高中数学竞赛讲义---代数式的恒等变换方法与技巧

合集下载

代数式的恒等变形

代数式的恒等变形

代数式的恒等变形一、常值代换求值法——“1”的妙用例1 、 已知ab=1,求221111ba +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab aba ab ab +++ =b a a b a b +++=1例2 、已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理练习:1111,1=++++++++=c ca cb bc b a ab a abc 证明:若二、配方法例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b aa b +之值。

[解] ∵a2b2+a2+b2-4ab+1=(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0∴⎩⎨⎧==-.1,0ab b a解得⎩⎨⎧==;1,1b a ⎩⎨⎧-=-=.1,1b a当a=1,b=1时,b aa b +=1+1=2 当a=-1,b=-1时,b aa b +=1+1=2 例1 设a 、b 、c 、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例 2 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解 将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1.练习:,0146422222=+---++x cx bx ax c b a 已知求证:3:2:1::=c b a三、因式分解法例6 已知a4+b4+c4+d4=4abcd ,且a ,b ,c ,d 都是正数,求证:a=b=c=d . 证 由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0, 所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以 a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a ,b ,c ,d 都为正数,所以a+b≠0,c+d≠0,所以 a =b ,c=d . 所以ab-cd=a2-c2=(a+c)(a-c)=0, 所以a =c .故a=b =c=d 成立.例4 已知|a|+|b|=|ab|+1, 求a+b 之值 [解] ∵|a|+|b|=|ab|+1∴|a|·|b|-|a|-|b|+1=0 (|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1. 则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0 当a=-1,b=-1时,a+b=-2[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A ·B=0,则A=0或B=0”的思想来解决问题。

竞赛讲座(整式的恒等变形)

竞赛讲座(整式的恒等变形)

竞赛讲座(整式的恒等变形)一、知识要点1、整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。

3、乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条:①(a+b) (a-b)=a2-b2②(a±b)2=a2±2ab+b2③ (a+b) (a2-ab+b2)=a3+b3④ (a-b) (a2+ab+b2)=a3-b3⑤ (a+b+c)2= a2+b2+c2+2ab+2bc+2ca⑥ (a+b+c) (a2+b2+c2-ab-bc-ca)= a3+b3+c3-3abc⑦(a±b)3= a3±3a2b+3a b2±b34、整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。

5、余数定理多项式()x f除以 (x-a) 所得的余数等于()a f。

特别地:()a f=0时,多项式()x f能被(x-a) 整除二、例题精讲例1在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解因1+2+3+ (1998)()19999992199811998⨯=+⨯是一个奇数,又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。

先考虑四个连续的自然数n、n+1、n+2、n+3之间如何添符号,使其代数和最小。

很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号,即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1,例2计算 (2x3-x+6)•(3x2+5x-2)分析计算整式的乘法时,先逐项相乘(注意不重不漏),再合并同类项,然后将所得的多项式按字母的降幂排列。

代数式的恒等变换

代数式的恒等变换

代数式的恒等变换方法与技巧例:设px =有实根的充要条件,并求出所有实根。

由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。

这样可避免增根和遣根的出现。

解:原方程等价于222(0,0x p x x x ⎧-=-⎪⎨-≥≥⎪⎩222222(4)4448(2)441330440,0p x x p p x x x x p x ⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043p x p p x x ⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩ 由上式知,原方程有实根,当且仅当p 满足条件24(4)44048(2)33p p p p --≤≤⇔≤≤- 这说明原方程有实根的充要条件是403p ≤≤。

这时,原方程有惟一实根x =。

一、分类变换当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。

分类变换方法适用于式的化简与方程(组)的化简、求解。

例1:当x 取什么样的实数值时,下列等式成立:(a=;(b1=;(c2=。

解:(0)m m =≥ 记方程左边为f(x),则()f x =1|1|1|112xx≥==≤≤由此可知,当m=时,原方程的解集为1[,1]2;当m∈时,解集为∅;当)m∈+∞m=,解得21(2)4x m=+。

即当)m∈+∞时,原方程的解集为21{(2)}4m+。

例2:在复数范围内解方程组2225553,3,3.x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩解:考虑数列*,n n nna x y z n=++∈N。

不难证明此数列满足递推式321()()n n n na x y z a xy yz zx a xyza+++=++-+++,其中1253,3a a a===。

利用基本恒等式,得2121()32xy yz zx a a++=-=,312311[()]33xyz a a a xy yz zx a=--++=,∴{}na的递推式化为*3213133,3n n n na a a a a n+++=-+⋅∈N由此得432313543323113349,33102733a a a a a a a a a a a a=-+⋅=---+⋅=-由53a=,得310273a-=,∴33a=。

恒等变形知识点总结

恒等变形知识点总结

恒等变形知识点总结恒等变形是指根据等式的性质和算术运算的性质,将一个等式变形成另一个等式的过程。

在变换的过程中,通过适当的运算,将等式的两侧转变成相同的表达式。

首先,我们来看一下恒等变形的基本原则,它包括以下几个方面:1. 相等的两个数(对象)可以相互规约。

2. 等式的两边加(或减)相等的数(或算式)仍相等。

3. 等式的两边同乘(或同除)一个不为零的数(或数的倒数)仍相等。

4. 在等式中引进(或去除)平方根,绝对值符号对方程做平方根变形,只有当两边都为非负数时,该等式才成立。

这些基本原则是我们进行恒等变形时需要牢记的,只有在遵守这些原则的前提下,我们才能正确进行恒等变形。

在进行恒等变形时,我们通常会用到一些基本的代数运算,例如加减法、乘除法、开平方、平移等,这些运算在恒等变形中起着非常重要的作用。

接下来,我们来看一些常见的恒等变形的方法和技巧。

1. 加减法变形加减法变形是指用等于同一个数的两个数互换位置,并相加或相减,来得到一个新的等式。

例如:a +b =c 和 a = c - b这里,我们可以将第一个等式两边分别减去b,得到新的等式 a = c - b。

通过这个例子,我们可以看出,加减法变形是一种常见且有效的恒等变形方法,它可以帮助我们将一个复杂的等式化简成一个简单的等式。

2. 乘除法变形乘除法变形是指用等于同一数的两个数相除或相乘,得到新的等式。

例如:ab = c 和 a = c/b这里,我们可以将第一个等式两边都除以b,得到新的等式a = c/b。

通过这个例子,我们可以看出,乘除法变形也是一个常见且有效的恒等变形方法。

3. 平方根变形平方根变形是指用等于同一数的两个数同时开平方,得到新的等式。

例如:a^2 = c 和a = √c这里,我们可以将第一个等式两边同时开平方,得到新的等式a = √c。

通过这个例子,我们可以看出,平方根变形也是一个常见且有效的恒等变形方法。

4. 移项变形移项变形是指将等式中的某一项移到等式的另一侧,得到新的等式。

代数变形常用的技巧

代数变形常用的技巧

代数变形中常用的技巧代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。

代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。

本文就初等代数变形中的解题技巧,作一些论述。

两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。

恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。

代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。

代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。

中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。

代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。

一、整式变形整式变形包括整式的加减、乘除、因式分解等知识。

这些知识都是代数中的最基础的知识。

有关整式的运算与化简求值,常用到整式的变形。

例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。

而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高二数学竞赛班讲义-第五讲--组合恒等式

高二数学竞赛班讲义-第五讲--组合恒等式

高二数学竞赛班二试第五讲 组合恒等式班级 姓名一、知识要点:数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础,并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。

