等腰三角形的综合应用
等腰三角形的性质和判定的综合题目
-鼓励学生在课后继续思考、探索联系观点的内涵,为下一节课的学习打下基础。
五、作业布置
为了巩固本章节的学习内容,培养学生的理论联系实际能力,特布置以下作业:
1.请同学们结合本节课所学的联系观点,选取一个生活中的实例,分析其中包含的联系特征及其影养学生合作、探究的学习能力,提高学生在案例分析中运用联系观点分析问题的能力。
-引导学生运用比较法、分析法等学习方法,深入挖掘联系现象背后的本质规律。
3.情感态度与价值观方面的重难点:
-培养学生对联系观点的认同,使学生认识到联系是事物发展的内在规律,树立正确的价值观。
-增强学生的社会责任感,培养学生关注社会、关注生活的态度。
3.强化实践环节,引导学生关注现实生活中的联系现象,提高学生理论联系实际的能力。
三、教学重难点和教学设想
(一)教学重难点
1.知识与技能方面的重难点:
-理解联系的普遍性、多样性、条件性等特征,并能运用联系的观点分析实际问题。
-掌握联系的方法论,学会从联系的角度认识问题、分析问题,提高解决问题的能力。
2.过程与方法方面的重难点:
5.观察日记:要求学生观察身边的事物和现象,运用联系观点进行分析,记录在日记中。持续一周,每天至少记录一个实例,并写出自己的思考。
6.课后实践:鼓励学生参加社会实践活动,将所学联系观点运用到实际中,如参与环保活动、社区服务等。要求学生撰写实践报告,不少于1000字,内容需包括实践过程、联系观点的应用及收获。
四、教学内容与过程
(一)导入新课
1.教学内容:以现实生活中的实例导入新课,如“互联网的发展与人们生活的联系”、“环境保护与经济发展的联系”等,引发学生对联系概念的思考。
等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册
第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。
等腰三角形综合应用
等腰三角形复习内容:等腰三角形复习目标:1.通过复习过程,使学生熟记等腰三角形的性质,判定及常见的等腰三角形的基本模型,并能用他们熟练的解决数学问题。
2.能运用方程的思想,分类讨论,数形结合及转化的数学思想去解决问题,提高学生的解题灵活性。
3.通过小组讨论的方式让学生主动参与到复习的过程中来,让其体会学习的乐趣。
复习重点:等腰三角形复习难点:让学生熟练的选择知识点解决问题。
复习过程:一.知识梳理:1.等腰三角形的分类:我们把等腰三角形一般分为等腰三角形和等腰三角形。
特殊等腰三角形又分为顶角为度的等腰三角形(),顶角为度的等腰三角形()和顶角为的等腰三角形()2.一般等腰三角形的性质及判定:性质:等腰三角形的相等,等腰三角形的相等,等腰三角形判定:相等的三角形是等腰三角形,相等的三角形是等腰三角形。
常用辅助线: 3.特殊等腰三角形的性质及判定: 等边三角形:性质:具备一般等腰三角形的所有性质,另外:等边三角形 相等, 相等且都为 度。
判定: 相等的三角形是等边三角形, 相等的三角形是等边三角形, 个角是 度的三角形是等边三角形, 个角是 度的 是等边三角形。
4.黄金三角形:性质:底与腰之比是二. 知识巩固:1.等腰三角形与平行例1.如图,在⊿ABC 中,∠ABC 和∠ACB 的平分线交与点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A 6 B 7 C 8 D 9小结:角平分线与平行结合得等腰三角形。
基本图形为2.等腰三角形与分类讨论:例2:若等腰三角形的边长均满足方程x 2-6x+5=0,则该等腰三角形的周长是小结:当题目告知等腰三角形且不明确边的相等关系时要对边进行分类讨论,一般有三种情况,任意两边相等。
角同样如此。
3.特殊三角形与旋转例3.如图,P 是正△ABC 内的一点,且PB=1,若将△PBC 绕点B 旋转到△P′BA ,则∠PBP′的度数是 ,连接P P′,则P P′=△PBC 所扫过的区域面积为 。
等腰三角形勾股定理及全等的综合应用
∴△BDF是等腰直角三角形,
∴DF=BD=5,
∴AF=AD-DF=12-5=7;
(2)证明:如图2,在BF上取一点H使BH=EF,
连接CF、CH
在△CHB和△AEF中,
=
∵ ∠ = ∠ = ° ,
=
∴△CHB≌△AEF(SAS),
∴AE=CH,∠AEF=∠BHC,
∴DE⊥DP;
(2)连接PE,设DE=x,则
EB=ED=x,CE=4-x,
∵∠C=∠PDE=90°,
2
2
2
2
2
∴PC +CE =PE =PD +DE
,
2
2
2
2
∴2 +(4-x) =1 +x ,
解得:x=
.
则DE=
,
证:CD⊥BF;
2
2
2
(2)连接BE,交CD的延长线于点H,如图2,若BC =BE +CD ,试判断
CD与BE的位置关系,并证明.
解:(1)证明:在△ACD和△AFE中
=
∠ = ∠ ,
=
∴△ACD≌△AFE(SAS),
∴∠DCA=∠EFA,
∴CD∥EF,
∵BF⊥EF,
∴CD⊥BF;
(2)解:CD⊥BE,理由如下:
延长CA到F,使AF=AC,连接EF,
∵BA⊥CF,AC=AF,
∴BC=BF,
由(1)可知CD∥EF,CD=EF,
2
2
2
∵BC =BE +CD ,
2
2
2
∴BF =BE +EF ,
等腰三角形的“三线合一”的性质及综合运用
等腰 三角形 底边 上 的高 、底 边 上 的中线 和顶 角平 分 线
相互重合 ,我 们将 等 腰 三角形 的这 一特 性 简称 为 “三 线 要性质 之一 .其 主要特 点
体现在认 下三个方面 :① 等腰 三角形 的顶 角平分线 垂直 平
的性质定 理.这些性 质定 理在几何 问题中被广 泛应用 .下 面
以近几年 来各地 的中考 试题 的改 编题 为例 ,针对 等 腰三 角
形 的“三线合一 ”的分类应用加 以阐述 ,供大家参考.
