正交实验结果如何进行数据分析76625

合集下载

正交实验实验结果解读

正交实验实验结果解读

正交实验实验结果解读
正交实验设计是一种高效率的试验设计方法,它通过合理安排多因素试验,寻求最优水平组合。

解读正交实验结果主要涉及以下几个步骤:
1.观察每组试验的观测结果或数据,了解各个因素在不同水平下的变化情况。

2.计算每个因素的极差,即同一因素在不同水平下的最大值与最小值之差。

极差分析是一种直观式分析方法,通过比较各因素的极差大小,可以初步判断因素对试验目标的影响程度。

3.根据试验结果和极差分析,找出理论上的最优方案。

这个方案通常是最有利于考察的目标值的方案。

4.对理论上的最优方案进行验证分析,确保其在实际应用中的可行性。

验证分析可以通过实际试验、模拟仿真等方法进行。

在解读正交实验结果时,还需要注意以下几点:
1.正交表的设计是关键。

在设计正交表时,需要选择合适的因素和水平数,并确保试验次数合理。

2.极差分析是一种初步分析方法,其结果可以作为优化方案的参考,但不一定是最优解。

因此,在实际应用中,还需要结合其他分析方法(如方差分析、回归分析等)进行综合评估。

3.正交实验的结果受到试验条件、操作误差等多种因素的影响,因此在实际应用中,需要对试验过程进行严格控制和记录,以确保结果的准确性和可靠性。

总之,正交实验设计是一种有效的多因素试验设计方法,通过合理的试验安排和结果分析,可以找出最优方案并评估其在实际应用中的可行性。

在解读正交实验结果时,需要综合考虑多种因素和分析方法,以确保结果的准确性和可靠性。

正交实验结果如何进行数据分析

正交实验结果如何进行数据分析

正交实验结果如何进行数据分析正交实验是一种多因素试验设计方法,通过对不同因素的组合进行系统的排列和组织,能够较好地解析各个因素对试验结果的影响。

进行数据分析时,一般可以采用以下步骤:1.数据预处理:首先,需要对实验数据进行预处理,包括数据清洗、异常值处理、数据转换等。

这是为了确保数据的可靠性和可用性,避免因数据错误或异常值导致的分析误差。

2.方差分析:正交实验可以通过方差分析来分解总方差,确定各个因素和交互作用对实验结果的贡献程度。

在进行方差分析时,可以首先进行方差齐性检验,判断各个因素的方差是否相等。

接着,进行单因素方差分析,确定各个因素对实验结果的影响;然后,进行多因素方差分析,确定各个因素之间的交互作用对实验结果的贡献。

3.效应量分析:通过计算效应量,可以客观地评估各个因素和交互作用的大小,了解它们对实验结果的实际影响程度。

效应量可以用来比较不同因素之间的相对重要性,并为进一步优化实验提供依据。

4.建立模型:正交实验的数据分析过程还可以通过建立数学模型来实现。

建立模型可以帮助我们更好地理解和解释实验结果,确定各个因素和交互作用的数学表达式。

常见的建模方法包括线性回归、多项式回归等。

建立模型后,可以通过拟合度评估模型的拟合效果,并进行参数估计,确定因素对实验结果的具体影响程度。

5.优化设计:根据数据分析的结果,确定重要因素和交互作用,并进行优化设计。

通过调整因素水平和组合,可以进一步优化实验结果,提高实验产品的性能和质量。

通过正交实验的数据分析过程,可以降低实验成本和周期,并在有限的试验条件下获取更多的实验信息。

需要注意的是,在进行正交实验数据分析时,应当充分考虑实验设计的合理性和实验条件的可控性。

同时,还需要进行统计检验,判断各个因素和交互作用的显著性,确保数据分析的可信度和准确性。

总而言之,正交实验的数据分析是一个较为复杂和系统的过程,需要综合运用统计学和数据分析的方法。

通过合理的数据分析方法,可以更好地理解和掌握实验结果,为进一步优化产品或工艺提供科学依据。

正交实验结果的统计分析方法

正交实验结果的统计分析方法
第二章 正交试验结果的统计分析方法
——方差分析法
1
§2-1试验数据构造模型

一、单因素试验方差分析的数学模型
(一)数学模型
设因素A去了p个水平,每个水平重复了r次试验。则水平Ai下j次试验 结果可以分解为: Xij=i+ij 式中:i ______Ai水平真值; (2 1 1)

ij______数据中包含的误差值。
2 2 _ _ _ _ _

总差方和=组间差方和+组内差方和 组内差方和____表征试验误差的大小
(2 1 12)
式中,组内差方和____表征分组因素效应的大小
11

(三)统计检验
如果统计假设是对的,即因素A对测量指标没有影响,则效应 {ai }全为零。设为统计假设H 0 1、组内变差平方和的平均值: Se
_ 1 r 1 r xi xij ( ai ij ) ai i r j 1 r j 1 _
(2 1 5)
_
1 p x p r i 1
_ _
1 p xij p r j 1 i 1
r _
( a
j 1
i 1 p
(x
j 1
r
ij
xi ) 2
_
(2 2 3)
Se (60) Se (65) Se (70) Se (75) Se (80) 式中: Se (60) (90 90) 2 (92 90) 2 (88 90) 2 8 Se (65) (97 94) 2 (93 94) 2 (92 94) 2 14 Se (70) (96 95) 2 (96 95) 2 (93 95) 2 6 Se (75) (84 85) 2 (86 84) 2 (82 84) 2 14 Se (80) (84 84) 2 (86 84) 2 (82 84) 2 8 Se Se (60) Se (65) Se (70) Se (75) Se (80) 50 我们发现有: ST S A Se

科技论文中正交试验结果分析方法的使用

科技论文中正交试验结果分析方法的使用

编 辑 学 报ACT A E D I T OLOGI C A 2007-10 19(5)科技论文中正交试验结果分析方法的使用郝拉娣1) 张 娴2) 刘 琳1)(1)大连水产学院学报编辑部,116023;2)大连海事大学学报编辑部,116024:辽宁大连)摘 要 目前科技论文中对正交试验结果的分析大多仅采用极差分析法,而使用方差分析法的只占到18%。

其原因,一方面是由于使用方差分析法既复杂计算量又大,另一方面也由于受某些学科习惯做法的影响,更主要的是一些审稿人把关不严。

使用方差分析法不仅是对正交试验结果准确分析的保证,而且是检验试验结果是否可靠的重要方法。

建议编辑人员必须要求对正交试验结果做方差分析。

关键词 科技论文;正交试验设计;方差分析;极差分析Ana lysis m ethod of results i n orthogona l desi gn i n sc i en ti f i c papers∥Hao Ladi,Zhang Xian,L iu L ingAbstract There have been only18%of the publicati ons in which the results of orthogonal design are conducted by analysis of variance.The reas ons f or that are attributed t o usual p ractices in s ome disci p lines and careless revie w.The analysis of variance p lays an i m portant r ole in check of results of orthogonal design as well as in exa m inati on of the experi m ental results.S o we hope that an analysis of variance should be conducted for the results of orthogonal design in science and technical papers.Key words scientific paper;orthogonal test design;variance analyses;range analysisF i rst2author’s address Edit orial Office of Journal of Dalian Fisheries University,116023,Dalian,L iaoning,China正交试验设计方法广泛应用于各研究领域的多因素多水平试验,是进行科学研究的一种常用方法[1-2]。

