五年级奥数因数与倍数练习题

合集下载

五年级上册数学试题-奥数因数与倍数练习题北师大版

五年级上册数学试题-奥数因数与倍数练习题北师大版

因数与倍数:两数的最大公因数乘最小公倍数等于这两数的乘积。

1、请写出72的所有因数,其中有多少个因数是3的倍数?2、(1)请写出60的所有因数;(2)请写出105的所有因数。

3、请写出108所有的因数;其中有多少个是4的倍数?4、(1)180的因数有多少个?(2)200的因数有多少个?5、(1)144的因数有多少个?(2)500的因数有多少个?6、490的因数有多少个?7、10000的因数有多少个?8、28、72的最大公因数是多少?最小公倍数是多少?9、求36与56的最大公因数和最小公倍数。

10、计算(28,44,260),[28,44,260]11、计算:(60,75);[60,75]12、求1547与507的最大公因数和最小公倍数。

13、求1085与93的最大公因数与最小公倍数。

14、计算(1064,952),[1064,952](用辗转相除法解答)15、用辗转相除法求4811和1981的最大公因数。

16、求3553,3910,1411的最大公因数。

17、儿童节到了,老师买了320个苹果,240个梨,200个香蕉,用来分给全班同学,请问这些水果最多可以分成多少份同样的礼物?18、有三根铁丝,一根长54米,另一根长72米,最后一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?19、现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三中水果中每种水果的数量相等,那么最多分了多少个班?20、兄弟三人在外工作,大哥6天回家一次,儿哥8天回家一次,小弟12天回家一次,兄弟三人同时在5月1日回家,下次再见面是哪一天?21、一个数与40的最大公因数是8,最小公倍数是80,这个数是多少?22、一个数与20的最大公因数是6,最小公倍数是60,那么这个数是多少?23、甲数和乙数的最大公因数是6,最小公倍数是90,如果甲数是18,那么乙数是多少?24、一个数与36的最大公因数是4,最小公倍数是288,求这个数。

小学五年级奥数 因数与倍数(一)

小学五年级奥数 因数与倍数(一)

因数与倍数(一)【课前小练习】(★)1. 学习短除法和因数式.3. 公因数、公倍数的实际应用1.2.写出12的所有因数,并列举几个12的倍数.写出18的所有因数,并列举几个18的倍数.1. 公因数:就是几个数公共的约数,其中最大的一个称为最大公因数.2. 公倍数:就是几个数公共的倍数,其中最小的一个称为最小公倍数.3. 记法:两个数A、B的最大公因数记做(A、B)两个数A、B的最小公倍数记做[A、B]4. 方法:枚举法、短除法、分解质因数板块一:短除法和分解质因数法【例1】(★★☆)求下列每组的最大公因数和最小公倍数.板块二:借助最大公因数未知数⑴28, 35 ⑵108, 360 ⑶66, 165 ⑷588, 924 3. 记法:两个数A、B的最大公因数记做(A、B)两个数A、B的最小公倍数记做[A、B]4. 结论:A×B=最大公因数×最小公倍数【例】★★★求下列每组的最大公因数和最小公倍数.⑴, , ⑵, , ⑶, , 【例3】(★★)一个数和16的最大公因数是8,最小公倍数是80,这个数是多少?1【例4】(★★★☆) 【例5】(★★★☆)两个自然数的差为21,它们的最大公因数有几种可能?最大可能是多少?三个不同的自然数的和是3030,它们的最大公因数最大可能是多少?【拓展】(★★★★)由1、3、5这三个数码可以组成6个不同的三位数,求这6个数的最大公因数. 美国的17年蝉是目前已知的生命期最长的昆虫,它的生活习性很特别,在它生命的前十七年,都是埋在地底的幼虫型态,十七年一到,就钻出土壤,羽化成成虫然后交配、产卵,接下来就死亡了。

你知道为什么是17年吗?板块三:公因数、公倍数的应用【例6】(★★★)1 1 1学校组织一次数学考试,其中三班的学生有得优,得良,得中,2 3 7其余的得差,已知三班的学生不满50人,那么得差的学生有_____人.知识大总结. 、.2. 枚举法,短除法,分解质因数法A=ax、B=bx,其中a、b互质4. 应用:【例7】(★★★)将92个苹果和138个梨平均分给一班的小朋友,要求每人分到的水果相同,且无剩余. 那么一班最多有多少个小朋友?每个小朋友分到几个苹果几个梨?公因数---除数;公倍数---被除数【今日讲题】例2,例4,例5,例6【讲题心得】__________________________________________________________________. 【家长评价】________________________________________________________________. 2。

最新五年级奥数因数与倍数练习题

最新五年级奥数因数与倍数练习题

因数与倍数:两数的最大公因数乘最小公倍数等于这两数的乘积。

1、请写出72的所有因数,其中有多少个因数是3的倍数?2、(1)请写出60的所有因数;(2)请写出105的所有因数。

3、请写出108所有的因数;其中有多少个是4的倍数?4、(1)180的因数有多少个?(2)200的因数有多少个?5、(1)144的因数有多少个?(2)500的因数有多少个?6、490的因数有多少个?7、10000的因数有多少个?8、28、72的最大公因数是多少?最小公倍数是多少?9、求36与56的最大公因数和最小公倍数。

10、计算(28,44,260),[28,44,260]11、计算:(60,75);[60,75]12、求1547与507的最大公因数和最小公倍数。

13、求1085与93的最大公因数与最小公倍数。

14、计算(1064,952),[1064,952](用辗转相除法解答)15、用辗转相除法求4811和1981的最大公因数。

16、求3553,3910,1411的最大公因数。

17、儿童节到了,老师买了320个苹果,240个梨,200个香蕉,用来分给全班同学,请问这些水果最多可以分成多少份同样的礼物?18、有三根铁丝,一根长54米,另一根长72米,最后一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?19、现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三中水果中每种水果的数量相等,那么最多分了多少个班?20、兄弟三人在外工作,大哥6天回家一次,儿哥8天回家一次,小弟12天回家一次,兄弟三人同时在5月1日回家,下次再见面是哪一天?21、一个数与40的最大公因数是8,最小公倍数是80,这个数是多少?22、一个数与20的最大公因数是6,最小公倍数是60,那么这个数是多少?23、甲数和乙数的最大公因数是6,最小公倍数是90,如果甲数是18,那么乙数是多少?24、一个数与36的最大公因数是4,最小公倍数是288,求这个数。

