(中考复习)第13讲 反比例函数及其图象
2014中考总复习第13讲反比例函数
![2014中考总复习第13讲反比例函数](https://img.taocdn.com/s3/m/b262150ca6c30c2259019e8e.png)
知识回顾
重点解析
探究拓展
真题演练
5 1. (2013·兰州)当 x>0 时, 函数 y=- x 的图象在(
)
A. 第四象限 C. 第二象限
B. 第三象限 D. 第一象限
5 【解析】 ∵函数 y=- x 中 k=-5<0, ∴其图象位于第二、四象限, 当 x>0 时, 其图
象位于第四象限. 【答案】 A
知识回顾
重点解析
探究拓展
真题演练
∵O E =2, ∴C E =3, ∴点 C 的坐标是( -2, 3) .
6 ∴k=-2× 3=-6, ∴y=- x .
( 2) 设直线 AB 的解析式为 y=kx+b( k≠0) .
1 k b 2 2 则 4k b 0 , 解得 . b 2
第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
一、反比例函数的有关概念 1. 反比例函数的定义: 形如 y= 量, y是 x的函数. 2. 反比例函数的解析式的三种形式: ( 1) y= 0, k为常数) . ( k≠0, k为常数) ; ( 2) y= ( k≠0, k为常数) ; ( 3) xy=k( k≠ ( k≠0, k为常数) 的函数叫做反比例函数, 其中 x是自变
BD 1 1 1 ∴ OD = 3 , BD = 4 BO . 又∵S△AB O =1, ∴ 2 B D ·B A=1, 8 ∴B O ·B A=8. 设 A 点坐标为 A ( x, y) , 由 xy=8, 得 y= x . 8 【答案】y= x ( x>0)
第一部分
k
.
复习目标
知识回顾
重点解析
初中数学 反比例函数的图象与性质
![初中数学 反比例函数的图象与性质](https://img.taocdn.com/s3/m/1c5066beeefdc8d377ee3205.png)
初中数学导学案
(六)本课小结(第20分钟)
回忆本节课的所学内容,从知识掌握上升到能力要求,建立反比例函数的定义→反比例函数的图象与性质知识体系的理解
③求△AOB 的面积; ④观察图象,直接写出不等式kx +b ﹣x
m
<0的解集
三、当堂检测
1. 已知反比例函数21
m y x
-=的图象在一,三象限,那么m 的取值范围是______________.
2.如图,点A 是4
y x
=图象上的一点,AB y ⊥轴于点B ,则AOB △的面积是
( ) A.1.
B .2.
C .3.
D .4.
2.若11
2M y ⎛⎫- ⎪⎝⎭,,
214N y ⎛⎫- ⎪⎝⎭,,312P y ⎛⎫
⎪⎝⎭
,三点都在函数(0)k y k x =<的
图象上,则1y 、2y 、3y 的大小关系为( ) A .231y y y >> B .213y y y >>
C .312y y y >>
D .321y y y >>
3.如图,一次函数y =kx +b 的图象与反比例函数y =
x
m
的图象交于A (-2,1),B (1,n )两点. (1)求反比例函数和一次函数的解析式; (2)根据图象,直接写出使kx +b >x
m
的x 的取值范围. (3)求三角形AOB 的面积.
四、作业布置
A
B O
y。
第13讲 反比例函数
![第13讲 反比例函数](https://img.taocdn.com/s3/m/9ee2350252ea551811a6870d.png)
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
1.已知反比例函数的图象经过点(-1,2),则它的 解析式是 ( B ) 2 B. y=- x 1 D. y = x
1 A. y=- 2x 2 C. y = x
考点知识梳理
中考典例精析
基础巩固训练
如图①和②,S 矩形 PAOB=PA· PB= |y |· |x|= |xy|= |k|, 1 1 同理可得 S△ OPA= S△ OPB= |xy|= |k|. 2 2 温馨提示 根据图象描述性质、根据性质大致画出图象及求 解析式是一个难点,要逐步理解和掌握 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点五
反比例函数的应用
解决反比例函数的实际问题时,要先确定函数解 析式,再利用图象找出解决问题的方案,要特别注意 自变量的取值范围 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点一
反比例函数的性质
m+2 例 1 (2013· 衢州)若函数 y= x 的图象在其所在的 每一象限内,函数值 y 随自变量 x 的增大而增大,则 m 的取值范围是( A.m<-2 C. m>-2 ) B.m<0 D.m>0
考点知识梳理 中考典例精析 基础巩固训练 考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
(1)恒温系统在这天保持大棚内温度 18 ℃的时间有 多少小时? (2)求 k 的值; (3)当 x= 16 时,大棚内的温度约为多少摄氏度?