正交表数据分析

正交表数据分析

正交表数据分析
正交表数据分析是一种统计学方法,可以分析多变量间的关系。

正交表数据分析是一种定量技术,可以提供多种领域的精确信息,如教育、传播、心理学等。

正交表数据分析主要分为三个步骤:数据采集、数据分析和数据报告。

首先,在数据采集步骤中,将收集变量采集到表格中,并对变量进行定义,并确定它们间的关系。

接着,在数据分析步骤中,使用正交表法分析变量之间的相互作用,探究每一变量对结果的影响,以及变量之间的关系。

最后,在数据报告步骤中,将分析结果以报表的形式呈现出来,以便用户更好地理解研究结果。

正交表数据分析的优点在于它可以考虑多个变量,而不是单变量,还可以捕捉出分析结果背后的一些小影响,而不会被大的变量的影响所掩盖。

此外,正交表数据分析可以使统计分析更加有效、节省时间,因为可以减少重复的数据,以及变量之间的相互作用。

正交表数据分析也有一些缺点,它对变量的影响可能会因其统计属性不同而受到影响,受数据质量的影响也比较大,如果数据不全面和准确,正交表的结果也会受到影响。

在实际应用中,正交表结果可能需要结合评估性分析进行验证,才能更全面地理解结果。

正交表数据分析在各个领域都广泛应用,当前国际上已经有大量关于正交表数据分析理论的研究,以及如何使用正交表数据分析方法来实现特定目标的工作。

未来,正交表数据分析将在各个领域得到更大的应用,将进一步推动人们对数据分析的理解和实践。

正交实验数据分析

正交实验数据分析

正交实验数据分析正交实验数据分析是一种广泛使用的统计方法,用于确定多个因素对实验系统的影响及其相互作用。

通过使用正交实验设计,可以在一定的试验次数下,系统地研究多个因素对实验结果的影响,以及不同因素之间的相互作用。

正交实验设计使得因素的主效应和交互效应能够被明确地研究和分析,从而提供实验数据的可靠结论。

在正交实验数据分析过程中,首先需要确定研究的因素和水平。

因素指的是影响实验结果的各种变量,水平是指每个因素所取的不同取值。

例如,如果研究某个产品的质量,可能需要考虑材料的种类、工艺的参数等因素,并给出每个因素可能的取值。

接下来,需要根据因素和水平构建正交实验设计矩阵。

正交实验设计矩阵是一种矩阵结构,将因素和水平按照一定规律排列,以确保每个因素和水平之间的相互作用都能被观察到。

正交实验数据的分析主要包括计算各个因素的主效应和交互效应,以及通过方差分析等方法判断这些效应是否显著。

主效应是指某个因素对实验结果的直接影响,交互效应是指两个或多个因素相互作用产生的影响。

通过分析主效应和交互效应,可以确定哪些因素对实验结果产生重要影响,从而指导进一步的实验优化和参数调整。

正交实验数据分析的结果可以用于优化实验系统,提高产品性能和质量。

通过了解各个因素的影响程度,可以针对性地调整因素的水平,从而达到最佳的实验结果。

正交实验数据分析方法还可以用于推断因素间的相互关系,找出影响实验结果的关键因素和关键水平。

总之,正交实验数据分析是一种有力的统计学方法,可以帮助研究人员系统地研究多个因素对实验结果的影响。

通过分析主效应和交互效应,可以得到准确可靠的实验数据结论,指导进一步的实验优化和参数调整。

正交实验数据分析在各个领域的研究和实践中都具有广泛的应用前景。

正交试验设计2正交试验数据方差分析和贡献率分析

正交试验设计2正交试验数据方差分析和贡献率分析

正交试验设计2正交试验数据方差分析和贡献率分析正交试验设计是一种实验设计方法,通过选择适当的试验水平组合和设置统计模型,以减少试验阶段的试验次数和工作量,提高试验的效率和准确性。

正交设计通过对变量进行排列组合,使各变量的效应独立出现并减少副效应的影响,从而使实验结果更加可靠。

正交设计数据分析方法方差分析(ANOVA)是一种统计方法,用于测试在不同因素水平下的平均值是否相等。

在正交试验中,方差分析可以用于测试各个因子对试验结果的影响是否显著。

方差分析通常包括总体均值检验、各因子的效应检验以及误差项的检验。

通过方差分析可以确定哪些因子对试验结果的影响是显著的,进而确定最佳的试验条件。

贡献率分析是一种用于确定各个因子对试验结果的贡献程度的方法。

贡献率分析可以通过计算各个因子的均方根(RMS)值来确定各个因子的贡献程度。

贡献率可以用来排除一些不显著的因子,从而进一步优化试验条件。

1.节省试验次数和工作量:由于正交设计能够减少变量之间的相关性,可以通过较少的试验次数得到可靠的结果。

2.减少误差项:正交设计通过考虑副效应的影响,减少了试验误差的可能性,提高了数据的可靠性。

3.确定关键因素:正交设计通过方差分析和贡献率分析,可以确定对试验结果有着显著影响的关键因素,从而进行进一步优化。

4.灵活性:正交设计可以根据实验需求进行灵活的调整和改变,以适应多样的试验条件和目标。

总结正交试验设计是一种有效的实验设计方法,可用于减少试验次数和工作量,提高试验效率和准确性。

方差分析和贡献率分析是对正交设计数据进行进一步分析和总结的重要工具,可以帮助确定关键因素和优化试验条件。

正交试验设计能够在实验设计的早期阶段对各个因子进行全面考虑,从而为实验结果的有效性和可靠性打下基础。

第二章 正交试验结果的统计分析方法

第二章 正交试验结果的统计分析方法

指标
得 率 (%) 平均得率
总平均 x 89.6
上一内容 下一内容 回主目录
返回
总平均 x 89.6
_
依(2-1-10)式有: l11 x11 a1 90 89.6 0.4 0 l12 x12 a1 92 89.6 0.4 2 l13 x13 a1 88 89.6 0.4 2 这样xij 就可以分解成三个数之和: x11 89.6 0.4 0 x12 89.6 0.4 2
上一内容 下一内容 回主目录
返回
方差分析的基本方程式(即方差和的加和性原理): ( xij x) 2的加和 ( xi x) 2的加和 ( xij xi ) 2的加和 即 总差方和=组间差方和+组内差方和
样本均值与总平均值之间的差异 样本均值与样本值之间的差异
_ _ _ _ _
i ( i ) ai
式中 1 p i p i 1 ai i
下一内容
(2 1 2)
i 1,2,......,p
回主目录
上一内容
返回
真实值
处理效应
称为一般平均。a i是i 对于的偏移,为A i的水平效应或主效应。 所以把i 理解为: (一般平均)+(A i 平均效应) X ij a i ij i 1, 2,......, p (2 1 3)
对于前面的例子
S (4.592 4.442 ... 4.552 ) 1 (4.59 4.44 ... 4.55) 2 0.043483 6
上一内容 下一内容 回主目录
返回
自由度的提出: 例2:在上例的基础上在同样的工艺条件下又测了四炉铁水 ,它 们是:4.60, 4.42, 4.68, 4.54, 加上原来的六炉共十炉,求其 变方和。

