高中数学必修一函数的奇偶性练习
高中数学必修一课时作业22
课时作业22 函数的奇偶性时间:45分钟一、选择题1.奇函数y =f (x )(x ∈R )的图象必定经过点( C ) A .(a ,f (-a )) B .(-a ,f (a )) C .(-a ,-f (a ))D .(a ,f (1a))解析:∵y =f (x )是奇函数,∴f (-a )=-f (a ).∴选C.2.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定是( A )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析:∵F (-x )=f (-x )-f [-(-x )]=f (-x )-f (x )=-[f (x )-f (-x )]=-F (x ),定义域为R ,∴函数F (x )在R 上是奇函数.3.下列函数中,既是奇函数又是增函数的为( D ) A .y =x +1 B .y =-x 2 C .y =1xD .y =x |x |解析:y =x +1不是奇函数;y =-x 2是偶函数,且在[0,+∞)上是减函数;y =1x在(0,+∞)上是减函数,故A ,B ,C 都错.对于D ,实际上,y =x |x |=⎩⎪⎨⎪⎧x2,x≥0,-x2,x<0,画出图象(图略),由图象可知,该函数既是奇函数又是增函数.4.已知f(x)为偶函数,且当x≥0时,f(x)≥2,则当x<0时,有(B)A.f(x)≤2 B.f(x)≥2C.f(x)≤-2 D.f(x)∈R解析:可画出满足题意的一个f(x)的大致图象如图所示,由图易知当x<0时,有f(x)≥2.故选B.5.已知函数f(x)满足f(x)·f(-x)=1,且f(x)>0恒成立,则函数g(x)=错误!是(A)A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:∵f(x)·f(-x)=1,f(x)>0恒成立,∴f(-x)=错误!>0,∴g(-x)=错误!=错误!=错误!=-g(x),∴g(x)是奇函数.6.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=(C)A.-3 B.-1C.1 D.3解析:用“-x”代替“x”,得f(-x)-g(-x)=(-x)3+(-x)2+1,化简得f(x)+g(x)=-x3+x2+1,令x=1,得f(1)+g(1)=1,故选C.7.设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( C )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数解析:f (x )为奇函数,g (x )为偶函数,故f (x )·g (x )为奇函数,|f (x )|g (x )为偶函数,f (x )|g (x )|为奇函数,|f (x )g (x )|为偶函数,故选C.8.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( A )A .(13,23)B .[13,23)C .(12,23)D .[12,23)解析:∵函数f (x )为偶函数,∴f (2x -1)=f (|2x -1|),由题意得|2x -1|<13,即-13<2x -1<13, 解得13<x <23.二、填空题9.对于函数y =f (x ),定义域为D ∈[-2,2],以下命题正确的是②③④.(填序号)①若f (-1)=f (1),f (-2)=f (2),则y =f (x )是D 上的偶函数; ②若对于任意x ∈[-2,2],都有f (-x )+f (x )=0,则y =f (x )是D 上的奇函数;③若f (2)≠f (-2),则f (x )不是偶函数; ④若f (-2)=f (2),则该函数可能是奇函数.解析:①中不满足偶函数定义中的任意性,因此①错误;②中由f(x)+f(-x)=0可知f(-x)=-f(x),因此f(x)是D上的奇函数,②正确;当f(-2)≠f(2)时,函数f(x)一定不是偶函数,故③正确;④中若满足f(-2)=f(2)=0,此时函数可能是奇函数,因此④正确.10.若函数y=(x+1)(x-a)为偶函数,则a等于1.解析:∵y=(x+1)(x-a)=x2+(1-a)x-a为偶函数,∴1-a=0,即a =1.三、解答题11.判断下列函数的奇偶性.(1)f(x)=x2+1x2;(2)f(x)=|2x+1|-|2x-1|;(3)f(x)=错误!解:(1)偶函数.定义域为{x|x≠0},关于原点对称,又因为f(-x)=(-x)2+错误!=x2+错误!=f(x),所以f(x)为偶函数.(2)奇函数.定义域为R.又因为f(-x)=|-2x+1|-|-2x-1|=|2x-1|-|2x+1|=-f(x),所以f(x)为奇函数.(3)奇函数.画出其图象如图,可见f(x)的定义域为R,且图象关于原点对称,所以f(x)为奇函数.12.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴及y轴左侧的图象,如图所示,请把函数f(x)的图象补充完整,并根据图象写出函数f(x)的单调递增区间;(2)写出函数f(x)的值域.