一 、 求线段最值
在解 决和线段有 关 的数学 问题 时 ,如果 可 以 同时用 全
等 三角形 和等腰 三角形 的知 识来 解决 ,则 提倡运 用 等腰 三
度 的 最 小 值 .
B
解 析 经过 A点作 AP垂直 BC于 P 点 ,已知 AC=AB =5,BC=6,根 据 等 腰
图 1
三 角形 的“三线合 一”性 质 ,可 知 BC被 AP垂 直 平分 ,得 到 BP:3,及直 角三角形 APB,根据勾股 定理可知 AP=4,又 由 垂 直线段最短 ,可知当 BH垂直 于边 AC时 ,BH取最小值 ,根 据 等 面 积 法 ,可 得 AJP ·BC=BH ·AC,即 4×6=5×BH,可
合一 ”性质 、全 等三角形 的判及性质的理解 和应用.
三 、处 理 角 与角 之 间 的 关 系
在 解 答 关 于 角 之 间 关 系 的 题 目 时 ,可 以 运 用 等 腰 三 角
形 的“三线合一”性 质 ,将 题 目已知条 件与 待证 的角 的关 系
联 系到一起 ,从而简化 问题 的解 决步骤.
等腰三角形判定教案5篇
等腰三角形判定教案5篇等腰三角形判定教案5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形判定教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形判定教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
人教版《等腰三角形》ppt课件初中数学1
一般地,判断三角形形状的关键在于要先求出三角形的 三个内角度数或三条边长,或找到角(边)所满足的重要数 量关系,然后再利用等腰(等边)三角形的判定方法,进行 三角形形状的判断.
初中数学
知识运用
二、运用等腰三角形的判定和性质进行边角等有关计算
初中数学
例 如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AB
2、特殊的等腰三角形:等边三角形
本课小结
AE=ED=DB=BC
A
D
C
等腰三角形:△AED,△EDB,△BCD.
初中数学
初中数学
变式: 如图,在△ABC中,∠ABC=120°,点D,E分别在AC和
AB上,且AE=ED=DB=BC,若∠A的度数为x°,则用x的代数
式表示∠C为__3_x_°_,并求∠A=_1_5__°.
初中数学
例 已知三角形△ABC的三边长为a,b,c.
(4)当满足(a-b)²+(b-c)²+(c-a)²=0时,则三角形的形状为 等边三角形 .
分析: ∵(a-b)²+(b-c)²+(c-a)²=0; (a-b)²,(b-c)²,(c-a)²均具有非负性, ∴(a-b)²=0,且(b-c)²=0,且(c-a)²=0. ∴a=b 且 b=c 且 c=a. 根据等边三角形定义,得△ABC是等边三角形.
初中数学
初中数学
例 如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别
为D,E.若AB=8,则BD=____4_,BE=____2_.
分析:
等边三角形△ABC
AB=AC=BC=8 ∠BAC=∠B=∠C=60°
A
AD⊥BC AD: 三线合一
DE⊥AB ∠BED=∠AED=90°
等腰三角形边长公式
等腰三角形边长公式在几何学中,等腰三角形是一种具有两边长度相等的三角形。
我们可以使用边长公式来计算等腰三角形的边长。
在本文中,将详细介绍等腰三角形的边长公式及其应用。
一、等腰三角形的定义等腰三角形是指一个三角形的两条边的长度相等。
根据这个定义,我们可以得出以下结论:等腰三角形的顶角(顶点所对的角)是一个锐角,而底角(底边两侧的角)则是两个相等的钝角。
等腰三角形是一种特殊的三角形,其边长公式可以帮助我们求解其边长值。
二、等腰三角形边长公式的推导设等腰三角形的底边长为b,两个等长的斜边长为a。
为了推导边长公式,我们可以利用勾股定理和正弦定理。
1. 利用勾股定理根据勾股定理,我们可以得到等腰三角形的斜边与底边之间的关系:a² = (b/2)² + h²,其中h为等腰三角形高的长度。
2. 利用正弦定理根据正弦定理,我们可以得到等腰三角形的两个等边与顶角之间的关系:a/sinC = b/sinA,其中C为顶角的度数,而A为底角的度数。
由于等腰三角形的两个底角是相等的,所以sinC = sinA,将其代入公式可得:a/sinC = b/sinC。
将等腰三角形的斜边长度a用c表示,可以得到另一个等式:c/sinC = b/sinC。
2. 综合推导根据前面的推导,我们可以得到以下等式:a/sinC = c/sinC = b/sinC。
由于正弦函数sinC不为零,我们可以将等式两侧的sinC约掉。
得到 a= b = c,即等腰三角形的底边长、斜边长和顶边长都是相等的。
三、等腰三角形边长公式的应用等腰三角形边长公式的推导告诉我们,如果我们已知等腰三角形的顶角度数(顶点所对的角),我们可以通过这个公式计算出等腰三角形的边长。
同时,我们也可以利用这个公式推导其他与边长有关的性质。
例如,如果我们已知等腰三角形的顶角为60度,我们可以使用边长公式计算出等腰三角形的边长:a = b = c。
这样,我们就可以确定等腰三角形的三条边的长度。
等腰三角形的判定(二)
常见误区与注意事项
误区一
误区二
认为只要有两边相等就是等腰三角形,忽 略了“在同一个三角形中”的前提条件。
在使用“等角对等边”的判定方法时,忽 略了必须是同一个三角形中的两个角相等 才能推出对应的两边相等。
注意事项一
注意事项二
在证明等腰三角形时,要注意证明过程是 否符合逻辑,每一步的推理是否都有充分 的依据。
03
法
已知两边相等
01
若三角形中有两边相等,则这个 三角形是等腰三角形。
02
已知两边相等的情况下,可以通 过测量或计算确认第三边是否等 于其中一边,从而判定是否为等 腰三角形。
已知两角相等
若三角形中有两个角相等,则这个三 角形是等腰三角形。
已知两角相等的情况下,可以通过测 量或计算确认第三个角是否等于其中 一个角,从而判定是否为等腰三角形 。
在解决与等腰三角形相关的问题时,要善 于运用等腰三角形的性质和判定方法,简 化问题的解决过程。
思考与练习题
思考一
已知一个三角形的两个内角分别为30°和 70°,则这个三角形是等腰三角形吗?为
什么?