反比例函数图像课件
![反比例函数图像课件](https://img.taocdn.com/s3/m/0aa19f682bf90242a8956bec0975f46527d3a7a4.png)
函数性质
线性函数是单调递增或 递减的,而反比例函数 在各自象限内是单调递 减的。
图像
线性函数的图像是一条 直线,而反比例函数的 图像是双曲线,分别位 于第一和第三象限。
与指数函数的比较
定义域
01
指数函数的定义域为所有实数,即$x in (-infty, +infty)$,与反
比例函数的定义域不同。
边际效用递减规律
在消费行为中,随着消费量的增加,消费者所获得的边际 效用通常呈现递减趋势,即每增加一单位消费量所带来的 效用增量逐渐减少。
投资回报率与风险的关系
在投资领域中,投资回报率与风险通常成反比关系,即当 投资回报率较高时,风险也相应较大;反之,当投资回报 率较低时,风险也相应较小。
在日常生活中的应用
定义域是全实数集。
函数性质
正比例函数是单调递增的,而反 比例函数在各自象限内是单调递
减的。
图像
正比例函数的图像是一条通过原 点的直线,而反比例函数的图像 是双曲线,分别位于第一和第三
象限。
与线性函数的比较
定义域
线性函数的定义域为所 有实数,即$x in (infty, +infty)$,而反比 例函数的定义域是除去 0的,即$x in (-infty, 0) cup (0, +infty)$。
使用数学软件绘制反比例函数图像
软件选择
选择一款适合的数学软件,如 GeoGebra、Desmos或 Microsoft Math等,这些软件都 提供了绘制反比例函数图像的功 能。
步骤
在软件中输入反比例函数公式, 如$y=frac{k}{x}$,其中$k$为常 数。然后选择绘图功能,软件会 自动生成反比例函数的图像。
反比例函数图像
![反比例函数图像](https://img.taocdn.com/s3/m/48a355cced3a87c24028915f804d2b160b4e86a9.png)
反比例函数图像反比例函数,也称为倒数函数,是一种特殊的函数形式。
它的定义为:当一个变量的取值不断增加时,另一个变量的取值不断减小,两个变量之间存在着一个倒数的关系。
反比例函数可以表示为y = k/x,其中,k是一个常数,x和y分别表示两个变量的取值。
在这个函数中,x是自变量,y是因变量。
反比例函数的图像通常为一个由第一象限的正半轴上的一条直线和原点构成的曲线。
具体来说,当x取较大的正值时,y取较小的正值;当x取较小的正值时,y取较大的正值;当x取0时,y的值趋近于无穷大;当x取负值时,y的值亦为负值,但绝对值较小。
为了更好地理解反比例函数的图像,我们可以绘制一组函数值对应的点,然后将这些点连接起来,从而形成函数的图像。
下面我们将通过几个例子来说明。
例子1:考虑函数y = 2/x,在自变量x取不同的值时,查找相应的因变量y的值:当x取1时,y = 2/1 = 2;当x取2时,y = 2/2 = 1;当x取3时,y = 2/3 ≈ 0.67;当x取4时,y = 2/4 = 0.5;当x取5时,y = 2/5 ≈ 0.4;当x取10时,y = 2/10 = 0.2。
通过将这些点连接起来,我们可以得到反比例函数y = 2/x的图像。
图像呈现出一条从第一象限的正半轴开始的曲线,曲线与x轴以y轴为渐近线。
x 越大,y越小;x越小,y越大。
当x等于0时,函数的图像无定义。
例子2:再考虑函数y = 3/x,在自变量x取不同的值时,查找相应的因变量y的值:当x取1时,y = 3/1 = 3;当x取2时,y = 3/2 ≈ 1.5;当x取3时,y = 3/3 = 1;当x取4时,y = 3/4 ≈ 0.75;当x取5时,y = 3/5 ≈ 0.6;当x取10时,y = 3/10 = 0.3。
同样地,通过连接这些点,我们可以得到反比例函数y = 3/x的图像。
图像也呈现出一条从第一象限的正半轴开始的曲线,曲线与x轴以y轴为渐近线。
第十三讲反比例函数详解
![第十三讲反比例函数详解](https://img.taocdn.com/s3/m/c2c0645d27284b73f342500c.png)
第十三讲 反比例函数第一部分 知识梳理一、反比例函数的解析式1.反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2.反比例函数解析式的确定 由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
二、反比例函数的图像及性质1.反比例函数的图象反比例函数的图象是双曲线,有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2.反比例函数的性质3.反比例函数中反比例系数的几何意义(如图)面积为k 。
连接该点和原点,所得三三角形(如图)的面积m 的值D .21-〖选题意图〗对于反比例函数)0(≠=k xky 。
由于11-=x x ,所以反比例函数也可以写成1-=x y (k 是常数,k ≠0)的形式,有时也以xy=k (k 是常数,k ≠0)的形式出现。
(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.本题需要理解好反比例函数定义中的系数和指数,同时需要掌握反比例函数的性质,这样才能防止漏解或多解。
〖解题思路〗根据反比例函数的定义m 2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.〖参考答案〗解:∵函数()521-+=m xm y 是反比例函数,且图象在第二、四象限内,∴⎩⎨⎧+-=-01152<m m ,解得m =±2且m <﹣1,∴m =﹣2.故选B .【课堂训练题】1.已知y=y 1+y 2,y 1与x 成正比例,y 2与x ﹣2成反比例,且当x =1时,y =﹣1;当x=3时,y=5.求y 与x 的函数关系式. 〖难度分级〗A 类〖参考答案〗解:设y 1=k 1x (k 1≠0),y 2=错误!未找到引用源。
反比例函数图像和性质ppt课件
![反比例函数图像和性质ppt课件](https://img.taocdn.com/s3/m/80d8da92b8f3f90f76c66137ee06eff9aff8494e.png)
反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。
【大师特稿】中考数学一轮复习第13讲:反比例函数教案