解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。

同时,此类问题的解决也有着自身特殊的解题技巧。

因此,在各类数学竞赛中经常被采用。

1.基本的组合恒等式简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。

事实上,许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。

课本中的组合恒等式有:①r n r n nC C -=; ②111r r rn n n C C C +++=+;③11k k n n kC nC --=; ④r m m r mn r n n m C C C C --=;⑤0122n nn n n n C C C C ++++=L ;⑥()01210.nnn n n n C C C C -+++-=L2.解题中常用方法① 运用基本组合恒等式进行变换;② 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; ③ 运用数学归纳法; ④ 变换求和指标;⑤ 运用赋值法进行证明;⑥ 建立递推公式,由初始条件及递推关系进行计算和证明; ⑦ 构造合理的模型。

二、经典例题例1.求证:1231232n n n n n n C C C nC n -++++=⋅L .例1.证明:根据前面提到的基本的组合恒等式第三条,可得:左边0121111112n n n n n n nC nC nC nC n ------=++++=⋅=L 右边例2.求和式21nk nk k C=∑的值。

例2.基本思路:将2k n k C 改写为k n k kC ⋅,先将k n kC 用恒等式3提取公因式n ,然后再将11k n kC --变形成为()11111k k n n k C C -----+,而()111k n k C ---又可以继续运用上述恒等变形,这样就使得各项系数中均不含有变动指标k 了。

代数式的变形的技巧

代数式的变形的技巧

代数式的变形的技巧一、展开和简化1. 乘法公式展开:例如,(a+b)^2=a^2+2ab+b^2,(a-b)^2 = a^2-2ab+b^2,(a+b)(a-b)=a^2-b^22.平方差公式展开:例如,a^2-b^2=(a+b)(a-b)。

3. 三角函数的展开:例如,sin(a+b)=sinacosb+cosasinb,cos(a+b)=cosacosb-sinasinb。

二、合并同类项当代数式中含有相同的字母和指数时,可以将它们合并成一个项,从而简化代数式。

例如,2a+3a=5a,4x^2-2x^2=2x^2三、因式分解1.提取公因式:将代数式中的公因式提取出来,并将其余部分合并。

例如,2ax+4ay=2a(x+2y),3x^2+6x=3x(x+2)。

2.二次因式分解:将一个二次多项式分解成两个一次多项式的乘积。

例如,x^2+5x+6=(x+2)(x+3),x^2-6x+8=(x-2)(x-4)。

3.因式分解的特殊情况:a)平方差公式:a^2-b^2=(a-b)(a+b)。

b) 完全平方公式:a^2+2ab+b^2=(a+b)^2,a^2-2ab+b^2=(a-b)^2四、配方法针对一些复杂的多项式,可以通过配方法将其变形为一个简化的形式,以便更好地进行计算和分析。

例如,(a+b)^2=a^2+2ab+b^2,可以使用配方法将其变形为(a+b)^2=a^2+ab+ab+b^2=a^2+2ab+b^2五、分式的变形对于分式的变形,可以进行以下操作:1.分子分母同乘或同除:a)将分式的分子和分母同乘或同除以同一个数,可以使分子和分母变得更简单。

b)有理化分母:将分式的分母中含有根号的部分进行有理化,以便更好地计算。

2.分式的加减乘除:a)分式的加减:先通分,再将分子进行加减运算。

b)分式的乘法:将分子分母分别相乘。

c)分式的除法:将除法转化为乘法,即将一个分式的分子乘以另一个分式的倒数。

六、指数与对数的变形1.指数的变形:a)乘以相同底数的幂,底数相同则指数相加:a^m*a^n=a^(m+n)。

代数式变形与技巧讲稿

代数式变形与技巧讲稿

A 、1B 、2C 、3D 、4代数式变形与技巧(一)徳阳二中邓正健如果两个代数式对于字母在允许范围内的一切取值,它们的值都相等,那么 这两个代数式恒等。

把一个代数式换成和它恒等的代数式,称为代数式的恒等变 形(或恒等变换)。

整式、分式、根式的运算及因式分解等都是恒等变形。

代数式 的恒等变形广泛应用于计算.化简.求值、证明、解方程之中,是数学中非常重 要的变形(运算)的方式。

能否将代数式进行适当、巧妙的变形,使问题获解,也是衡量学生数学能力 的标志之一。

因此,掌握恒等变形无论是对参加数学竞赛,还是进一步学好数学, 提高运算能力,都必将起到积极的促进作用。

代数式的变形方法灵活多变,技巧性强,即要求学生牢固掌握代数式运算的基本 法则,又要注意学习代数式恒等变形的方法和技巧。

下面将通过具体实例介绍一些代数式常用的变形方法和技巧。

一、利用因式分解进行代数式的变形因式分解本身就是恒等变形的一种形式。

常用的方法除提取公因式法、运用 公式法、分组分解法、十字相乘法之外,还有添(拆)项法、配方法、换元法、待 定系数法等。

山于后面还要专门探索代换法、配方法、待定系数法在代数式的变 形中的使用,所以这里不再展开。

例 1、计算:1991X 19921992-1992X 19911991 解:1991X 19921992-1992 X 19911991 =1991X1992X10001-1992X1991X10001分析:此题主要考察因式分解与约分的内容,已知条件首先要化成与所求式 相关的X 2 + 4 = 11的形式,然后将所求式的分子与分母同时变形,直到化成只含 X 2+4=H 时为止,再把X 2+-L=H 代入即可。