练习题一
在△ABC中,AB=AC,∠B=50°,则∠A的 度数为____。
思考二
已知一个三角形的两边长分别为3和5,且 这两边所对的内角分别为40°和70°,则这 个三角形是等腰三角形吗?为什么?
等腰三角形的拓展与
05
延伸
等边三角形的性质与判定
01
02
03
三边相等
等边三角形的三条边长度 相等。
三个内角相等
等边三角形的三个内角均 为60度。
判定方法
若一个三角形满足三边相 等或两个内角为60度,则 可判定为等边三角形。
华师版八年级上册数学作业课件 专题训练(五) 等腰三角形的综合应用
10.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,求证:AC+ CD=AB.
证明:在AB上截取AE=AC,连结DE,易证△AED≌△ACD(S.A.S.), ∴ED=CD,∠AED=∠C.∵∠AED=∠B+∠EDB,∴∠C=∠AED= ∠B+∠EDB.又∵∠C=2∠B,∴∠B=∠EDB,∴BE=DE,∴AB= AE+BE=AC+DE=AC+CD.
C=12(180°-140°)=20°.综上所述,这个三角形的三个内角分别为 40°,70°,70°或 140°,20°,20°.
三、利用“三线合一”作辅助线 6.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、 AC上,且BD=CF,BE=CD,G是EF的中点.求证:DG⊥EF. 证明:连结ED,FD,∵AB=AC,∴∠B=∠C.又∵BD=CF, BE = CD , ∴ △ BDE≌△CFD(S.A.S.) , ∴ DE = DF.∵EG = GF , ∴DG⊥E9.如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD =DC,求∠C的度数.(用两种方法) 解:方法一:(截长法)在CD上取点E,使DE=BD,连结AE,则 CE=AB=AE,∴∠B=∠AED=∠C+∠CAE=2∠C.∵∠BAC= 120°,∴∠C=20°;方法二:(补短法)作图略.延长DB至F,使 BF=AB,连AF,∵AB+BD=DF=CD,∴AF=AC,∠C=∠F= 1∠ABC,∴∠C=20°. 2
六、巧构等边三角形解题 11.如图,△ABC是等边三角形,∠BDC=120°.求证:AD=BD+ CD.
证明:延长CD至点M,使DM=BD,连结BM.∵∠BDC=120°, ∴∠BDM=60°,∴△BDM是等边三角形,∴BM=BD,∠MBD= 60°.∵△ABC 是 等 边 三 角 形 , ∴ AB = CB , ∠ ABC = 60° , ∴ ∠ ABC = ∠ MBD , ∴ ∠ ABC + ∠ CBD = ∠ MBD + ∠ CBD , 即 ∠ABD=∠CBM,∴△ABD≌△CBM(S.A.S.),∴AD=CM=DM+ CD=BD+CD,即AD=BD+CD.
专题训练(三) 等腰三角形的性质和判定的综合
解:(1)PD=PE.连接 CP,则 CP⊥AB,CP 平分∠ACB,∴∠BPC=90°, ∠PCD=∠PCB=∠B=45°,∴PC=PB,又∠DPE=90°,易证∠DPC =∠EPB,∴△PCD≌△PBE(ASA),∴PD=PE (2)能,当点 E 在 CB 上 时,分三种情况:①若 PB=PE,则∠PEB=∠ABC=45°,此时,∠BPE =90°,点 D 与点 A 重合,点 E 与点 C 重合;②若 PE=BE,则∠EPB 1 =∠ABC=45°,∠PEB=90°;③若 BE=PB,则∠PEB=∠BPE= × 2 (180°-∠ABC)=67.5°;当点 E 在 CB 的延长线上时,∠PBE=135°, 是钝角,只能做顶角,故只有一种情况,即 BE=PB,则∠PEB=∠BPE 1 = ×(180°-135°)=22.5°.综上可知,∠PEB 为 45°,90°,67.5°, 2 22.5°时,△PBE 能构成等腰三角形
6.在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放 在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交 射线AC,CB于点D,E,图①,②,③是旋转得到的三种图形. (1)观察图①,②,③中线段PD和PE之间有怎样的大小关系,并以图②为 例,加以说明; (2)△PBE是否能构成等腰三角形?若能,求出∠PEB的度数;若不能,请 说明理由.