![【大师特稿】中考数学一轮复习第13讲:反比例函数教案](https://img.taocdn.com/s3/m/b418751c83c4bb4cf7ecd1e3.png)
第13讲:反比例函数一、复习目标1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象2、能够将反比例函数有关的实际应用题转化为函数问题二、课时安排1课时三、复习重难点1、反比例函数图象与性质2、反比例函数图象、性质的应用四、教学过程(一)知识梳理反比例函数的图象与性质·PN=|y|·|x|=(二)题型、技巧归纳考点1:反比例函数的概念技巧归纳:判断点是否在反比例函数图象上的方法有两种:一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数,二是将选项中点的坐标诸个代入反比例函数关系式,看能否使等式成立.考点2:反比例函数的图象与性质技巧归纳:1、比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.2、过反比例函数y =kx的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.考点3反比例函数的应用技巧归纳:先根据双曲线上点C 的坐标求出m 的值,从而确定点C 的坐标,再将点C 的坐标代入一次函数关系式中确定n 的值,在求出两个函数关系式后结合条件可求出三角形的面积.过反比例函数y =k x的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.(三)典例精讲例1 某反比例函数的图象经过(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)[解析] 设反比例函数的关系式为y =kx,把点(-1,6)代入可求出k =-6,所以反比例函数的关系式为y =-6x,故此函数也经过点(-3,2),答案选A.例2在反比例函数y =k x (k <0)的图象上有两点()-1,y 1,⎝ ⎛⎭⎪⎫-14,y 2,则y 1-y 2的值是( ) A .负数 B .非正数C .正数D .不能确定 [解析] 反比例函数y =kx :当k <0时,该函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大.又∵点(-1,y 1)和⎝ ⎛⎭⎪⎫-14,y 2均位于第二象限,-1<-14, ∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,故选A.例3 如图点A ,B 在反比例函数y = (k>0,x>0)的图象上,过点A ,B 作x 轴的垂线,垂足分别为M ,N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为________.[解析] ∵S △AOC =6,OM =MN =NC =13OC ,∴S △OAC =12×OC×AM,S △AOM =12×OM×AM=13 S △OAC =2=12|k|.又∵反比例函数的图象在第一象限,k >0,则k =4.例4 如图13-2,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A 、B ,与双曲线y =4y x=在第一象限内交于点C (1,m ). (1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y = 交于点P 、Q ,求△APQ 的面积.解:(1) ∵点C(1,m)在双曲线y =4x上,∴m =4,将点C(1,4)代入y =2x +n 中,得n =2;(2)在y =2x +2中,令y =0,得x =-1,即A(-1,0).将x =3代入y =2x +2和y =4x,得点P(3,8),Q ⎝ ⎛⎭⎪⎫3,43,∴PQ =8-43=203.又∵AD =3-(-1)=4,∴△APQ 的面积=12×4×203=403. (四)归纳小结本部分内容要求熟练掌握反比例函数的求法,能画出反比例函数的图象,能够将反比例函数有关的实际应用题转化为函数问题(五)随堂检测1、已知点A(-2,y 1)、B(1,y 2)和C(2,y 3)都在反比例函数ky x= (k<0)的图象上,那么y 1、y 2和y 3的大小关系如何?2、已知反比例函数7y x=-图象上三个点的坐标分别是A(-2,y 1)、B(-1,y 2)、C(2,y 3),能正确反映y 1、y 2、y 3的大小关系的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 2>y 3>y 13、已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3). (Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围.4、如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数y=的图象有一个交点A (m ,2).(1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.五、板书设计反比例函数六、作业布置反比例函数课时作业七、教学反思借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
中考总复习数学13-第一部分 第13讲 反比例函数及其应用
![中考总复习数学13-第一部分 第13讲 反比例函数及其应用](https://img.taocdn.com/s3/m/052e8192970590c69ec3d5bbfd0a79563c1ed463.png)
返回思维导图
第13讲 反比例函数及其应用— 考点梳理
返回栏目导航
续表
在每个象限内,y随x的增大
增减性
而⑤ 减小
对称性
是轴对称图形,对称轴为直线y=⑦
⑧ 原点O
在每个象限内,y随x的增大
而⑥增大
±x
; 是中心对称图形,对称中心是
图象由分别位于两个象限的双曲线组成,图象无限接近坐标轴,但不与
图象特征
坐标轴相交.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
返回栏目导航
考点 4 反比例函数的应用
1.判断同一坐标系中反比例函数图象和一次函数图象的方法
(假设法)假设反比例函数正确,即可确定 k的取值范围,再根据 k 的取值范围
确定一次函数图象,无矛盾,则正确.
