S 是其前项和,,47,4133==S c 证明:数列{}n S 是Ω数列;(3)设数列{}n d 是各项均为正整数的Ω数列,求证:1+≤n n d d .。
2018届杨浦区高考数学二模有答案.docx
杨浦区2017学年度第二学期高三年级模拟质量调研数学学科试卷 2018.4.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.函数lg 1y x =-的零点是 . 2.计算:=+∞→142limn nn .3.若的二项展开式中项的系数是,则n = . 4.掷一颗均匀的骰子,出现奇数点的概率为 .5.若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为 .6.若复数z 满足1z =,则z i -的最大值是 . 7.若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形, 则该圆锥的体积是 .8.若双曲线222161(0)3x y p p-=>的左焦点在抛物线22y px =的准线上,则p = .9.若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 . 10.若为等比数列,0n a >,且2018a =2017201912a a +的最小值为 . 11.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,2a =,2sin sin A C =.若B 为钝角,412cos -=C ,则ABC ∆的面积为 . 12.已知非零向量OP uuu r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++u u u u r u u u r u u ur ,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==u u u r u u u u r u u u r u u u u r u u u r u u u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤u u u u r u u u r恒成立,则实数k 的最小值为 .()13nx +2x 54{}na二、选择题(本题共有4题,满分20分,每题5分)13.已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为 ( ) )(A4π )(B 2π )(C 2π-)(D 3π-14.设B A 、是非空集合,定义:B A ⨯={|}x x A B x A B ∈⋃∉⋂且.已知{|A x y ==, }{1>=x x B ,则A B ⨯等于 ( ))(A ),2(]1,0[+∞Y . )(B ),2()1,0[+∞Y . )(C ]1,0[. )(D ]2,0[.15.已知222211220,0a b a b +≠+≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与2222:0l a x b y c ++=”平行的( ))(A 充分非必要条件 )(B 必要非充分条件 )(C 充要条件 )(D 既非充分也非必要条件 16.已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )1()arccos()arccos()arccos()arccos3399A B C D三、解答题17.(本题满分14分,第1小题满分7分,第2小题满分7分)共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用. 据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数()*x x N ∈满足 21608002y x x =-+-. (1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45o,请你确定点E 的位置,并证明你的结论.ABCD A 1B 1C 1D 119.(本题满分14分,第1小题满分7分,第2小题满分7分)已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2≥n ,n *∈N , λ,μ∈R .(1) 若0λ=,4μ=,12n n n b a a +=-(n *∈N ),求数列{}n b 的前n 项和; (2) 若23a =,且32λμ+=,求证:数列{}n a 是等差数列.20.(本题满分16分,第1小题满分5分,第2小题满分5分,第3小题满分6分) 已知椭圆222:9(0)x y m m Ω+=>,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两 个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上,12,F F 分别为椭圆的两个焦点,求12KF KF ⋅u u u r u u u u r的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值; (3)若l 过点(,)3mm ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形? 若能,求此时l 的斜率;若不能,说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)记函数()f x 的定义域为D 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数(1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数tx g x+=21)(,其中常数0≠t ,证明:)(x g 是ψ函数; (3)若)(x h 是定义在R 上的ψ函数,且函数)(x h 的图象关于直线x m =(m 为常数)对称,试判断)(x h 是否为周期函数?并证明你的结论杨浦区2017学年度第二学期高三年级模拟质量调研数学学科试卷答案 2018.4.10一、填空题 1. 10x = ;2. 21; 3.4 ; 4. 12 ; 5.3 ; 6. 2; 7.; 8.4; 9. 2424.77-或 ;10.4 ; 11.; 12. 34二、选择题13. C ; 14 . A ; 15. B ; 16. D ;三、解答题17.(本题满分14分,第1小题满分7分,第2小题满分7分) 【解】(1) 要使营运累计收入高于800元,令80080060212>-+-x x , …………………………………2分解得8040<<x …………………………………5分 所以营运天数的取值范围为40到80天之间 …………………………………7分 (2)6080021+--=xx x y …………………………………9分 20604002=+-≤ 当且仅当18002x x=时等号成立,解得400x = …………………………12分 所以每辆单车营运400天时,才能使每天的平均营运利润最大,最大为20元每天 …14分 18.