正弦定理和余弦定理以及其应用教案1

合集下载

《正弦定理和余弦定理的实际运用举例》教学设计

《正弦定理和余弦定理的实际运用举例》教学设计

《正弦定理和余弦定理的实际运用举例》教学设计正弦定理和余弦定理的实际运用举例教学设计简介本教学设计旨在教授正弦定理和余弦定理的实际运用方法。

通过实例演示和练题的形式,帮助学生理解和掌握这两个几何定理的应用场景。

教学目标- 理解正弦定理和余弦定理的概念和原理- 掌握正弦定理和余弦定理在实际问题中的应用方法- 进一步发展解决几何问题的能力教学内容正弦定理- 介绍正弦定理的概念和公式(a/sinA = b/sinB = c/sinC)- 解释正弦定理的几何意义和运用场景- 演示实际问题中如何利用正弦定理求解未知变量余弦定理- 介绍余弦定理的概念和公式(c² = a² + b² - 2abcosC)- 解释余弦定理的几何意义和运用场景- 演示实际问题中如何利用余弦定理求解未知变量实际运用举例- 提供几个实际问题的案例,涉及三角形的边长和角度- 分步引导学生运用正弦定理和余弦定理解决这些问题- 给予学生充足的练机会,以加深对定理应用的理解和熟练度教学步骤1. 引入:复三角形的基本概念和知识点2. 正弦定理:- 介绍正弦定理的公式和使用方法- 演示一个实际问题的解决过程,利用正弦定理求解未知变量- 学生模仿演示并完成相关练题3. 余弦定理:- 介绍余弦定理的公式和使用方法- 演示一个实际问题的解决过程,利用余弦定理求解未知变量- 学生模仿演示并完成相关练题4. 实际运用举例:- 提供几个实际问题的案例,涉及三角形的边长和角度- 分组或个人完成案例分析和解决过程- 学生通过小组或个人报告展示解决思路和结果5. 总结与讨论:- 综合讨论学生的解决思路和方法的优劣- 引导学生总结出正弦定理和余弦定理在解决实际问题中的重要性和应用价值教学评估1. 参与度评估:观察学生在课堂中的积极参与程度和问题解答能力2. 练成绩评估:通过练题的完成情况和准确度,进行学生对正弦定理和余弦定理的理解和应用评估3. 案例分析评估:评估学生在实际问题解决中的思考能力和解决方法的合理性参考资源1. 《高中数学教材》2. 互动教学软件和课件3. 个人和小组练习题。

正弦定理应用教案

正弦定理应用教案

正弦定理应用教案【篇一:正弦定理、余弦定理应用举例教案】第7讲正弦定理、余弦定理应用举例【考查要点】利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【基础梳理】1.用正弦定理和余弦定理解三角形的常见题型。

如测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角:指从正北方向顺时针转到目标方向线的水平角,如b点的方(4)坡度:坡面与水平面所成的二面角的度数.3、解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.4、解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【例题分析】一、基础理解a..3 m c. m 2解:如图.答案b例4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船a.5海里 b.3海里 c.10海里 d.海里5里),于是这艘船的速度是=10(海里/时).答案 c 0.5二、测量距离问题例1、如图所示,为了测量河对岸a,b两点间的距离,在这岸[分析] 在△bcd中,求出bc,在△abc中,求出ab.例2、如图,a,b,c,d都在同一个与水平面垂直的平面内,b、d为两岛上的试探究图中b、d间距离与另外哪两点间距离相等,然后求b,d的距离.故cb是△cad底边ad的中垂线,所以bd=ba.2+同理,bd(km).故b、d km. 2020三、测量高度问题[分析] 过点c作ce∥db,延长ba交ce于点e,在△aec中解得x=10(33) m.故山高cd为10(33) m.总结:(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.,cdcdxab解:在△abc中,ab=5,ac=9,∠bca=sin∠acb9同理,在△abd中,ab=5,sin∠bad 10abbd∠adb=, sin∠bdasin∠bad22解得bd故bd的长为22总结:要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.点,ad=10,ac=14,dc=6,求ab的长.解:在△adc中,ad=10,ac=14,dc=6,【篇二:《正弦定理》教学设计】《正弦定理》教学设计一、教材分析正弦定理是高中新教材人教a版必修⑤第一章1.1.1的内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边与角之间的数量关系。

初中数学教案余弦定理与正弦定理的应用

初中数学教案余弦定理与正弦定理的应用

初中数学教案余弦定理与正弦定理的应用初中数学教案余弦定理与正弦定理的应用一、引言在初中数学学习中,我们经常会遇到利用几何知识解决实际问题的情况。

而余弦定理和正弦定理作为几何知识的重要部分,具有广泛的应用价值。

本教案旨在通过具体的例子,让学生理解并能够熟练应用余弦定理和正弦定理。

二、教学目标1. 掌握余弦定理和正弦定理的概念和公式;2. 理解余弦定理和正弦定理的应用场景;3. 能够灵活运用余弦定理和正弦定理解决实际问题。

三、教学内容1. 余弦定理的应用余弦定理是用来求解三角形边长或角度的定理,其公式为:c^2 = a^2 + b^2 - 2ab*cos∠C示例题目1:已知三角形ABC,边长分别为a=5cm,b=7cm,∠C=60°,求边c的长度。

解答思路:根据余弦定理的公式,将已知的数值代入计算,有:c^2 = 5^2 + 7^2 - 2*5*7*cos60°c^2 = 25 + 49 - 70*cos60°c^2 = 74 - 70*0.5c^2 = 74 - 35c^2 = 39因此,c≈6.24cm示例题目2:已知三角形ABC,边长分别为a=8cm,b=9cm,c=10cm,求∠A的大小。

解答思路:根据余弦定理的公式,将已知的数值代入计算,有:8^2 = 9^2 + 10^2 - 2*9*10*cos∠A64 = 81 + 100 - 180*cos∠A180*cos∠A = 181 - 64cos∠A = 117/180∠A ≈ 51.32°2. 正弦定理的应用正弦定理是用来求解三角形边长或角度的定理,其公式为:a/sin∠A = b/sin∠B = c/sin∠C示例题目3:已知三角形ABC,∠A=45°,∠B=60°,AC=8cm,求边AB与BC的长度。

解答思路:根据正弦定理的公式,将已知的数值代入计算,有:AB/sin45° = 8/sin60°AB = 8*sin45°/sin60°AB ≈ 8*0.7071/0.8660 ≈ 6.928cmBC/sin60° = 8/sin45°AB = 8*sin60°/sin45°AB ≈ 8*0.8660/0.7071 ≈ 9.398cm四、教学方法1. 结合实际生活进行示例分析,增加学生的兴趣;2. 组织学生小组合作,共同解决问题,培养合作意识;3. 引导学生总结规律,归纳定理应用方法。