正交实验结果如何进行数据分析

正交实验结果如何进行数据分析

正交实验如何数据分析之杨若古兰创作我们把在试验中考察的有关影响试验目标的条件称为身分(也叫因子),把在试验中筹办考察的各种因索的分歧形态(或配方)称为水平.在研讨比较复杂的工程成绩中,常常都包含着多个身分,而且每个身分要取多个水平.对于包含五个身分、五个水平的工程项目,理论计算必须进行55=3125次试验.明显,所须要的试验次数太多了,工作量太大.实践告诉我们,合理安插试验和科学分析试验,是试验工作成败的关键.试验方案设计的好,试验次数就少,周期也短,如许不但节省了大量人力、物力、财力和时间,而且可以得到理想的结果.相反,如果试验设计安插的欠好,即使进行了很多次试验,浪费了大量材料、人力和时间,也纷歧定能够得到预期的结果.正交试验法,就是在多身分优化试验中,利用数理统计学与正交性道理,从大量的试验点中挑选有代表性和典型性的试验点,利用“正交表”科学合理地安插试验,从而用尽量少的试验得到最优的试验结果的一种试验设计方法.正交试验法也叫正交试验设计法,它是用“正交表”来安插和分析多身分成绩试验的一种数理统计方法.这类方法的长处是试验次数少,后果好,方法筒单,使用方便,效力高.因为试验次数大大减少,使得试验数据处理非常次要.我们可以从所有的试验数据中找到最优的一个数据,当然,这个数据肯定不是最好匹配数据,但是肯定是最接近最好的了.用正交表安插的试验具有均衡分散和划一可比的特点.均衡分散,是指用正交表挑选出来的各身分和各水平组合在全部水平组合中的分布是均衡的.划一可比是说每一身分的各水平间具有可比性.最简单的正交表L4(23)如表-1所示.表-1记号L4(23)的含意如下:“L”代表正交表;L下角的数字“4”暗示有4横行(简称为行),即要做四次试验;括号内的指数“3”暗示有3纵列(简称为列),即最多答应安插的身分个数是3个;括号内的数“2”暗示表的次要部分只要2种数字,即身分有两种水平l与2,称之为l水平与2水平.表L4(23)之所以称为正交表是因为它有两个特点:1、每一列中,每一身分的每个水平,在试验总次数中出现的次数相等.表-1里分歧的水平只要两个——1和2,它们在每一列中各出现2次.2、任意两个身分列之间,各种水平搭配出现的有序数列(即右边的数放在前,右侧的数放在后,按这一次序排出的数对)时,每种数对出现的次数相等.这里有序数对共有四种(1,1),(1,2),(2,1),(2,2).它们各出现一次.罕见的正交表有:L4(23),L8(27),L16(215),L32(231) ,…;L9 (34),L27 (313)...;L16(45),…;L25(56)……等.此外还有混合水平正交表:各列中出现的最大数字不完整不异的正交表称为混合水平正交表.如L8(41×24),表中有一列最大数字为4,有4列最大数字为2.也就是说该表可以安插1个4水平身分和4个2水平身分.选择正交表的准绳,该当是被选用的正交表的身分数与水平数等于或大于要进行试验考察的身分数与水平数,而且使试验次数起码.如我们要进行3身分2水平的试验,选用L4(23)表最理想.但是,要进行5身分2水平的试验仍用L4(23)表,那么便放不下5个身分了.这时候,该当选用L8(27)表,如许尽管只用了此表的5个身分列,还有两个身分列是空列,但这其实不影响分析.对试验结果(数据)的处理分析通常有两种方法,一是直观分析法,又叫极值分析法;另一种方法是方差分析.表-2根据正交表进行试验,可以得到就某一(单目标,也有多目标)考察目标的试验结果,通过直观分析或方差分析,就可以得出最好的实验方案.直观分析试验结果的步调(以四身分三水平为例)如下,见表-2,根据实验数据分别计算出:①分别对每次实验各身分的一水平的实验结果求和,即I j:再对每次实验各身分的二水平结果求和,即II j:对每次试验各因子的三水平的结果求和,即III j:②分别求出各身分各水平结果的平均值:即I j/3,II j/3,III j/3,并填入正交表中;③分别求出各身分的平均值的差值(也叫极差),如果是三个以上水平则要找出平均值最大值或最小值之间的差值Rj.根据极差数Rj的大小,可以判断各身分对实验结果的影响大小.判断准绳是:极差愈大,所对应的身分愈次要;由此可以确定出主、次要身分的排列顺序.根据各身分各水平所对应目标结果的平均值的大小可以确定各身分取什么水平好.确定的准绳是:如果请求目标愈小愈好,则取最小的平均值所对应的那个水平;如果请求目标愈大愈好,则取最大的平均值所对应的那个水平;如果请求目标适中(固定值),则取适中的平均值所对应的那个水平.须要说明的是,最优的水平组合其实纷歧定就在由正交实验设计所指定的实验当中.所以,根据试验目标的数值请求所确定的各身分的最优水平组合,就可以筛选出最好的试验方案条件、和较好的试验方案条件.对试验结果的直观分析法,除了极差分析外.为了更抽象直观的得出试验分析结果,我们还可以采取画趋势图(效应曲线图)的方法,得出准确的综合分析结论.效应曲线图(身分目标分析)就是要画出各身分水平与目标的关系图,它是一种座标图,它的横座标用各身分的分歧水平暗示;纵座标同为试验目标.其实它就是根据极差分析数据所绘出来的,可以了如指掌看出各身分的哪个水平为最优(根据目标的具体数值请求).2.方差分析法:通过试验可以获得一组结果实验数据,这组数据之间普通会存在必定的差别,即使在不异的条件下做几次试验,因为偶然身分的影响,所得的数据数据也不完整相等,这说明实验数据的动摇不但与实验条件的改变有关,也包含实验误差的影响.方差分析是用来区分所考察因子的因为水平分歧对应的试验结果的差别是因为水平的改变所惹起还是因为试验误差所惹起的,以便进一步(在直观分析的基础上)检验哪些因子对结果有影响,哪些没有影响,并区分哪些是影响结果的次要身分,哪些是次要身分.我们通过一个例子来说明方差分析法的道理和计算方法.在研讨某胶料的过程中,为考察生胶的动弹黏度对胶料紧缩变形有没有明显的影响,进行了试验,其实验结果如表-3所示:表-3我们把动弹黏度记做因子A ,这是单因子4水平的实验,每个水平都进行了3次反复试验,从这组试验数据,如何来判断A 因子对紧缩变形有没有明显性影响呢?首先从这组数据出发,计算出实验误差惹起的数据动摇及A 因子水平的改变所惹起的数据动摇.可以观察到在A 的同一水平下,虽然试验条件没有改变,但所得的试验数据不完整一样,也就是说紧缩变形值不完整一样.这是因为试验误差的存在使数据发生了动摇.例如,A 的第一水平下(A1=139)数据的平均数为:1x =31数据的动摇值是:S 1=(38.2-35.8)2+(33.3-35.8)2+(36.0-35.8)2我们称S 1为A 的第一水平下的偏差平方和.偏差平方和反映了一组实验数据的分散和集中的程度,S 大标明这组数据分散,S 小标明它们集中.