(本题满分14分,第1小题满分6分,第2小题满分8分)【解】以D 为坐标原点,建立如图所示的坐标系,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,1,2),A 1(1,0,1),设E (1,m,0)(0≤m≤1)(1)证明:1(1,0,1)DA =u u u u r ,1(1,,1)ED m =--u u u u r………2分111(1)0()110DA ED m ⋅=⨯-+⨯-+⨯=u u u r u u u u r………4分所以DA 1⊥ED 1. ……………6分另解:1ADA AE 平面⊥,所以D A AE 1⊥ ……………2分又11AD D A ⊥,所以AE D D A 11平面⊥ ……………………………4分 所以11DA ED ⊥……………………………6分(2)以A 为原点,AB 为x 轴、AD 为y 轴、AA 1为z 轴建立空间直角坐标系…………7分 所以)1,0,0(1A 、)0,1,0(D 、)0,1,1(C 、)1,1,0(1D ,设t AE =,则)0,0,(t E ………8分设平面CED 1的法向量为),,(z y x =,由⎪⎩⎪⎨⎧=⋅=⋅01CD n 可得⎩⎨⎧=--=+-0)1(0y x t z x ,所以⎩⎨⎧-==xt y xz )1(,因此平面CED 1的一个法向量为)1,1,1(-t ………10分由直线1DA 与平面1CED 所成的角是45o,可得45sin 11=︒ ……11分可得1)1(12|11|222+-+⋅+-=t t ,解得21=t ………13分 由于AB=1,所以直线1DA 与平面1CED 所成的角是45o时,点E 在线段AB 中点处 …14分 19.(本题满分14分,第1小题满分7分,第2小题满分7分)【解】(1)14-=n n a S ,所以n n a S 41=+ 两式相减得1144-+-=-n n n n a a S S 即1144-+-=n n n a a a………2分所以)2(2211-+-=-n n n n a a a a ,即12-=n n b b ,………3分又8412==a S ,所以6122=-=a S a ,得22121=-=a a b ………4分因此数列{}n b 为以2为首项,2为公比的等比数列 nn b 2=,前n 项和为221-+n …7分(2)当n=2时,1222a a S μλ+=,所以μλ2623+=+ 又32λμ+= 可以解得21=λ,1=μ………9分所以12-+=n n n a a n S ,n n n a a n S ++=++1121,两式相减得111221-++-+-+=n n n n n a a a n a n a 即112221-++-=-n n n a a n a n猜想1+=n a n ,下面用数学归纳法证明:①当n=1或2时,1121+==a ,1232+==a ,猜想成立;①假设当k n ≤(2,*≥∈k N k )时,1k a k =+ 成立则当1+=k n 时,2))1(22(12)22(1211+=++--=+--=-+k k k k k a a k k a k k k 猜想成立 由①、①可知,对任意正整数n ,1+=n a n………13分 所以11=-+n n a a 为常数,所以数列{}n a 是等差数列………14分另解:若23a =,由12212a a a a +=+λμ,得562=+λμ, 又32+=λμ,解得112==,λμ. ………9分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列, 由12n n n n S a a -=+,得1112n n n n S a a +++=+,两式相减得:111122n n n n n n na a a a a ++-+=-+- 即11(1)(2)20n n n n a n a a +-----=所以 21(1)20n n n na n a a ++---= ………11分相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+= 所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+=所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-L L L ,因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………14分20.(本题满分16分,第1小题满分5分,第2小题满分5分,第3小题满分6分) 【解】(1)椭圆99:22=+Ωy x ,两个焦点)22,0(1F 、)22,0(2-F ,设),(y x K所以2212()(,)8KF KF x y x y x y ⋅=-⋅--=+-u u u r u u u u r由于2299x y +=,所以2299y x =-,22212(99)881KF KF x x x ⋅=+--=-+u u u r u u u u r …3分 由椭圆性质可知11x -≤≤,所以12[7,1]KF KF ⋅∈-u u u r u u u u r……………5分(2)设直线b kx y l +=:(0,0≠≠k b ),),(11y x A ,),(22y x B ,),(00y x M , 所以21x x 、为方程222)(9m b kx x =++的两根,化简得02)9(2222=-+++m b kbx x k ,所以922210+-=+=k kb x x x ,99922200+=++-=+=k bb k b k b kx y ……………8分kx y k OM 900-==,所以直线OM 的斜率与l 的斜率的乘积等于 -9为定值 …………10分 (3)因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 设),(p p y x P 设直线m m x k y l +-=)3(:(0,0≠≠k m ),即m mk kx y +-=3由(2)的结论可知x ky OM 9:-=,代入椭圆方程2229m y x =+得8192222+=k k m x p …12分 由(2)的过程得中点)9)3(9,9)3((22+-+--k kmm k k mk m M , ……………14分 若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以p x x =02,得819)93(4222222+=+-k k m k mk mk ,解得74±=k所以当l的斜率为44OAPB 为平行四边形. ……………16分 21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 【解】 (1)1()1f x x=-是ψ函数 . ……1分 理由如下:1()1f x x=-的定义域为{|0}x x ≠,只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立.由()()f a x f a x b -++=,得112b a x a x +-=-+,即2()()a x a xb a x a x ++-+=-+. 所以22(2)()2b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-= 从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立.