《正弦定理和余弦定理》教案

《正弦定理和余弦定理》教案
情感:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点:正弦定理的探索和证明及其基本应用
教学难点:已知两边和其中一边的对角解三角形时判断解的个数
授课类型:新授课
⑹ , , ,求
四、课堂练习:
1在△ABC中, ,则k为( )
A2RBRC4RD (R为△ABC外接圆半径)
2△ABC中,sin2A=sin2B+sin2C,则△ABC为( )
A直角三角形B等腰直角三角形C等边三角形D等腰三角形
五、小结:
(1)定理的表示形式: ;
或 , ,
(2)正弦定理的应用范围:
(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
(证法一)如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则 ,
C
同理可得 ,ba
从而 A c B
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
过点a作jac??????c由向量的加法可得abaccb??????????则acjab?jcb???????????????abjabjacjcb???????????????????j??00cos900cos90???????jab?????jcbacsincsinaac即sinsinacac同理过点c作?????jbc可得sinsinbcbc从而sinsinababsincc证法三
三、讲解范例
例1.在 中,已知 , , cm,解三角形。

正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案正文:正弦定理和余弦定理的运用教案一、教学目标1. 理解正弦定理和余弦定理的含义和基本公式;2. 掌握正弦定理和余弦定理在解决三角形相关问题中的应用方法;3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学重点1. 正弦定理的推导和应用;2. 余弦定理的推导和应用。

三、教学难点1. 正弦定理和余弦定理的理解和记忆;2. 通过具体问题实际运用,使学生深入理解定理的应用方法。

四、教学准备1. 教材:三角函数学科教材;2. 工具:投影仪、黑板、粉笔、直尺、量角器。

五、教学过程Ⅰ. 导入(10分钟)1. 教师简要复习三角比的概念和计算方法;2. 教师引导学生思考:在已知某一角的情况下,如何确定三角形的边长呢?Ⅱ. 正弦定理的推导和应用(20分钟)1. 教师通过投影仪展示正弦定理的基本公式:a/sinA = b/sinB =c/sinC;2. 教师讲解正弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用正弦定理解决问题,并逐步引导学生总结出应用方法。

Ⅲ. 余弦定理的推导和应用(20分钟)1. 教师通过投影仪展示余弦定理的基本公式:c² = a² + b² - 2abcosC;2. 教师讲解余弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用余弦定理解决问题,并逐步引导学生总结出应用方法。

Ⅳ. 正弦定理和余弦定理的综合应用(25分钟)1. 教师给出一些复合问题,要求学生结合正弦定理和余弦定理解决问题;2. 学生分组讨论、解答问题,并在黑板上展示解题过程;3. 教师组织学生展示解题思路和方法,并针对不同解题方法进行及时点评。

Ⅴ. 拓展应用(15分钟)1. 教师布置一些拓展性应用题,要求学生在课后完成;2. 学生自主学习拓展内容,并在下节课讲解时与教师进行互动讨论。

Ⅵ. 总结与作业(10分钟)1. 教师对本节课的要点进行总结,并强调正弦定理和余弦定理的重要性;2. 布置作业:完成课后习题,复习和巩固所学知识。

高中数学:正弦定理、余弦定理及应用教案苏教版必修

高中数学:正弦定理、余弦定理及应用教案苏教版必修

教案:高中数学——正弦定理、余弦定理及应用教案编写者:教学目标:1. 理解正弦定理、余弦定理的定义及几何意义;2. 掌握正弦定理、余弦定理的应用方法;3. 能够运用正弦定理、余弦定理解决实际问题。

教学重点:1. 正弦定理、余弦定理的定义及几何意义;2. 正弦定理、余弦定理的应用方法。

教学难点:1. 正弦定理、余弦定理在实际问题中的应用。

教学准备:1. 教师准备PPT、教案、例题及练习题;2. 学生准备笔记本、文具。

教学过程:一、导入(5分钟)1. 复习初中阶段学习的三角函数知识,引导学生回顾正弦、余弦函数的定义及图像;2. 提问:如何利用三角函数解决几何问题?引出正弦定理、余弦定理的学习。

二、正弦定理(15分钟)1. 讲解正弦定理的定义:在一个三角形中,各边和它所对角的正弦的比相等;2. 解释正弦定理的几何意义:三角形任意一边的长度等于这一边所对角的正弦值乘以对边的长度;3. 举例说明正弦定理的应用方法,如已知三角形两边和一边的对角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握正弦定理的应用。

三、余弦定理(15分钟)1. 讲解余弦定理的定义:在一个三角形中,各边的平方和等于两边的平方和减去这两边与它们夹角的余弦的乘积的二倍;2. 解释余弦定理的几何意义:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦值的乘积的两倍;3. 举例说明余弦定理的应用方法,如已知三角形两边和它们的夹角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握余弦定理的应用。

四、应用练习(15分钟)1. 给学生发放练习题,要求学生在纸上完成;2. 学生在纸上完成练习题,教师巡回指导;3. 选取部分学生的作业进行讲解和点评。

1. 回顾本节课学习的正弦定理、余弦定理的定义及应用;2. 强调正弦定理、余弦定理在解决几何问题中的重要性;3. 提醒学生课后复习巩固,做好预习准备。

教学反思:本节课通过讲解正弦定理、余弦定理的定义及几何意义,让学生掌握了这两个重要定理的应用方法。

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案一、教学目标1. 让学生掌握正弦定理和余弦定理的定义及表达式。

2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。

3. 引导学生通过观察、分析、归纳和验证等方法,深入理解正弦定理和余弦定理的内在联系。

二、教学内容1. 正弦定理:在三角形中,各边的长度与其对角的正弦值成比例。

2. 余弦定理:在三角形中,各边的平方和等于其他两边平方和与这两边夹角余弦值的乘积的两倍。

三、教学重点与难点1. 教学重点:正弦定理和余弦定理的定义及应用。

2. 教学难点:正弦定理和余弦定理的推导过程及其在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳和验证等方法,探索正弦定理和余弦定理。

2. 利用多媒体课件,直观展示正弦定理和余弦定理的推导过程。

3. 设计具有代表性的例题,讲解正弦定理和余弦定理在解决实际问题中的应用。

4. 组织学生进行小组讨论和探究,提高学生的合作能力和解决问题的能力。

五、教学过程1. 导入新课:通过展示三角形模型,引导学生思考三角形中的几何关系。

2. 探究正弦定理:让学生观察三角形模型,引导学生发现各边长度与对角正弦值的关系,进而总结出正弦定理。

3. 验证正弦定理:让学生运用正弦定理解决具体问题,验证其正确性。

4. 探究余弦定理:引导学生观察三角形模型,发现各边平方和与夹角余弦值的关系,总结出余弦定理。

5. 验证余弦定理:让学生运用余弦定理解决具体问题,验证其正确性。

6. 总结正弦定理和余弦定理:引导学生对比总结两个定理的异同点。

7. 巩固练习:设计具有针对性的练习题,让学生巩固正弦定理和余弦定理的应用。

8. 拓展与应用:引导学生运用正弦定理和余弦定理解决实际问题,提高学生的应用能力。

六、教学评价1. 课堂讲解:评价学生对正弦定理和余弦定理的理解程度,以及运用这两个定理解决问题的能力。

2. 练习题:通过布置练习题,检验学生对正弦定理和余弦定理的掌握情况。

《正弦定理和余弦定理》教案

《正弦定理和余弦定理》教案

正弦定理和余弦定理高二数学教·学案主备人:执教者:【学习目标】1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