2.已知两个函数图象,求交点坐标
(1)求一次函数图象与反比例函数图象的交点,将两个函数解析式联立方程组
位置关系,依据图象在上方的函数值总比图象在下方的函数值大 ,在各区域
内找对应的x的取值范围.
4.求图形面积
(1)当图形有一边在坐标轴上时,通常将坐标
轴上的边作为底边,再利用点的坐标求出底边上的高,最后用面积公式求解.
(2)当图形三边都不在坐标轴上时,一般用“割补法”.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
2.与反比例函数中k的几何意义有关的面积计算
S△AOP=⑩
S△APP‘=
|k|
2|k|
S△OBP= |k|
S△ABC=
|k|
S矩形OAPB=|k|
S▱ABCD=
|k|
返回栏目导航
中考复习:反比例函数
![中考复习:反比例函数](https://img.taocdn.com/s3/m/0c7998e2856a561252d36f6c.png)
第13讲┃ 归类示例
k [解析] 设反比例函数的关系式为 y= ,把点(- x 1,6)代入可求出 k=-6,所以反比例函数的关系式 -6 为 y= ,故此函数也经过点(-3,2),答案选 A. x
第13讲┃ 归类示例
判断点是否在反比例函数图象上的方法有两种: 一是口算选项中点的横坐标与纵坐标乘积是否都等 于比例系数,二是将选项中点的坐标诸个代入反比 例函数关系式,看能否使等式成立.
反比例函数
第13讲┃ 考点聚焦
考点聚焦
考点1 反比例函数的概念
k y= 形如________(k≠0,k 为常数) x 的函数叫做反比例函数,其中 x 是________,y 是 x 的函数,k 是 自变量 ________ 比例系数
定义
关系式 防错提醒
k y= 或 y=kx-1 或 xy=k(k≠0) x
(1)k≠0;(2)自变量 x≠0;(3) 函数值 y≠0
第13讲┃ 考点聚焦
考点2
反比例函数的图象与性质
(1) 反比例函数的图象 呈现形式 反比例函数y= (k≠0)的图象是 ________ 双曲线
k x
原点 它既是关于________对称的中心对称图形, 也是轴对称图形,其对称轴为第一、三象 对称性 限或第二、四象限坐标轴夹角的平分线, 即直线y=x或直线y=-x
第13讲┃ 归类示例
归类示例
► 类型之一 反比例函数的概念 命题角度: 1. 反比例函数的概念; 2. 求反比例函数的解析式. [2013·扬州 ]某反比例函数的图象经过(-1,6),
例1
则下列各点中,此函数图象也经过的点是( A ) A.(-3,2) B.(3,2) C.(2,3) D.(6,1)
第13讲┃ 归类示例 ► 类型之三 反比例函数的应用
(中考复习)第13讲 反比例函数及其图象
![(中考复习)第13讲 反比例函数及其图象](https://img.taocdn.com/s3/m/7214a86358fafab069dc0212.png)
C.y1=y2
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
5. (2012· 达州)一次函数 y1=kx+b(k≠0)与反 m 比例函数 y2= (m≠0),在同一直角坐标 x 系中的图象如图 13-3 所示,若 y1>y2, 则 x 的取值范围是 ( A )
A.-2<x<0或x>1
基础知识 · 自主学习 题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
2 3. (2012· 菏泽)反比例函数 y= 图象上的两个点为 (x1, y1), (x2, x y2),且 x1<x2,则下式关系成立的是 ( D ) A.y1>y2 B.y1<y2
D.不能确定 1-2k 4. (2013· 哈尔滨 )反比例函数 y= 的图象经过点 (- 2,3),则 x k 的值为 ( C ) 7 7 A. 6 B.- 6 C. D.- 2 2
轴对称图形 . ______________ 4.应用:
如图 13-1 所示,点 A 和点 C 是反比 k 例函数 y= (k≠0)的图象上任意两点, x 画 AB⊥x 轴于 B,CD⊥y 轴于 D,则 |k| 有 S△AOB=S△COD= . 2
图13-1
课堂回顾 · 巩固提升
基础知识 · 自主学习
图13-4
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
题组一
反比例函数解析式的确定
已知图象上一点求解析式
【 例 1】2 ( 0 1 3 · 巴 中 )如 图 1 3 -5 所 示 , 在 平 面 直 角 坐 标 系 x O y 中,一 次 函 数 y= k x + b(k≠ 0 ) 的 图 象 与 反 比 例 k 函数 y= 的 图 象 交 于 一 、 三 象 限 内 x 的 A、B 两 点 ,直线 AB 与 x 轴 交 于 点 C,点 B 的 坐 标 为 (- 6,n),线 段 OA= 5,E 为 x 轴 正 半 轴 上 一 点 ,且 4 a t n ∠A O E = . 3
中考总复习数学13- 第一部分 第13讲反比例函数及其应用(精练册)
![中考总复习数学13- 第一部分 第13讲反比例函数及其应用(精练册)](https://img.taocdn.com/s3/m/f2dc0218ef06eff9aef8941ea76e58fafab04518.png)
(2)若点C,D分别在函数y= (x>0)和y= (x>0)
的图象上,且不与点A,B重合,是否存在点C,D,
使得△COD≌△AOB.若存在,请直接写出
点C,D的坐标;若不存在,请说明理由.