解:Vx-- = 3, •"+丄=11x H (x 2+ l) + (x 2+l) _ (x 2+l)(x 8 + l) x 6(x 4 +1) + (x 4 +1) _ (x 4 + l)(x 6 + 1)x(x + —)^x 4(x 4 + —) (2 +r 广 一2x x — __________ 疋 “LX H—V + —)X —)X + r -1)对对对例3、满足等式:还+曲-丁2003兀- j2OO3y + 丁2003貯=2003的正整数对(如刃 的个数是( )o分析:等式左边虽然很复杂,但通过观察分析知,它是仮、"的代数式, 因而可例2、当兀一丄=3时,x X 104-X 8+X 2+l x ,0 + x 6+x 4 + l严+/+宀 1 严+.{+F+l代入得,原式=「7 =丄11x(11-1) 110考虑用因式分解方法来解。

数学竞赛中的代数知识点总结

数学竞赛中的代数知识点总结

数学竞赛中的代数知识点总结数学竞赛作为一种重要的赛事和考试方式,在代数方面的内容难免会成为考点和难点。

本文将对数学竞赛中的代数知识点进行总结,简明扼要地介绍代数学习的要点和困难点,希望对读者有所帮助。

一、基础代数知识在代数的学习过程中,首先需要掌握基本的代数知识。

比如一次函数、二次函数、指数函数等等常见的函数形式,以及二元一次方程、二次方程、不等式、绝对值等基本的代数式子。

其中最重要的之一是一次函数——简单来说,一次函数就是自变量的线性函数关系,也即 y=ax+b 的形式。

通过一次函数的学习,我们可以了解到代数中的函数、直线、斜率等基本概念,以及在实际问题中函数的应用和解题方法。

二、高等代数知识在基础代数知识掌握后,需要进行进一步的高等代数学习。

高等代数知识主要包括了因式分解、配方法、推广恒等式等等知识点。

其中,因式分解是数学中非常重要的文化遗产。

通过因式分解可以将复杂的多项式分解成简单的乘积形式,方便运算与简化式子。

在高中阶段我们已经了解了一些基本的因式分解公式,比如(a+b)的平方、差方公式、a^2-b^2的因式分解等。

而在比赛以及进一步学习中,我们还要了解到更为复杂的因式分解方式和技巧。

比如乘法公式、终结之法、欧拉公式等等。

配方法则是一种比较常用的同时含有无理项的代数式子的求解方法。

虽然配方法通常也适用于线性代数或者微积分领域,但是在竞赛中由于时间短和难度较低,通常考查一些基本的配方法应用情况。

恒等式则是将两个拥有不同表现形式的式子变换的时候,用到的一组有效的方法。

比如,在解一般高中以及更高难度数学竞赛时候,我们通常会使用恒等式将数学式子化简,从而达到答题目的。

同时,恒等式也对于考察能力以及数学思维方式的培养都有一定的作用和意义。

三、其他代数知识在数学学科中,代数也是一个非常广泛和复杂的学科领域,因此高等代数知识的学习也不一定全面。

在数学竞赛中,也可能考查一些其他代数知识,比如多项式的连续性、变号矩阵等知识点。

高中数学奥林匹克竞赛讲座:28代数式的变形(整式与分式)

高中数学奥林匹克竞赛讲座:28代数式的变形(整式与分式)

竞赛讲座28-代数式的变形(整式与分式)在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍.1.配方在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题.例1 (1986年全国初中竞赛题)设a、b、c、d都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd=(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn的形式为(ac+bd)2+(ad-bc)2或(ac-bd)2+(ad+bc)2.例2(1984年重庆初中竞赛题)设x、y、z为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0∴(x-y)2+(x-z)2+(y-z)2=0∴x=y=z,∴原式=1.2.因式分解前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子.例3(1987年北京初二数学竞赛题)如果a是x2-3x+1=0的根,试求的值.解∵a为x2-3x+1=0的根,∴ a2-3a+1=0,,且=1.原式说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算.3.换元换元使复杂的问题变得简洁明了.例4 设a+b+c=3m,求证:(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0.证明令p=m-a,q=m-b,r=m-c则p+q+r=0.P3+q3+r3-3pqr=(p+q+r)(p2+q2+r2-pq-qr-rp)=0∴p3+q3+r3-3pqr=0即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0例5 (民主德国竞赛试题) 若,试比较A、B的大小.解设则.∵2x>y ∴2x-y>0, 又y>0,可知∴A>B.4.设参当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比.例6 若求x+y+z的值.解令则有 x=k(a-b), y=(b-c)k z=(c-a)k,∴x+y+z=(a-b)k+(b-c)k+(c-a)k=0.例7 已知a、b、c为非负实数,且a2+b2+c2=1,,求a+b+c的值.解设 a+b+c=k则a+b=k-c,b+c=k-a,a+c=k-b.由条件知即∴a2k-a3+b2k-b3+c2k-c3=-3abc,∴(a2+b2+c2)k+3abc=a3+b3+c3.∵a2+b2+c2=1,∴k=a3+b3+c3-3abc=(a+b)3-3a2b-3ab2+c3-3abc=(a+b+c)[(a+b)2+c2-(a+b)c]-3ab(a+b+c),=(a+b+c)(a2+b2+c2-ab-bc-ca),∴k=k(a2+b2+c2-ab-bc-ac),∴k(a2+b2+c2-ab-bc-ca-1)=0,∴k(-ab-bc-ac)=0.若K=0, 就是a+b+c=0.若-ab-bc-ac=0,即 (a+b+c)2-(a2+b2+c2)=0,∴(a+b+c)2=1,∴a+b+c=±1综上知a+b+c=0或a+b+c=±15.“拆”、“并”和通分下面重点介绍分式的变形:(1)分离分式为了讨论某些用分式表示的数的性质,有时要将一个分式表示为一个整式和一个分式的代数和.例8(第1届国际数学竞赛试题)证明对于任意自然数n,分数皆不可约.,证明如果一个假分数可以通约,化为带分数后,它的真分数部分也必定可以通约. 而显然不可通约,故不可通约,从而也不可通约.(2)表示成部分分式将一个分式表示为部分分式就是将分式化为若干个真分式的代数和.例9 设n为正整数,求证:①②证明令通分,比较①、②两式,得A-B=0,且A+B=1,即A=B=.∴令k=1,2,…,n得(3)通分通分是分式中最基本的变形,例9的变形就是以通分为基础的,下面再看一个技巧性较强的例子.例10(1986年冬令营赛前训练题)已知求证:.证明6.其他变形例11 (1985年全国初中竞赛题)已知x(x≠0,±1)和1两个数,如果只许用加法、减法和1作被除数的除法三种运算(可用括号),经过六步算出x2.那么计算的表达式是______.解 x2=x(x+1)-x或 x2=x(x-1)+x例12 (第3届美国中学生数学竞赛题)设a、b、c、d都是正整数,且a5=b4,c3=d2,c-a=19,求d-b.解由质因数分解的唯一性及a5=b4,c3=d2,可设a=x4,c=y2,故19=c-a=(y2-x4)=(y-x2)(y+x2)解得 x=3. y=10. ∴ d-b=y3-x5=757练习七1选择题(1)(第34届美国数学竞赛题)把相乘,其乘积是一个多项式,该多项式的次数是()(A)2 (B)3 (C)6 (D)7 (E)8(3)已知则的值是().(A)1 (B)0 (C)-1 (D)3(3)(第37届美国中学数学竞赛题)假定x和y是正数并且成反比,若x增加了p%,则y减少了().(A)p% (B)% (C)% (D)% (E)%2填空题(1)(x-3)5=ax5+bx4+cx3+dx2+ex+f,则a+b+c+d+e+f=________, b+c+d+e=_______.(2)若=_____.(3)已知y1=2x,y2=,则y1y1986=______3若(x-z)2-4(x-y)(y-z)=0,试求x+z与y的关系.4(1985年宁夏初中数学竞赛题)把写成两个因式的积,使它们的和为,求这两个式子.5.若x+3y+5z=0,2x+4y+7z=0.求的值.6.已知x,y,z为互不相等的三个数,求证7已知a2+c2=2b2,求证8.设有多项式f(x)=4x4-4px3+4qx2+2q(m+1)x+(m+1)2,求证:如果f(x)的系数满足p2-4q-4(m-1)=0,那么,f(x)恰好是一个二次三项式的平方.9.设(a+b)(b+c)(c+d)(d+a)=(a+b+c+d)(bcd+cda+dab+abc).求证:ac=bd.练习七1.C.C.E2.(1)-32,210 (2) (3)23.略.4.5. 6.略, 7.略.8.∵p2-4q-4(m+1)=0, ∴4q=p2-4(m+1)=0,∴f(x)=4x4-4px3+[p2-4(m+1)]x2+2p·(m+1)x+(m+1)2=4x4+p2x2+(m+1)2-4px3-4(m+1)x2+2p(m+1)x=[2x2-px-(m+1)]2.9.令a+b=p,c+d=q,由条件化为pq(b+c)(d+a)=(p+q)(cdp+adq),展开整理得cdp2-(ac+bd)+pq+abq2=0,即(cp-bq)(dp-aq)=0.于是cp=bq或dp=aq,即c(a+b)=b(c+a)或d(a+b)=a(c+d).均可得出ac=bd.。