2.通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

【学习重点】在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

【学习难点】正、余弦定理与三角形的有关性质的综合运用【授课类型】新授课【教具】课件、电子白板【学习方法】【学习过程】一、引入:思考:在ABC 中,已知22a cm ,25b cm ,0133A ,解三角形。

(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。

下面进一步来研究这种情形下解三角形的问题。

二、特例示范:例1.在ABC 中,已知,,a b A ,讨论三角形解的情况分析:先由sin sin b A Ba 可进一步求出B ;则0180()CA B 从而sin a Cc A1.当A 为钝角或直角时,必须a b 才能有且只有一解;否则无解。

2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b ,那么可以分下面三种情况来讨论:(1)若sin a b A ,则有两解;(2)若sin a b A ,则只有一解;(3)若sin a b A ,则无解。

(以上解答过程详见课本第9:10页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有个性设计当A 为锐角且sin b A a b 时,有两解;其它情况时则只有一解或无解。

例2.在ABC 中,已知7a ,5b ,3c ,判断ABC 的类型。

分析:由余弦定理可知222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A ABC 是锐角三角形(注意:是锐角A ABC 是锐角三角形)解:222753Q ,即222a b c ,∴ABC 是钝角三角形。

正弦定理和余弦定理教案

正弦定理和余弦定理教案

1. 定理:2sin sin sin a b c R ABC===.(R 为三角形外接圆半径)2. 例题:例1:在∆ABC 中,已知045A =,060B =,2a =,求b .例2:045,2,,ABC c A a b B C ∆===中,求和.3. 练习:1、060,1,,ABC b B c a A C ∆===中,求和.2、060,ABC a A b B ∆===中,求3. 已知∆ABC 中,∠A =60°,a =,求sin sin sin a b c A B C++++.4、∆ABC 中,若::1:2:3A B C =则::a b c =5、∆ABC 中,若2sin b a B =则A =★6. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B=,求a b b+的值★7、002,30,135,ABC b B C a ∆===中,求1. 定理:2222cos b a c ac B =+- 推论222cos 2+-=b c aA bc2222cos a b c bc A =+- 222c o s 2+-=a c bBac2222cos c a b ab C =+- 222c o s 2+-=b a cCba2. 例题:例1. 在∆ABC 中,已知3a =,4b =,060C =,求c .练习:在∆ABC 中,已知=a c 060=B ,求b 及A .(答案:b =,060A =)例2:在ΔABC 中,已知a =3,b =4,c =6,求cosC .小结:余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; 余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边. 3、巩固练习:1. 三角形ABC 中,A =120°,b =3,c =5,求a2. 在∆ABC 中,若222a b c bc =++,求角A . (答案:A =1200)变式:在△ABC 中,()()3a b c b c a bc +++-=,则A =3. 三角形ABC 中,3,2,AB AC BC ===AB AC1.3正弦定理和余弦定理的综合问题 例1三角形ABC 中,cos C =1314,a =7,b =8,求最大角的余弦变式:在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,求最大角的余弦.例2:在ΔABC 中,已知a =7,b =10,c =6,判断三角形的类型.=+⇔⇔∆>+⇔⇔∆<+⇔⇔222222222是直角是直角三角形是钝角是钝角三角形是锐角a b c A ABC a b c A ABC a b c A ∆是锐角三角形ABC 练习:1. 在ΔABC 中,已知a =3,b =5,c =7,判断三角形的类型.★2. 在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形★3. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状.★4. 三角形ABC 中,C =60°,a =3,c =7,求b5. 在△ABC 中,已知12,3,cos 4a c B ===,求(1)b 的值(2)求sin C★★6. 已知A B C △三个顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,. (1)若5c =,求sin A ∠的值. (2) 若A 是钝角,求c 的取值范围★★★7. 在△ABC 中,已知54cos ,sin 135A B ==,求cos C .1.4应用问题 一、面积问题 公式:S=21ab sin C ,S=21bc sin A , S=21ac sin B例1:已知在∆ABC 中,∠B=30︒,b=6,c=63,求a 及∆ABC 的面积S练习:1.已知在∆ABC 中,∠B=30︒,AB=求∆ABC 的面积2. 三角形ABC 中,a =5,b =7,c =8求A B C S★3. 在锐角A B C △中,角A B C ,,所对的边分别为a b c ,,,已知sin 3A =,若2a =,ABC S =△b 的值。

正弦定理、余弦定理应用举例教案

正弦定理、余弦定理应用举例教案

正弦定理、余弦定理应用举例1.用正弦定理和余弦定理,面积公式2.实际问题中的常用角(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)). (2)方位角:指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏南60°,东北方向等. 【例题分析】 一、基础理解1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90° D.α+β=180°2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°3.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A .5海里B .53海里C .10海里D .103海里 二、测量距离问题例1、如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522 m例2、 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.三、测量高度问题例3、如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.例4、如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.四、航海问题例、如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?练习1.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.2. 已知一小山的高度100m,CD =从山顶看A 点的俯角为030,看B 点的俯角为045,A,B,D 三点在一条直线上,则AB= 米3. 如图,在四边形ABCD 中,∠ADB=∠BCD=75︒,∠ACB=∠BDC=45︒,DC=3,求:(1)AB 的长 (2)四边形ABCD 的面积3.如图,一艘船上午9:30在A 处得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距82n mile .求船的航速4.如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.ABCD E5.如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东β的方向即沿直线CB前往B处救援,求cosβ.6.某人在塔AB 的正东C处,沿着南偏西60的方向前进40米到达D处,望见塔在东北方向,若沿途测得塔的最大仰角为30,求塔高.7.如图,点A表示一小灵通信号发射的位置(塔高不计),l为一条东北走向的公路,技术人员为测试该发射塔信号的覆盖范围,自A点正西方向的B处骑自行车沿公路出发,约经过6分钟,发现小灵通开始有信号,已知:AB=24km,车速10km/h,能否根据以上信息,测算出该塔信号的覆盖半径以及小灵通持续显示信号的时间?A北。

正弦定理和余弦定理教案(启发式)

正弦定理和余弦定理教案(启发式)