解:(1)由f(x)为偶函数可知,其图象关于y轴对称,如图,作出已知图象关于y轴对称的图象,即得该函数的完整图象.由图可知,函数f(x)在(-∞,-1]上单调递减,在(-1,0)上单调递增,在[0,1]上单调递减,在(1,+∞)上单调递增.所以函数f(x)的单调递增区间是(-1,0),(1,+∞).(2)由题意知,当x≤0时,f(x)的最小值为f(-1)=(-1)2+2×(-1)=-1.由偶函数的性质可得f(x)≥-1,即函数f(x)的值域为[-1,+∞).13.(多选题)如果f(x)是定义在R上的奇函数,那么下列函数中,一定为奇函数的是(AD)A.y=x+f(x) B.y=xf(x)C.y=x2+f(x) D.y=x2f(x)解析:方法一:∵f(x)是奇函数,∴f(-x)=-f(x).令y=g(x).对于A,g(-x)=-x+f(-x)=-x-f(x)=-g(x),∴y=x+f(x)是奇函数.对于B,g(-x)=-xf(-x)=xf(x)=g(x),∴y=xf(x)是偶函数.对于C,g(-x)=(-x)2+f(-x)=x2-f(x),由于g(-x)≠g(x),g(-x)≠-g(x),∴y=x2+f(x)既不是奇函数也不是偶函数.对于D,g(-x)=(-x)2f(-x)=-x2f(x)=-g(x),∴y=x2f(x)是奇函数.方法二:根据奇、偶函数的运算性质可得A项和D项是奇函数,B项是偶函数,利用定义判断C项既不是奇函数也不是偶函数.14.设奇函数f(x)在(0,+∞)上单调递增,且f(3)=0,则不等式错误!>0的解集为(A)A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)解析:因为f(x)为奇函数,f(3)=0,所以f(-3)=0.又因为f(x)在(0,+∞)上单调递增,所以f(x)在(-∞,0)上也单调递增.由错误!=f(x)>0,①当x>0时,得f(x)>f(3)=0,所以x>3;②当x <0时,得f (x )>f (-3)=0,所以-3<x <0, 综上可得,原不等式的解集为(-3,0)∪(3,+∞).15.已知函数f (x )=⎩⎪⎨⎪⎧x2+x ,x≤0,ax2+bx ,x>0为奇函数,则a =-1,b =1.解析:方法一:当x >0时,-x <0, f (-x )=(-x )2+(-x )=x 2-x .因为f (x )为奇函数,所以f (x )=-f (-x ),所以当x >0时,f (x )=-x 2+x ,即ax 2+bx =-x 2+x ,所以a =-1,b =1. 方法二:由题意知错误!则⎩⎪⎨⎪⎧4a +2b =-2,a +b =0,所以⎩⎪⎨⎪⎧a =-1,b =1.当a =-1,b =1时,经检验知,f (x )为奇函数.16.函数f (x )=ax -b 4-x2是定义在(-2,2)上的奇函数,且f (1)=13.(1)求f (x )的解析式; (2)判断并证明f (x )的单调性; (3)解不等式f (t -1)+f (t )<0.解:(1)根据题意,得函数f (x )=ax -b4-x2是定义在(-2,2)上的奇函数,则f (0)=-b4=0,解得b =0.又由f (1)=13,则有f (1)=a 3=13,解得a =1.所以f (x )=x4-x2.(2)f (x )在区间(-2,2)上为增函数.证明如下:∀x 1,x 2∈(-2,2),且x 1<x 2, 则f (x 1)-f (x 2)=错误!,又由-2<x 1<x 2<2,得4+x 1x 2>0,x 1-x 2<0, 4-x 21>0,4-x 2>0,所以f (x 1)-f (x 2)<0,所以函数f (x )在(-2,2)上为增函数. (3)根据题意f (t -1)+f (t )<0⇒f (t -1)< -f (t )⇒f (t -1)<f (-t )⇒⎩⎪⎨⎪⎧-2<t -1<2,-2<-t<2,t -1<-t ,解得-1<t <12,所以不等式的解集为⎝⎛⎭⎪⎫-1,12.。
高中数学:函数单调性和奇偶性的综合练习及答案
高中数学:函数单调性和奇偶性的综合练习及答案1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|2.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数3.已知函数f(x)=3x-(x≠0),则函数()A.是奇函数,且在(0,+∞)上是减函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是增函数D.是偶函数,且在(0,+∞)上是增函数4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)()A.在[-1,0]上是增函数B.在[-1,-]上增函数,在(-,0]上是减函数C.在[1,0]上是减函数D.