解:(1)∵∠ABC=45°,CD⊥AB,∴∠BCD=∠ABC=45°,∴BD =CD, 又∠BDF=∠CDA=90°, BE⊥AC, ∴∠DBF+∠A=∠ACD +∠ A= 90 ° ,∴∠ DBF =∠ ACD , ∴△ BDF ≌△ CDA(ASA) , ∴ BF =AC (2)∵在△ABC 中,BE⊥AC,BE 平分∠ABC,∴∠BCE=∠ 1 1 BAE,∴BA=BC,∴CE= AC,又 AC=BF,∴CE= BF (3)BG> 2 2 CE.证明:连接 CG,∵BD=CD,H 为 BC 的中点,∴DH⊥BC,即 DH 为 BC 的垂直平分线,∴BG=CG.在 Rt△CEG 中,CG>CE,∴ BG>CE
等腰三角形综合应用
1.等腰三角形的性质的应用在应用等腰三角形的性质时,要结合分类讨论、方程的思想和添加辅助线解决问题.据理力争说明如下。
1.已知等腰三角形的一个角或角度关系来进行计算例1已知:如图1,房屋顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋檐AB=AC.求顶架上的∠B,∠C,∠BAD,∠CAD的度数.剖析:本题解答时应注意:(1)等腰三角形中顶角与底角的关系:①顶角+2×底角=180°.②顶角=180°-2×底角;图1(2)等腰三角形中,顶角,底角的取值范围:若顶角为α,底角为β,则由以上②,③可得0°<α<180°,0°<β<90°.评注:遇到已知等腰三角形中的一个角的度数时,需注意分类讨论,判断它能做顶角还是底角.2.分解图形列方程计算例2已知:如图5,△ABC中,AB=AC,点D在AC上,且BD=BC=AD.(1)图中有几个等腰三角形?(2)求△ABC各内角的度数.剖析:(1)在已知中没有给出角度,需利用三角形内角和为180°的条件来算出具体度数,但由于未知数过多,需根据已知各边的关系寻找出△ABC的各角关系,由图中的三个等腰三角形的底角及外角性质,可设∠A=x°,列方程解决.因此分解出等腰三角形是利用性质解决问题的关键.(2)注意此题图形特殊,只有顶角为36°的等腰三角形才能满足。
例3如图3,在△ACB中,∠ACB=90°,E和D两点在AB上,AD=AC,BE=BC.求∠ECD的度数. 图3评注:通过此题的解题过程看到了分解基本图形的作用.寻找角度之间的简捷有效的数量关系和整体代换的思想起到了简化计算的作用.3.作辅助线,利用等腰三角形的性质证明例4已知:如图9,点D,E在△ABC中的边BC上,AB=AC,AD=AE.求证:BD=CE.剖析:(1)证明思路可利用“等边对等角”来证明△ABD≌△ACE,也可用“三线合一”作辅助线解决.(2)作辅助线时,可让比较几种辅助线作法的优劣,最好作底边上的高线.(3)纠正作辅助线的几种错误:如“作AF平分BC和DE交BC于F”,“作AF平分∠BAC和∠DAE”等.证明过程请同学们自行完成。
人教版数学8年级上学期【能力培优】等腰三角形
13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和C B.F和E C.D和C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)状元笔记【知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.参考答案:1.①②③ 解析:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB .∵BF 是∠ABC 的平分线,CF 是∠ACB 的平分线,∴∠FBC=∠DBF ,∠FCE=∠FCB .∴∠DBF=∠DFB ,∠EFC=∠EC F ,∴△DFB ,△FEC 都是等腰三角形.∴DF=DB ,FE=EC ,即有DE=DF+FE=DB+EC .∴△ADE 的周长=AD+AE+DE=AD+AE+DB+EC=AB+AC .综上所述,命题①②③正确.2.解:(1)证明:∵AD+EC=AB ,∴BD=CE . ∵AB=AC ,∴∠B=∠C . ∵BE=CF ,∴△BDE ≌△CEF .∴DE=EF ,即△DEF 是等腰三角形.(2)∵∠A=40°,∴∠B=∠C=12(180°-∠A)=12(180°-40°)=70°. ∵△BDE ≌△CEF ,∴∠BDE=∠CEF .∴∠DEF=180°-∠BED -∠CEF=180°-∠BED -∠BDE=∠B=70°. (3)不能.∵∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形.(4)60°.理由:当∠A=60°时,∠B=∠C=60°,由(2)可得∠DEF=60°. ∴∠EDF+∠EFD=120°.3.解:(1)△ABC ,△ABD ,△ADE ,△EDC . (2)AD 与BE 垂直.证明:∵BE 为∠ABC 的平分线,∴∠ABE=∠DBE. 又∵∠BAE=∠BDE=90°,BE=BE , ∴△ABE 沿BE 折叠,一定与△DBE 重合. ∴A 、D 是对称点. ∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB , ∴AE=DE .在Rt △ABE 和Rt △DBE 中, AE =DE BE =BE ⎧⎨⎩,,∴Rt △ABE ≌Rt △DBE (HL ). ∴AB=BD .又△ABC 是等腰直角三角形,∠BAC=90°, ∴∠C=45°. 又∵ED ⊥BC ,∴△DCE 为等腰直角三角形. ∴DE=DC .即AB+AE=BD+DC=BC=10.4.6 解析:连接OD ,∵PO=PD ,∴OP=DP=OD .∴∠DPO=60°.∵△ABC 是等边三角形,∴∠A=∠B=60°,AC=AB=9.∵∠OPA=∠PDB=∠DPA -60°.∴△OPA ≌△PDB .∵AO=3, ∴AO=PB=3,∴AP=6.5.解:(1)△ODE是等边三角形,其理由是:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.∴△ODE是等边三角形.(2)BD=DE=EC.其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°.∵OD∥AB,∴∠BOD=∠ABO=30°.∴∠DBO=∠DOB.∴DB=DO.同理,EC=EO.∵DE=OD=OE,∴BD=DE=EC.6.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12.(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t.解得t=4.∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM.∴∠AMN=∠ANM.∴∠AMC=∠ANB.∵AB=BC=AC,∴△ACB是等边三角形.∴∠C=∠B .在△ACM 和△ABN 中,AC AB C B AMC ANB =⎧⎪=⎨⎪=⎩,∠∠,∠∠, ∴△ACM ≌△ABN . ∴CM=BN .设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,△AMN 是等腰三角形, ∴CM=y -12,NB=36-2y ,CM=NB . y -12=36-2y ,解得:y=16.故假设成立.∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M 、N 运动的时间为16秒.7.A 解析:由轴对称--最短路线的要求可知:输水分管道的连接点是点B 关于a 的对称点B′与A 的连线的交点F ,煤气分管道的连接点是点A 关于b 的对称点A′与B 的连线的交点C .故选A .8.解:如图,作点B 关于公路的对称点B′,连接AB′,交公路于点C ,则这个基地建在C 处,才能使它到这两个超市的距离之和最小.第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.下列图案是轴对称图形的是()A.B.C.D.2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE=2.连接EB. ∵DE 是AB的垂直平分线,∴EB=AE=2. ∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB=2.故选B.AF ED8.8 解析:∵DF是AB的垂直平分线,∴DB=DA.∵EG是AC的垂直平分线,∴EC=EA.∵BC=8,∴△ADE的周长=DA+EA+DE=DB+DE+EC=BC=8.9.解:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=CE.∴AB+BD=CE+DC=DE.10.C 解析:关于y轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5.解得1.5<a<2.5,又因为a必须为整数,∴a=2.∴点P2(-1,-1).∴P1点的坐标是(-1,1).。
2023学年八年级数学上册高分突破必练专题(人教版)-等腰三角形分类讨论问题综合应用(解析版)
等腰三角形分类讨论问题综合应用类型一:腰和底不明时需讨论类型二:顶角和底角不明时需讨论类型三:涉及中线高位置的讨论类型四:等腰三角形个数的讨论类型五:动点引起的分类讨论【考点1 腰和底不明时需分类】【典例1】等腰三角形的两边长分别为4和8 则这个等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【答案】B【解答】解:①若4是腰则另一腰也是4 底是8 但是4+4=8 故不构成三角形舍去.②若4是底则腰是8 8.4+8>8 符合条件.成立.故周长为:4+8+8=20.故选:B【变式1-1】等腰三角形的一条边长为4cm另一条边长为6cm则它的周长是.【答案】14cm或16cm【解答】解:当4cm为腰时三边为4cm4cm6cm可以构成三角形∴周长为:4+4+6=14(cm);当6cm为腰时三边为为6cm6cm4cm可以构成三角形∴周长为:6+6+4=16(cm);综上周长为14cm或16cm.故答案为:14cm或16cm.【考点2 顶角和底角不明时需讨论】【典例2】等腰三角形的一个角是50°则它的底角是()A.50°B.50°或65°C.80°D.65°【答案】B【解答】解:当底角为50°时则底角为50°当顶角为50°时由三角形内角和定理可求得底角为:65°所以底角为50°或65°故选:B.【变式2-1】等腰三角形的一个角是100°则其底角是()A.40°B.100°C.80°D.100°或40°【答案】A【解答】解:当100°为顶角时其他两角都为40°40°当100°为底角时等腰三角形的两底角相等由三角形的内角和定理可知底角应小于90°故底角不能为100°所以等腰三角形的底角为40°40°.故选A(2020秋•慈溪市期中)已知在等腰△ABC中一个外角的度数为100°则【变式2-2】∠A的度数不能取的是()A.20°B.50°C.60°D.80°【答案】C【解答】解:当100°的角是顶角的外角时顶角的度数为180°﹣100°=80°另外两个角的度数都为50°;当100°的角是底角的外角时两个底角的度数都为180°﹣100°=80°顶角的度数为180°﹣2×80°=20°;故∠A的度数不能取的是60°.故选:C.【考点3 涉及中线高位置的讨论】【典例3】(2020秋•鄞州区期末)等腰三角形一腰上的高与另一腰的夹角为25°则顶角的度数为()A.65°B.105°C.55°或105°D.65°或115°【答案】D【解答】解:①如图1 当等腰三角形的顶角是钝角时腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+25°=115°;②如图2 当等腰三角形的顶角是锐角时腰上的高在其内部故顶角是90°﹣25°=65°.故选:D.【变式3-1】(2021春•南海区校级月考)等腰三角形一腰上的高与另一腰的夹角等于30°则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°【答案】D【解答】解:当高在三角形内部时如图1∵∠ABD=30°BD⊥AC∴∠A=60°;∴顶角是60°;当高在三角形外部时如图2∵∠ABD=30°BD⊥AC于D∴∠BAD=60°∴∠BAC=180°﹣60°=120°∴顶角是120°.故选:D.【变式3-2】(2021春•浦东新区期末)等腰三角形一腰上的高与另一腰的夹角为60°那么这个等腰三角形的底角为.【答案】75°或15°【解答】解:根据题意得:AB=AC BD⊥AC如图(1)∠ABD=60°则∠A=30°∴∠ABC=∠C=75°;如图(2)∠ABD=60°∴∠BAD=30°∴∠ABC=∠C=∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75°或15°.【典例4】如图在△ABC中AB=AC AC边上的中线BD把△ABC的周长分成12cm和15cm两部分求△ABC各边的长.【解答】解:∵BD是AC边上的中线∴AD=CD=AC∵AB=AC∴AD=CD=AB设AD=CD=xcm BC=ycm分两种情况:当时即解得:∴△ABC的各边长为8cm8cm11cm;当时即解得:∴△ABC的各边长为10cm10cm7cm;综上所述:△ABC各边的长为8cm8cm11cm或10cm10cm7cm.