五年级奥数题:因数与倍数

五年级奥数题:因数与倍数

因数与倍数相关习题(1)一、填空题1.28的所有因数之和是_____.2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.3. 一个两位数,十位数字减个位数字的差是28的因数,十位数字与个位数字的积是24.这个两位数是_____.4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.5. 两个自然数的和是50,它们的最大公因数是5,则这两个数的差是_____.6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.10. 含有6个因数的两位数有_____个.11.写出小于20的三个自然数,使它们的最大公因数是1,但两两均不互质,请问有多少组这种解?12.和为1111的四个自然数,它们的最大公因数最大能够是多少?13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳432米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米?14. 已知a 与b 的最大公因数是12,a 与c 的最小公倍数是300,b 与c 的最小公倍数也是300,那么满足上述条件的自然数a ,b ,c 共有多少组?(例如:a =12、b =300、c =300,与a =300、b =12、c =300是不同的两个自然数组)———————————————答 案——————————————————————答 案:1. 5628的因数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105的因数有1,3,5,7,15,21,35,105能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2⨯2⨯7,所以28的因数有6个:1,2,4,7,14,28.在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23⨯29,所以这班师生每人种的棵数只能是667的因数:1,23,29,667.显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种1棵树时,全班人数应是667-1=666,但666不能被4整除,不可能.所以,一班共有28名学生.5. 40或20两个自然数的和是50,最大公因数是5,这两个自然数可能是5和45,15和35,它们的差分别为(45-5=)40,(35-15=)20,所以应填40或20.[注]这里的关键是依最大公因数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的因数,又要是108的因数,即一定是36和108的公因数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公因数.36和108的最大公因数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36÷36=1(只)每个小朋友可分得桔子: 108÷36=3(只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48与42的公因数,题目又要求剪出的正方形最大,故正方形的边长是48与42的最大公因数.因为48=2⨯2⨯2⨯2⨯3,42=2⨯3⨯7,所以48与42的最大公因数是6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7块,共可剪(48÷6)⨯(42÷6)=8⨯7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180,45和18的公因数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公因数.180,45和18的最大公因数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180÷9)⨯(45÷9)⨯(18÷9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个因数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有6个因数的数,用a 和b 表示M 的质因数,那么5a M =或b a M ⨯=2因为M 是两位数,所以M = a 5只有一种可能M =25,而M = a 2⨯b 就有以下15种情况:72,52,32222⨯=⨯=⨯=M M M ,172,132,112222⨯=⨯=⨯=M M M ,23,232,192222⨯=⨯=⨯=M M M ,113,73,53222⨯=⨯=⨯=M M M ,27,35,25222⨯=⨯=⨯=M M M .所以,含有6个因数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公因数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公因数必须能整除这四个数的和,也就是说它们的最大公因数应该是1111的因数.将1111作质因数分解,得1111=11⨯101最大公因数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101⨯2,101⨯3,101⨯5,它们的和恰好是101⨯(1+2+3+5)=101⨯11=1111,它们的最大公因数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是432与8312的“最小公倍数”499,即跳了499411÷=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是214和8312的“最小公倍数”299,即跳了299÷29=11次掉进陷井. 经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是214⨯9=40.5(米). 14. 先将12、300分别进行质因数分解:12=22⨯3300=22⨯3⨯52(1)确定a的值.依题意a只能取12或12⨯5(=60)或12⨯25(=300).(2)确定b的值.当a=12时,b可取12,或12⨯5,或12⨯25;当a=60,300时,b都只能取12.所以,满足条件的a、b共有5组:a=12 a=12 a=12 a=60 a=300b=12, b=60, b=300, b=12, b=12.(3)确定a,b,c的组数.对于上面a、b的每种取值,依题意,c均有6个不同的值:52,52⨯2,52⨯22,52⨯3,52⨯2⨯3,52⨯22⨯3,即25,50,100,75,150,300. 所以满足条件的自然数a、b、c共有5⨯6=30(组)因数与倍数相关习题(2)一、 填空题1.把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共有_____个小朋友.2. 幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友;结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有_____人.3. 用长16厘米、宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板_____块.4. 用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块_____块.5. 一个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分钟发一次,第一次同时发车以后,_____分钟又同时发第二次车.6. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得_____粒.7. 这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是_____.8. 能被3、7、8、11四个数同时整除的最大六位数是_____.9. 把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公因数是1, 那么至少要分成_____组.10. 210与330的最小公倍数是最大公因数的_____倍.二、解答题11.公共汽车总站有三条线路,第一条每8分钟发一辆车,第二条每10分钟发一辆车,第三条每16分钟发一辆车,早上6:00三条路线同时发出第一辆车.该总站发出最后一辆车是20:00,求该总站最后一次三辆车同时发出的时刻.12. 甲乙两数的最小公倍数除以它们的最大公因数,商是12.如果甲乙两数的差是18,则甲数是多少?乙数是多少?13. 用285、5615、2011分别去除某一个分数,所得的商都是整数.这个分数最小是几?14. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问:(1)说的不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请找出这个数.———————————————答 案——————————————————————答 案:1. 9若梨减少2个,则有20-2=18(个);若将苹果增加2个,则有25+2=27(个),这样都被小朋友刚巧分完.由此可知小朋友人数是18与27的最大公因数.所以最多有9个小朋友.2. 36根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公因数.所以,这个大班的小朋友最多有36人.3. 56所铺成正方形的木板它的边长必定是长方形木板长和宽的倍数,也就是长方形木板的长和宽的公倍数,又要求最少需要多少块,所以正方形木板的边长应是14与16的最小公倍数.先求14与16的最小公倍数. 2 16 148 7故14与16的最小公倍数是2⨯8⨯7=112.因为正方形的边长最小为112厘米,所以最少需要用这样的木板1416112112⨯⨯=7⨯8=56(块) 4. 5292与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块769126126126⨯⨯⨯⨯=14⨯21⨯18=5292(块) [注]上述两题都是利用最小公倍数的概念进行“拼图”的问题,前一题是平面图形,后一题是立体图形,思考方式相同,后者可看作是前者的推广.将平面问题推广为空间问题是数学家喜欢的研究问题的方式之一.希望引起小朋友们注意.5. 90依题意知,从第一次同时发车到第二次同时发车的时间是3,5,9,15和10的最小公倍数.因为3,5,9,15和10的最小公倍数是90,所以从第一次同时发车后90分钟又同时发第二次车.6. 5依题意得花生总粒数=12⨯第一群猴子只数=15⨯第二群猴子只数=20⨯第三群猴子只数由此可知,花生总粒数是12,15,20的公倍数,其最小公倍数是60.花生总粒数是60,120,180,……,那么第一群猴子只数是5,10,15,……第二群猴子只数是4,8,12,……第三群猴子只数是3,6,9,……所以,三群猴子的总只数是12,24,36,…….因此,平均分给三群猴子,每只猴子所得花生粒数总是5粒.7. 421依题意知,这个数比2、3、4、5、6、7的最小公倍数大1,2、3、4、5、6、7的最小公倍数是420,所以这个数是421.8. 999768由题意知,最大的六位数是3,7,8,11的公倍数,而3,7,8,11的最小公倍数是1848.因为999999÷1848=541……231,由商数和余数可知符合条件的最大六位数是1848的541倍,或者是999999与231的差.所以,符合条件的六位数是999999-231=999768.9. 3根据题目要求,有相同质因数的数不能分在一组,26=2⨯13,91=7⨯13,143=11⨯13,所以,所分组数不会小于3.下面给出一种分组方案:(1)26,33,35;(2)34,91;(3)63,85,143.因此,至少要分成3组.[注]所求组数不一定等于出现次数最多的质因数的出现次数,如15=3⨯5,21=3⨯7,35=5⨯7,3,5,7各出现两次,而这三个数必须分成三组,而不是两组.除了上述分法之外,还有多种分组法,下面再给出三种:(1)26,35;33,85,91;34,63,143.(2)85,143,63;26,33,35;34,91.(3)26,85,63;91,34,33;143,35.10. 77根据“甲乙的最小公倍数⨯甲乙的最大公因数=甲数⨯乙数”,将210⨯330分解质因数,再进行组合有210⨯330=2⨯3⨯5⨯7⨯2⨯3⨯5⨯11=22⨯32⨯52⨯7⨯11=(2⨯3⨯5)⨯(2⨯3⨯5⨯7⨯11)因此,它们的最小公倍数是最大公因数的7⨯11=77(倍).11. 根据题意,先求出8,10,16的最小公倍数是80,即从第一次三车同时发出后,每隔80分钟又同时发车.从早上6:00至20:00共14小时,求出其中包含多少个80分钟.60⨯14÷80=10…40分钟由此可知,20:00前40分钟,即19:20为最后一次三车同时发车的时刻.12. 甲乙两数分别除以它们的最大公因数,所得的两个商是互质数.而这两个互质数的乘积,恰好是甲乙两数的最小公倍数除以它们的最大公因数所得的商——12.这一结论的根据是:(我们以“约”代表两数的最大公因数,以“倍”代表两数的最小公倍数) 甲数⨯乙数=倍⨯约约约乙数甲数⨯⨯=约约约倍⨯⨯,所以:约乙数约甲数⨯=约倍,约乙数约甲数⨯=12 将12变成互质的两个数的乘积:①12=4⨯3,②12=1⨯12先看①,说明甲乙两数:一个是它们最大公因数的4倍,一个是它们最大公因数的3倍.甲乙两数的差除以上述互质的两数(即4和3)之差,所得的商,即甲乙两数的最大公因数.18÷(4-3)=18甲乙两数,一个是:18⨯3=54,另一个是:18⨯4=72.再看②,18÷(12-1)=1171,不符合题意,舍去. 13. 依题意,设所求最小分数为N M ,则 285÷N M =a 5615÷N M =b 2011÷N M =c 即528⨯N M =a 1556⨯N M =b 2120⨯N M =c 其中a ,b ,c 为整数. 因为NM 是最小值,且a ,b ,c 是整数,所以M 是5,15,21的最小公倍数,N 是28,56,20的最大公因数,因此,符合条件的最小分数: N M =4105=4126 14. (1)根据2号~15号同学所述结论,将合数4,6,…,15分解质因数后,由1号同学验证结果,进行分析推理得出问题的结论.4=22,6=2⨯3,8=23,9=32,10=2⨯5,12=22⨯3,14=2⨯7,15=3⨯5由此不难断定说得不对的两个同学的编号是8与9两个连续自然数(可逐次排除,只有8与9满足要求).(2)1号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,15这12个数整除,也就是它们的公倍数.它们的最小公倍数是22⨯3⨯5⨯7⨯11⨯13=60060因为60060是一位五位数,而这12个数的其他公倍数均不是五位数,所以1号同学写的五位数是60060.。