正弦定理、余弦定理教案 ●教学目标(一)知识目标1.三角形形状的判断依据;2.利用正、余弦定理进行边角互换.(二)能力目标1.进一步熟悉正、余弦定理内容;2.能够应用正、余弦定理进行边角关系的相互转化;3.能够利用正、余弦定理判断三角形的形状;4.能够利用正、余弦定理证明三角形中的三角恒等式.(三)德育目标通过正、余弦定理在边角互换时所发挥的桥梁作用来反映事物之间的内在联系;通过三角恒等式的证明来反映事物外在形式可以相互转化而内在实质的不变性. ●教学重点利用正、余弦定理进行边角互换. ●教学难点1.利用正、余弦定理进行边角互换时的转化方向;2.三角恒等式证明中结论与条件之间的内在联系的寻求. ●教学方法 启发引导式1.启发学生在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;2.引导学生总结三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用. ●教具准备 投影仪、幻灯片 正弦定理:R Cc B b A a 2sin sin sin === 余弦定理:,cos 2222A bc c b a -+=abc b a C cab ac B bca cb A Cab b a c B ca a c b 2cos 2cos 2cos cos 2,cos 2222222222222222-+=-+=-+=-+=-+=第二张:例题1、2(记作§5.9.3 B) [例1]已知△ABC ,B D为B 的平分线,求证:AB ∶BC =A D∶DC[例2]在△ABC 中,求证:a 2sin2B +b 2sin2A =2ab sin C第三张:例3、例4(记作§5.9.3 C)[例3]已知A 、B 、C 是△ABC 的三个内角,且满足(sin A +sin B )2-sin 2C=3sin A sin B 求证:A +B =120°[例4]在△ABC 中,b cos A =a cos B 试判断三角形的形状●教学过程Ⅰ.复习回顾师:前面两节课,我们一起学习了正弦定理、余弦定理的内容,并且接触了利用正、余弦定理解三角形的有关题型.下面,我们先来回顾一下正、余弦定理的内容(给出投影片§5.9.3 A ).从投影片大家可以看出,正弦定理、余弦定理实质上反映了三角形内的边角关系,运用定理可以进行边与角之间的转换,这一节,我们将通过例题分析来学习正、余弦定理的边角转换功能在证明三角恒等式及判断三角形形状时的应用.Ⅱ.讲授新课师:下面,我们来看投影片上的例题.(给出投影片§5.9.3 B).[例1]分析:前面大家所接触的解三角形问题是在一个三角形内研究问题,而B 的平分线BD 将△ABC 分成了两个三角形:△ABD 与△CBD ,故要证结论成立,可证明它的等价形式:AB ∶AD =BC ∶DC ,从而把问题转化到两个三角形内,而在三角形内边的比等于所对角的正弦值的比,故可利用正弦定理将所证继续转化为DBCDC BDC BC ABD AD ABD AB sin sin ,sin sin ==,再根据相等角正弦值相等,互补角正弦值也相等即可证明结论.证明:在△ABD 内,利用正弦定理得:ABDADB AD AB ABD AD ADB AB sin sin sin sin ==即 在△BCD 内,利用正弦定理得:.sin sin ,sin sin DBCBDC DC BC DBC DC BDC BC ==即 ∵BD 是B 的平分线.∴∠ABD =∠DBC ∴sin ABD =sin DBC .∵∠ADB +∠BDC =180°∴sin ADB =sin (180°-∠BDC )=sin BDC∴CD BC DBC BDC ABD ADB AD AB ===sin sin sin sin ∴DCAD BC AB = 评述:此题可以启发学生利用正弦定理将边的关系转化为角的关系,并且注意互补角的正弦值相等这一特殊关系式的应用.[例2]分析:此题所证结论包含关于△ABC 的边角关系,证明时可以考虑两种途径:一是把角的关系通过正弦定理转化为边的关系,若是余弦形式则通过余弦定理;二是把边的关系转化为角的关系,一般是通过正弦定理.另外,此题要求学生熟悉相关的三角函数的有关公式,如sin2B =2sin B ·cos B 等,以便在化为角的关系时进行三角函数式的恒等变形.证明一: (化为三角函数)a 2sin2B +b 2sin2A=(2Rsin A )2·2sin B ·cos B +(2Rsin B )2·2sin A ·cos A=8R2sin A ·sin B (sin A cos B +cos A sin B )=8R2sin A sin B sin C=2·2Rsin A ·2Rsin B ·sin C=2ab sin C所以原式得证.证明二: (化为边的式子)左边=a 2·2sin B cos B +b 2·2sin A ·cos A =a 2·bc a c b R a b ac b c a R b 2222222222222-+⋅⋅+-+⋅ =)(2222222a c b b c a Rcab -++-+ =C ab Rc ab c RC ab sin 222222=⋅=⋅ 评述:由边向角转化,通常利用正弦定理的变形式:a =2Rsin A ,b =2Rsin B ,c =2Rsin C ,在转化为角的关系式后,要注意三角函数公式的运用,在此题用到了正弦二倍角公式sin2A =2sin A ·cos A ,正弦两角和公式sin (A +B )=sin A ·cos B +cos A ·sin B ;由角向边转化,要结合正弦定理变形式以及余弦定理形式二.三角形的有关证明问题,主要围绕三角形的边和角的三角函数展开,从某种意义上来看,这类问题就是有了目标的含边和角的式子的化简问题.(给出幻灯片§5.9.3 C )[例3]分析:要证A +B =120°,由于A +B +C =180°,只要证明C =60°,而已知条件为三角函数关系,故应考虑向三角函数的转化,又在0°~180°之间,余弦值所对应角惟一,故可证明cos C =21,而由余弦定理cos C =ab c b a 2222-+,所以应考虑把已知的角的关系式转化为边的关系.证明:由(sin A +sin B )2-sin 2C =3sin A ·sin B可得sin 2A +sin 2B -sin 2C =sin A ·sin B又∵sin A =R a 2,sin B =R b 2,sin C =Rc 2, ∴R b R a R c R b R a 22444222222⋅=-+ 整理得a 2+b 2-c 2=ab∴cos C =212222=-+ab c b a 又0°<C <180° ∴C =60°∴A +B =180°-C =120°评述: (1)有关三角形内角的证明,选择余弦值与正弦值相比较,要省去取舍的麻烦.但注意在根据三角函数值求角时,应先确定角的范围; (2)在将已知条件中角的关系转化为边的关系时,运用了正弦定理的变形式:a =2R ·sin A ,b =2R sin B ,c =2R sin C ,这一转化技巧,要求学生熟练掌握.[例4]分析:三角形形状的判断,可以根据角的关系,也可根据边的关系,所以在已知条件的运用上,可以考虑两种途径:将边转化为角,将角转化为边,下面,我们从这两个角度进行分析.解法一:利用余弦定理将角化为边.