【变式4】(2021春•浦东新区期中)已知等腰三角形的底边长为6 一条腰上的中线把三角形的周长分为两部分其中一部分比另外一部分长2 则三角形的腰长是.【答案】8或4【解答】解:等腰三角形一条腰上的中线把三角形的周长分为两部分这两部分的差即是腰与底的差的绝对值∵其中一部分比另外一部分长2∴腰比底大2或底比腰大2∴腰为8或4.故答案为:8或4.【考点4 等腰三角形个数的讨论】【典例5】如图网格中的每个小正方形的顶点称作格点图中A B在格点上则图中满足△ABC为等腰三角形的格点C的个数为()A.7B.8C.9D.10【答案】B【解答】解:如图所示:分三种情况:①以A为圆心AB长为半径画弧则圆弧经过的格点C1C2C3即为点C的位置;②以B为圆心AB长为半径画弧则圆弧经过的格点C3C4C5C6C7C8即为点C的位置;③作AB的垂直平分线垂直平分线没有经过格点;∴△ABC为等腰三角形的格点C的个数为:8故选:B.【变式5-1】如图△ABC中直线l是边AB的垂直平分线若直线l上存在点P使得△P AC△P AB均为等腰三角形则满足条件的点P的个数共有()A.1B.3C.5D.7【答案】C【解答】解:分三种情况:如图:当AP=AC时以A为圆心AC长为半径画圆交直线l于点P1P2当CA=CP时以C为圆心CA长为半径画圆交直线l于点P3P4当P A=PC时作AC的垂直平分线交直线l于点P5∵直线l是边AB的垂直平分线∴直线l上任意一点(与AB的交点除外)与AB构成的三角形均为等腰三角形∴满足条件的点P的个数共有5个故选:C.【变式5-2】如图已知Rt△ABC中∠C=90°∠A=30°在直线BC上取一点P使得△P AB是等腰三角形则符合条件的点P有()A.1个B.2个C.3个D.4个【答案】B【解答】解:分三种情况如图:∵∠ACB=90°∠BAC=30°∴∠ABC=90°﹣∠BAC=60°当BA=BP时以B为圆形BA长为半径画圆交直线BC于P1P2两个点∵BA=BP2∠ABC=60°∴△ABP2是等边三角形∴AB=BP2=AP2当AB=AP时以A为圆形AB长为半径画圆交直线BC于P2当P A=PB时作AB的垂直平分线交直线BC于P2综上所述在直线BC上取一点P使得△P AB是等腰三角形则符合条件的点P有2个故选:B.【考点5 动点引起的分类】【典例6】如图所示在△ABC中AB=AC=2 ∠B=40°点D在线段BC上运动(D 不与B C重合)连结AD作∠ADE=40°DE交线段AC于点E.(1)当∠BDA=115°时∠BAD=;点D从B向C运动时∠BDA逐渐变(填“大”或“小”).(2)当DC的长为多少时△ABD与△DCE全等?请说明理由.(3)在点D的运动过程中△ADE的形状也在改变请判断当∠BDA等于多少度时△ADE是等腰三角形.(直接写出结论不说明理由.)【解答】解:(1)∵∠B=40°∠BDA=115°∴∠BAD=180°﹣∠B﹣∠BDA=180°﹣115°﹣40°=25°由图形可知∠BDA逐渐变小故答案为:25°;小;(2)当DC=2时△ABD≌△DCE理由如下:∵AB=2∴AB=DC∵AB=AC∴∠C=∠B=40°∴∠DEC+∠EDC=140°∵∠ADE=40°∴∠ADB+∠EDC=140°∴∠ADB=∠DEC在△ABD和△DCE中∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时△ADE是等腰三角形当DA=DE时∠DAE=∠DEA=70°∴∠BDA=∠DAE+∠C=70°+40°=110°;当AD=AE时∠AED=∠ADE=40°∴∠DAE=100°此时点D与点B重合不合题意;当EA=ED时∠EAD=∠ADE=40°∴∠BDA=∠DAE+∠C=40°+40°=80°综上所述当∠BDA的度数为110°或80°时△ADE是等腰三角形.【变式6】如图在△ABC中AB=AC=2 ∠B=∠C=40°点D在线段BC上运动(点D不与点B C重合)连接AD作∠ADE=40°DE交线段AC于点E.(1)当∠BDA=110°时∠EDC=°∠DEC=°;点D从B向C的运动过程中∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时△ABD≌△DCE请说明理由;(3)在点D的运动过程中求∠BDA的度数为多少时△ADE是等腰三角形.【解答】解:(1)当∠BDA=110°时∠EDC=180°﹣110°﹣40°=30°∴∠DEC=180°﹣∠EDC﹣C=180°﹣30°﹣40°=110°∵点D从B向C的运动过程中∠BAD逐渐变大∴∠BDA逐渐变小故答案为:30 110 小;(2)当DC=2时△ABD≌△DCE理由如下∵∠ADC=∠B+∠BAD∠ADC=∠ADE+∠CDE∠B=∠ADE=40°∴∠BAD=∠CDE∵AB=CD=2 ∠B=∠C=40°∴△ABD≌△DCE(ASA);(3)若AD=DE时∵AD=DE∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时∵AE=DE∠ADE=40°∴∠ADE=∠DAE=40°∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°由题意知AD=AE不可能综上所述:当∠BDA=80°或110°时△ADE的形状可以是等腰三角形.1.(2019秋•海安市期中)用一条长为18cm的细绳围成一个等腰三角形若其中有一边的长为5cm则该等腰三角形的腰长为()cm.A.5B.6.5C.5或6.5D.6.5或8【答案】C【解答】解:5cm是腰长时底边为18﹣5×2=8∵5+5>8∴5cm5cm8cm能组成三角形;5cm是底边时腰长为(18﹣5)=6.5cm5cm 6.5cm 6.5cm能够组成三角形;综上所述它的腰长为6.5或5cm.故选:C.2.(2021•碑林区校级开学)若等腰三角形的一个内角比另一个内角大30°则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°【答案】C【解答】解:在△ABC中设∠A=x∠B=x+30°分情况讨论:当∠A=∠C为底角时2x+(x+30°)=180°解得x=50°底角∠A=50°;当∠B=∠C为底角时2(x+30°)+x=180°解得x=40°底角∠B=70°.故这个等腰三角形的底角的度数为50°或70°.故选:C.3.(2020秋•渝北区校级月考)等腰三角形一腰上的高与另一腰的夹角为25°则其底角为()A.65°B.32.5°C.32.5°或57.5°D.32.5°或65°【答案】C【解答】解:①如图1 当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和可得顶角是90°+25°=115°则其底角为(180°﹣115°)÷2=32.5°;②如图2 当等腰三角形的顶角是锐角时腰上的高在其内部故顶角是90°﹣25°=65°则其底角为(180°﹣65°)÷2=57.5°.