类似地,可以按公式:S A =231)(∑=-j i ij x x ,i=1,2,3,4计算各水平下数据的平均值及偏差平方和:1.352=x S 22.343=x S 3 2.334=x S 4将各因子A 在各水平下的偏差平方和相加,得S 误=S 1+S 2+S 3+S 4=∑∑==-41312)(i j i ij x x这完整是由试验误差惹起的,它表征了试验误差在这组试验中惹起的数据的总动摇值,我们称S 误为试验的偏差平方和.对因子A ,可以留意到A 的四个水平下的平均值i x 也各不不异.这类数据平均值的动摇不但与试验误差有关,还包含因为A 的水平分歧惹起的数据动摇.A 的第一水平下的平均值1x =35.8,这个平均值可代替各个1水平(共3个)对紧缩变形的影响,对其它的水平亦可作同样地考虑,记做:暗示数据的总平均值,则A 因子各水平平均值之间的偏差平方和为:S A =3∑==-41243.11)(i i x x它刻划了A 水平分歧惹起的数据动摇值,称为因子A 的偏差平方和,如果记:S 总=∑∑==-4131)(i j ij x x 2暗示所有的数据环绕它们的总平均值的动摇值,则可以证实:S 总=S A +S 误从数据偏差平方和可见,数据个数多的,偏差平方和就可能大.为了清除数据个数的影响,我们采取平均偏差平方和S A /f A 、S 误/f 误,其中f A 和f 误分别暗示偏差平方和S A 和S 误的自在度.所谓自在度,就是独立的数据的个数.与偏差平方和一样,自在度也能够分解为:f 总=f A +f 误而f 总=N -1,N 为同一水平的总试验次数;f A =A 的水平数-1; f 误=f 总-f A ;考虑比值:F 比=误误f //S f S AA若F 比近似等于1,标明S A /f A 与S 误/f 误差不多,也就说明因子A 的水平改变对目标的影响在误差范围以内,即水平之间无明显差别.那么,当F 比多大时,才干说明因子A 水平改变对结果有明显影响呢?这时候要查一下F 分布临界值表.F 分布临界值表列出了各种自在度情况下F 比的临界值.在F 分布临界值表上横行f 1代表F 比平分子的自在度f A ,竖行f 2代表F 比平分母的自在度f 误.查得的临界值记做F α,这里的α是事后给定的明显性水平,若F 比≥F α,我们就有(1-α)的掌控说明因子A 的水平改变对结果(目标)有明显性影响,其几何意义见图-1所示.对我们所讨论的例子,有:f 总=12-1=11; f A =4-1=3; f 误=11-3=8;把有关数据带入F A 的表达式,得:F 比=误误f //S f S A A =8/83.323/43.11我们给定明显性水平α=0.10,从F 分布临界值表中查出:F因为F 比=1.08<F是以我们大概有90%的掌控说因子A 的水平改变对结果的影响无明显差别,也就是说我们有90%的掌控,说生胶动弹黏度水平的改变对紧缩变形的影响无明显差别,试验结果所出现的动摇就主如果由试验误差形成的(有须要通过改变试验条件来减小试验结果数据的动摇).反之,当F比≥F时,我们大概有90%的掌控说因子A的水平改变对结果的影响有明显影响.明显性水平α,是指我们对作出的判断大概有1-α的掌控.对于分歧的明显性水平,有分歧的F分布表,经常使用的有α=0.01,αα三种.为了区别明显性的程度,当F比>F(f1,f2)时,就说该因子水平的改变对试验结果有高度明显的影响,记做***;当F(f1,f2)>F比>F(f1,f2)时,就说该因子水平的改变,对试验结果有明显的影响,记做**;当F(f1,f2)>F A>F(f1,f2)时,就说该因子水平的改变,对试验结果有必定的影响,记做*.根据是否要考虑两个身分的交互感化,又将双身分方差分析分为双身分反复试验的方差分析和双身分不反复试验的方差分析.此外还有多身分方差分析,分析方法与此类同,这里不进行讨论.3.交互感化:在多身分对比试验中,某些身分对试验目标的影响常常有彼此制约、互相联系的景象.在处理多身分对比试验时,不但须要分别研讨各身分水平的改变对试验目标的影响和每个身分的单独感化,还要考虑它们之间的彼此感化.通常在一个试验里,不但各个身分在起感化,而且身分之间有时会联合起来影响试验的结果目标,这类感化叫做交互感化.如果身分A的数值和水平发生变更时,试验目标随身分B 的变更也发生变更;同样地,若身分B的数值或水平发生变更时,试验目标随身分A变更的变更也发生变更,则称身分A、B间有交互感化,记为A×B.当任意两元素之间(如A与B)存在交互感化而且明显时,则不管身分A、B本人对目标的影响是否明显,A、B的最好水平的拔取都应从A与B的搭配中去选择.为了考虑交互感化的影响,普通在选择正交表时,要留意留有必定的空列.进行方差分析时,当被分析因子对目标的影响不明显时,其缘由是试验误差太大或误差的自在度小,试验误差有可能袒护了被考察身分的明显性,使得F检验灵敏度降低.若F检验明显,说明存在交互感化.如果在处理实际成绩时,曾经晓得不存在交互感化,或已厚交互感化对试验的目标影响很小,则可以不考虑交互感化.主次身分的分析普通通过极差分析就可以得出结论,从效应图可以看得更直观.对极差分析、方差分析和交互感化的分析结果必必要根据具体的实际条件(例如材料成本,时间花费,主次身分,对目标的影响程度等,特别是对复合目标数据考核时)进行综合分析,才干最初得出最好水平组合.本实验的设计和计算使用“正交设计助手”软件.4软件分析法使用“正交设计助手Ⅱ”进行实验设计.其操纵步调如下:1.文件\新建工程:命名该未命名工程;并存储工程; 2.实验\新建实验――》进入设计导游:(1)实验说明:填写实验名称和简要论述及选择尺度正交表.对于多目标(复合目标)检验实验,可以在同一工程中建立多个实验,实验最好方案的确定要通过对各实验分析、讨论所得的结论加以综合考虑.(2)选择正交表;从下拉菜单当选择合适的正交表,考虑到交互感化,须要留有必定的交互项列和空列,两交互项列放在哪一列,要查阅响应正交表的交互感化项安插表(如附件三的“L8(27)交互感化项安插表”);(3)“身分与水平”,身分名称输入;水平参数输入,交互项所在列下不需输入水平;(4)点击本工程,出现“实验计划表”;输入试验结果(输入数据时请勿在汉字拼音输入形态下进行)后,并存为“”;(5)保管工程.3.分析,履行以下步调:(1)直观分析分析;选择“直观分析”,出现类似表-2的表格,存为“直观分析表.RTF”;(2)身分目标分析:选择“身分目标”,发生效应曲线图,存为“”;(3)方差分析:先选择“方差分析”,再勾选误差所在的列(普通拔取偏差平方和小的因子列和空列),当分别取α、α及α时,点击“确定”进行分析,并分别存为“方差分析表).RTF”;(本软件中,有影响的话一概只标注“*”,到底是有高度明显影响、有明显的影响或有普通的影响,主如果以α取值而定,讨论明显性时取高不取低—某水平有高度明显性当然有比较明显性和普通明显性.)(4)交互感化分析;点击“交互感化”,并选择可能发生交互感化的任意两列身分进行分析,并分别对分析表格进行存储(*.RTF);4.输出:将以上各步调所得图表和表格在WORD中编排后打印输出.。