18
19
20
第13讲
反比例函数及其应用
基础全练
挑战高分
中考创新练
解:(1)如图1,过点A作AG⊥y轴于G,过点B作BH⊥y轴于H,
顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的
值为( C )
A.
B.
C.2
D.4
1
2
3
4
5
6
7
8
9
10
11
12
13
第13讲
反比例函数及其应用
挑战高分
基础全练
中考创新练
6.(2022·广西贺州)已知一次函数y=kx+b的图象如图所示,则y=-kx+b与y=
的图象为( A )
∵OA的中点是B,∴B(1,2),∴k=2;
(2)当x=2时,y=1,
∴D(2,1),∴AD=4-1=3,
∴S△OBD=S△OAD-S△BAD= ×3×2- ×3×1= .
1
2
3
4
5
6
7
8
9
10
11
12
13
第13讲
反比例函数及其应用
挑战高分
基础全练
中考创新练
12.(2022·广西百色)已知:点A(1,3)是反比例函数y1= (k≠0)的图象与直线
反比例函数的图像与性质 课件
![反比例函数的图像与性质 课件](https://img.taocdn.com/s3/m/a4f361c4ed3a87c24028915f804d2b160a4e866e.png)
反比例函数图像的特点
探索反比例函数图像的形状和特征。
反比例函数的运算和应用
学习如何进行反比例函数的运算,并了解其在 实际问题中Байду номын сангаас应用。
参考资料
1 参考书目
- 反比例函数的进一步学习
2 参考链接
- 更多关于反比例函数的信息
反比例函数的图像与性质
欢迎来到本课件,我们将介绍反比例函数的图像和性质。了解什么是反比例 函数及其表示方法。
什么是反比例函数
定义
反比例函数是一种数学函数关系,当其中一个变量的值增大时,另一个变量的值相应地减小。
表示方法
通常用y=k/x来表示,其中k是非零实数。
反比例函数的图像
性质
反比例函数的图像呈现出一个下凹的曲线,且经过 第一象限和第三象限。
比例线性关系
反比例函数的图像与比例函数的图像之间存在线性 关系。
比例函数的应用
1
实际问题
反比例函数可以用于解决实际问题,例
参考例题
2
如时间和速度之间的关系。
我们将提供一些参考例题,以加深对反 比例函数的理解和应用。
总结
反比例函数的定义和性质
了解反比例函数是如何定义的以及其特点。
反比例函数的几何意义
图像特点
图像的特点是有两条渐近线,即x轴和y轴,它们分 别称为垂直渐近线和水平渐近线。
反比例函数的几何意义
1 越来越快地接近x轴和y轴
2 与比例函数的区别
随着x值的增大或减小,函数的值会越来越接 近y轴或x轴。
相比之下,比例函数的图像是通过原点的直 线。
反比例函数的运算
乘除法反转
当两个变量成反比例关系时,乘积保持不变。
反比例图像课件ppt
![反比例图像课件ppt](https://img.taocdn.com/s3/m/946fc102b207e87101f69e3143323968011cf4c7.png)
CHAPTER 05
反比例函数与实际问题结合的案例 分析
人口增长问题
总结词
反比例函数在人口增长问题中可以用来描述人口随时间变化的规律。
详细描述
在人口增长问题中,通常假设人口增长率是常数,但实际上人口增长率可能会 随着人口数量的增加而降低,这时可以使用反比例函数来描述人口随时间变化 的规律。
电池电量问题
健康管理
在健康管理中,反比例函数可以用来描述人体摄入的营养与 运动量的关系,例如随着运动量的增加,人体所需的营养摄 入量会相应减少。
CHAPTER 03
反比例函数的图像特征
图像的形状
01
反比例函数图像的形状是双曲线 ,随着x的增大或减小,y值会无 限接近于0,但永远不会等于0。
02
双曲线的两个分支分别位于第一 象限和第三象限,随着k值的正负 变化,双曲线的位置也会发生变 化。
反比例图像课件
CONTENTS 目录
• 反比例函数的基本概念 • 反比例函数的应用 • 反比例函数的图像特征 • 反比例函数与其他函数的对比 • 反比例函数与实际问题结合的案例分
析
CHAPTER 01
反比例函数的基本概念
反比例函数的定义
反比例函数
形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。
图像的对称性
反比例函数图像是关于原点对称的, 即如果点(x, y)在图像上,则点(-x, y)也在图像上。
当k > 0时,图像关于原点对称且分布 在第一象限和第三象限;当k < 0时, 图像关于原点对称且分布在第二象限 和第四象限。
图像的渐近线
反比例函数图像具有垂直渐近线x = 0和y = 0。
2023年河北省中考数学复习全方位第13讲 反比例函数及其应用 课件
![2023年河北省中考数学复习全方位第13讲 反比例函数及其应用 课件](https://img.taocdn.com/s3/m/6173fd21ba68a98271fe910ef12d2af90242a8ea.png)
4
.