∵b cos A =a cos B∴b ·acb c a a bc a c b 22222222-+⋅=-+ ∴b 2+c 2-a 2=a 2+c 2-b 2∴a 2=b 2∴a =b故此三角形是等腰三角形.解法二:利用正弦定理将边转化为角.∵b cos A =a cos B又b =2Rsin B ,a =2Rsin A∴2Rsin B cos A =2Rsin A cos B∴sin A cos B -cos A sin B =0∴sin (A -B )=0∵0<A ,B <π,∴-π<A -B <π∴A -B =0 即A =B故此三角形是等腰三角形.评述: (1)在判定三角形形状时,一般考虑两个方向进行变形,一个方向是边,走代数变形之路,通常是正、余弦定理结合使用;另一个方向是角,走三角变形之路.通常是运用正弦定理.要求学生要注重边角转化的桥梁——正、余弦定理;(2)解法二中用到了三角函数中两角差的正弦公式,但应注意在根据三角函数值求角时,一定要先确定角的范围.另外,也可运用同角三角函数的商数关系,在等式sin B cos A =sin A cos B 两端同除以sin A sin B 得cot A =cot B ,再由0<A ,B <π,而得A =B .师:为巩固本节所学的解题方法,下面我们进行课堂练习.Ⅲ.课堂练习1.在△ABC 中,证明下列各式:(1)(a 2-b 2-c 2)tan A +(a 2-b 2+c 2)tan B =0 (2) .112cos 2cos 2222b a b B a A -=- 证明:(1)左边=(a 2-b 2-c 2)BB c b a A A cos sin )(cos sin 222+-+ 右边==+-=⎥⎦⎤⎢⎣⎡-+-++-+-+-=-+⋅⋅+-+-+⋅⋅--=0)11()(2222)(22)(222222222222222222222222Rabc b c a b c a a c b a c b R abc b c a ac R b c b a a c b bc R a c b a 故原命题得证.右边左边=-=+--=+--=---=22222222222222222211)2(2)2(211sin )2(sin 2sin )2(sin 2)11(sin 21sin 21)2(b a R R b a BR B A R A b a b B a A 故原命题得证.评述:(1)在(1)题证明时应注意两点:一是切化弦的思路,二是结合正、余弦定理将角的关系转化为边的关系;(2)(2)题证明过程中用到了余弦二倍角的公式,而此公式有三种形式cos2A =cos 2A -sin 2A =2cos 2A -1=1-2sin 2A ,由于考虑到等式右端为边的关系,故选用第三种形式,在转化为边的关系时较为简便.2.在△ABC 中,已知sin B ·sin C =cos 22A ,试判断此三角形的类型. 解:∵sinB ·sinC =cos 22A ∴sinB ·sinC =2cos 1A + ∴2sin B ·sin C =1+cos [180°-(B +C )]将cos (B +C )=cos B cos C -sin B sin C 代入上式得cos B cos C +sin B sin C =1∴cos (B -C )=1又0<B ,C <π,∴-π<B -C <π∴B -C =0 ∴B =C故此三角形是等腰三角形.评述: (1)此题在证明过程中,要用到余弦二倍角公式cos A =2cos 22A -1的逆用,要求学生注意.(2)由于已知条件就是三角函数关系式,故无需向边的关系转化,而是进行三角函数式的恒等变形.Ⅳ.课时小结师:通过本节学习,我们熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断.其中,要求大家重点体会正、余弦定理的边角转换功能.Ⅴ.课后作业(一)补充作业1.在△ABC 中,已知)sin()sin(sin sin C B B A C A --=,求证:a 2,b 2,c 2成等差数列. 证明:由已知得sin (B +C )sin (B -C )=sin (A +B )·sin (A -B )cos2B -cos2C =cos2A -cos2B2cos2B =cos2A +cos2C22cos 122cos 122cos 12B A B -+-=-⋅ ∴2sin 2B =sin 2A +sin 2C由正弦定理可得2b 2=a 2+c 2即a 2,b 2,c 2成等差数列.2.在△ABC 中,A =30°,cos B =2sin B -3sin C . (1)求证:△ABC 为等腰三角形;(提示B =C =75°)(2)设D 为△ABC 外接圆的直径BE 与AC 的交点,且AB =2,求AD ∶DC 的值. 答案:(1)略 (2)1∶3(二)1.预习内容课本5.9 正弦定理、余弦定理2.预习提纲(1)复习正、余弦定理内容(2)总结正、余弦定理适用题型●板书设计§5.9.3 正弦定理、余弦定理(三)一、三角形问题证明思路 二、三角形形状判定依据三、学生练习1.向边转化 1.等腰三角形:a =b 或A =B四、补充作业利用正、余弦定理 2.直角三角形:a 2+b 2=c 22.向角转化 或C =90°利用正弦定理 3.钝角三角形:C >90°●备课资料1.正余弦定理的边角互换功能对于正、余弦定理,同学们已经开始熟悉,在解三角形的问题中常会用到它.其实,在涉及到三角形的其他问题中,也常会用到它们.两个定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,从而使许多问题得以解决.[例1]已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且32sin sin =B A ,求B B A +的值. 解:∵23sin sin ,sin sin ,sin sin ==∴=B A b a B A B b A a 又(这是角的关系),∴23=b a (这是边的关系).于是,由合比定理得.25223=+=+b b a [例2]已知△ABC 中,三边a 、b 、c 所对的角分别是A 、B 、C ,且a 、b 、c 成等差数列.求证:sin A +sin C =2sin B证明:∵a 、b 、c 成等差数列,∴a +c =2b (这是边的关系)①又BA b a C cB b A a sin sin ,sin sin sin =∴==② BC b c sin sin =③ 将②、③代入①,得b BC b B A b 2sin sin sin sin =+整理得sin A +sin C =2sin B (这是角的关系).2.正、余弦定理的巧用某些三角习题的化简和求解,若能巧用正、余弦定理,则可避免许多繁杂的运算,从而使问题较轻松地获得解决,现举例说明如下:[例3]求sin 220°+cos 280°+3sin20°cos80°的值.解:原式=sin 220°+sin 210°-2sin20°sin10°cos150°∵20°+10°+150°=180°,∴20°、10°、150°可看作一个三角形的三个内角.设这三个内角所对的边依次是a 、b 、c ,由余弦定理得:a 2+b 2-2ab cos150°=c 2(※)而由正弦定理知:a =2Rsin20°,b =2Rsin10°,c =2Rsin150°,代入(※)式得:sin 220°+sin 210°-2sin20°sin10°cos150°=sin 2150°=41 ∴原式=41. ●教学后记。