第一讲:代数式与恒等变形

第一讲:代数式与恒等变形

第1章 代数式与恒等变形1.1 四个公式知识衔接在初中,我们学习了实数与代数式,知道代数式中有整式,分式,根式,它们具有类似实数的属性,可以进行运算。

在多项式乘法运算中,我们学习了乘法公式,如:平方差公式22))((b a b a b a -=-+;完全平方公式2222)(b ab a b a +±=±,并且知道乘法公式在整式的乘除,数值计算,代数式的化简求值以及代数等式的证明等方面有着广泛的应用。

而在高中阶段的学习中,将会遇到更复杂的多项式运算为此在本章中我们将拓展乘法公式的内容。

知识延展1 多项式的平方公式:ac bc ab c b a c b a 222)(2222+++++=++2 立方和公式:3322))((b a b ab a b a +=+-+3 立方差公式:3322))((b a b ab a b a -=++-4 完全立方公式:3223333)(b ab b a a b a ±+±=±注意:(1)公式中的字母可以是数,也可以是单项式或多项式;(2)要充分认识公式自身的价值,在多项式乘积中,正确使用乘法公式能提高运算速度,减少运算中的失误;(3)对公式的认识应当从发现,总结出公式的思维过程中学习探索,概括,抽象的科学方法;(4)由于公式的范围在不断扩大,本章及初中所学的仅仅是其中最基本,最常用的几个公式。

一 计算和化简例1 计算:))(()(222b ab a b a b a +++-变式训练:化简 62222))()()((y xy y x xy y x y x y x +-+++-+二 利用乘法公式求值;例2 已知0132=+-x x ,求331x x +的值。

变式训练:已知3=++c b a 且2=++ac bc ab ,求222c b a ++的值。

三 利用乘法公式证明例3 已知0,0333=++=++c b a c b a 求证:0200920092009=++c b a变式训练:已知2222)32()(14c b a c b a ++=++,求证:3:2:1::=c b a习题精练1 化简:322)())((b a b ab a b a +-+-+2 化简 )1)(1)(1)(1)(1)(1(12622+++-+++-a a a a a a a a3 已知10=+y x 且10033=+y x ,求代数式22y x +的值;4 已知21201,19201,20201+=+=+=x c x b x a ,求代数式ac bc ab c b a ---++222的值;5 已知)(3)(2222z y x z y x ++=++,求证:z y x ==6 已知abcd d c b a 44444=+++且d c b a ,,,均为正数,求证:以d c b a ,,,为边的四边形为菱形。