返回子目录
7. (2020·河北,19)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每
个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y= (x<0)的图象为曲线L.
(1)若L过点T1,则k= -16
;
(2)若L过点T4,则它必定还过另一点Tm,则m= 5
;
(3)若曲线L使得T 1 ~T 8 这些点分布在它的两侧,每侧各4个点,则k的整数值有
(2)通过计算,说明一次函数y=kx+3-3k
(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y
随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).
返回子目录
解:(1)∵点B,C的横坐标相等,∴BC⊥x轴.
∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵当x=4时,y= =1,∴点N在反比例函数y= 的图象上.
(3)4≤m≤8.
考点梳理
考点 1
反比例函数的概念
考点 2
反比例函数的图象及性质
考点 3
反比例函数解析式的确定
返回子目录
2
考点1
考点梳理
反比例函数的概念
1. 定义:一般地,形如①
y=
(k是常数,k≠0)的函数,叫反比例函数,其中x
是自变量,y是函数.自变量x的取值范围是x≠0.
2. 三种表达式(k为常数,k≠0):y= ;y=kx-1;xy=k.
返回子目录
考点2
反比例函数的图象及性质
1. 反比例函数图象与性质
反比例函数图像和性质ppt课件
![反比例函数图像和性质ppt课件](https://img.taocdn.com/s3/m/39e3b6916e1aff00bed5b9f3f90f76c660374c6a.png)
在气瓶压力一定的情况下,压力的作 用面积与压强成反比关系,即当作用 面积增大时,压强减小;反之,当作 用面积减小时,压强增大。
在经济中的应用
供需关系
在市场经济中,商品的需求量与价格之间存在反比例关系,即当价格上涨时,需 求量减少;反之,当价格下降时,需求量增加。
投资回报
投资者在考虑投资回报时,通常会选择投资回报率较高的项目,即投资回报与投 资额成反比关系。
与几何知识的结合
与直角坐标系的结合
反比例函数的图像位于直角坐标系的两个象限内,可以通过几何知识来研究其性质,例如对称性和渐 近线。
与圆的结合
在某些条件下,反比例函数的图像与圆的图像相似,可以通过圆的性质来类比研究反比例函数的性质 。
在数学竞赛中的应用
01
反比例函数在数学竞赛中常作为 难题出现,需要学生具备扎实的 数学基础和灵活的思维才能解决 。
05 反比例函数的扩展知识
与其他函数的联系
与一次函数的联系
反比例函数与一次函数在某些条件下可以相互转化,例如$y = kx$($k neq 0$)可以转化为$y = frac{1}{x}$的 形式。
与二次函数的联系
反比例函数的图像与二次函数图像在形式上有所不同,但它们在某些性质上有相似之处,例如对称性和极值点。
反比例函数的定义域和值域
由于分母不能为0,所以反比例函数的定义域为{x|x≠0},值域 为{y|y≠0}。
反比例函数的图像
图像特点
反比例函数的图像位于第一象限 和第三象限,呈双曲线状,且随 着k值的正负变化,图像分别位于 x轴的上方和下方。
图像绘制
在直角坐标系中,取点(x,y)满足 xy=k,然后描绘出这些点的轨迹, 即为反比例函数的图像。
反比例函数的图象和性质课件
![反比例函数的图象和性质课件](https://img.taocdn.com/s3/m/261e850e32687e21af45b307e87101f69e31fbca.png)
当 k > 0 时,反比例函数的图像 分布在第一象限和第三象限;当 k < 0 时,反比例函数的图像分 布在第二象限和第四象限。
反比例函数的基本形式
反比例函数的基本形式是 y = k/x (k ≠ 0),也可以表示为 xy = k。
在这个函数中,x 和 y 的乘积始终等 于 k,而 k 的值决定了函数的图像在 哪个象限分布。
反比例函数的图像
反比例函数的图像通常是以原点为中心的双曲线,分布在四个象限。
当 k > 0 时,图像在第一象限和第三象限;当 k < 0 ,图像在第二象限和第四象 限。
反比例函数的图像不会与坐标轴相交,因为当 x 或 y 趋于无穷大时,y 或 x 将趋于 0。
CHAPTER 02
反比例函数的图像性质
人口增长与资源消耗的关 系
随着人口的增长,资源消耗也相应增加,但 这种增加并不是线性的,而是呈现出反比例 关系。这意味着人口增长得越快,资源消耗 得也越快,进一步加剧了资源紧张的局面。