在[-1,-]上是减函数,在(-,0]上是增函数5.f(x)是定义在R上的增函数,则下列结论一定正确的是()A.f(x)+f(-x)是偶函数且是增函数B.f(x)+f(-x)是偶函数且是减函数C.f(x)-f(-x)是奇函数且是增函数D.f(x)-f(-x)是奇函数且是减函数6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是()A.f(1)>f(2)B.f(1)>f(-2)C.f(-1)>f(-2)D.f(-1)<f(2)7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是()A.f<f(-1)<f(2)B.f(-1)<f<f(2)C.f(2)<f(-1)<fD.f(2)<f<f(-1)8.定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f (x)的图象重合.设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是()A.①与④B.②与③C.①与③D.②与④9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f (x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)10.若函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则x·f(x)<0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)11.已知定义在R上的函数f(x)在(-∞,-2)上是减函数,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则x·f(x)<0的解集为()A.(-1,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)13.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A.(-∞,0]B.[0,+∞)C.(-∞,+∞)D.[1,+∞)14.已知函数f(x)=x|x|-2x,则下列结论正确的是________.(填写序号)①f(x)是偶函数,递增区间是(0,+∞);②f(x)是偶函数,递减区间是(-∞,1);③f(x)是奇函数,递减区间是(-1,1);④f(x)是奇函数,递增区间是(-∞,0).15.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,设f=m,f=n,则m,n的大小关系是________.16.已知函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递增区间是________.17.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.18.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式.19.已知函数f(x)=-x3+3x.求证:(1)函数f(x)是奇函数;(2)函数f(x)在区间(-1,1)上是增函数.20.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=. (1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.21.设定义域为R的函数f(x)=(1)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);(2)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明);(3)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.22.已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.答案1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|【答案】B【解析】∵y=x3在定义域R上是奇函数,∴A不对;y=-x2+1在定义域R上是偶函数,但在(0,+∞)上是减函数,故C不对;D中y=2-|x|=|x|虽是偶函数,但在(0,+∞)上是减函数,只有B对.2.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数【答案】D3.已知函数f(x)=3x-(x≠0),则函数()A.是奇函数,且在(0,+∞)上是减函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是增函数D.是偶函数,且在(0,+∞)上是增函数【答案】C【解析】因为f(-x)=-3x+=-(3x-)=-f(x),又因为f(x)在(0,+∞)上是增函数,所以f(x)是奇函数,且在(0,+∞)上是增函数.4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)()A.在[-1,0]上是增函数B.在[-1,-]上增函数,在(-,0]上是减函数C.在[1,0]上是减函数D.