数学代数式变形技巧课件

数学代数式变形技巧课件

数学代数式变形技巧课件数学中的代数式变形是指通过合理的变换规则将一个代数式转化为另一个等价的代数式,常用于解方程、证明等问题的推导过程中。

掌握代数式变形技巧,可以帮助我们更好地理解数学概念,简化计算过程,提高解题效率。

本课件将介绍一些常见的代数式变形技巧,并配有示例演示,旨在帮助学生掌握这些技巧,提升数学能力。

一、因式分解与合并因式分解和合并是代数式变形中常见且重要的技巧,它们可以将一个复杂的代数式简化为更简洁的形式。

1. 因式分解因式分解是将一个代数式拆分为多个乘积的形式,常用于简化计算、解方程等过程。

示例1:分解二次三项式对于形如ax² + bx + c的二次三项式,我们可以通过因式分解将其分解为两个一次项的乘积形式。

例如,对于2x² + 7x + 3,我们可以通过因式分解得到(2x + 1)(x + 3)。

示例2:分解完全平方差对于形如a² - b²的完全平方差,我们可以通过因式分解将其分解为两个一次项的乘积形式。

例如,对于x² - 9,我们可以通过因式分解得到(x + 3)(x - 3)。

2. 因式合并因式合并是将多个项合并为一个因式的过程,常用于简化计算、提取公因式等。

示例1:合并同类项对于形如3x + 4x + 2的代数式,我们可以将其中的同类项合并得到7x + 2。

示例2:提取公因式对于形如3x² - 6x的代数式,我们可以提取公因式得到3x(x - 2)。

二、化简与拓展化简与拓展是代数式变形中的重要技巧,它们可以帮助我们更好地理解代数式的性质,简化计算过程。

1. 化简代数式化简代数式是通过运用代数性质和运算规则,将一个复杂的代数式简化为更简单的形式。

示例1:化简分式对于形如(x² - 4)/(x + 2)的代数式,我们可以通过因式分解和约分的方法,将其化简为(x - 2)。

示例2:化简根式对于形如√(x² + 4x + 4)的代数式,我们可以通过完全平方公式,将其化简为(x + 2)。

代数式的恒等式与方程的解法

代数式的恒等式与方程的解法

代数式的恒等式与方程的解法代数是数学中的一个重要分支,它研究各种代数结构及其运算规则。

在代数中,恒等式和方程是两个重要的概念。

恒等式是指两个代数式在任意给定的数值下都有相等的结果,而方程则是将一或多个未知数和一个或多个已知数之间的关系用代数式表示,并寻找使之成立的未知数值。

一、恒等式的概念及解法在代数中,恒等式是一种关系式,它对于任意给定的数值都成立。

恒等式的解法通常是将等式两边进行变形化简,直至推导出相等的结果。

例如,对于恒等式x^2 - y^2 = (x + y)(x - y),我们可以将其展开变形为x^2 - y^2 = x^2 - xy + xy - y^2,然后合并同类项得到0 = 0,这说明恒等式对于任意的x和y都成立。

另一个例子是恒等式(a + b)^2 = a^2 + 2ab + b^2,我们可以将其展开变形为a^2 + 2ab + b^2 = a^2 + 2ab + b^2,这样两边是相等的,所以恒等式成立。

二、方程的概念及解法方程是一种包含一个或多个未知数的等式,我们需要找到使之成立的未知数值,这些值称为方程的解。

解方程的基本思想是利用数学运算的性质,通过等式的变形和化简来求得未知数的值。

首先,我们可以通过合并同类项、移项和因式分解等方法将方程转化为简化形式。

例如,对于方程2x + 5 = 9,我们可以先将等式两边都减去5,得到2x = 4,然后再除以2,最终解得x = 2。

同样地,对于方程x^2 - 4 = 0,我们可以将其因式分解为(x + 2)(x - 2) = 0,这样我们可以得到两个解:x = 2和x = -2。

对于一些复杂的方程,我们可能需要运用更高级的解法。

例如,对于二次方程ax^2 + bx + c = 0,我们可以使用求根公式x = (-b ± √(b^2 -4ac))/(2a)来求解。

其中,根的个数和判别式D = b^2 - 4ac的正负性有关。

高中数学竞赛讲义---代数式的恒等变换方法与技巧

高中数学竞赛讲义---代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧一、代数式恒等的一般概念定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。

字母的所有允许值组成的集合称为这个代数式的定义域。

对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。

定义2 如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。

两个代数式恒等的概念是相对的。

同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但x =,在x≥0时成立,但在x<0时不成立。

因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。

定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。

代数式的变形,可能引起定义域的变化。

如lgx 2的定义域是(,0)(0,)-∞+∞ ,2lgx 的定义域是(0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。

由lgx 2变形为2lgx 时,定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。

这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。

由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。

例1:设px =有实根的充要条件,并求出所有实根。

由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。

这样可避免增根和遣根的出现。

解:原方程等价于222(0,0x p x x x ⎧-=-⎪⎨-≥≥⎪⎩222222(4)4448(2)441330440,0p x x p p x x x x p x ⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043p x p p x x ⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩ 由上式知,原方程有实根,当且仅当p 满足条件24(4)44048(2)33p p p p --≤≤⇔≤≤-这说明原方程有实根的充要条件是403p ≤≤。