在数学问题中的应用
解决几何问题
在几何学中,反比例函数经常被用来描述和解决与面积、体积和角度等相关的数学问题 。通过利用反比例关系,可以简化复杂问题的求解过程。
压强与体积的关系
在气体压力问题中,压强与体积成反比,即当体积增大时, 压强减小;反之亦然。这是解释和预测气体压力和体积关系 的基础。
在实际生活中的应用
药物剂量与效果的关系
在药物研究中,药物的剂量与其效果之间往 往存在反比例关系。这意味着当剂量增加时 ,效果可能减弱;反之亦然。了解这种关系 对于药物设计和使用非常重要。
反比例函数的图象和 性质ppt课件
contents
目录
• 反比例函数简介 • 反比例函数的图像性质 • 反比例函数的数学性质 • 反比例函数的应用 • 反比例函数与其他知识点的联系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练13:反比例函数及其图象
A 组 基础达标
一、选择题
1.(2013·曲靖)某地资源总量Q 一定,该地人均资源享有量x -
与人口数n 的函数关系图象是图13-1中的
( B )
图13-1
2.(2012·乌鲁木齐)函数y =-k 2+1x (k 为常数)的图象过点(2,y 1)和(5,y 2),则y 1与y 2的大小关系是
( C )
A .y 1<y 2
B .y 1=y 2
C .y 1>y 2
D .与k 的取值有关
3.(2012·绵阳)在同一直角坐标系中,正比例函数y =2x 的图象与反比例函数y =4-2k
x 的图象没有交点,则实数k 的取值范围在数轴上表示为图13-2中的
( C )
图13-2
4.(2012·恩施)已知直线y =kx (k >0)与双曲线y =3
x 交于点A (x 1,y 1)、B (x 2,y 2)两点,则x 1y 2 +x 2y 1的值为
( A )
A .6
B .-9
C .0
D .9
解析:∵点A (x 1,y 1),B (x 2,y 2)是双曲线y =3
x 上的点,
∴x 1·y 1=x 2·y 2=3①,∵直线y =kx (k >0)与双曲线y =3
x 交于点A (x 1,y 1),B (x 2,y 2)两点,∴x 1=-x 2,y 1=-y 2②,∴原式=-x 1y 1-x 2y 2=-3-3=-6.故选A.
二、填空题
5.(2013·温州)已知点P (1,-3)在反比例函数y =k
x (k ≠0)的图象上,则k 的值是__-3__.
6.(2013·鄂州)已知正比例函数y =-4x 与反比例函数y =k x 的图象交于A 、B 两点,若点A 的坐标为(x ,4),则点B 的坐标为__(1,-4)__. 7.(2013·宁夏)如图13-3所示,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数y =k
x (x <0)的图象经过点C ,则k 的值为__-6__.
解析:∵菱形的两条对角线的长分别是6和4,∴A (-3,
2),∵点A 在反比例函数y = 的图象上,∴2=-k
3,解得k =-6. 8.(2013·河北)反比例函数y =m +1
x 的图象如图13-4
所示,以下结论: ① 常数m <-1;
② 在每个象限内,y 随x 的增大而增大; ③ 若A (-1,h ),B (2,k )在图象上,则h <k ; ④ 若P (x ,y )在图象上,则P ′(-x ,-y )也在图象上. 其中正确的是__④__. 三、解答题
9.(2013·达州)如图13-5所示,已知反比例函数y =k 13x 的图象与一次函数y =k 2x
+m 的图象交于A (-1,a )、B ⎝ ⎛⎭⎪⎫
13,-3两点,连接AO .
(1)求反比例函数和一次函数的表达式;
图13-5
图13-3
图13-4
解:∵y =k 13x 的图象过点B ⎝ ⎛⎭
⎪⎫
13,-3,
∴k 1=3xy =3×1
3×(-3)=-3.
∴反比例函数为y =-1x .∴a =-1
-1=1,
∴A (-1,1).∴⎩⎪⎨⎪⎧-k 2+m =1,13k 2+m =-3, 解得⎩⎨⎧k 2=-3,
m =-2.
∴一次函数为y =-3x -2.
(2)设点C 在y 轴上,且与点A 、O 构成等腰三角形,请直接写出点C 的坐标. 解:C (0,2)或(0,-2)或(0,1)或(0,2). 10.(2013·宜宾)如图13-6所示,直线y =x -1与反比例函数y =k
x 的图象交于A 、B 两点,与x 轴交于点C ,已知点A 的坐标为(-1,m ). (1)求反比例函数的解析式;
解:将点A 的坐标代入y =x -1,可得m =-1-1=-2,将点A (-1,-2)代入反比例函数y =k x , 可得k =-1×(-2)=2, 故反比例函数解析式为:y =2
x .