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案一、教学目标1. 让学生理解正弦定理和余弦定理的定义及几何意义。

2. 培养学生运用正弦定理和余弦定理解决三角形问题的能力。

3. 引导学生通过观察、分析、归纳和验证等方法,探索正弦定理和余弦定理的适用范围和条件。

二、教学内容1. 正弦定理:介绍正弦定理的定义、表达式及几何意义,分析正弦定理的适用范围和条件。

2. 余弦定理:介绍余弦定理的定义、表达式及几何意义,分析余弦定理的适用范围和条件。

3. 应用:通过例题讲解如何运用正弦定理和余弦定理解决三角形问题,如边长问题、角度问题、面积问题等。

三、教学重点与难点1. 重点:正弦定理和余弦定理的定义、表达式及几何意义。

2. 难点:正弦定理和余弦定理在解决三角形问题时的灵活运用。

四、教学方法1. 采用问题驱动法,引导学生主动探索正弦定理和余弦定理。

2. 利用几何画板或实物模型,直观展示正弦定理和余弦定理的应用。

3. 通过例题讲解和练习,巩固学生对正弦定理和余弦定理的理解和运用。

五、教学安排1. 第一课时:介绍正弦定理的定义、表达式及几何意义。

2. 第二课时:介绍余弦定理的定义、表达式及几何意义。

3. 第三课时:讲解正弦定理和余弦定理在解决三角形问题中的应用。

4. 第四课时:通过练习题巩固正弦定理和余弦定理的知识。

六、教学评价1. 评价学生对正弦定理和余弦定理的定义、表达式及几何意义的理解程度。

2. 评价学生运用正弦定理和余弦定理解决三角形问题的能力。

3. 评价学生在解决实际问题时,能否灵活运用正弦定理和余弦定理。

七、教学反馈1. 课堂提问:通过提问了解学生对正弦定理和余弦定理的理解程度。

2. 练习反馈:通过练习题的完成情况,了解学生对正弦定理和余弦定理的掌握情况。

3. 课后访谈:与学生交流,了解他们在解决实际问题时对正弦定理和余弦定理的应用情况。

八、教学拓展1. 探索正弦定理和余弦定理在其他领域的应用,如物理学、工程学等。

2. 介绍正弦定理和余弦定理的历史背景和发展过程。

正弦定理和余弦定理(教案)

正弦定理和余弦定理(教案)

《正弦定理和余弦定理》(一)创设情境提出课题如图1,某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心O与AB的距离为10 km,问把A、B分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)(二)复习回顾、知识梳理1.正弦定理: .利用正弦定理,可以解决哪些有关三角形的问题.?2.余弦定理: .利用余弦定理,可以解决哪些有关三角形的问题:3.三角形面积公式: .(三)典例导航、知识拓展【例1】△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B.思考讨论该题根据命题特征,你能否构造一个符合条件的三角形,利用几何知识解决?【例2】已知a 、b 、c 分别是△ABC 的三个内角A 、B 、C 所对的边,(1)若△ABC 的面积23=∆ABC S ,c=2,A=600,求边a,b 的值; (2)若a =c cos B ,且b =c sin A ,试判断△ABC 的形状。

(四) 变式训练、归纳整理【例3】已知a 、b 、c 分别是△ABC 的三个内角A 、B 、C 所对的边,若b cosC=(2a -c )cosB(1) 求角B ;(2) 2,2=∙=,求a+c 的值。

(五) 应用实践,解决问题通过复习整理,你能通过对正余弦定理的理解,最后解决本节课开始时留下的实际问题。

课时小结1. 解三角形时,已知“角角边、角边角、边边角”关系常用正弦定理;“边边边、边角边”关系常用正弦定理。

2. 根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边.4.应用问题可利用图形将题意理解清楚,然后用数学模型解决问题。

5.正余弦定理与三角函数、向量、不等式等知识相结合,综合运用解决实际问题。

正余弦定理的应用举例教案

正余弦定理的应用举例教案

正余弦定理的应用举例教案章节一:正弦定理的应用1.1 导入:通过复习正弦定理的定义和公式,引导学生理解正弦定理在几何中的应用。

1.2 实例讲解:以一个等腰三角形为例,利用正弦定理求解三角形的角度和边长。

1.3 练习:给出几个应用正弦定理的例题,让学生独立解答。

章节二:余弦定理的应用2.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在几何中的应用。

2.2 实例讲解:以一个直角三角形为例,利用余弦定理求解三角形的角度和边长。

2.3 练习:给出几个应用余弦定理的例题,让学生独立解答。

章节三:正弦定理和余弦定理的综合应用3.1 导入:介绍正弦定理和余弦定理的综合应用,引导学生理解两者之间的关系。

3.2 实例讲解:以一个复杂的三角形为例,利用正弦定理和余弦定理相互验证,求解三角形的角度和边长。

3.3 练习:给出几个综合应用正弦定理和余弦定理的例题,让学生独立解答。

章节四:正弦定理和余弦定理在实际问题中的应用4.1 导入:引导学生思考正弦定理和余弦定理在实际问题中的应用,如测量学和工程学。

4.2 实例讲解:以一个实际问题为例,如测量一个未知角度的三角形,利用正弦定理和余弦定理求解。

4.3 练习:给出几个实际问题应用正弦定理和余弦定理的例题,让学生独立解答。

章节五:总结与拓展5.1 总结:回顾本节课学习的正弦定理和余弦定理的应用,让学生总结关键点和注意事项。

5.2 拓展:引导学生思考正弦定理和余弦定理在其他领域的应用,如物理学和天文学。

5.3 练习:给出一个拓展性问题,让学生独立解答,激发学生的思考和创造力。

正余弦定理的应用举例教案章节六:正弦定理在三角形判定中的应用6.1 导入:引导学生思考正弦定理在三角形判定中的应用,如判断三角形的类型。

6.2 实例讲解:以一个给定角度的三角形为例,利用正弦定理判断三角形的类型。

6.3 练习:给出几个利用正弦定理判断三角形类型的例题,让学生独立解答。

章节七:余弦定理在三角形判定中的应用7.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在三角形判定中的应用。