代数式与恒等变形

代数式与恒等变形

第5讲 爹代数式与恒等变形在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形.恒等变形,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简洁,一般可以把恒等变形分为两类:一类是无附加条件的,需要在式子默认的范围中运算;另一类 是有附加条件的,要善于利用条件,简化运算.恒等式变形的基本思路:由繁到简(即由等式较繁的一边向另一边推导)和相向趋进(即将等式两边同时转化为同一形式).恒等式证明的一般方法:1.单向证明,即从左边证到右边或从右边证到左边,其原则是化繁为简,变形的过程中要不断注意结论的形式,调整证明的方向.2.双向证明,即把左、右两边分别化简,使它们都等于第三个代数式.3.运用“比差法”或“比商法”,证明“左边一右边=0"或1=右边左边(右边≠O)”,可得左边d 右边. 4.运用分析法,由结论出发,执果索因,探求思路,本节结合实例对代数式的基本变形(如配方、因式分解、换元、设参、拆项与逐步合并等)方法作初步介绍,题1 求证 :=-+⨯+-+++n n n n 23522322n 2).235(1011-+-+n n n对同底数幂进行合并整理,解 方法一:左边)222()33(55221n n n n n -+-+++⨯⨯=++)22(2)13(35103121+-++⨯=-+n n n11210310510-+⨯-⨯+⨯=n n n)235(1011-+-+=n n n=右边,方法二:左边)12(2)13(352222+-++⨯=+n n n.25310522n n n ⨯-⨯+⨯=+右边11210310510-+⨯-⨯+⨯=n n n.25310522n n n ⨯-⨯+⨯=+故 左边=右边.方法一中受右边”、、“11235-+n n n 的提示,对左边式子进行合并时,以n n 351、+与12-n 为主元合并,迅速便捷.读一题,练3题,练就解题高手 1-1.已知,0=++c b a 求证:.3333abc c b a =++1-2.已知,xyz z y x =++证明:-+--1()1)(1(22y z y x .4)1)(1()1)(2222xyz y x z z x =--+- 1-3.证明:.32232++⋅+.13222.3222=++-+++题2 ?100321=++++ 经研究,这个问题的一般结论是),1(21321+=++++ n n n 其中,n 为整数,现在我们来研究一个类似的问题: ?=+⨯++⨯+⨯)1(...3221n n 观察下面三个特殊的等式:);210321(3121⨯⨯-⨯⨯=⨯ );321432(3132⨯⨯-⨯⨯=⨯ );432543(3143⨯⨯-⨯⨯=⨯ 将这三个式子两边相加(累加),可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完这段材料,请您思考回答:=⨯++⨯+⨯m 1003221)1(=+++⨯+⨯)1(3221)2(n n)2)(1(.432321)3(++++⨯⨯+⨯⋅⨯n n n =(只写出结果,不必写出中间的过程) 分析此题可得到如下信息:⨯⨯-⨯⨯=⨯10099102101100(31101100)1();101 +--++=+n n n n n n n n ()1()2)(1([31)1()2()];1 解 321(3110100]3221)1(⨯⨯=⨯++⨯+⨯ 210101100321432210⨯⨯++⨯⨯-⨯⨯+⨯⨯- ;34340010210110031)10110099=⨯⨯⨯=⨯⨯- (2)由类比思想知).2)(1(31)1(3221++=+++⨯+⨯n n n n n ),32104321(41321)3(⨯⨯⨯-⨯⨯⨯=⨯⨯),43215432(41432.⨯⨯⨯-⨯⨯⨯=⨯⨯ …… )]2)(1()1()3)(2)(1([41)2)(1(++--+++=++n n n n n n n n n n n 则 )2)(1(432321++++⨯⨯+⨯⨯n n n).3)(2)(1(41+++=n n n n 在解题时要善于利用类比推理思想,理解并记住一些常用的一般性结论,如++⨯+⨯ 321211 11321211,1)1(1++++++++=+n n n n n n .)12(531,112n n n =-++++-+= 读一题,练3题,练就解题高手2-1.已知n 是正整数,),(n n n y x P 是反比例函数xk y =图象上的一列点,其中.,,2,121n x x x n === 记⋅===1099322211,,,y x T y x T y x T 若=1T ,1则921T T T 的值是2-2.我们把分子为1的分数叫做单位分数,如,31,21,,41 任何一个单位分数都可以写成两个不同的单位分数的和,如,1214131,613121+=+⋅= ,2015141+= (1)根据对上述式子的观察,你会发现+=口151,1O请写出O ,口所表示的数; (2)进一步思考,单位分数n 1(n 是不小于2的正整数)=*+∆11请写出,*∆所表示的代数式,并加以验证.2-3.已知200921,,a a a 都是正数,+++= 21(a a M ),)(2009322008a a a a +++ +++=< 21a a N).)(2008322009a a a a +++试比较M 与N 的大小.题3 已知c b a a c a c c b c b b a b a ,,,)(3)(2-+=-+=-+互不相等,求证.0598⋅=++c b α 本题可设,)(3)(2k a c a C c b c h b a b a =-+=-+=-+然后求解. 解 设,)(3)(2k a c a c c b c b b a b a =-+=-⋅+=-+ 则).(3),(2),.(a c k a c c b k c b a k b a -=+-=-=+故 )(2),()(3),(6)(6a c c b c b b a k b a +-=+-=+α).(6a c k -=以上三式相加,得=+++++)(2)(3)(6a c c b b a ).(6a c c b a k -+--即 .0598=++c b a本题运用了连比等式设参数k 的方法,这种引入参数的方法是恒等式证明中的常用技巧,读 一题,练1题,决出能力高下3-1.已知,26223823122523=-++-=-+++=---+a c a c c b c b bk a b a 则=++--++734232c b a c b a题4 证明 333)2()2()2(z y x y x z x z y -++-++-+).2)(2()2(3z y x x z x z y -+-+⋅-+=γ本题看似复杂,但是仔细分析各项特征,可尝试使用多变量换元法.解 令①,2a x z y =-+②,2b y x z =-+③,2c z y x =-+ 则原待证恒等式转化为.3333abc c b a =++联想到公式 --++++=-++ab c b a c b a abc c b a 222333)((3).ca bc - 由①+②+③,得 )2()2()2(z y x y x z x z y c b a -++-++⋅-+=++.0=故,03333=-++abc c b a即.3333abc c b a =++原式得证.换元法的使用可以使题目条件更趋简洁,更易把握题目特点.读一题,练3题,冲刺奥数金牌4-1试用x+l 的各项幂表示.13.223-+-x x x4-2.已知z y x z y x ,0,0,200920072005222>>==0>且.1111=++zy x 求证:20072005200920072005+=++z y x .2009+ 4-3.解方程:,23322332⋅---=---x x x x 题5 设x,y,z 互为不相等的非零实数,且x z z y y x 111+=+=+求证: 1222=z y x由于结论为”“1222=z y x 的形式,可以从题设 式中导出x ,y ,z 乘积的形式xy ,yz ,zx 解 由,11xy y x +=+变形可得 ⋅-=-=-yzz y y z y x 11 则①⋅--=y x z y yz 同理可得②,zy x z zx --= ③xz y x xy --= 由①×②×③,得.1222=z y x本题中x ,y ,z 具有轮换对称的特点,也可从二元情形中得到启示:即令x ,y 为互不相等的非零实数,且,11x y y x +=+易推出,11y x y x -=-故有,1-=--=y x x y xy 所以,122=y x 三元与二元情形类似.读一题,练3题,冲刺奥数金牌5-1若实数x ,y ,z 满足x z z y y x 1,11,41+=+=+ ,37=则xyz= 5-2.已知),35(21),35(21-=+=y x 求226y xy x ++的值. 5-3.已知实数a ,b ,c ,d 互不相等,且=+=+c b b a 11,11x a d d c =+=+试求x 的值, 题6 已知 za a x y a z x a a y 222,,-==-=求证: 由待证式z a a x 2-=知要从题设条件中消去y .解 由已知,得.,22z a y a x a a y -=-=两式相乘,得),)((22z a x a a a -⋅⋅-= 即⋅+--=x z a az x a a a 2322 所以 ⋅-=x a xaz z 2故 ⋅-=z a a x 2综合考查条件结论,充分挖掘隐含信息,常会成为解题的关键,如本题中由-=-=a z x a a y ,2,,2y a 到,,,2z a a x -=发现要消去y 这一信息.读一题,练3题,冲刺奥数金牌6-1.已知,1=ab 求11+++b b a a 的值. 6-2.设⋅+-=+-=+-=,,,a c a c r c b c b q b a b a P 其中a c c b b a +++,,不为零.求证: ).1()1)(1()1)(1)(1(r q P r q P -⋅--=+++6-3.已知a ,b ,c ,d 满足3,0,,a d c b a d c b a =/+=+≤≤.333d c b ⋅+=+ 求证:.,d b c a ==参考答案与提示。

代数式变形在高中数学中的应用(四)代数式基本运算变形技巧

代数式变形在高中数学中的应用(四)代数式基本运算变形技巧

代数式变形在高中数学中的应用(四)代数式运算变形常用到的方法1.配方配方法是对数学式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,化繁为简。