五年级因数与倍数试卷【含答案】

五年级因数与倍数试卷【含答案】

五年级因数与倍数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是12的因数?A. 5B. 6C. 8D. 102. 如果一个数是9的倍数,那么这个数也一定是?A. 3的倍数B. 6的倍数C. 12的倍数D. 18的倍数3. 下列哪组数是互质的?A. 4和9B. 7和14C. 8和12D. 10和154. 15的因数有?A. 1, 3, 5, 15B. 2, 4, 6, 8C. 3, 6, 9, 12D. 5, 10, 15, 205. 如果一个数既是4的倍数也是6的倍数,那么这个数至少是?A. 12B. 18C. 24D. 30二、判断题(每题1分,共5分)1. 所有的偶数都是2的倍数。

()2. 两个不同的质数一定是互质的。

()3. 一个数的因数一定比这个数小。

()4. 两个合数一定有公因数。

()5. 一个数的最小倍数是它本身。

()三、填空题(每题1分,共5分)1. 24的因数有_______,_______,_______,_______,_______,_______。

2. 找出15以内5的倍数:_______,_______,_______,_______,_______。

3. 两个质数的乘积是_______。

4. 18以内6的倍数有_______个。

5. 如果一个数是12的倍数,那么这个数至少含有_______个因数。

四、简答题(每题2分,共10分)1. 请列举出20以内的质数。

2. 什么是最小公倍数?如何求两个数的最小公倍数?3. 请说明什么是互质数。

4. 如果一个数是8的倍数,那么这个数至少含有几个因数?5. 请找出50以内7的所有倍数。

五、应用题(每题2分,共10分)1. 一个班级有24名学生,如果每排坐6人,可以坐几排?2. 两个数的最大公因数是6,最小公倍数是36,这两个数是什么?3. 一个数是4和6的倍数,这个数至少是多少?4. 找出35以内9的倍数,并计算它们的和。

(完整版)因数和倍数奥数题及标准答案(有难度)

(完整版)因数和倍数奥数题及标准答案(有难度)

因数和倍数奥数题荟萃总体难度有点大,如果有兴趣可以试试!1、某校举行数学竞赛,共有20道题。

评分标准规定,答对一题给 3 分,不答给1 分。

答错一题倒扣 1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?2、有四个连续奇数的和是2008,则其中最小的一个奇数是 ______ 。

3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得 1 个苹果和 3 个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了 ______ _名小朋友。

4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。

他第一份训练题得了90 分,第二份训练题得了100 分,那么第三份训练题至少要得________ 分才能使四份训练题的平均成绩达到105 分。

5、三个连续自然数的乘积是210,求这三个数.6、自然数123456789 是质数,还是合数?为什么?7、一个数用3、4、5 除都能整除,这个数最小是多少?8、一个两位数去除251,得到的余数是41. 求这个两位数。

9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13 小时到达,求船在静水中的速度和水流速度。

答案:1、解:以一个学生得分情况为例。

如果他有m 题答对,就得3m 分,有n 题答错,则扣n 分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m- n)分。

所以,这个学生得分总数为:3m-n+(20-m-n)=3m-n+20-m-n=2m-2n+20 =2(m-n+10)不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。

由此可见,不管有多少学生参赛,得分总和一定是偶数。

2、解:499。

2008÷4—3=4993、解:6。

五年级数学《因数与倍数》练习题

五年级数学《因数与倍数》练习题

五年级数学《因数与倍数》练习题《因数和倍数》数学练习题1一、填空(1)用12个边长是1cm的小正方形摆一个长方形,你会几种摆法?①可以摆成长是()厘米,宽是()厘米的长方形,即()×()=12。

②也可以摆成长是()厘米,宽是()厘米的长方形,即()×()=12。

③还可以摆成长是()厘米,宽是()厘米的长方形,即()×()=12。

以上所填的都是12的(),12是这些数的()。

(2)如果a×b=c(a、b、c是不为0的整数),那么,c是()和()的倍数,a和b是c的()如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的(),B是A的()。

(3)在1、6、7、12、14、49这六个数中,是7的倍数的`数有()(4)12的因数有()4的倍数有()(从小到大写5个),一个数的倍数的个数是()(5)在1,2,3,6,9,12,15,24中,6的因数有(),6的倍数有()。

(6)一个数,它的因数的个数是(),其中最小的一个因数是(),最大的一个因数是()。

(7)6的因数有(),6的倍数有()(写5个),6既是6的(),又是6的( )。

二、判断(1)一个数的因数的个数是无限的,而倍数的个数是有限的( )(2)因为7×8=56,所以56是倍数,7和8是因数( )(3)14比12大,所以14的因数比12的因数多( )(4)1是1,2,3,4,5…的因数()(5)一个数的最小因数是1,最大因数是它本身。