(2)若点P (n ,-1)是反比例函数图象上一点,过点P 作PE ⊥x 轴于点E ,延长EP 交直线AB 于点F ,求△CEF 的面积.
解:将点P 的纵坐标y =-1,代入反比例函数关系式可得:x =-2,∴P (-2,-1).
∴将点F 的横坐标x =-2代入直线解析式可得y =-3, 故可得EF =3,CE =OE +OC =2+1=3, 故可得S △CEF =12CE ×EF =9
2.
图13-6
B 组 能力提升
11.(2012·黄石)如图13-7所示,已知A ⎝ ⎛⎭
⎪⎫
12,y 1,B (2,y 2)
为反比例函数y =1
x 图象上的两点,动点P (x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是
( D )
A.⎝ ⎛⎭⎪⎫12,0
B .(1,0) C.⎝ ⎛⎭
⎪⎫32,0
D.⎝ ⎛⎭
⎪⎫
52,0 解析:由三角形两边之差小于第三边的原理,知AP ,BP 的差最大为当ABP 成直线时,最大为AB .由y =1x ,得A ⎝ ⎛⎭⎪⎫12,2,B ⎝ ⎛
⎭⎪⎫2,12,直线AB: y =⎝ ⎛
⎭⎪
⎫2-12⎝ ⎛⎭
⎪⎫12-2×⎝
⎛⎭⎪⎫x -12+2=-x +52它与x 轴的交点为⎝ ⎛⎭
⎪⎫
52,0,此即为P ,选D.
12.(2013·内江)如图13-8所示,反比例函数y =k
x (x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为
( C )
A . 1
B . 2
C . 3
D .4
13.(2013·张家界)如图13-9所示,直线x =2与反比例函数y =2x 和y =1
x 的图象分别交于A 、B 两点,若点P 是y
上任意一点,则△P AB 的面积__1.5__.
14.若点A (m ,-2)在反比例函数y =4
x 的图象上,则当函数值y ≥-2时,自变量x 的取值范围是__x <-2或x >0__.
15.(2013·河南)如图13-10所示,矩形OABC 的顶点A ,C 分别在x 轴和y 轴上,点B 的坐标为(2,3).双曲线y =k
x (x >0)的图象经过BC 的中点D ,且与AB 交于点E ,连接DE .
图13-7
图13-9
图13-10
(1)求k 的值及点E 的坐标
解:如图13-11在矩形OABC 中, ∵B 点坐标为(2,3), ∴BC 边中点D 的坐标为(1,3)
又∵双曲线y =k x 的图象经过点D (1,3)∴3=k
1,∴k =3 ∵E 点在AB 上, ∴E 点的横坐标为2. 又∵y =3
x 经过点E ,
∴E 点纵坐标为32,∴E 点坐标为⎝ ⎛
⎭
⎪⎫2,32.
(2)若点F 是边OC 上一点,且△FBC ∽△DEB ,求直线FB 的解析式. 解:由(1)得,BD =1,BE =3
2,BC =2, ∵△FBC ∽△DEB ,
∴BD CF =BE CB ,即1CF =3
22.
∴CF =43,∴OF =53,即点F 的坐标为⎝ ⎛
⎭
⎪⎫0,53.
设直线FB 的解析式为y =k 1x +b ,而直线FB 经过B (2,3),F ⎝ ⎛
⎭
⎪⎫0,53, ∴⎩⎪⎨⎪⎧3=2k 1+b ,53=b , 解得⎩⎪⎨⎪⎧k 1=2
3,b =53,
∴直线FB 的解析式为y =23x +5
3.
16.(2013·济宁)如图13-11所示,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =12
x (x >0)图象上任意一点,以P 为圆心,PO 为半径的圆与坐标轴
分别交于点A、B.
图13-11
(1)求证:线段AB为⊙P的直径;
证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,∴AB是⊙P的直径.
(2)求△AOB的面积;
解:设点P坐标为(m,n)(m>0,n>0),
∵点P是反比例函数y=12
x(x>0)图象上一点,
∴mn=12.
如图13-12所示,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.
图13-12
由垂径定理可知,点M为OA中点,点N为OB中点,
∴OA=2OM=2m,OB=2ON=2n,
∴S
△AOB =
1
2BO·OA=
1
2×2n×2m=2mn=2×12=24.
(3)若Q是反比例函数y=12
x(x>0)图象上异于点P的另一点,以Q为圆心,
QO为半径画圆与坐标轴分别交于点C、D. 求证:DO·OC=BO·OA.
证明:若点Q为反比例函数y=12
x(x>0)图象上异于点P的另一点,参照(2),
可得:
S △COD =S △AOB =24,即1
2DO ·CO =24, 即12BO ·OA =1
2DO ·CO , ∴DO ·OC =BO ·OA .。