合理运用"裂项"与"添项"、"配"与"凑"的技巧,有时也将其称为"凑配法"。

例1 设x 、y 、z 为实数,且222222+=+++(y-z )(x-y)(z-x)(y+z-2x)(x+z-2y)(y+x-2z). 求的值.解 原式化简拆项得: 22222220x xy xz yz ---=+2y +2z配方得:∴ 222+=0+(y-z )(x-y)(z-x) ∴ x =y=z ,∴原式=1.附:最基本的配方,完全平方公式:222()2a b a ab b +=++变形一:1、2222()2()2a b a b ab a b ab +=+-=-+2、2222111()2()2a a a a a a +=+-=-+3、2222111()2()2a a a a a a+=+-=-+ 变形二: 4、22()()4a b a b ab +=-+ 5、22()()4a b a b ab -=+-6、22()()4a b a b ab +--=7、2222()()22a b a b a b ++-=+8、2222223()()3()()2b a ab b a b ab a b ab a ++=+-=-+=++ 变形三:9、2222221()()()2a b c ab bc ca a b b c c a ⎡⎤+++++=+++++⎣⎦ 10、2222()222a b c a b c ab bc ca ++=++---变形四 立方和、立方差公式:11、3322()()a b a b a ab b +=+-+ 12、3322()()a b a b a ab b -=-++2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 变形五 杨辉三角:13、33223()33a b a a b ab b +=+++ 14、4432234()464a b a a b a b ab b +=++++2.因式分解例2 如果 a 是 2310x x -+= 的根,试求的值. 解 ∵ a 为 2310x x -+= 的根,∴ 2310a a -+=, 移项得:2311a a =+. 原式化简得:3. 整体代入、4. 降次、5. 降次、消元例3. 已知012=-+a a ,求2007223++a a 的值.分析:解法一(整体代入):由012=-+a a 得 023=-+a a a所以:解法二(降次):由012=-+a a ,得a a -=12,所以:解法三(降次、消元):12=+a a (消元、、减项)20082007120072007)(20072007222222323=+=++=+++=+++=++a a a a a a a a a a a6.换元例4 设 3a b c m ++=,求证:333()()()3()()()0m a m b m c m a m b m c -+-+-----=.证明 令p m a =-,q m b =- ,r m c =-则0p q r ++=.3332223()()0p q r pqr p q r p q r pq qr rp ++-=++++---=∴ 33330p q r pqr ++-=即 333()()()3()()()0m a m b m c m a m b m c -+-+-----=例5 若,试比较A 、B 的大小.解 设 则.∵ 2x y > 即 20x y ->,又 ∵ 0y >,则 (2)0y y +>∴ 20(2)x y y y ->+ 即 102x x y y +->+ ∴ A B >.7.参数法当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比.例6 若 求 x y z ++ 的值.解 令则有 ()x k a b =-,()y k b c =-,()z k c a =-∴ ()()()0x y z k a b k b c k c a ++=-+-+-=.例7 已知a b c 、、 为非负实数,且2221a b c ++=, ,求 a b c ++的值.解 设 a b c k ++=则 a b k c +=-, b c k a +=-, a c k b +=-. 由条件知即∴ 2323233a k a b k b c k c abc -+-+-=-,∴ 222333()3a b c k abc a b c +++=++.∵ 2221a b c ++=,∴ 3333k a b c abc =++- 3223()333a b a b ab c abc =+--+-()22()()3()a b c a b c a b c ab a b c ⎡⎤=++++-+-++⎣⎦, ()222()a b c a b c ab bc ca =++++---,即 ()222k k a b c ab bc ca =++---,移项:()22210k a b c ab bc ca ++----=,又 2221a b c ++= ∴ ()0k ab bc ca ---=.若 0k =,即 0a b c ++= 则 ()0ab bc ca ++=.若 ()0ab bc ca ---=, 即()2222()0a b c a b c ++-++=,∵ 2221a b c ++= ∴ 2()1a b c ++=, ∴ 1a b c ++=±综上 0a b c ++= 或 1a b c ++=±8.构造法例8 已知0a b >>,m n ≥ 求证: m m n n m m n n a b a b y a b a b --=≥++, 解 构造函数 22()11()1x x x x x x x x a b b f x a a b a b b-==-=-+++ ∵ 0a b >>,则 1a b>, 又 ∵ ()f x 在 R 上是增函数∵ m n ≥,∴ ()()f m f n ≥,即 m m n nm m n na b a b a b a b --≥++8.“拆”、“并”和通分下面重点介绍分式的变形策略:(1) 适当引入参数;(见参数法例6、例7)(2)拆项变形或拆分变形;例9 已知求证:.证明例10 已知x(x≠0,±1)和1两个数,如果只许用加法、减法和1作被除数的除法三种运算(可用括号),经过六步算出x 2.那么计算的表达式是______.解 2(1)x x x x =+-或 2(1)x x x x =-+(3) 整体代入;(4)取倒数或利用倒数关系等,如 12(0)a a a+≥> 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1—1 代数式的恒等变换方法与技巧一、代数式恒等的一般概念定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。

字母的所有允许值组成的集合称为这个代数式的定义域。

对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。

定义2 如果两个代数式A、B,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B。

两个代数式恒等的概念是相对的。

同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但x=,在x≥0时成立,但在x<0时不成立。

因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。

定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。

代数式的变形,可能引起定义域的变化。

如lgx2的定义域是(,0)(0,)-∞+∞,2lgx的定义域是(0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx2=2lgx。

由lgx2变形为2lgx时,定义域缩小了;反之,由2lgx变形为lgx2时,定义域扩大了。

这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。

由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。

例1:设px=有实根的充要条件,并求出所有实根。

由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。

这样可避免增根和遣根的出现。

解:原方程等价于222(0,0x p xx x⎧-=-⎪⎨-≥≥⎪⎩222222(4)4448(2)441330440,0pxx p px xx x p x⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043pxppx x⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩由上式知,原方程有实根,当且仅当p满足条件24(4)4448(2)33p ppp--≤≤⇔≤≤-这说明原方程有实根的充要条件是43p≤≤。

这时,原方程有惟一实根x=。

二、恒等变换的方法与技巧恒等变换的目的是使问题变得简单,便于求解。

因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。

1.分类变换当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。

分类变换方法适用于式的化简与方程(组)的化简、求解。

例1:当x取什么样的实数值时,下列等式成立:(a=;(b1=;(c2 =。

解:(0) m m=≥记方程左边为f(x),则()f x=11|1|112xx≥==≤≤由此可知,当m=时,原方程的解集为1[,1]2;当m∈时,解集为∅;当)m∈+∞时,m=,解得21(2)4x m=+。