(6)一个数的最小倍数是它本身()《因数和倍数》数学练习题2一、填空题1、根据算式25×4=100,()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。

2、一个质数有()个因数,一个合数最少有()个因数。

3、在1—20的自然数中,奇数有(),偶数有()质数有(),合数有()。

4、一个数是30的因数,又是5的倍数,这个数是()、()、()或()。

五年级奥数因数倍数

五年级奥数因数倍数

五年级奥数(因数与倍数)典型例题80 和144的因数各有多少个?举一反三1.求60和90的因数各有多少个?2.求196的因数各有多少个?3.甲数的2倍等于乙数,乙数的3倍等于丙数,丙数的4倍等于甲数,求甲数拓展提高一个数是5个2,3个3,2个5,1个7的连乘积,这个数当然有许多因数是两位数,这些两位数的因数中,最大的是几?奥赛训练1.把316表示成两个数的和,使其中一个是13的倍数,另一个是11的倍数,求这两个数。

2.和子去鱼店买了以下几种鱼:青花鱼,每条130日元:竹荚鱼,每条170日元,沙丁鱼,每条78日元:秋刀鱼,每条104日元,每种鱼都多于1条,正好花了3600日元,请问:和子买了多少条竹荚鱼?(100日元=7元人民币)3.有一个自然数,它的最小的两个因数的差是4,最大的两位因数的差是308.那么,这个自然数是多少?(2011年全国“希望杯”数学邀请赛)因数和倍数(二)典型例题29÷()=()。

5,在括号内填上适当的数,使等式成立。

共有多少种不同的填法?举一反三1. 37÷()=().........5,在括号内填上适当的数,使等式成立。

共有多少种不同的填法?2 . 49÷()=().........9,在括号内填上适当的数,使等式成立。

共有多少种不同的填法?3.面积是165平方厘米的形状不同且边长是自然数的长方形,共有多少种?拓展提高一只盒内共有96个棋子,如果不是一次拿出,也不一个一个地拿出,但每次拿出的个数要相等,最后一次正好拿完。

那么。

共有多少种不同的拿法?奥赛训练1.自然数≥3,b≥3,a x b =195.那么,共有多少种不同的拿法?2.一只筐内共有120个苹果,如果不一次拿出,也不一个一个地拿出,但每次拿出的个数要相等,最后一次正好拿完。

那么,共有多少种不同的拿法?3.把自然数的所有因数两两求和,得到若干个自然数,在这些自然数中,最小的数是4,最大的数是324,那么,A是多少?2,5倍数的特征个位上是0、2、4、6、8的数都是2的倍数,个位上是0或5的数是5的倍数,因此我们发下,一个数即是2的倍数又是5的倍数,那么它的个位上数字必须是0,另外,一个数的末两位数是4或25的倍数,这个数就是4或25的倍数。

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)第二单元:因数和倍数提高题和奥数题板块一:因数和倍数例题1:一个数在150至250之间,且是18的倍数,这个数可能是多少?最大是多少?练1:一个数是25的倍数,它位于110至160之间,这个数是多少?例题2:有一个数,它是40的因数,又是5的倍数,这个数可能是多少?练2:既是7的倍数,又是42的因数,这样的数有哪些?例题3:妈妈买来30个苹果,让XXX把苹果放入篮子里。

不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后正好一个不剩。

XXX共有几种拿法?每种拿法每次各拿多少个?练3:五(1)班有学生42人,把他们平均分成几个研究小组,每组多于2人且少于8人。

可以分成几个小组呢?板块二:2、5、3的倍数的特征例题1:一个五位数29ABC(A、B、C是~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练1:在17的后面添上三个数字组成五位数,使这个五位数既是偶数,又同时含有因数3和5.这个五位数最大是多少?最小是多少?例题2:5□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?练2:4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?板块三:奇数和偶数例题1:一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。

已知小船最初在南岸。

1)摆渡15次后,小船是在南岸还是在北岸?为什么?2)XXX说摆渡2016次后,小船在北岸。

他说得对吗?为什么?练1:傍晚XXX开灯做作业,本来拉一次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。

你知道来电的时候,灯应该亮着还是不亮呢?例题2:有36个苹果,把它们放在9个盘子里,每个盘子里只放奇数个苹果,能做到吗?练2:(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?可以做到。

【奥数专题】精编人教版小学数学五年级上册 因数与倍数(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 因数与倍数(试题)含答案与解析

经典奥数:因数与倍数(专项试题)一.选择题(共6小题)1.有两根绳子,一根长36厘米,另一根长48厘米,把它们剪成长度相等的小段,且没有剩余,每小段最长()厘米.A.24B.6C.122.红旗小学六年级有男生48人,女生36人.男、女生分别站成若干排,要使每排的人数相同,每排最多有()人.A.4B.6C.12D.163.有一张长方形纸,长70cm,宽50cm.如果要剪成若干同样大小的正方形而没有剩余,剪成的小正方形的边长最大是()厘米.A.5B.10C.15D.204.学校图书室新购进一些图书,如果每24本一包,能够正好包完.如果每16本一包,也能正好包完.图书室至少买了()本图书.A.48B.64C.96D.245.淘气与笑笑同时从环形跑道的起点出发,淘气跑一圈需要4分钟,笑笑跑一圈需要6分钟,至少()分钟后两人还能在起点相遇.A.8B.10C.12D.246.如果把两根长度分别为40厘米和56厘米的塑料管截成长度相等的吸管,并且都没有剩余,每根吸管最长是()厘米.A.1B.2C.4D.8二.填空题(共6小题)7.某条道路上,每隔900米有一个红绿灯,所有的红绿灯都按绿灯30秒黄灯5秒,红灯25秒的时间周期同时重复变换,一辆汽车在第一个路口处遇到绿灯后,要想在所有的红绿灯路口都遇到绿灯,则他最快该以每小时千米的速度行驶.8.暑期,东东和明明到图书馆看书,东东每4天去一次,明明每6天去一次.8月13日两人在图书馆相遇,8月日他们下次相遇.9.六一班有学生48人,六二班有学生54人.如果把两个班的学生分别分成若干小组去大扫除,要使两个班每个小组的人数相同,每组最多人.10.王老师有一盒铅笔,如果平均分给2名同学余1支,如果平均分给3名同学余2支,如果平均分给4名同学余3支,如果平均分给5名同学余4支。

王老师这盒铅笔至少有。

11.有些自然数。

它加1是2的倍数,它的2倍加1是3的倍数,它的3倍加1是5的倍数,那么所有这样的自然数中最小的一个是。

小学因数与倍数奥数题100道及答案(完整版)

小学因数与倍数奥数题100道及答案(完整版)