故选:C.4.(2021春•淮阳区校级期末)某等腰三角形的周长是21cm一条腰上的中线把其周长分成两部分的差为3cm该三角形的腰长是cm.【答案】8或6【解答】解:设等腰三角形的腰长是xcm底边长是ycm根据题意得或解得或∵8 8 5与6 6 9都能组成三角形∴该三角形的腰长为8cm或6cm.故答案是8或6.5.若△ABC中刚好有∠B=2∠C则称此三角形为“可爱三角形”并且∠A称作“可爱角”.现有一个“可爱且等腰的三角形”那么聪明的同学们知道这个三角形的“可爱角”应该是()A.45°或36°B.72°或36°C.45°或72°D.45°或36°或72°【答案】C【解答】解:①设三角形底角为α顶角为2α则α+α+2α=180°解得:α=45°②设三角形的底角为2α顶角为α则2α+2α+α=180°解得:α=36°∴2α=72°∴三角形的“可爱角”应该是45°或72°故选:C.6.如图所示的正方形网格中网格的交点称为格点已知A B是两格点如果C也是图中的格点且使得△ABC为等腰三角形则符合条件的点C的个数是()A.9B.8C.7D.6【答案】B【解答】解:如图:分三种情况:当AB=AC时以点A为圆心以AB长为半径作圆则点C1C2C3即为所求;当BA=BC时以点B为圆心以BA长为半径作圆则点C4C5C6即为所求;当CA=CB时作AB的垂直平分线则点C7C8即为所求;综上所述:符合条件的点C的个数是8故选:B.7.如图在△ABC中AB=AC=2 ∠B=∠C=40°点D在线段BC上运动(点D 不与点B C重合)连接AD作∠ADE=40°DE交线段AC于点E.(1)点D从B向C的运动过程中∠BDA逐渐变(填“大”或“小”);(2)在点D的运动过程中当∠BDA的度数是时△ADE是等腰三角形.【解答】解:(1)点D从B向C的运动过程中∠BDA逐渐变小故答案为:小;(2)分三种情况:当AD=AE时∴∠ADE=∠AED=40°∵∠AED是△DEC的外角∴∠AED>∠C此种情况不存在当DA=DE时∵∠ADE=40°∴∠DAE=∠DEA=70°∵∠C=40°∴∠BDA=∠DAE+∠C=110°当EA=ED时∴∠EAD=∠ADE=40°∵∠C=40°∴∠BDA=∠EAD+∠C=80°综上所述:∠BDA的度数是110°或80°故答案为:110°或80°.8.(秋•宝应县期末)如图△ABC中AB=AC=2 ∠B=∠C=40°.点D在线段BC上运动(点D不与B C重合)连接AD作∠ADE=40°DE交线段AC于E.(1)当∠BAD=20°时∠EDC=°;(2)当DC等于多少时△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能请直接写出此时∠BAD的度数;若不能请说明理由.【答案】(1)20 (2)当DC=2时△ABD≌△DCE(3)当∠BAD=30°或60°时△ADE能成为等腰三角形【解答】解:(1)∵∠BAD=20°∠B=40°∴∠ADC=60°∵∠ADE=40°∴∠EDC=60°﹣40°=20°故答案为:20;(2)当DC=2时△ABD≌△DCE;理由:∵∠ADE=40°∠B=40°又∵∠ADC=∠B+∠BAD∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC.在△ABD和△DCE中.∴△ABD≌△DCE(ASA);(3)能当∠BAD=30°或60°时△ADE能成为等腰三角形.理由:①当∠BAD=30°时∵∠B=∠C=40°∴∠BAC=100°∵∠ADE=40°∠BAD=30°∴∠DAE=70°∴∠AED=180°﹣40°﹣70°=70°∴DA=DE∴△ADE为等腰三角形;②当∠BAD=60°时∵∠B=∠C=40°∴∠BAC=100°∵∠ADE=40°∠BAD=60°∠DAE=40°∴EA=ED∴△ADE为等腰三角形.综上所述当∠BAD=30°或60°时△ADE能成为等腰三角形。
中考总复习之等腰三角形与直角三角形
中考总复习之等腰三角形与直角三角形在中考数学的复习中,等腰三角形和直角三角形是两个非常重要的知识点。
它们不仅在几何题目中经常出现,而且在解决实际问题中也有着广泛的应用。
接下来,让我们系统地复习一下这两个重要的三角形类型。
一、等腰三角形(一)定义等腰三角形是指至少有两边相等的三角形。
相等的两条边称为这个三角形的腰,另一边称为底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
(二)性质1、等腰三角形的两个底角相等(简写成“等边对等角”)。
例如,在等腰三角形 ABC 中,AB = AC,那么∠B =∠C。
2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“三线合一”)。
若 AD 是等腰三角形 ABC 的顶角平分线,则 AD 也是底边 BC 上的中线和高;反之亦然。
(三)判定1、有两条边相等的三角形是等腰三角形。
2、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
(四)常见题型1、计算角度:利用等腰三角形的性质,求出顶角或底角的度数。
例如,已知等腰三角形的一个底角为 70°,则顶角为 180° 70°× 2 =40°。
2、证明线段相等:通过证明三角形是等腰三角形,得出两条线段相等。
3、求边长:根据等腰三角形的性质和已知条件,计算出三角形的边长。
二、直角三角形(一)定义有一个角为 90°的三角形,叫做直角三角形。
直角所对的边称为斜边,其余两边称为直角边。
(二)性质1、直角三角形两直角边的平方和等于斜边的平方(勾股定理)。
若直角三角形的两条直角边分别为 a、b,斜边为 c,则 a²+ b²=c²。
2、在直角三角形中,斜边上的中线等于斜边的一半。
例如,在直角三角形 ABC 中,∠C = 90°,D 是斜边 AB 的中点,则 CD = 1/2 AB 。
3、直角三角形的两个锐角互余。
七年级 数学 题目 等腰三角形的综合应用