所以1()1f x x=-是ψ函数. …………4分 (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,即1122a xa xb tt-++=++恒成立.所以22(2)(2)a xa x a x a x t tb t t +-+-+++=++, ……5分化简得,22(1)(22)(2)2a xa x a btb t t +--+=+-.所以10bt -=,22(2)20a b t t +-=.因为0t ≠,可得1b t=,2log ||a t =, 即存在实数a ,b 满足条件,从而1()2xg x t=+是ψ函数. …………10分 (3)函数)(x h 的图象关于直线x m =(m 为常数)对称,所以)()(x m h x m h +=- (1), ……………12分 又因为b x a h x a h =++-)()( (2), 所以当a m ≠时,)]2([)22(a m x m h a m x h -++=-+由(1 ) )]([)2()]2([x a a h x a h a m x m h -+=-=-+-= 由(2) )()]([x h b x a a h b -=---= (3)所以)22(]22)22[()44(a m x h b a m a m x h a m x h -+-=-+-+=-+ (取a m x t 22-+=由(3)得)再利用(3)式,)()]([)44(x h x h b b a m x h =--=-+所以()f x 为周期函数,其一个周期为a m 44- ……………15分第 11 页 当a m =时,即)()(x a h x a h +=-,又)()(x a h b x a h +-=-, 所以2)(b x a h =+为常数 所以函数)(x h 为常数函数,2)()1(b x h x h ==+,)(x h 是一个周期函数 ……………17分 综上,函数)(x h 为周期函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 2. 计算:2lim41n nn →∞=+3. 若(13)n x +的二项展开式中2x 项的系数是54,则n =4. 掷一颗均匀的骰子,出现奇数点的概率为5. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为6. 若复数z 满足1z =,则z i -的最大值是7. 若一个圆锥的主视图(如图所示)是边长为3、3、2的三角形, 则该圆锥的体积是8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p = 9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为10. 若{}n a 为等比数列,0n a >,且20182a =,则2017201912a a +的最小值为 11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =.若B 为钝角,1cos24C =-,则ABC ∆的面积为 12. 已知非零向量OP uu u r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++uuu r uu u r uuur ,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==uu r uuu r uu u r uuu r uu r uu u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤uuu u r uu u r恒成立,则实数k 的最小值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2πC. 2π- D. 3π-14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈U 且}x A B ∉I .已知2{|2}A x y x x ==-,{|1}B x x =>,则A B ⨯等于( )A.[0,1](2,)+∞UB. [0,1)(2,)+∞UC.[0,1]D. [0,2]15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( ) A. 1arccos 3B. 2arccosC. 3arccosD. 6arccos三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用, 据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系 式21608002y x x =-+-. (1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45o,请你确定点E 的位置,并证明你的结论.19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和; (2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列.20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两 个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅u u u r u u u u r的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值; (3)若l 过点(,)3mm ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形? 若能,求此时l 的斜率;若不能,说明理由.21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满 足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x =-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 【解析】lg 1010x x -=⇒=2. 计算:2lim41n nn →∞=+【解析】123. 若(13)n x +的二项展开式中2x 项的系数是54,则n =【解析】223544n C n =⇒=4. 掷一颗均匀的骰子,出现奇数点的概率为 【解析】125. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为【解析】三个交点为(1,1)、(0,0)、(2,0),所以最大值为3 6. 若复数z 满足1z =,则z i -的最大值是【解析】结合几何意义,单位圆上的点到(0,1)的距离,最大值为27. 若一个圆锥的主视图(如图所示)是边长为3、3、2的三角形, 则该圆锥的体积是【解析】13V π=⋅⋅=8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p = 【解析】2234164p p p +=⇒= 9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为 【解析】3sin 5y =-,3tan 4y =±,24tan 27y =±10. 