小学因数与倍数奥数题100道及答案(完整版)题目1:一个数既是12 的倍数,又是48 的因数,这个数可能是多少?答案:这个数可能是12、24 或48。

题目2:两个数的最大公因数是6,最小公倍数是36,其中一个数是12,另一个数是多少?答案:另一个数是18。

因为最小公倍数乘以最大公因数等于两个数的乘积,所以另一个数为36×6÷12 = 18 。

题目3:有一个自然数,除以5 余3,除以7 余4,这个数最小是多少?答案:23 。

从除以7 余4 的数中找除以5 余3 的数,最小为23 。

题目4:已知A = 2×3×5,B = 2×5×7,A 和 B 的最大公因数和最小公倍数分别是多少?答案:最大公因数是10,最小公倍数是210 。

题目5:一个数在80 到100 之间,既是6 的倍数,又是9 的倍数,这个数是多少?答案:90 。

6 和9 的最小公倍数是18 ,在80 到100 之间18 的倍数是90 。

题目6:两个自然数的积是360,最小公倍数是120,这两个数分别是多少?答案:3 和120 或15 和24 。

题目7:有一个数,它的最大因数和最小倍数之和是60,这个数是多少?答案:30 。

一个数的最大因数和最小倍数都是它本身,所以这个数是30 。

题目8:把48 块糖和38 块巧克力分别分给同一组同学,结果糖剩3 块,巧克力少了2 块,这个组最多有几名同学?答案:5 名。

48 - 3 = 45 ,38 + 2 = 40 ,45 和40 的最大公因数是5 。

题目9:一个数除以4 余1,除以5 余2,除以6 余3,这个数最小是多少?答案:57 。

这个数加上3 就能被4、5、6 整除,4、5、6 的最小公倍数是60 ,所以这个数最小是57 。

题目10:甲、乙两数的最大公因数是8,最小公倍数是48,甲数是24,乙数是多少?答案:16 。

乙数= 8×48÷24 = 16 。

五年级奥数练习

五年级奥数练习

因数与倍数(一)【课本同步】1、一只框内共有100个苹果,如果不一次拿出,也不一个个地拿出,但每次拿出的个数要相等,最后一次正好拿完,那么一共有多少种不同的拿法?2、四个连续自然数的积是3024,求这四个数。

3、一个同学在公园游玩,他在湖的左右岸之间来回划船,如果他最初在左岸,经过若干次后,他到了右岸,那么这个同学横渡湖面的次数是奇数还是偶数?4、1+2+3+4+5+……999+1000的和是奇数还是偶数?5、将1、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积,那么乘积中的偶数多还是奇数多?6、四个连续奇数的平均数是8,这四个奇数分别是多少?7、15个连续自然数相加,和是奇数还是偶数?【奥数训练】8、有一列数:1、1、2、3、5、8、13、21……从第三个数开始,每个数都是前两个数的和,那么在前2000个数中有几个偶数?9、桌上放着5枚正面朝上的硬币,小明开始翻硬币,每次随意翻转2枚,翻转若干次后,小明捂住其中1枚硬币,这时另外的4枚硬币正好是两反两正,那么小明捂住的那枚硬币哪面朝上?10、能不能把2000写成10个连续自然数之和(如55可以写成55=1+2+3+4+5+6+7+8+9+10)?如果能,把它写出来;如果不能,请说明理由?11、某班同学参加学校的数学竞赛,试题共20道,评分标准是答对一道给3分,不答给1分,答错倒扣1分,请说明:不管情况如何,这个班的得分总数一定是偶数。

12、一间会议室有9盏灯,从1—9依次编号,开始时,只有编号是2、6、9的是灯亮着的,一个同学按1—9,再从1—9的顺序不停地拉开关,一共拉了300下,这时编号是几的灯不是亮着的?13、有20个自然数,它们的和是1999,在这些数里,奇数的个数比偶数的个数多,那么这些数里偶数至少有多少个?14、有四个小朋友,他们的年龄恰好一个比一个大1岁,并且它们年龄相乘的积是360,那么其中年龄最大的一个是多少岁?15、在算式+91=中,已知盖住的是一个能被9盖住的是7的倍数,问盖住的数是多少?16、四个连续奇数的乘积是19305,这四个奇数中最大的一个是多少?17、红红买了3支铅笔,5支圆珠笔,8本笔记本和12块橡皮作为奖品奖励给班上同学,已知铅笔0.8元一支,圆珠笔1.8元一支,其余的单价红红忘了,售货员阿姨让红红付42.4元钱,售货员阿姨有没有算错,为什么?(笔记本和橡皮的单价均为整元数)18,从1 ——100的自然数中,所有不能被8整除的数之和是多少?19,一个三位数能被9整除,去掉它的末位数字后,所得的两位数是7的倍数,这样的三位数中最大是几?20,一个七位数“2009 4,9,5整除,数?21,一个有199位数字的整数:1001001001001……1001,被13除,余数是多少?22,有一个六位数,前四位是2857,即,这个数能被11和13整除,请写出后两位数。