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。

它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。

以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。

高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

正余弦定理完美教案

正余弦定理完美教案

正余弦定理完美教案第一章:正弦定理简介1.1 学习目标了解正弦定理的定义和基本性质学会运用正弦定理解决实际问题1.2 教学内容正弦定理的定义及公式正弦定理与三角形内角和的关系正弦定理在实际问题中的应用1.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理的规律1.4 教学步骤1. 引入正弦定理的概念,引导学生了解正弦定理的定义和公式2. 通过示例,讲解正弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对正弦定理的理解和应用能力第二章:余弦定理简介2.1 学习目标了解余弦定理的定义和基本性质学会运用余弦定理解决实际问题2.2 教学内容余弦定理的定义及公式余弦定理与三角形内角和的关系余弦定理在实际问题中的应用2.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现余弦定理的规律2.4 教学步骤1. 引入余弦定理的概念,引导学生了解余弦定理的定义和公式2. 通过示例,讲解余弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对余弦定理的理解和应用能力第三章:正弦定理与余弦定理的综合应用3.1 学习目标学会运用正弦定理和余弦定理解决综合问题理解正弦定理和余弦定理之间的关系3.2 教学内容正弦定理和余弦定理的综合应用正弦定理和余弦定理之间的关系3.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理之间的关系3.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在解决综合问题中的应用2. 引导学生发现正弦定理和余弦定理之间的关系3. 安排练习题,巩固学生对正弦定理和余弦定理的综合应用能力第四章:正弦定理和余弦定理在几何中的应用4.1 学习目标学会运用正弦定理和余弦定理解决几何问题理解正弦定理和余弦定理在几何中的重要性4.2 教学内容正弦定理和余弦定理在几何中的应用正弦定理和余弦定理在几何中的重要性4.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在几何中的重要性4.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在几何问题中的应用2. 引导学生理解正弦定理和余弦定理在几何中的重要性3. 安排练习题,巩固学生对正弦定理和余弦定理在几何中的应用能力第五章:正弦定理和余弦定理在实际问题中的应用5.1 学习目标学会运用正弦定理和余弦定理解决实际问题理解正弦定理和余弦定理在实际问题中的意义5.2 教学内容正弦定理和余弦定理在实际问题中的应用正弦定理和余弦定理在实际问题中的意义5.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在实际问题中的意义5.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在实际问题中的应用2. 引导学生理解正弦定理和余弦定理在实际问题中的意义3. 安排练习题,巩固学生对正弦定理和余弦定理在实际问题中的应用第六章:正弦定理和余弦定理的综合练习6.1 学习目标巩固正弦定理和余弦定理的基本概念提高运用正弦定理和余弦定理解决综合问题的能力6.2 教学内容综合练习题,涵盖正弦定理和余弦定理的应用分析解题思路和方法6.3 教学方法提供综合练习题,引导学生独立解答分析解题思路,讨论解题方法6.4 教学步骤1. 提供综合练习题,要求学生独立解答2. 分析解题思路,引导学生运用正弦定理和余弦定理解决问题3. 讨论解题方法,总结正弦定理和余弦定理的应用技巧第七章:正弦定理和余弦定理在三角形中的应用7.1 学习目标深入学习正弦定理和余弦定理在三角形中的应用掌握正弦定理和余弦定理在解决三角形问题时的灵活运用7.2 教学内容正弦定理和余弦定理在三角形中的应用案例三角形特殊角度时的定理特殊性质7.3 教学方法采用案例教学,通过具体三角形问题讲解定理的应用引导学生通过几何画图工具直观理解定理的应用7.4 教学步骤1. 通过具体三角形问题,展示正弦定理和余弦定理的应用2. 引导学生利用几何画图工具,直观理解定理的应用过程3. 安排练习题,巩固学生对定理在三角形中应用的理解第八章:正弦定理和余弦定理在复杂三角形中的应用8.1 学习目标学习正弦定理和余弦定理在复杂三角形中的应用培养学生解决复杂三角形问题的能力8.2 教学内容复杂三角形问题中正弦定理和余弦定理的运用练习题及解题策略8.3 教学方法采用问题解决法,引导学生思考和探讨提供练习题,让学生通过实际操作解决问题8.4 教学步骤1. 引入复杂三角形问题,引导学生思考如何应用定理2. 提供练习题,让学生独立解决3. 讨论解题策略,引导学生总结解题技巧第九章:正弦定理和余弦定理在实际工程中的应用9.1 学习目标学习正弦定理和余弦定理在实际工程中的应用培养学生解决实际工程问题的能力9.2 教学内容正弦定理和余弦定理在工程测量、建筑等方面的应用案例实际工程问题中的解题方法9.3 教学方法采用案例教学,通过实际工程案例讲解定理的应用引导学生通过实际操作,理解定理在工程中的应用9.4 教学步骤1. 通过实际工程案例,展示正弦定理和余弦定理的应用2. 引导学生参与实际操作,理解定理在工程中的应用过程3. 安排练习题,巩固学生对定理在实际工程中应用的理解第十章:总结与复习10.1 学习目标总结正弦定理和余弦定理的主要内容和应用复习本门课程的知识点,为考试做好准备10.2 教学内容复习正弦定理和余弦定理的基本概念、性质和应用总结解题方法和技巧10.3 教学方法通过复习讲义和练习题,引导学生复习和巩固知识点组织复习课堂,鼓励学生提问和讨论10.4 教学步骤1. 发放复习讲义,让学生提前预习2. 组织复习课堂,引导学生复习重点知识点3. 提供练习题,让学生通过实际操作巩固知识点重点和难点解析第六章:正弦定理和余弦定理的综合练习环节:分析解题思路和方法重点和难点解析:此环节需要重点关注解题思路的培养和方法的多样性。

(完整版)正余弦定理教案

(完整版)正余弦定理教案

正弦定理和余弦定理安勤辉一。

教学目标:1知识与技能:认识正弦、余弦定理,了解三角形中的边与角的关系2过程与方法:通过具体的探究活动,了解正弦、余弦定理的内容,并从具体的实例掌握正弦、余弦定理的应用情感态度与价值观:通过对实例的探究,体会到三角形的和谐美,学会稳定性的重要二. 教学重、难点:1. 重点:正弦、余弦定理应用以及公式的变形2。

难点:运用正、余弦定理解决有关斜三角形问题。

知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则(1)S=错误!ah(h表示边a上的高).(2)S=错误!bc sin A=错误!ab sin C=错误!ac sin B。

(3)S=错误!r(a+b+c)(r为△ABC内切圆半径)问题1:在△ABC中,a=错误!,b=错误!,A=60°求c及B C问题2在△ABC中,c=6 A=30° B=120°求a b及C问题3在△ABC中,a=5,c=4,cos A=错误!,则b=通过对上述三个较简单问题的解答指导学生总结正余弦定理的应用;正弦定理可以解决(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角余弦定理可以解决(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角我们不难发现利用正余弦定理可以解决三角形中“知三求三”知三中必须要有一边应用举例【例1】(1)(2013·湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b。

若2a sin B=错误! b,则角A等于 ( ).A.错误! B。

错误! C。

错误! D.错误!(2)(2014·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=4错误!,B =45°,则sin C=______.解析(1)在△ABC中,由正弦定理及已知得2sin A·sin B=错误!sin B,∵B为△ABC的内角,∴sin B≠0。