即当)m∈+∞时,原方程的解集为21{(2)}4m+。

例2:在复数范围内解方程组2225553,3,3.x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩解:考虑数列*,n n nna x y z n=++∈N。

不难证明此数列满足递推式321()()n n n na x y z a xy yz zx a xyza+++=++-+++,其中1253,3a a a===。

利用基本恒等式,得2121()32xy yz zx a a++=-=,312311[()]33xyz a a a xy yz zx a=--++=,∴{}na的递推式化为*3213133,3n n n na a a a a n+++=-+⋅∈N由此得432313543323113349,33102733a a a a a a a a a a a a=-+⋅=---+⋅=-由53a=,得310273a-=,∴33a=。

∴3113xyz a==。

综上所述知,原方程组等价于3,3,1.x y zxy yz zxxyz++=⎧⎪++=⎨⎪=⎩由韦达定理知,x,y,z是关于t的三次方程333310t t t-+-=的三根,此三次方程即3123(1)0,1t t t t-=∴===,这说明原方程组在复数范围内的解集为{(1,1,1)}。

注:此题还可以利用三次单位根12ω=-+的性质来解。

2.利用对称性定义4 一个n 元解析式12(,,,)n f x x x 称为对称式,当且仅当对于任意的i ,(1)j i j n ≤<≤都有11(,,,,,,)(,,,,,,)i j n j i n f x x x x f x x x x ≡。

由定义可知,对称式的各变元所处的地位相同,因此,一个对称式12(,,,)n f x x x 具有下列性质:(1)若对于变元x 1,x 2,f 具有性质p ,则对于任意的变元,,i j x x f 也具有性质p 。

(2)对于x 1,x 2,…,x n 的任意排12,,,i i in x x x ,有1212(,,,)(,,,)i i in n f x x x f x x x =,因此,对于讨论f 具有某一性质时,可不妨设12n x x x ≥≥≥。

定义5 一个n 元解析式称为轮换对称式,当且仅当x 2代x 1,x 3代x 2,…,x n 代x n-1,x 1代x n 时有12231(,,,)(,,,,)n n f x x x f x x x x ≡。

显角,对称式一定是轮换式,但轮换式不一定是对称式。

例如,x 2y+y 2z+z 2x 是轮换式,但不是对称式。

因此,对称式所具有的性质(1)、(2)对轮换式一般不成立。

由轮换的特点,在解题中,为了方便起见,我们可指定变元中x 1最大(或最小)。

例3:设x ,y ,z>0,求证(x+y+z)5-(x 5+y 5+z 5)≥10(x+y)(y+z)(z+x)(xy+yz+zx)等号成立当且仅当x=y=z 。

证:令5555(,,)()()f x y z x y z x y z =++-++。

易知(,,f x y z )是对称式。

∵当x+y=0时,f(x ,y ,z)=0,∴()|(,,)x y f x y z +。

从而()|,()|y z f z x f ++, ∴()()()|x y y z z x f +++。

注意到f 是关于x ,y ,z 的五次齐次式,故可设222(,,)()()()[()]()f x y z x y y z z x A x y z B xy yz zx =++++++++,令0,1,1x y z ===,得2A+B=15。

令1x y z ===,得A+B=10。

因此,A=B=5。

∴222(,,)5()()()()f x y z x y y z z x x y z xy yz zx =++++++++注意到,,0x y z >,且222x y z xy yz zx ++≥++,得(,,)10()()()()f x y z x y y z z x xy yz zx ≥+++++等号成立的条件为x y z ==。

例4:设a ,b ,c 是三角形的边长,证明222()()()0a b a b b c b c c a c a -+-+-≥并说明等号何时成立。

证:令欲证不等左边为(,,)f a b c ,则易证(,,)f a b c 为轮换式(非对称)。

故可设,a b c ≥。

注意到0b c a +->,则可先考虑将f 中分离出一个含b+c-a 的非负式子。

事实上222()()[()]()f a b a b b c b c c b b a c a =-+-+-+-2222()()()()(2)()()c b a b c a ab b c ab c a c b a b a b b c b c =-+---+--+-+-再令222*()()(2)()()f ab b c ab c a c b a b a b b c b c =--+--+-+- 令a c =,有222*()()()0f bc b c c b c b b c b c =--+-+-=令a b =,有2222*()()(2)()0f b b c b c b c b b c b c =--+--+-=∴**|,|a c f a b f --。

又*|b f ,∴*()()b a c a b f --+。

注意到*f 关于c 是二次式,a ,b 是三次式,故可设*()()()f b a c a b xa yb zc =--++令b=c ,得22*()()[()]f ab a c b a c xa y z b =-≡-++, ∴()a xa y z b ≡++,∴0,1y z x +==令a=0,得22*()()f b c b c b c yb zc =-≡+,∴b c yb zc -≡+,∴1,1y z ==-。

于是2**()()0f b a c a b c a f =-+-+≥。

从而2*()()0f c b a b c a f =-+-+≥显然,当且仅当a=b=c 时f=0。

注:对于*f ,也可直接通过提取公因式法来分解因式。

事实上1222*()(2)()()()()b f a c a c b a a c a c b a b c bc b c -⋅=--+-+---+-22()(2)()[]()(2)()()()()[2()]()[()()()]()()()a c a c ab bc a ab ac bc a c a c a b b c c a a b c a ac a a b ab ac bc b c a a b c b a a b c a b a a b c =---+---++=---+--+=--++--+=--+-+=--+-3.逆推分析从一个数学过程的结果出发,按与原来相反的程序去推求初始条件的方法叫做逆推分析法,它的特点是每一步逆推均可逆。

由此可见,逆推分析法是证明恒等式的重要方法。

例5:设a ,b ,c ,d ,x ,y 为正实数,且满足,x ad bc xy ac bd y ab cd+=+=+。

求证: abx cdx ady bcya b x c d x a d y b c y+=+++++++++。

证:注意到,xxy y的表达式有()()ab c d x cd a b x +++++ ()()()()()()()()ab c d cd a b x ab cd ab c d cd a b y ad bc ad b c y bc a d y =+++++=+++++=+++++ 利用①式,将欲证等式两边通分化简,等价于()()()()x a d y b c y y a b x c d x ++++=++++②式左边=2()()()x a d b c xy a b c d xy +++++++2()()()x ac bd x ab cd xy a b c d xy =++++++++ 22()()x y y ad bc xy a b c d xy =+++++++ 2[()()()]y x x a b c d a b c d =+++++++()()y a b x c d x =++++②式右边。

相关文档
最新文档