五年级奥数题:因数与倍数教学文稿

五年级奥数题:因数与倍数教学文稿

因数与倍数相关习题(1)一、填空题1.28的所有因数之和是_____.2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.3. 一个两位数,十位数字减个位数字的差是28的因数,十位数字与个位数字的积是24.这个两位数是_____.4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.5. 两个自然数的和是50,它们的最大公因数是5,则这两个数的差是_____.6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.10. 含有6个因数的两位数有_____个.11.写出小于20的三个自然数,使它们的最大公因数是1,但两两均不互质,请问有多少组这种解?12.和为1111的四个自然数,它们的最大公因数最大能够是多少?13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳432米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米?14. 已知a 与b 的最大公因数是12,a 与c 的最小公倍数是300,b 与c 的最小公倍数也是300,那么满足上述条件的自然数a ,b ,c 共有多少组?(例如:a =12、b =300、c =300,与a =300、b =12、c =300是不同的两个自然数组)———————————————答 案——————————————————————答 案:1. 5628的因数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105的因数有1,3,5,7,15,21,35,105能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2⨯2⨯7,所以28的因数有6个:1,2,4,7,14,28.在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23⨯29,所以这班师生每人种的棵数只能是667的因数:1,23,29,667.显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种1棵树时,全班人数应是667-1=666,但666不能被4整除,不可能.所以,一班共有28名学生.5. 40或20两个自然数的和是50,最大公因数是5,这两个自然数可能是5和45,15和35,它们的差分别为(45-5=)40,(35-15=)20,所以应填40或20.[注]这里的关键是依最大公因数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的因数,又要是108的因数,即一定是36和108的公因数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公因数.36和108的最大公因数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36÷36=1(只)每个小朋友可分得桔子: 108÷36=3(只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48与42的公因数,题目又要求剪出的正方形最大,故正方形的边长是48与42的最大公因数.因为48=2⨯2⨯2⨯2⨯3,42=2⨯3⨯7,所以48与42的最大公因数是6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7块,共可剪(48÷6)⨯(42÷6)=8⨯7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180,45和18的公因数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公因数.180,45和18的最大公因数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180÷9)⨯(45÷9)⨯(18÷9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个因数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有6个因数的数,用a 和b 表示M 的质因数,那么5a M =或b a M ⨯=2因为M 是两位数,所以M = a 5只有一种可能M =25,而M = a 2⨯b 就有以下15种情况:72,52,32222⨯=⨯=⨯=M M M ,172,132,112222⨯=⨯=⨯=M M M ,23,232,192222⨯=⨯=⨯=M M M ,113,73,53222⨯=⨯=⨯=M M M ,27,35,25222⨯=⨯=⨯=M M M .所以,含有6个因数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公因数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公因数必须能整除这四个数的和,也就是说它们的最大公因数应该是1111的因数.将1111作质因数分解,得1111=11⨯101最大公因数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101⨯2,101⨯3,101⨯5,它们的和恰好是101⨯(1+2+3+5)=101⨯11=1111,它们的最大公因数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是432与8312的“最小公倍数”499,即跳了499411÷=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是214和8312的“最小公倍数”299,即跳了299÷29=11次掉进陷井. 经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是214⨯9=40.5(米). 14. 先将12、300分别进行质因数分解:12=22⨯3300=22⨯3⨯52(1)确定a的值.依题意a只能取12或12⨯5(=60)或12⨯25(=300).(2)确定b的值.当a=12时,b可取12,或12⨯5,或12⨯25;当a=60,300时,b都只能取12.所以,满足条件的a、b共有5组:a=12 a=12 a=12 a=60 a=300b=12, b=60, b=300, b=12, b=12.(3)确定a,b,c的组数.对于上面a、b的每种取值,依题意,c均有6个不同的值:52,52⨯2,52⨯22,52⨯3,52⨯2⨯3,52⨯22⨯3,即25,50,100,75,150,300. 所以满足条件的自然数a、b、c共有5⨯6=30(组)因数与倍数相关习题(2)一、 填空题1.把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共有_____个小朋友.2. 幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友;结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有_____人.3. 用长16厘米、宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板_____块.4. 用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块_____块.5. 一个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分钟发一次,第一次同时发车以后,_____分钟又同时发第二次车.6. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得_____粒.7. 这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是_____.8. 能被3、7、8、11四个数同时整除的最大六位数是_____.9. 把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公因数是1, 那么至少要分成_____组.10. 210与330的最小公倍数是最大公因数的_____倍.二、解答题11.公共汽车总站有三条线路,第一条每8分钟发一辆车,第二条每10分钟发一辆车,第三条每16分钟发一辆车,早上6:00三条路线同时发出第一辆车.该总站发出最后一辆车是20:00,求该总站最后一次三辆车同时发出的时刻.12. 甲乙两数的最小公倍数除以它们的最大公因数,商是12.如果甲乙两数的差是18,则甲数是多少?乙数是多少?13. 用285、5615、2011分别去除某一个分数,所得的商都是整数.这个分数最小是几?14. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问:(1)说的不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请找出这个数.———————————————答 案——————————————————————答 案:1. 9若梨减少2个,则有20-2=18(个);若将苹果增加2个,则有25+2=27(个),这样都被小朋友刚巧分完.由此可知小朋友人数是18与27的最大公因数.所以最多有9个小朋友.2. 36根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公因数.所以,这个大班的小朋友最多有36人.3. 56所铺成正方形的木板它的边长必定是长方形木板长和宽的倍数,也就是长方形木板的长和宽的公倍数,又要求最少需要多少块,所以正方形木板的边长应是14与16的最小公倍数.先求14与16的最小公倍数. 2 16 148 7故14与16的最小公倍数是2⨯8⨯7=112.因为正方形的边长最小为112厘米,所以最少需要用这样的木板1416112112⨯⨯=7⨯8=56(块) 4. 5292与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块769126126126⨯⨯⨯⨯=14⨯21⨯18=5292(块) [注]上述两题都是利用最小公倍数的概念进行“拼图”的问题,前一题是平面图形,后一题是立体图形,思考方式相同,后者可看作是前者的推广.将平面问题推广为空间问题是数学家喜欢的研究问题的方式之一.希望引起小朋友们注意.5. 90依题意知,从第一次同时发车到第二次同时发车的时间是3,5,9,15和10的最小公倍数.因为3,5,9,15和10的最小公倍数是90,所以从第一次同时发车后90分钟又同时发第二次车.6. 5依题意得花生总粒数=12⨯第一群猴子只数=15⨯第二群猴子只数=20⨯第三群猴子只数由此可知,花生总粒数是12,15,20的公倍数,其最小公倍数是60.花生总粒数是60,120,180,……,那么第一群猴子只数是5,10,15,……第二群猴子只数是4,8,12,……第三群猴子只数是3,6,9,……所以,三群猴子的总只数是12,24,36,…….因此,平均分给三群猴子,每只猴子所得花生粒数总是5粒.7. 421依题意知,这个数比2、3、4、5、6、7的最小公倍数大1,2、3、4、5、6、7的最小公倍数是420,所以这个数是421.8. 999768由题意知,最大的六位数是3,7,8,11的公倍数,而3,7,8,11的最小公倍数是1848.因为999999÷1848=541……231,由商数和余数可知符合条件的最大六位数是1848的541倍,或者是999999与231的差.所以,符合条件的六位数是999999-231=999768.9. 3根据题目要求,有相同质因数的数不能分在一组,26=2⨯13,91=7⨯13,143=11⨯13,所以,所分组数不会小于3.下面给出一种分组方案:(1)26,33,35;(2)34,91;(3)63,85,143.因此,至少要分成3组.[注]所求组数不一定等于出现次数最多的质因数的出现次数,如15=3⨯5,21=3⨯7,35=5⨯7,3,5,7各出现两次,而这三个数必须分成三组,而不是两组.除了上述分法之外,还有多种分组法,下面再给出三种:(1)26,35;33,85,91;34,63,143.(2)85,143,63;26,33,35;34,91.(3)26,85,63;91,34,33;143,35.10. 77根据“甲乙的最小公倍数⨯甲乙的最大公因数=甲数⨯乙数”,将210⨯330分解质因数,再进行组合有210⨯330=2⨯3⨯5⨯7⨯2⨯3⨯5⨯11=22⨯32⨯52⨯7⨯11=(2⨯3⨯5)⨯(2⨯3⨯5⨯7⨯11)因此,它们的最小公倍数是最大公因数的7⨯11=77(倍).11. 根据题意,先求出8,10,16的最小公倍数是80,即从第一次三车同时发出后,每隔80分钟又同时发车.从早上6:00至20:00共14小时,求出其中包含多少个80分钟.60⨯14÷80=10…40分钟由此可知,20:00前40分钟,即19:20为最后一次三车同时发车的时刻.12. 甲乙两数分别除以它们的最大公因数,所得的两个商是互质数.而这两个互质数的乘积,恰好是甲乙两数的最小公倍数除以它们的最大公因数所得的商——12.这一结论的根据是:(我们以“约”代表两数的最大公因数,以“倍”代表两数的最小公倍数) 甲数⨯乙数=倍⨯约约约乙数甲数⨯⨯=约约约倍⨯⨯,所以:约乙数约甲数⨯=约倍,约乙数约甲数⨯=12 将12变成互质的两个数的乘积:①12=4⨯3,②12=1⨯12先看①,说明甲乙两数:一个是它们最大公因数的4倍,一个是它们最大公因数的3倍.甲乙两数的差除以上述互质的两数(即4和3)之差,所得的商,即甲乙两数的最大公因数.18÷(4-3)=18甲乙两数,一个是:18⨯3=54,另一个是:18⨯4=72.再看②,18÷(12-1)=1171,不符合题意,舍去. 13. 依题意,设所求最小分数为N M ,则 285÷N M =a 5615÷N M =b 2011÷N M =c 即528⨯N M =a 1556⨯N M =b 2120⨯N M =c 其中a ,b ,c 为整数. 因为NM 是最小值,且a ,b ,c 是整数,所以M 是5,15,21的最小公倍数,N 是28,56,20的最大公因数,因此,符合条件的最小分数: N M =4105=4126 14. (1)根据2号~15号同学所述结论,将合数4,6,…,15分解质因数后,由1号同学验证结果,进行分析推理得出问题的结论.4=22,6=2⨯3,8=23,9=32,10=2⨯5,12=22⨯3,14=2⨯7,15=3⨯5由此不难断定说得不对的两个同学的编号是8与9两个连续自然数(可逐次排除,只有8与9满足要求).(2)1号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,15这12个数整除,也就是它们的公倍数.它们的最小公倍数是22⨯3⨯5⨯7⨯11⨯13=60060因为60060是一位五位数,而这12个数的其他公倍数均不是五位数,所以1号同学写的五位数是60060.。