在[-1,-]上是减函数,在(-,0]上是增函数【答案】A【解析】因为f(1+x)=f(1-x),所以函数f(x)的图象关于直线x=1对称,又f(x)为偶函数,且在[1,2]上是增函数,所以f(x)在[-1,0]上是增函数.5.f(x)是定义在R上的增函数,则下列结论一定正确的是()A.f(x)+f(-x)是偶函数且是增函数B.f(x)+f(-x)是偶函数且是减函数C.f(x)-f(-x)是奇函数且是增函数D.f(x)-f(-x)是奇函数且是减函数【答案】C【解析】A错误.设f(x)=x,是增函数,但f(x)+f(-x)=x-x=0是常数函数;同理B错误;C正确.设g(x)=f(x)-f(-x),则g(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-g(x),函数g(x)是奇函数.任取x1,x2∈R,且x1<x2,则-x1>-x2,g(x1)=f(x1)-f(-x1),g(x2)=f(x2)-f(-x2),因为f(x)是定义在R上的增函数,所以f(x1)<f(x2),f(-x1)>f(-x2),即-f(-x1)<-f(-x2).所以f(x1)-f(-x1)<f(x2)-f(-x2),即g(x1)<g(x2).所以函数g(x)=f(x)-f(-x)是增函数;D错误.故选C.6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是()A.f(1)>f(2)B.f(1)>f(-2)C.f(-1)>f(-2)D.f(-1)<f(2)【答案】D【解析】∵当x≥0时,f(x)=x+1是增函数,∴f(1)<f(2),又∵f(x)为偶函数,∴f(1)=f(-1),f(2)=f(-2),7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是()A.f<f(-1)<f(2)B.f(-1)<f<f(2)C.f(2)<f(-1)<fD.f(2)<f<f(-1)【答案】B【解析】∵对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,∴函数f(x)在(-∞,-1]上单调递减,∴f(-2)>f>f(-1).又∵f(x)是偶函数,∴f(-2)=f(2).∴f(-1)<f<f(2).8.定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f (x)的图象重合.设a>b>0,给出下列不等式()①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是()A.①与④B.②与③C.①与③D.②与④【答案】C【解析】因为函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,所以函数g(x)在[0,+∞)上是增函数,在(-∞,0)上是减函数.a>b>0,f(a)>f(b),g(a)>g(b),所以f(a)+g(a)>f(b)+g(b);对于①:f(b)-f(-a)>g(a)-g(-b),即f(b)+f(a)>g(a)-g(b).正确;则②错误;对于③:f(a)-f(-b)>g(b)-g(-a),即f(a)+f(b)>g(b)-g(a).正确;则④错误.9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f (x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)【答案】C【解析】由(x2-x1)[f(x2)-f(x1)]>0,得f(x)在x∈(-∞,0]上为增函数.又f(x)为偶函数,∴f(x)在x∈[0,+∞)上为减函数.又f(-n)=f(n)且0≤n-1<n<n+1,∴f(n+1)<f(n)<f(n-1),即f(n+1)<f(-n)<f(n-1).10.若函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则x·f(x)<0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】A【解析】因为函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,所以可画出符合条件的奇函数f(x)的图象,如图所示.因为x·f(x)<0,所以或结合图象,得到答案为A.11.已知定义在R上的函数f(x)在(-∞,-2)上是减函数,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)【答案】C【解析】g(x)=f(x-2)是把函数f(x)向右平移2个单位得到的,且g(2)=f(0),f(-4)=g (-2)=-g(2)=0,f(-2)=g(0)=0,所以函数f(x)的图象关于点(-2,0)对称,所以当x ≤-4或x≥-2时xf(x)≤0成立.12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则x·f(x)<0的解集为()A.(-1,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)【答案】C【解析】因为函数f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,所以函数f(x)在(0,+∞)内也是减函数,且f(2)=0.