《正弦定理、余弦定理的应用》教学案

《正弦定理、余弦定理的应用》教学案

1.3《正弦定理、余弦定理的应用》教学案•三维目标1. 知识与技能( 1)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题;( 2)体会数学建模的基本思想,掌握应用解三角形知识解决实际问题的一般步骤;( 3)了解常用的测量相关术语 ( 如:仰角、俯角、方位角、视角及坡度、经纬度等有关名词和术语的确切含义 ) ,综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;( 4)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力;( 5)规范学生的演算过程:逻辑严谨,表述准确,算法简练,书写工整,示意图清晰.2. 过程与方法(1)本节课是解三角形应用举例的延伸,利用正弦定理、余弦定理等知识和方法解决一些几何和物理上的问题;( 2)让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力.3.情感、态度与价值观( 1)激发学生学习数学的兴趣,并体会数学的应用价值;( 2)培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神;(3) 培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力. •重点、难点重点: (1) 综合运用正弦定理、余弦定理等知识和方法解决一些实际问题;( 2)掌握求解实际问题的一般步骤;难点:根据题意建立数学模型,画出示意图.体验将实际问题转化为数学问题的过程与思想,认识研究实际问题的方法,是本节教学的重中之重,而突破这一重难点的关键在于引导学生对实际问题进行分析,抽象出数学问题,再利用解三角形的知识加以解决.教学方案设计( 教师用书独具 )•教学建议在学生回忆正弦定理、余弦定理以及它们可以解决哪些类型的三角形的基础上,让学生尝试绘制知识纲目图. 生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础. 解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题. 解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.能否灵活求解问题的关键是正弦定理和余弦定理的选用,有些题目只选用其一,或两者混用,这当中有很大的灵活性,需要对原来所学知识进行深入的整理、加工,鼓励一题多解,训练发散思维.借助计算机等多媒体工具来进行演示,利用动态效果能使学生更好地明辨是非、掌握方法.引导学生总结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.•教学流程课前自主导学【问题导思】小明出家门向南前进200米,再向东前进200米,至U达学校上课. 1•小明的学校在家的哪个方向?【提示】东南方向.2•能否用角度确定学校的方位?【提示】能.课堂互动探究例1如图1-3—1图1—3—1在山顶C测得塔顶A的俯角为45°已知塔高AB为20 m,求山高CD(精确到0. 1 m)【思路探究】D(可放到厶BCD中,要求CD已知/ DBC= 60° / CDB= 90°所以只需求BD 或CB在厶AB(中,AB勺长度已知,三个内角都可以求出,所以可求得CB则Cd CB-s in 60°【自主解答】由条件知/ DBC= 60° / ECA= 45°•••/ ABC 90° —60°= 30° / ACB 60°—45°= 15° ,/ CA= 180° —( / ABQ-Z ACB = 135°BC AB在^ ABC中,由正弦定理得sin 135 ° = sin 15 ° ,AB- sin 135 °20x 2 40二B C= sin 15 °= 1 = 3— 1.4乐-衣7在Rt △ BC中,40 \/3CD^ BC- sin / CB=书—〔x 2 ~ 47. 3(m).•山高C哟为47.3 m.规律方法1.本例是典型的测量高度问题,抽象出平面图形,并且将相应数据聚化到相应三角形中,十分关键.2.测量高度的有关问题,大部分都是转化为同一铅垂面上的解三角形问题,但也有转化为立体图形的问题.变式训练如图1-3-2所示,空中有一气球 C,图1-3—2在它的正西方A点测得它的仰角为45°同时在它的南偏东60°的B点,测得它的仰角为3 0° A, B两点间的距离为266米,这两个测点均离地1米,则气球离地多少米?【解】设0C= x,则OA= x, OB= x • tan 60°= 3x.在厶AO中,/ A0= 90° + 60°= 150° AB= 266,所以A^= OA+ OB - 2OA OBi os / AOB=x2+ 3x2— 2x •3x • (—) = 7x2,所以x= TAB= T X 266= 38 7(米),所以气球离地(38,7 + 1)米.例2甲船在A处遇险,在甲船西南10海里B处的乙船收到甲船的报警后,测得甲船是沿着东偏北105°的方向,以每小时9海里的速度向某岛靠近,如果乙船要在40分钟内追上甲船, 问乙船至少应以什么速度、向何方向航行?【思路探究】画图T分析三角形满足条件T选择定理列方程T求相关量T作答【自主解答】如图所示:设乙船速度为v海里/小时,在C处追上甲船,/ BAC= 45°180° —105° = 120°在厶AB(中,由余弦定理得,BC= AC+ A8— 2AC・ AB- cos / BA(2 2 2(3v) 2= ( 3 x 9)2+ 102— 2 x 3X 9x 10x cos 120°,整理得v= 21.BC AC又由正弦定理可知 sin Z BAC= sin B,2AC- sin Z BAC 3x9坐sin B= BC = 2 x sin 120° = 14 ,3x 21■ B^ 2147'.即B应以每小时21海里的速度,按东偏北 45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲义一 正弦定理和余弦定理以及其应用
知识与技能:
掌握正弦定理和余弦定理,并能加以灵活运用。

一、知识引入与讲解:
Ⅰ、正弦定理的探索和证明及其基本应用:
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
sin sin a
b
A B =sin c
C ==2R
例1.(1)、已知∆ABC 中,∠A 060=
,a =求sin sin sin a b c A B C
++++ (=2) (2)、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)
Ⅱ、余弦定理的发现和证明过程及其基本应用:
例2.(1)、在∆ABC
中,已知=a
c 060=B ,求b 及A (
=b 060.=A )
(2)、在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

例3.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。

分析:由余弦定理可知 222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形

(注意:是锐角A ⇔ABC 是锐角三角形∆)
解:222753>+,即222a b c >+, ∴ABC 是钝角三角形∆。

练习: (1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。

(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

(答案:(1)ABC
是钝角三角形∆;(2)∆ABC 是等腰或直角三角形)
例4.在∆ABC 中,060A =,1b =,面积为2,求sin sin sin a b c A B C ++++的值 分析:可利用三角形面积定理111sin sin sin 222
S ab C ac B bc A ===以及正弦定理sin sin a
b A B =sin c
C ==sin sin sin a b c A B C
++++ 解:由1sin 2
2S bc A ==得2c =,则2222cos a b c bc A =+-=3,即a 从而
sin sin sin a b c A B C ++++2sin a A
== 例题5、某人在M 汽车站的北偏西20︒的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶。

公路的走向是M 站的北偏东40︒。

开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米。

问汽车还需行驶多远,才能到达M 汽车站?
解:由题设,画出示意图,设汽车前进20千米后到达B 处。

在∆ABC 中,
AC=31,BC=20,AB=21,由余弦定理得 cosC=BC AC AB BC AC ⋅-+2222=31
23, 则sin 2C =1- cos 2C =231
432, sinC =31
312, 所以 sin ∠MAC = sin (120︒-C )= sin120︒cosC - cos120︒sinC =
62335 在∆MAC 中,由正弦定理得 MC =AMC MAC AC ∠∠sin sin =2
3
31⨯62335=35 从而有MB= MC-BC=15 答:汽车还需要行驶15千米才能到达M 汽车站。

练习题:1、判断满足下列条件的三角形形状,
(1)、acosA = bcosB ( 等腰三角形或直角三角形)
(2)、sinC =B A B
A cos cos sin sin ++ (直角三角形)
2、如图,在四边形ABCD 中,∠ADB=∠BCD=75︒,∠ACB=∠BDC=45︒,DC=3,求:
(1) AB 的长 (2)、求四边形ABCD 的面积
解(1)因为∠BCD=75︒,∠ACB=45︒,所以
∠ACD=30︒ ,
又因为∠BDC=45︒,所以 ∠DAC=180︒-(75︒+ 45︒+ 30︒)=30︒,所以 AD=DC=3 在∆BCD 中,∠CBD=180︒-
(75︒+ 45︒)=60︒,所以︒75sin BD = ︒60
sin DC ,BD = ︒︒60sin 75sin 3= 226+ 在∆ABD 中,AB 2=AD 2+ BD 2-2⨯AD ⨯BD ⨯cos75︒= 5,所以得 AB=5
(2) S ABD ∆=2
1 ⨯AD ⨯BD ⨯sin75︒=4323+ 同理, S BCD ∆= 433+ 所以四边形ABCD 的面积S=4
336+。

相关文档
最新文档