完整word版小学五年级数学因数与倍数练习题含答案,文档

完整word版小学五年级数学因数与倍数练习题含答案,文档

小学五年级数学因数与倍数练习题(含答案)五年级数学下册因数与倍数练习题一、填空。

1、一个数的最小倍数减去它的最大因数,差是〔〕。

2、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是〔〕。

3、我是54的因数,又是9的倍数,同时我的因数有2和3。

〔〕4、我是50以内7的倍数,我的其中一个因数是4。

〔〕5、我是30的因数,又是2和5的倍数。

〔〕6、我是36的因数,也是2和3的倍数,而且比15小。

〔〕7、根据算式25×4=100,〔〕是〔〕的因数,〔〕也是〔〕的因数;〔〕是〔〕的倍数,〔〕也是〔〕的倍数。

8、在18、29、45、30、17、72、58、43、75、100中,2的倍数有〔〕;3的倍数有〔〕;5的倍数有(),既是2的倍数又是5的倍数有〔〕,既是3的倍数又是5的倍数有〔〕。

9、48的最小倍数是〔〕,最大因数是〔〕。

最小因数是〔〕。

10、用5、6、7这三个数字,组成是5的倍数的三位数是〔〕;组成一个是3的倍数的最小三位数是〔〕。

11、一个自然数的最大因数是24,这个数是〔〕。

12、从0、3、5、7、这4个数中,选出三个组成三位数。

〔1〕组成的数是2的倍数有:〔2〕组成的数是5的倍数有:〔3〕组成的数是3的倍数有:二、判断题1、任何自然数,它的最大因数和最小倍数都是它本身。

( )2、一个数的倍数一定大于这个数的因数。

( )3、个位上是0的数都是2和5的倍数。

( )4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

()5、5是因数,10是倍数。

()6、36的全部因数是2、3、4、6、9、12和18,共有7个。

()7、因为18÷9=2,所以18是倍数,9是因数。

()9、任何一个自然数最少有两个因数。

()10、一个数如果是24的倍数,那么这个数一定是4和8的倍数。

〔〕11、15的倍数有15、30、45。

()12、一个自然数越大,它的因数个数就越多。

()13、15的因数有3和5。

五年级奥数因数与倍数练习题(优选.)

五年级奥数因数与倍数练习题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改因数与倍数:两数的最大公因数乘最小公倍数等于这两数的乘积。

1、请写出72的所有因数,其中有多少个因数是3的倍数?2、(1)请写出60的所有因数;(2)请写出105的所有因数。

3、请写出108所有的因数;其中有多少个是4的倍数?4、(1)180的因数有多少个?(2)200的因数有多少个?5、(1)144的因数有多少个?(2)500的因数有多少个?6、490的因数有多少个?7、10000的因数有多少个?8、28、72的最大公因数是多少?最小公倍数是多少?9、求36与56的最大公因数和最小公倍数。

10、计算(28,44,260),[28,44,260]11、计算:(60,75);[60,75]12、求1547与507的最大公因数和最小公倍数。

13、求1085与93的最大公因数与最小公倍数。

14、计算(1064,952),[1064,952](用辗转相除法解答)15、用辗转相除法求4811和1981的最大公因数。

16、求3553,3910,1411的最大公因数。

17、儿童节到了,老师买了320个苹果,240个梨,200个香蕉,用来分给全班同学,请问这些水果最多可以分成多少份同样的礼物?18、有三根铁丝,一根长54米,另一根长72米,最后一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?19、现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三中水果中每种水果的数量相等,那么最多分了多少个班?20、兄弟三人在外工作,大哥6天回家一次,儿哥8天回家一次,小弟12天回家一次,兄弟三人同时在5月1日回家,下次再见面是哪一天?21、一个数与40的最大公因数是8,最小公倍数是80,这个数是多少?22、一个数与20的最大公因数是6,最小公倍数是60,那么这个数是多少?23、甲数和乙数的最大公因数是6,最小公倍数是90,如果甲数是18,那么乙数是多少?24、一个数与36的最大公因数是4,最小公倍数是288,求这个数。

五年级奥数第19讲倍数和因数

五年级奥数第19讲倍数和因数

第十九讲倍数和因数例一、一个三位数,既是3 的倍数,又有因数5,并且是一个奇数,这个数最大是几?分析:首先考虑这个三位数既是3 的倍数,又有因数5,说明这个数既是3 的倍数又是5 的倍数。

先考虑5 的倍数,个位上只能是0 或5,但又要满足是奇数的条件,因此最大是995,但9+9+5=23,23 不能被3 整除,所以995 不是3 的倍数,再往下考985,也不能满足条件,依次类推,975 可以同时满足这3 个条件。

所以这个数最大是975。

巩固练习11、一个两位数,既是3 的倍数,又有因数8,这个数最大是几?2、一个三位数,既是4 的倍数,又有因数3,并且是一个偶数,这个数最大是几?3、一个数既是72 的因数,又是4 的倍数,这个数可能是多少?例二、100 以内是3 的倍数的数中,含有因数2 和5 的数有哪些?分析:既是3 的倍数,又含有因数2和5 的数,其实就是2,3,5的倍数。

2和5的倍数。

个位上的数只能是0,再考虑3 的倍数。

所以这样的数分别30,60和90.100 以内是3 的倍数的数中,含有因数2 和5 的数有30,60 和90,巩固练习21、150 以内是3 的倍数的数中,含有因数2 和5 的数有哪些?2、200 以内是4 的倍数的数中,含有因数3 和5 的数有哪些?3、300 以内是5 的倍数的数中,含有因数3 和7 的数有哪些?例三、用12 个同样大小的正方形,可以拼成多少种不同的长方形?分析:因为12 的因数有1,2,3,4,6,12,所以如果12 个正方形拼成行,每行12 个;拼成2 行,每行6个;拼成3 行,每行4 个。

因此,一共可以拼成3种不同的长方形。

巩固练习31、用8个同样大小的正方形,可以拼成多少种不同的长方形?2、用24 个同样大小的正方形,可以拼成多少种不同的长方形?3、王阿姨想用16 块同样大小的方巾,缝制成长方形的披肩,一共有多少有不同的缝制方法?例四、兔妈妈拔了一些萝卜,如果平均分给2 只小兔余1个萝卜,平均分给3 只小兔也余1个萝卜,平均分给5 只小兔还余1个萝卜。

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)

五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)