正交实验数据分析

正交实验数据分析

正交实验数据分析在现代科学研究和工程设计中,正交实验是一种常用的实验设计方法。

通过采用正交实验设计,研究人员能够同时考虑多个因素对实验结果的影响,从而有效地提取有用的信息和进行数据分析。

本文将介绍正交实验数据分析的基本原理、步骤和应用。

1. 正交实验的基本原理正交实验是基于统计学原理的实验设计方法,它通过合理选择和组合实验因素,使得各个因素之间的相互影响得到最大化和均衡化。

正交实验能够通过最少的实验次数获得最多的信息,从而提高实验效率和准确性。

2. 正交实验的步骤2.1 确定实验因素:在进行正交实验之前,需要明确要考虑的实验因素。

实验因素是影响实验结果的各个因素,可以是工艺参数、材料性质、环境条件等。

2.2 选择正交表:正交表是一种特殊的二维表格,能够均衡地组合实验因素。

根据实验因素的个数和水平数,选择合适的正交表来设计实验方案。

2.3 设计实验方案:根据选择的正交表,确定各个实验因素的水平和组合。

尽量保证实验方案的随机性和均衡性,避免因素之间的相互干扰。

2.4 进行实验:按照设计好的实验方案进行实验,记录实验数据。

2.5 数据分析:利用收集的实验数据进行统计分析,以得出结论和提取有用的信息。

常用的数据分析方法包括方差分析、回归分析、正交回归等。

3. 正交实验的应用3.1 产品设计与优化:正交实验可以应用于产品设计和优化过程中,通过系统地考虑多个因素的影响,找出对产品性能最关键的因素和水平,从而改进产品质量和性能。

3.2 工业生产与工艺优化:正交实验可以应用于工业生产和工艺优化中,通过考虑不同因素对产品质量和工艺性能的影响,找出最优的工艺参数和操作条件,提高产品质量和工艺效率。

3.3 药物研发与临床试验:正交实验可以应用于药物研发和临床试验中,通过设计合理的实验方案,考察药物对不同因素的反应,并分析药物的药效、副作用等因素,以指导药物的研发和临床应用。

4. 正交实验的优势与局限性4.1 优势:- 能够系统地考虑多个因素对实验结果的影响,提高实验效率和准确性。

正交试验设计及结果分析

正交试验设计及结果分析

正交试验设计及结果分析正交试验设计(Orthogonal design)是一种组织实验研究的方法,通过在有限的试验条件下,系统地研究多个影响因素及其之间的相互作用,以得出客观科学的结论。

本文将介绍正交试验设计的基本原理、优势以及结果分析的方法。

正交试验设计的基本原理是通过对因素和水平的选择进行系统设计,使实验的观测结果具有统计意义,并能准确地区分不同因素对结果的影响。

正交试验设计的特点是因素之间相互独立,通过合理的分配和排列,能够明确地检验各个因素的主效应、交互效应以及误差效应。

正交试验设计的主要目的是全面、有效地获取实验结果,以便进行相应的数据分析和参数估计。

正交试验设计的优势在于可以在较小的试验规模和资源成本的情况下,获得较精确的试验结果。

由于因素之间相互独立,可以通过较少的试验次数得到充分的信息,从而快速筛选出有意义和重要的因素及其相应的水平。

同时,正交试验设计还能在实验中考虑因素之间的交互作用,从而更准确地预测实际情况下的因素效应。

进行正交试验设计时,首先需要确定所研究问题的因素和水平。

然后,根据所选因素和水平的数量确定试验矩阵的大小和形状。

通常采用正交设计表的方法对试验矩阵进行构造,以保证各个因素和水平的均衡和合理分布。

在实验过程中,根据设计要求,进行不同因素和水平的试验组合,记录并整理实验数据。

对正交试验设计的结果进行分析时,需要根据研究目的选择适当的统计方法。

主要包括方差分析、回归分析、均方差分解等方法。

通常可以采用多因素方差分析(ANOVA)方法,评估各个因素和水平对结果的影响程度,并检验各个因素的显著性。

此外,还可以进行主效应和交互效应的分析,了解各个因素之间的相互作用情况。

通过分析结果,可以确定主要因素和水平,为后续实验和优化提供参考。

总之,正交试验设计是一种有效的设计和分析方法,能够在较小的试验规模和资源成本下,获取较精确的实验结果。

通过合理选择因素和水平,并进行系统的设计和分析,能够全面地了解各个因素对结果的影响,为实际问题的解决提供科学依据。

正交试验设计及数据分析

正交试验设计及数据分析
注:也可由试验次数应满足的条件来选择正交表。
试验次数N的确定原则
N 由 dfT N1 确定。
其中: dfT dfi dfijdfE,
i
i,j
dfi dfij 是可求出的,而 d f E 是未知的,
i
i, j
所以一般地,由 N dfi dfij 1确定 N,
考虑交互作用AB和AC,则例1的表头可设计为
花菜留种的表头设计
列号 1 2 3 4 5 6 7
因子 A B A B C A C
D
按正交表 L8 27 得试验方案:
只需将各列中的数字“1”、“2”分别理解为所填因素 在试验中的水平数,每一行就是一个试验方案。
注:第6列为空白列,当随机误差列;也可把第7列 作空白列。一般要求至少有一个空白列。
第二步 表头设计——查交互作用表
如P190 L8(27)的交互作用表
列号 1 2 3 4 5 6 7
1 (1) 3 2 5 4 7
2
(2) 1 6 7 4
3
(3) 7 6 5
4
(4) 1 2
5
(5) 3
6
表示位于第
5 二、第四列的两
4 因素的交互作用
3 要放于第六列。
2
6
(6) 1
注意:主效应因素尽量不放交互列。如A、B因 素已放C1、C2列,则C 因素就不放C3列。
第三步 按所选定的正交试验方案组织试验,记录试验 结果;见P192 表8-22
水列 A B
平号
AXB C
AXC
D 产量
试验号 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1 350
2 1 1 1 2 2 2 2 325