若{}n a 为等比数列,0n a >,且20182a =,则2017201912a a +的最小值为【解析】2019201720182220172019201820182124a a a a a a ++=≥=11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =. 若B 为钝角,1cos24C =-,则ABC ∆的面积为【解析】2a =,4c =,21cos212sin sinC C C =-=-⇒=cos C =sin A =cos A =sin sin()B A C =+=,1242S =⨯⨯=12. 已知非零向量OP uu u r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++uuu r uu u r uuur ,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==uu r uuu r uu u r uuu r uu r uu u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时, 不等式12||||F F k PQ ≤uuu u r uu u r 恒成立,则实数k 的最小值为 【解析】建系,不妨设(1,0)P -,(1,0)Q ,∴1(,0)1m M m -+,3m ≥,11[,1)12m m -∈+, ∴3FP MP FQ MQ =≥,设(,)F x y ,∴2222(1)9(1)x y x y ++≥-+,即2259()416x y -+≤,点F 在此圆内, ∴12max 33||242F F =⨯=uuu u r ,33224k k ≤⇒≥二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2πC. 2π- D. 3π-【解析】T π=,2ω=,()122f ππϕ=⇒=-,选C14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈U 且}x A B ∉I .已知{|A x y =,{|1}B x x =>,则A B ⨯等于( )A.[0,1](2,)+∞UB. [0,1)(2,)+∞UC.[0,1]D. [0,2]【解析】[0,2]A =,[0,)A B =+∞U ,(1,2]A B =I ,选A 15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 【解析】11220a b a b =推出直线平行或重合,选B16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )A. 1arccos 3B. arccos 3C.D.【解析】设三条棱a b c ≤≤,∴454ab ac bc ++=,6a b c ++=,222272a b c ++=,222224522[(6)]a b c a bc a a a ++≥+=+--,整理得2430a a -+≤,∴12a ≤≤,∴最短棱长为1,体对角线长为2,cos θ==,选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用, 据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系 式21608002y x x =-+-. (1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大? 【解析】(1)要使营运累计收入高于800元,令80080060212>-+-x x , ……2分 解得8040<<x .………………………………………5分 所以营运天数的取值范围为40到80天之间 .………………………………7分(2)6080021+--=x x x y 6020≤-= …………………………………9分 当且仅当18002x x=时等号成立,解得400x = …………………………12分所以每辆单车营运400天时,才能使每天的平均营运利润最大,最大为20元每天 .…14分18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45o,请你确定点E 的位置,并证明你的结论. 【解析】以D 为坐标原点,建立如图所示的坐标系,则(0,0,0)D ,(1,0,0)A ,(1,1,0)B , C (0,1,0) ,D 1(0,1,2) ,A 1(1,0,1),设(1,,0)E m (01)m ≤≤(1)证明:1(1,0,1)DA =u u u u r,1(1,,1)ED m =--u u u u r ………2分111(1)0()110DA ED m ⋅=⨯-+⨯-+⨯=u u u r u u u u r ………4分 所以DA 1⊥ED 1. ……………6分另解:1ADA AE 平面⊥,所以D A AE 1⊥. ……………2分 又11AD D A ⊥,所以AE D D A 11平面⊥. ……………………………4分 所以11DA ED ⊥……………………………6分(2)以A 为原点,AB 为x 轴、AD 为y 轴、AA 1为z 轴建立空间直角坐标系…………7分 所以)1,0,0(1A 、)0,1,0(D 、)0,1,1(C 、)1,1,0(1D ,设t AE =,则)0,0,(t E ………8分设平面CED 1的法向量为),,(z y x =,由⎪⎩⎪⎨⎧=⋅=⋅001CD n 可得⎩⎨⎧=--=+-0)1(0y x t z x , 所以⎩⎨⎧-==xt y xz )1(,因此平面CED 1的一个法向量为)1,1,1(-t ………10分由直线1DA 与平面1CED 所成的角是45o,可得||||45sin 11n DA =︒ ……11分可得1)1(12|11|222+-+⋅+-=t t ,解得21=t ………13分 由于AB =1,所以直线1DA 与平面1CED 所成的角是45o时,点E 在线段AB 中点处. …14分19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和;(2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列. 【解析】(1)14-=n n a S ,所以n n a S 41=+.两式相减得1144-+-=-n n n n a a S S .即1144-+-=n n n a a a………2分所以)2(2211-+-=-n n n n a a a a ,即12-=n n b b ,………3分又8412==a S ,所以6122=-=a S a ,得22121=-=a a b ………4分因此数列{}n b 为以2为首项,2为公比的等比数列.nn b 2=,前n 项和为221-+n …7分(2)当n = 2时,1222a a S μλ+=,所以μλ2623+=+. 又32λμ+=,可以解得12λ=,1μ= ………9分 所以12-+=n n n a a n S ,n n n a a n S ++=++1121,两式相减得111221-++-+-+=n n n n n a a a n a n a 即112221-++-=-n n n a a n a n . 