第二单元因数与倍数提高题和奥数题板块一因数和倍数例题1.一个数在150至250之间,且是18的倍数,这个数可能是多少?最大是多少?练习1.一个数是25的倍数,它位于110至160之间,这个数是多少?例题2.有一个数,它是40的因数,又是5的倍数,这个数可能是多少?练习2.既是7的倍数,又是42的因数,这样的数有哪些?例题3.妈妈买来30个苹果,让小明把苹果放入篮子里。

不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后正好一个不剩。

小明共有几种拿法?每种拿法每次各拿多少个?练习3.五(1)班有学生42人,把他们平均分成几个学习小组,每组多于2人且少于8人。

可以分成几个小组呢?板块二 2、5、3的倍数的特征例题1.一个五位数29ABC(A、B、C是0~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练习1.在17的后面添上三个数字组成五位数,使这个五位数既是偶数,又同时含有因数3和5。

这个五位数最大是多少?最小是多少?例题2.5□□0是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?练习2.4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?板块三奇数和偶数例题1.一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。

已知小船最初在南岸。

(1)摆渡15次后,小船是在南岸还是在北岸?为什么?(2)小明说摆渡2016次后,小船在北岸。

他说得对吗?为什么?练习1.傍晚小亮开灯做作业,本来拉一次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。

你知道来电的时候,灯应该亮着还是不亮呢?例题2.有36个苹果,把它们放在9个盘子里,每个盘子里只放奇数个苹果,能做到吗?练习2.(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?(2)有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?例题3.桌子上放着5个杯子,全部是杯底朝上,如果每次翻动2个杯子,称为一次翻动,经过多次翻动能使5个杯子的杯口全部朝上吗?如果每次翻动3个杯子呢?练习3.如家宾馆现在有10间客房的灯开着,每次同时拨动4个房间的开关,能不能把这10个房间的灯全部关闭?如果能,至少需要几次?板块四质数和合数例题1.三个不同质数的和是82,这三个质数的积最大是多少?练习1.(1)两个质数的和是小于100的奇数,并且是11的倍数,这两个质数可能是什么数?(2)两个质数的和是2001,这两个质数的积是多少?(3)一个长方形的长和宽都是质数,并且周长是36厘米,这个长方形的面积最大是多少?例题2.用0、1、4、5这四个数字组成两个质数,每个数字只能用一次,求这两个质数。

因数倍数提升奥数练习题

因数倍数提升奥数练习题

A
个位上是( )的数,都能被2整除;个位上是( )的数,都能被5整除。
B
同时是2和5倍数的数,最小两位数是( ),最大两位数是( )。
C
最小的自然数是( ),最小的质数是( )最小的合数是( )。
D
三个连续奇数的和是45,这三个奇数分别是( )、( )和( )。
因数、倍数概念:
如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都b是c的因数c是a的倍数也是b的倍数。倍数和因数是相互依存的。 一个数的因数个数是有限的,最小因数是1,最大因数是它本身。一个数的倍数个数是无限的,最小倍数是它本身,没有最大倍数。
单击此处可添加副标题
( )1、任何自然数,它的最大因数和最小倍数都 是它本身。 ( )2、一个数的倍数一定大于这个数的因数。 ( )3、个位上是0的数都是2和5的倍数。 ( )4、一个数的因数的个数是有限的,一个数的 倍数的个数是无限的。 ( )5、5是因数,10是倍数。 ( )6、36的全部因数是2、3、4、6、9、12和18, 共有7个。 ( )7、因为18÷9=2,所以18是倍数,9是因数。 ( )9、任何一个自然数最少有两个因数。 ( )10、一个数如果是24的倍数,则这个数一定 是4和8的倍数。
9、一个数分别与另外两个相邻奇数相乘,所得的 两个积相差150,这个数是多少?
解法1:∵相邻两个奇数相差2, ∴150是这个要求数的2倍。 ∴这个数是150÷2=75 解法2:设这个数为x,设相邻的两个奇数为2a+1,2a-1 (a≥1).则有 (2a+1)x-(2a-1)x=150, 2ax+x-2ax+x=150, 2x=150, x=75。 ∴这个要求的数是75。
499。 2008÷4—3=499
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因数与倍数:
两数的最大公因数乘最小公倍数等于这两数的乘积。

1、请写出72的所有因数,其中有多少个因数是3的倍数?
2、(1)请写出60的所有因数;(2)请写出105的所有因数。

3、请写出108所有的因数;其中有多少个是4的倍数?
4、(1)180的因数有多少个?(2)200的因数有多少个?
5、(1)144的因数有多少个?(2)500的因数有多少个?
6、490的因数有多少个?
7、10000的因数有多少个?
8、28、72的最大公因数是多少?最小公倍数是多少?
9、求36与56的最大公因数和最小公倍数。

10、计算(28,44,260),[28,44,260]
11、计算:(60,75);[60,75]
12、求1547与507的最大公因数和最小公倍数。

13、求1085与93的最大公因数与最小公倍数。

14、计算(1064,952),[1064,952](用辗转相除法解答)
15、用辗转相除法求4811和1981的最大公因数。

16、求3553,3910,1411的最大公因数。

17、儿童节到了,老师买了320个苹果,240个梨,200个香蕉,用来分给全班同学,请问这些水果最多可以分成多少份同样的礼物?
18、有三根铁丝,一根长54米,另一根长72米,最后一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?
19、现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三中水果中每种水果的数量相等,那么最多分了多少个班?
20、兄弟三人在外工作,大哥6天回家一次,儿哥8天回家一次,小弟12天回家一次,兄弟三人同时在5月1日回家,下次再见面是哪一天?
21、一个数与40的最大公因数是8,最小公倍数是80,这个数是多少?
22、一个数与20的最大公因数是6,最小公倍数是60,那么这个数是多少?
23、甲数和乙数的最大公因数是6,最小公倍数是90,如果甲数是18,那么乙数是多少?
24、一个数与36的最大公因数是4,最小公倍数是288,求这个数。

25、两个数的最大公因数是6,最小公倍数是420,如果这两个数的和是102,那么这两个数是多少?
26、小悦和东东在黑板上各写了一个自然数,这两个自然数的最大公因数是18,最小公倍数是180,两个数的和是126,那么这两个数是多少?
27、两个数的最大公因数是16,最小公倍数是160,这两个数相差48,这两个数是多少?
28、已知两数的最大公因数是21,最小公倍数是126,求这两个数的和是多少?29、两个自然数不成倍数关系,它们的最大公因数是18,最小公倍数是216,这两个数分别是多少?
30、两个数不成倍数关系,它们的最大公因数是15,最小公倍数是90,请问这两个数分别是多少?
31、两个数的最大公因数是21,最小公倍数是105,求这两个数。

32、一个数除2余1,除5余2,除7余3,这个数最小是多少?
33、算式5×10×15×20的积的末尾有几个连续的0?
34、4×5×6×·×14×15的积的末尾有几个连续的0?
35、三个连续的自然数的乘积等于39270,这三个连续自然数的和等于多少?
36、两个质数的和是39,这两个质数的差是多少?
37、如果两个质数相加等于25,这两个质数是多少?
38、如果两个质数相加等于48,这两个质数是多少?
39、有人说:“7个连续的自然数中一定有质数。

”请你举例说明这句话是错的。

相关文档
最新文档