正交试验设计及数据分析

正交试验设计及数据分析
总结词
通过对比各试验结果,直接观察各因素对试验指标的影响。
详细描述
根据正交试验结果,将各因素不同水平下的试验结果进行对比,直接观察各因素对试验指标的影响, 判断哪些因素对试验指标有显著影响。
方差分析法
总结词
通过比较各因素不同水平下的方差,判 断各因素对试验指标的影响程度。
VS
详细描述
利用方差分析法,比较各因素不同水平下 的方差,判断各因素对试验指标的影响程 度,确定哪些因素对试验指标有显著影响 。
验效率。
特点
均匀设计具有试验点均匀分散、 试验次数少、信息量丰富等优点, 适用于多因素、多水平的试验设
计。
应用
在化学、物理、工程等领域中, 均匀设计常用于多因素多水平试 验,以寻找最优的工艺参数或配
方。
拉丁方设计
定义
拉丁方设计是一种试验设计方法,其目的是通过合理地安排试验点,使得每个因素在每 个水平上只出现一次,从而消除顺序效应和边缘效应的影响。
在生产过程中,企业可以使用正交试验设计来优化生产工 艺参数,从而提高产品质量、降低生产成本、减少废品率 。例如,在注塑生产中,通过正交试验确定最佳的注射温 度、压力和冷却时间,以获得最佳的产品质量和产量。
案例二:正交试验在农业种植中的应用
总结词
利用正交试验优化农业种植技术,提高作物产量和品质 。
详细描述
03
利用正交试验设计,研究农作物在不同环境条件下的抗逆性表
现,为抗逆育种提供依据。
医药研究
01
药物筛选
临床试验
02
Байду номын сангаас03
毒理学研究
利用正交试验设计,筛选出具有 最佳疗效的药物成分和剂量组合。
通过正交试验,优化临床试验方 案,提高试验效率和数据可靠性。

正交实验数据处理方法

正交实验数据处理方法

正交实验数据处理方法正交实验设计是一种统计实验设计方法,通过变量的组合设计,通过对每个变量的不同水平进行组合,以及对样本点的随机分配,来确定变量对实验结果的影响程度。

正交实验设计方法在实验设计中广泛应用,并且具有显著降低实验次数、提高实验效率和准确性等优点。

在正交实验数据处理过程中,通常需要考虑样本均值、方差分析、显著性检验、回归模型等多个方面。

首先,在正交实验数据处理中,需要计算样本均值。

通过实验设计所得到的数据集,根据所研究的变量组合设计和不同水平的组合,可以计算每个变量组合对应的样本均值。

样本均值是对实验结果的总体平均值的估计,通过计算样本均值,可以初步了解不同变量组合对实验结果的影响。

其次,在正交实验数据处理中,需要进行方差分析。

方差分析是一种用于比较多个样本均值差异的统计方法。

通过方差分析,可以判断各组数据之间的差异是否显著。

正交实验设计通常涉及多个变量和多个水平的比较,通过方差分析可以确定哪些变量及水平对实验结果有显著影响。

第三,在正交实验数据处理中,需要进行显著性检验。

显著性检验是用来判断实验结果是否受到变量的影响的统计方法。

通过计算统计量和确定显著性水平,可以判断变量的影响是否显著。

显著性检验可以帮助排除实验结果中的随机误差,从而提取变量的真实影响。

最后,在正交实验数据处理中,可以建立回归模型。

通过收集到的数据,可以建立回归模型来描述变量之间的关系。

回归模型可以帮助预测实验结果,并分析变量之间的相互作用和影响程度。

正交实验设计的主要目的之一就是通过建立回归模型,来寻找影响实验结果的关键变量及其水平。

综上所述,正交实验数据处理方法包括计算样本均值、方差分析、显著性检验和建立回归模型等几个主要步骤。

在实际应用中,还可以根据具体实验设计的需要进行数据转换、变量筛选、交互作用分析等方法。

通过这些数据处理方法的综合应用,可以更准确地分析正交实验结果,并得出有关变量影响的结论。

正交实验设计方法是一种高效、快速但准确的实验设计方法,对于优化实验和提高实验结果的可靠性具有重要作用。

正交实验结果如何进行数据分析

正交实验结果如何进行数据分析

正交实验结果如何进行数据分析正交实验是一种常用的实验设计方法,用于研究多个因素对结果的影响。

在正交实验中,通过设计一系列有限的试验,可以确定各个因素对结果的影响程度,并进行数据分析来得出结论。

数据分析是正交实验中至关重要的一步,它能匡助我们理解实验结果,并对因素的影响进行量化和比较。

下面是一种常见的数据分析方法,供参考:1. 数据整理与预处理:- 采集实验数据,并将其整理成适合分析的格式,例如将因素和结果分别列成表格的形式。

- 检查数据的完整性和准确性,确保没有缺失值或者异常值。

- 如果需要,对数据进行标准化或者转换,以满足统计分析的要求。

2. 描述性统计分析:- 对每一个因素和结果进行描述性统计,包括计算均值、标准差、最大值、最小值等。

- 绘制直方图、箱线图等图表,以了解数据的分布情况和异常值情况。

- 计算各个因素之间的相关系数,以判断它们之间的关联程度。

3. 方差分析(ANOVA):- 使用方差分析方法,对各个因素对结果的影响进行统计检验。

- 首先,进行单因素方差分析,分别计算各个因素的F值和p值,判断其是否对结果产生显著影响。

- 如果有多个因素,则进行多因素方差分析,以确定各个因素之间的交互作用是否显著。

4. 建模与优化:- 如果正交实验的目的是建立模型,可以使用回归分析等方法,对因素和结果之间的函数关系进行建模。

- 根据建立的模型,可以进行参数估计和预测,以优化因素的选择和调整。

5. 结果解释与总结:- 根据数据分析的结果,解释各个因素对结果的影响程度和统计显著性。

- 总结子验的主要发现和结论,提出进一步研究或者改进的建议。

需要注意的是,以上方法仅为一种常见的数据分析流程,具体的分析方法和步骤可能会因实验设计和研究目的的不同而有所差异。

在进行数据分析时,应根据具体情况选择合适的统计方法,并结合领域知识和实际需求进行分析和解释。

正交实验结果如何进行数据分析

正交实验结果如何进行数据分析

正交实验如何数据分析我们把在试验中考察的有关影响试验指标的条件称为因素(也叫因子),把在试验中准备考察的各种因索的不同状态(或配方)称为水平。

在研究比较复杂的工程问题中,往往都包含着多个因素,而且每个因素要取多个水平。

对于包含五个因素、五个水平的工程项目,理论计算必须进行55=3125次试验。

显然,所需要的试验次数太多了,工作量太大。

实践告诉我们,合理安排试验和科学分析试验,是试验工作成败的关键。

试验方案设计的好,试验次数就少,周期也短,这样不仅节省了大量人力、物力、财力和时间,而且可以得到理想的结果。

相反,如果试验设计安排的不好,即使进行了很多次试验,浪费了大量材料、人力和时间,也不一定能够得到预期的结果。

正交试验法,就是在多因素优化试验中,利用数理统计学与正交性原理,从大量的试验点中挑选有代表性和典型性的试验点,应用“正交表”科学合理地安排试验,从而用尽量少的试验得到最优的试验结果的一种试验设计方法。