则不等式x·f(x)<0可化为或解得x<-2或x>2.13.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A.(-∞,0]B.[0,+∞)C.(-∞,+∞)D.[1,+∞)【答案】A【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数为f(x)=-2x2+1,所以函数的单调增区间为(-∞,0].14.已知函数f(x)=x|x|-2x,则下列结论正确的是________.(填写序号)①f(x)是偶函数,递增区间是(0,+∞);②f(x)是偶函数,递减区间是(-∞,1);③f(x)是奇函数,递减区间是(-1,1);④f(x)是奇函数,递增区间是(-∞,0).【答案】③【解析】将函数f(x)=x|x|-2x去掉绝对值得f(x)=画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.15.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,设f=m,f=n,则m,n的大小关系是________.【答案】m≥n【解析】因为a2+2a+=(a+1)2+≥,又f(x)在[0,+∞)上是减函数,所以f≤f=f.16.已知函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递增区间是________.【答案】(-∞,0]【解析】∵f(x)为偶函数,∴图象关于y轴对称,即k=1,此时f(x)=-x2+3,其单调递增区间为(-∞,0].17.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.【答案】(1)因为函数f(x)的图象关于原点对称,所以f(x)为奇函数,则f(0)=0.设x<0,则-x>0,因为x>0时,f(x)=x2-2x+3.所以f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3.于是有f(x)=(2)先画出函数在y轴右侧的图象,再根据对称性画出y轴左侧的图象,如图.由图象可知函数f(x)的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).18.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式. 【答案】∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),由f(x)+g(x)=2x+x2.①用-x代替x得f(-x)+g(-x)=-2x+(-x)2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.19.已知函数f(x)=-x3+3x.求证:(1)函数f(x)是奇函数;(2)函数f(x)在区间(-1,1)上是增函数.【答案】(1)显然f(x)的定义域是R.设任意x∈R,因为f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),所以函数f(x)是奇函数.(2)在区间(-1,1)上任取x1,x2,且x1<x2,则f(x2)-f(x1)=-(x2-x1)(+x2x1+)+3(x2-x1)=(x2-x1)(3--x2x1-).因为-1<x1<x2<1,所以x2-x1>0,(3--x2x1-)>0,所以f(x2)>f(x1).所以函数f(x)=-x3+3x在区间(-1,1)上是增函数.20.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=. (1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.【答案】(1)∵f(x)为奇函数,∴f(-x)=-f(x),∴-ax-+c=-ax--c,∴c=0,∴f(x)=ax+.又∵f(1)=,f(2)=,∴∴a=2,b=.综上,a=2,b=,c=0.(2)由(1)可知f(x)=2x+.函数f(x)在区间上为减函数.证明如下:任取0<x1<x2<,则f(x1)-f(x2)=2x1+-2x2-=(x1-x2)=(x1-x2).∵0<x1<x2<,∴x1-x2<0,2x1x2>0,4x1x2-1<0.∴f(x1)-f(x2)>0,f(x1)>f(x2).∴f(x)在上为减函数.21.设定义域为R的函数f(x)=(1)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);(2)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明);(3)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.【答案】(1)如图.单调增区间:[-1,0],[1,+∞),单调减区间(-∞,-1],[0,1].(2)在同一坐标系中同时作出y=f(x),y=-2a的图象,由图可知f(x)+2a=0有两个解,须-2a=0或-2a>1,即a=0或a<-.