等腰三角形的综合应用一.知识回顾1.等腰三角形是的三角形,它是一个对称图形. 它的两个底角相等,简称为等边对. 同时,还知道、、所在的直线是它的对称轴,简称.2.如果一个三角形有两个角相等,那么它们所对的边也,简称为,这是判定三角形是等腰三角形的方法.3.三边相等的三角形是,它的三个内角都,并且每个内角都等于°.4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的.5.三个角都的三角形是等边三角形,有一个角是°的等腰三角形是等边三角形.二.典例分析边与角的关系例1.一个等腰三角形两边长分别是5和4,则它的周长是()A.9B.14C.13D.13或14例2.等腰三角形周长为15cm,其中一边长为3cm,则该三角形的底边长为()A.3cm B.6cm C.9cm D.3cm或9cm例3.等腰三角形一个角为30°,其它两个角的度数是()A. 75°,75°或30°,120°B. 30°,45°或30°,75°C. 30°,65°或30°,45°D. 30°,55°或30°,75°例4.在△ABC中,AB=AC,∠ABC的平分线与AC边所夹的锐角为60°,则∠A= .例5.已知等边△ABC的边长为2,面积为√3.图1 图2 图3(1)如图1,若点P在BC边上,且PD⊥AB于点D,PE⊥AC于点E,求PD+PE 的值.(2)如图2,点P在△ABC的内部,且PD⊥AB于点D,PE⊥AC于点E,PF⊥BC 于点F,求PD+PE+PF的值.(3)如图3,点P在△ABC的外部,且PD⊥AB延长线于点D,PE⊥AC于点E,PF⊥BC于点F,那么PD、PE、PF三者之间又有何关系?例6.如图,在△ABC中,AB=AC,过BC的中点D作DE△AB,DF△AC,垂足分别为E、F.(1)求证:DE=DF.(2)若△BDE=55°,求△BAC的度数.例7.如图,已知点P是线段AB上任意一点,△APD和△PBC是位于线段AB同侧的两个正三角形,连接CD. 若AB=4,求线段CD的最小值例8.如图,在等腰直角三角形ABC中,△ACB=90°,点O是AB的中点,点D,E 分别在直角边AC,AB上,且△DOE=90°,DE交OC于点P.(1)求证:△AOD≌△COE(2)△ABC的面积与四边形CDOE的面积有何数量关系?请说明理由.例9.如图,△ABC 中,AB=AC,BC=10,点P从点B出发沿线段BA移动到点A 停止,同时点Q从点C出发沿AC的延长线移动,并与点P同时停止.已知点P,Q移动的速度相同,连接PQ与线段BC相交于点D(不考虑点P与点A,B重合时的情况).三、模式方法.。
等腰三角形的综合应用
等腰三角形的综合应用1 如图,在△ ABC中, AB=AC/ BA(=90°,直角/EPF的顶点P是BC中点,两边PE PF分别交AB AC于点E、F。
、 1证明: S四边形AEPF — S ABC2C且AE=BD BD的延长线交AE于点F。
2、如图,在^ ABC中, / ACB=90 , AC=BC D是AC边上的一点,E在BC的延长线,求证:BF丄AE4、如图,在△ ABC中,AB=AC / AC&90。
,将△ ABC绕点C逆时针旋转角90°),得到 AB i C ,连结BB i ,设B i C 交AB 于D. A ,B i 分别交AB 、AC 于点E 、F 。
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等三角形,并加以证5、如图,过边长为1的等边△ ABC 的边AB 上一点P ,作PE1 AC 于 E ,Q 为BC 延长6、如图,AD// BC AB=AD+BC 点E 是CD 的中点。
求证:BE 平分/ ABC7、如图,在△ ABC 中,BD=DC EDI DF,求证:(0°明(ABC AB i C 除外);⑵当BB i D 是等腰三角形时,求 。
C线上一点,当8 已知△ ABC 中,/ A=90°, AB=AC D 是 BC 的中点。
(1)如图①,E 、F 分别是AB AC 上的点,且BE=AF 试判断△ DEF 的形状,并说明 理由。
⑵如图②,若E 、F 分别为AB CA 的延长线上的点,仍有BE=AF 请判断△ DEF 是9、已知:等边△ ABC 和点P ,设点h i 、h 2、h 3,A ABC 的高为h . “若点P 在一边BC 上(如图一),此时h 3=0,可得结 论:h i + h 2 + h 3=h ” .否仍具有(1)中的形状,并说明理由。
卩到^ ABC 三边AB 、AC 、BC 的距离分别为CC请直接应用上述信息解决下列问题:当点卩在^ABC内(如图二)以及点卩在^ABC 外(如图三)这两种情况时,上述结论是否成立?若成立?请予以证明;若不成立,h i、h2、h3与h之间又有怎样的关系,请直接写出你的猜想,选择一种情况进行证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
F
E
C
B
A
D
C
E
等腰三角形的综合应用
1、如图,在△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F 。
证明:1
2
ABC AEPF S S ∆=四边形
3、如图,等腰三角形ABC 中,AB=AC=A=90°,BD 平分∠ABC ,DE ⊥BC 且BC=10,求△DCE 的面积。
4、如图,在△ABC 中,AB=AC ,∠ACB =90°,将△ABC 绕点C 逆时针旋转∂角
A
E A 1
C
B B 1
F
D
A E
D
P
Q
A
B
F
E
C
C
E
(00090<∂<),得到11A B C ∆,连结1BB ,设1B C 交AB 于D.11A B 分别交AB 、AC 于点E 、F 。
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等三角形,并加以证明(11ABC A B C ∆≅∆除外);
(2)当1BB D ∆是等腰三角形时,求∂。
5、如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,求DE 的长。
6、如图,AD ∥BC ,AB=AD+BC ,点E 是CD 的中点。
7、如图,在△ABC 中,BD=DC ,ED ⊥DF ,求证:BE+CF>EF 。
D
A
E
C F
A
E
C
B
D
F
8、已知△ABC 中,∠A =90°,AB=AC ,D 是BC 的中点。
(1)如图①,E 、F 分别是AB 、AC 上的点,且BE=AF ,试判断△DEF 的形状,并说明理由。
(2)如图②,若E 、F 分别为AB 、CA 的延长线上的点,仍有BE=AF ,请判断△DEF 是否仍具有(1)中的形状,并说明理由。
图① 图②
9、已知:等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1、h 2、h 3,△ABC 的高为h .“若点P 在一边BC 上(如图一),此时h 3=0,可得结论:h 1+h 2+h 3=h ” .
请直接应用上述信息解决下列问题:当点P 在△ABC 内(如图二)以及点P 在△ABC 外(如图三)这两种情况时,上述结论是否成立?若成立?请予以证明;若不成立,h 1、h 2、h 3与h 之间又有怎样的关系,请直接写出你的猜想,选择一种情况进行证明。
C
B
A
P E F
H 图一
C
B
A
P E
F H 图二
D C B
A
P
E
F
H 图三
D。