正交试验法也叫正交试验设计法,它是用“正交表”来安排和分析多因素问题试验的一种数理统计方法。

这种方法的优点是试验次数少,效果好,方法筒单,使用方便,效率高。

由于试验次数大大减少,使得试验数据处理非常重要。

我们可以从所有的试验数据中找到最优的一个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。

用正交表安排的试验具有均衡分散和整齐可比的特点。

均衡分散,是指用正交表挑选出来的各因素和各水平组合在全部水平组合中的分布是均衡的。

整齐可比是说每一因素的各水平间具有可比性。

最简单的正交表L4(23)如表-1所示。

表-1记号L4(23)的含意如下:“L”代表正交表;L下角的数字“4”表示有4横行(简称为行),即要做四次试验;括号内的指数“3”表示有3纵列(简称为列),即最多允许安排的因素个数是3个;括号内的数“2”表示表的主要部分只有2种数字,即因素有两种水平l与2,称之为l水平与2水平。

表L4(23)之所以称为正交表是因为它有两个特点:1、每一列中,每一因素的每个水平,在试验总次数中出现的次数相等。

正交实验结果如何进行数据分析

正交实验结果如何进行数据分析

正交实验如何数据分析我们把在试验中考察得有关影响试验指标得条件称为因素(也叫因子),把在试验中准备考察得各种因索得不同状态(或配方)称为水平.在研究比较复杂得工程问题中,往往都包含着多个因素,而且每个因素要取多个水平。

对于包含五个因素、五个水平得工程项目,理论计算必须进行55=3125次试验.显然,所需要得试验次数太多了,工作量太大。

实践告诉我们,合理安排试验与科学分析试验,就是试验工作成败得关键。

试验方案设计得好,试验次数就少,周期也短,这样不仅节省了大量人力、物力、财力与时间,而且可以得到理想得结果。

相反,如果试验设计安排得不好,即使进行了很多次试验,浪费了大量材料、人力与时间,也不一定能够得到预期得结果.正交试验法,就就是在多因素优化试验中,利用数理统计学与正交性原理,从大量得试验点中挑选有代表性与典型性得试验点,应用“正交表”科学合理地安排试验,从而用尽量少得试验得到最优得试验结果得一种试验设计方法。

正交试验法也叫正交试验设计法,它就是用“正交表"来安排与分析多因素问题试验得一种数理统计方法。

这种方法得优点就是试验次数少,效果好,方法筒单,使用方便,效率高。

由于试验次数大大减少,使得试验数据处理非常重要。

我们可以从所有得试验数据中找到最优得一个数据,当然,这个数据肯定不就是最佳匹配数据,但就是肯定就是最接近最佳得了。

用正交表安排得试验具有均衡分散与整齐可比得特点。

均衡分散,就是指用正交表挑选出来得各因素与各水平组合在全部水平组合中得分布就是均衡得。

整齐可比就是说每一因素得各水平间具有可比性。

最简单得正交表L4(23)如表-1所示。

表-1记号L4(2)得含意如下:“L”代表正交表;L下角得数字“4"表示有4横行(简称为行),即要做四次试验;括号内得指数“3”表示有3纵列(简称为列),即最多允许安排得因素个数就是3个;括号内得数“2"表示表得主要部分只有2种数字,即因素有两种水平l与2,称之为l水平与2水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正交实验如何数据分析我们把在试验中考察的有关影响试验指标的条件称为因素(也叫因子),把在试验中准备考察的各种因索的不同状态(或配方)称为水平。

在研究比较复杂的工程问题中,往往都包含着多个因素,而且每个因素要取多个水平。

对于包含五个因素、五个水平的工程项目,理论计算必须进行55=3125次试验。

显然,所需要的试验次数太多了,工作量太大。

实践告诉我们,合理安排试验和科学分析试验,是试验工作成败的关键。

试验方案设计的好,试验次数就少,周期也短,这样不仅节省了大量人力、物力、财力和时间,而且可以得到理想的结果。

相反,如果试验设计安排的不好,即使进行了很多次试验,浪费了大量材料、人力和时间,也不一定能够得到预期的结果。

正交试验法,就是在多因素优化试验中,利用数理统计学与正交性原理,从大量的试验点中挑选有代表性和典型性的试验点,应用“正交表”科学合理地安排试验,从而用尽量少的试验得到最优的试验结果的一种试验设计方法。

正交试验法也叫正交试验设计法,它是用“正交表”来安排和分析多因素问题试验的一种数理统计方法。

这种方法的优点是试验次数少,效果好,方法筒单,使用方便,效率高。

由于试验次数大大减少,使得试验数据处理非常重要。

我们可以从所有的试验数据中找到最优的一个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。

用正交表安排的试验具有均衡分散和整齐可比的特点。

均衡分散,是指用正交表挑选出来的各因素和各水平组合在全部水平组合中的分布是均衡的。

整齐可比是说每一因素的各水平间具有可比性。

最简单的正交表L4(23)如表-1所示。

表-1记号L4(23)的含意如下:“L”代表正交表;L下角的数字“4”表示有4横行(简称为行),即要做四次试验;括号内的指数“3”表示有3纵列(简称为列),即最多允许安排的因素个数是3个;括号内的数“2”表示表的主要部分只有2种数字,即因素有两种水平l与2,称之为l水平与2水平。

表L4(23)之所以称为正交表是因为它有两个特点:1、每一列中,每一因素的每个水平,在试验总次数中出现的次数相等。

表-1里不同的水平只有两个——1和2,它们在每一列中各出现2次。

2、任意两个因素列之间,各种水平搭配出现的有序数列(即左边的数放在前,右边的数放在后,按这一次序排出的数对)时,每种数对出现的次数相等。

这里有序数对共有四种(1,1),(1,2),(2,1),(2,2).它们各出现一次。

常见的正交表有:L4(23),L8(27),L16(215),L32 (231) ,…;L9 (34),L27 (313)...;L16(45),…;L25(56)……等。

此外还有混合水平正交表:各列中出现的最大数字不完全相同的正交表称为混合水平正交表。

如L8(41×24),表中有一列最大数字为4,有4列最大数字为2。

也就是说该表可以安排1个4水平因素和4个2水平因素。

选择正交表的原则,应当是被选用的正交表的因素数与水平数等于或大于要进行试验考察的因素数与水平数,并且使试验次数最少。

如我们要进行3因素2水平的试验,选用L4(23)表最理想。

但是,要进行5因素2水平的试验仍用L4(23)表,那么便放不下5个因素了。

这时,应当选用L8(27)表,这样尽管只用了此表的5个因素列,还有两个因素列是空列,但这并不影响分析。

对试验结果(数据)的处理分析通常有两种方法,一是直观分析法,又叫极值分析法;另一种方法是方差分析。

表-2根据正交表进行试验,可以得到就某一(单指标,也有多指标)考察指标的试验结果,通过直观分析或方差分析,就可以得出最佳的实验方案。

直观分析试验结果的步骤(以四因素三水平为例)如下,见表-2,根据实验数据分别计算出:①分别对每次实验各因素的一水平的实验结果求和,即I j:再对每次实验各因素的二水平结果求和,即II j:对每次试验各因子的三水平的结果求和,即III j:②分别求出各因素各水平结果的平均值:即I j/3,II j/3,III j/3,并填入正交表中;③分别求出各因素的平均值的差值(也叫极差),如果是三个以上水平则要找出平均值最大值或最小值之间的差值Rj。