猜想1+=n a n ,下面用数学归纳法证明: ………10分① 当n = 1或2时,1121+==a ,1232+==a ,猜想成立;② 假设当k n ≤(2,*≥∈k N k )时,1k a k =+ 成立则当1+=k n 时,2))1(22(12)22(1211+=++--=+--=-+k k k k k a a k k a k k k 猜想成立. 由①、②可知,对任意正整数n ,1+=n a n .………13分 所以11=-+n n a a 为常数,所以数列{}n a 是等差数列.………14分另解:若23a =,由12212a a a a +=+λμ,得562=+λμ,又32+=λμ,解得112==,λμ. ………9分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+,两式相减得:111122n n n n n n na a a a a ++-+=-+-,即11(1)(2)20n n n n a n a a +-----=所以 21(1)20n n n na n a a ++---= ………11分相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+= 所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+=所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-L L L ,因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………14分20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两 个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅u u u r u u u u r的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值; (3)若l 过点(,)3mm ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形? 若能,求此时l 的斜率;若不能,说明理由.【解析】(1)椭圆99:22=+Ωy x ,两个焦点)22,0(1F 、)22,0(2-F ,设),(y x K 所以8)22,()22,(2221-+=---⋅--=⋅y x y x y x KF KF由于9922=+y x ,所以2299x y -=,188)99(22221+-=--+=⋅x x x KF KF …3分由椭圆性质可知11≤≤-x ,所以]1,7[21-∈⋅KF KF……………5分(2)设直线b kx y l +=:(0,0≠≠k b ),),(11y x A ,),(22y x B ,),(00y x M , 所以21x x 、为方程222)(9m b kx x =++的两根,化简得02)9(2222=-+++m b kbx x k ,所以922210+-=+=k kb x x x ,99922200+=++-=+=k bb k b k b kx y . ……………8分 kx y k OM 900-==,所以直线OM 的斜率与l 的斜率的乘积等于9-为定值. …………10分(3)∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 设),(p p y x P 设直线m m x k y l +-=)3(:(0,0≠≠k m ),即m mkkx y +-=3.由(2)的结论可知x ky OM 9:-=,代入椭圆方程2229m y x =+得8192222+=k k m x p …12分由(2)的过程得中点)9)3(9,9)3((22+-+--k km m k k mk m M , ……………14分 若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以p x x =02,得819)93(4222222+=+-k k m k mk mk ,解得74±=k 所以当l的斜率为44OAPB 为平行四边形. ……………16分21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满 足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x =-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论. 【解析】(1)1()1f x x=-是ψ函数 . ……1分 理由如下:1()1f x x=-的定义域为{|0}x x ≠, 只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立.由()()f a x f a x b -++=,得112b a x a x +-=-+,即2()()a x a xb a x a x ++-+=-+. 所以22(2)()2b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-= 从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立. 所以1()1f x x=-是ψ函数. …………4分 (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,即1122a xa xb tt-++=++恒成立.所以22(2)(2)a x a x a x a x t t b t t +-+-+++=++, ……5分 化简得,22(1)(22)(2)2a x a x a bt b t t +--+=+-.所以10bt -=,22(2)20a b t t +-=. 因为0t ≠,可得1b t=,2log ||a t =,即存在实数a ,b 满足条件,从而1()2x g x t=+是ψ函数. …………10分(3)函数)(x h 的图象关于直线x m =(m 为常数)对称,所以)()(x m h x m h +=- (1), ……………12分 又因为b x a h x a h =++-)()( (2), 所以当a m ≠时,)]2([)22(a m x m h a m x h -++=-+ 由(1) )]([)2()]2([x a a h x a h a m x m h -+=-=-+-= 由(2) )()]([x h b x a a h b -=---= (3)所以)22(]22)22[()44(a m x h b a m a m x h a m x h -+-=-+-+=-+ (取a m x t 22-+=由(3)得)再利用(3)式,)()]([)44(x h x h b b a m x h =--=-+.所以()f x 为周期函数,其一个周期为a m 44-. ……………15分 当a m =时,即)()(x a h x a h +=-,又)()(x a h b x a h +-=-, 所以2)(bx a h =+为常数. 所以函数)(x h 为常数函数, 2)()1(bx h x h ==+,)(x h 是一个周期函数. ……………17分综上,函数)(x h 为周期函数 ……………18分(其他解法参考评分标准,酌情给分)。