根据极差数Rj的大小,可以判断各因素对实验结果的影响大小。

判断原则是:极差愈大,所对应的因素愈重要;由此可以确定出主、次要因素的排列顺序。

根据各因素各水平所对应指标结果的平均值的大小可以确定各因素取什么水平好。

确定的原则是:如果要求指标愈小愈好,则取最小的平均值所对应的那个水平;如果要求指标愈大愈好,则取最大的平均值所对应的那个水平;如果要求指标适中(固定值),则取适中的平均值所对应的那个水平。

需要说明的是,最优的水平组合并不一定就在由正交实验设计所指定的实验当中。

所以,根据试验指标的数值要求所确定的各因素的最优水平组合,就可以筛选出最佳的试验方案条件、以及较好的试验方案条件。

对试验结果的直观分析法,除了极差分析外。

为了更形象直观的得出试验分析结果,我们还可以采用画趋势图(效应曲线图)的方法,得出正确的综合分析结论。

效应曲线图(因素指标分析)就是要画出各因素水平与指标的关系图,它是一种座标图,它的横座标用各因素的不同水平表示;纵座标同为试验指标。

其实它就是根据极差分析数据所绘出来的,可以一目了然看出各因素的哪个水平为最优(根据指标的具体数值要求)。

2.方差分析法:通过试验可以获得一组结果实验数据,这组数据之间一般会存在一定的差异,即使在相同的条件下做几次试验,由于偶然因素的影响,所得的数据数据也不完全相等,这说明实验数据的波动不仅与实验条件的改变有关,也包括实验误差的影响。

方差分析是用来区分所考察因子的由于水平不同对应的试验结果的差异是由于水平的改变所引起还是由于试验误差所引起的,以便进一步(在直观分析的基础上)检验哪些因子对结果有影响,哪些没有影响,并区分哪些是影响结果的主要因素,哪些是次要因素。

我们通过一个例子来说明方差分析法的原理和计算方法。

在研究某胶料的过程中,为考察生胶的转动黏度对胶料压缩变形有无显著的影响,进行了试验,其实验结果如表-3所示:表-3我们把转动黏度记做因子A ,这是单因子4水平的实验,每个水平都进行了3次重复试验,从这组试验数据,如何来判断A 因子对压缩变形有无显著性影响呢?首先从这组数据出发,计算出实验误差引起的数据波动及A 因子水平的改变所引起的数据波动。

可以观察到在A 的同一水平下,虽然试验条件没有改变,但所得的试验数据不完全一样,也就是说压缩变形值不完全一样。

这是由于试验误差的存在使数据发生了波动。

例如,A 的第一水平下(A1=139)数据的平均数为:1x =31(38.2+33.3+36.0)=35.8数据的波动值是:S 1=(38.2-35.8)2+(33.3-35.8)2+(36.0-35.8)2=12.05我们称S 1为A 的第一水平下的偏差平方和。

偏差平方和反映了一组实验数据的分散和集中的程度,S 大表明这组数据分散,S 小表明它们集中。

类似地,可以按公式:∑==3131j ij i x xS A =231)(∑=-j i ij x x ,i=1,2,3,4计算各水平下数据的平均值及偏差平方和:1.352=x S 2=7.892.343=x S 3=3.932.334=x S 4=8.96将各因子A 在各水平下的偏差平方和相加,得S 误=S 1+S 2+S 3+S 4=∑∑==-41312)(i j i ij x x =32.83这完全是由试验误差引起的,它表征了试验误差在这组试验中引起的数据的总波动值,我们称S 误为试验的偏差平方和。

对因子A ,可以注意到A 的四个水平下的平均值i x 也各不相同。

这种数据平均值的波动不仅与试验误差有关,还包括由于A 的水平不同引起的数据波动。

A 的第一水平下的平均值1x =35.8,这个平均值可代替各个1水平(共3个)对压缩变形的影响,对其它的水平亦可作同样地考虑,记做:∑==4141i i x x =34.6 表示数据的总平均值,则A 因子各水平平均值之间的偏差平方和为:S A =3∑==-41243.11)(i i x x它刻划了A 水平不同引起的数据波动值,称为因子A 的偏差平方和,如果记:S 总=∑∑==-4131)(i j ij x x 2表示所有的数据围绕它们的总平均值的波动值,则可以证明:S 总=S A +S 误从数据偏差平方和可见,数据个数多的,偏差平方和就可能大。

为了消除数据个数的影响,我们采用平均偏差平方和S A /f A 、S 误/f 误,其中f A 和f 误分别表示偏差平方和S A 和S误的自由度。

所谓自由度,就是独立的数据的个数。

与偏差平方和一样,自由度也可以分解为:f 总=f A +f 误而f 总=N -1,N 为同一水平的总试验次数;f A =A 的水平数-1;f 误=f 总-f A ;考虑比值:F 比=误误f //S f S A A 若F 比近似等于1,表明S A /f A 与S 误/f 误差不多,也就说明因子A 的水平改变对指标的影响在误差范围之内,即水平之间无显著差异。

那么,当F 比多大时,才能说明因子A 水平改变对结果有显著影响呢?这时要查一下F 分布临界值表。

F 分布临界值表列出了各种自由度情况下F 比的临界值。

在F 分布临界值表上横行f 1代表F 比中分子的自由度f A ,竖行f 2代表F 比中分母的自由度f 误。

查得的临界值记做F α,这里的α是预先给定的显著性水平,若F 比≥F α,我们就有(1-α)的把握说明因子A 的水平改变对结果(指标)有显著性影响,其几何意义见图-1所示。

对我们所讨论的例子,有:f 总=12-1=11;f A =4-1=3;f 误=11-3=8;把有关数据带入F A 的表达式,得:F 比=误误f //S f S A A =8/83.323/43.11=1.08 我们给定显著性水平 =0.10,从F 分布临界值表中查出:F 0.10(3,8)=2.92由于F 比=1.08< F 0.10(3,8)=2.92因此我们大概有90%的把握说因子A 的水平改变对结果的影响无显著差异,也就是说我们有90%的把握,说生胶转动黏度水平的改变对压缩变形的影响无显著差异,试验结果所出现的波动就主要是由试验误差造成的(有必要通过改变试验条件来减小试验结果数据的波动)。

反之,当F比≥F0.10时,我们大概有90%的把握说因子A的水平改变对结果的影响有显著影响。

显著性水平α,是指我们对作出的判断大概有1-α的把握。

对于不同的显著性水平,有不同的F分布表,常用的有α=0.01, α=0.05和α=0.10三种。

为了区别显著性的程度,当F比>F0.01(f1,f2)时,就说该因子水平的改变对试验结果有高度显著的影响,记做***;当F0.01(f1,f2)> F比>F0.05(f1,f2)时,就说该因子水平的改变,对试验结果有显著的影响,记做**;当F0.05(f1,f2)>F A>F0.10(f1,f2)时,就说该因子水平的改变,对试验结果有一定的影响,记做*。

相关文档
最新文档