(3)当x<0时,-x>0,所以g(-x)=(-x)2-(-2x)+1=x2+2x+1,因为g(x)为奇函数,所以g(x)=-g(-x)=-x2-2x-1,且g(0)=0,所以g(x)=22.已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.【答案】(1)定义域(-∞,0)∪(0,+∞),关于原点对称.当a=0时,f(x)=,满足对定义域上任意x,f(-x)=f(x),∴当a=0时,f(x)是偶函数;当a≠0时,f(1)=a+1,f(-1)=1-a,若f(x)为偶函数,则a+1=1-a,a=0矛盾;若f(x)为奇函数,则1-a=-(a+1),1=-1矛盾,∴当a≠0时,f(x)是非奇非偶函数.(2)任取x1>x2≥3,f(x1)-f(x2)=ax1+-ax2-=a(x1-x2)+=(x1-x2)(a-). ∵x1-x2>0,f(x)在[3,+∞)上为增函数,∴a>,即a>+在[3,+∞)上恒成立.∵x1>x2≥3,+<+=,∴a≥.。
高中数学人教A版必修1练习:1.3.2 奇偶性 课堂强化
1.函数f (x )=x 2(x <0)的奇偶性为 ( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析:∵函数f (x )=x 2(x <0)的定义域为(-∞,0),不关于原点对称,∴函数f (x )=x 2(x <0)为非奇非偶函数.答案:D2.若函数f (x )满足f (-x )f (x )=1,则f (x )图像的对称轴是 ( ) A .x 轴B .y 轴C .直线y =xD .不能确定解析:∵f (-x )f (x )=1, ∴f (x )=f (-x ),∴f (x )为偶函数,其图像关于y 轴对称.答案:B3.下列函数中是偶函数的是 ( )A .y =x 3(x >0)B .y =|x +1|C .y =2x2+2D .y =3x -1解析:A 中定义域不关于原点对称;B 中f (-x )=|-x +1|,非奇非偶;C 中f (-x )=2(-x )2+2=2x2+2=f (x ),∴y =2x2+2为偶函数. 答案:C4.函数y =f (x )是定义在R 上的奇函数,则f (3)+f (-3)=________.解析:∵f (x )为奇函数,∴f (-3)=-f (3),∴f (3)+f (-3)=0.答案:05.设f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2+1, 则f (-3)=________. 解析:∵f (x )为奇函数,∴f (-3)=-f (3)=-(9+1)=-10.答案:-106.已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上为增函数,若f (1-a )+f (12-2a )<0,求实数a 的取值范围.解:∵f (x )为R 上的奇函数,且在[0,+∞)为增函数, ∴f (x )在R 上为增函数.又f (1-a )+f (12-2a )<0,∴f (1-a )<-f (12-2a )=f (2a -12).∴1-a <2a -12,即a >12.∴实数a 的取值范围为(12,+∞).。
2021新教材人教版高中数学A版必修第一册模块练习题--3.2.2 奇偶性
3.2.2奇偶性基础过关练题组一函数奇偶性的概念及其图象特征1.已知一个奇函数的定义域为{-1,2,a,b},则a+b等于()A.-1B.1C.0D.22.若y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是()A.(a,-f(a))B.(-a,-f(a))C.(-a,-f(-a))D.(a,f(-a))3.下列图象表示的函数中具有奇偶性的是()4.(2020北京通州高一上期末)能说明“若f(x)是奇函数,则f(x)的图象一定过原点”是假命题的一个函数是f(x)=.5.(1)如图①,给出奇函数y=f(x)的部分图象,试作出y轴右侧的图象并求出f(3)的值;(2)如图②,给出偶函数y=f(x)的部分图象,试作出y轴右侧的图象并比较f(1)与f(3)的大小.题组二函数奇偶性的判定6.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数7.(2019四川雅安中学高一上第一次月考)下列函数中是偶函数,且在区间(0,1)上为增函数的是( ) A.y=|x| B .y=3-x C.y=1xD.y=-x 2+4 8.若函数f(x)={1,x >0,-1,x <0,则f(x)( )A.是偶函数B.是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数 9.判断下列函数的奇偶性: (1)f(x)=√x 2-1+√1-x 2;(2)f(x)=2x 2+2x x+1;(3)f(x)={x(1-x)(x <0),x(1+x)(x >0).题组三 函数奇偶性的综合运用10.已知函数f(x)=mx 2+nx+2m+n 是偶函数,其定义域为[m+1,-2n+2],则( )A.m=0,n=0B.m=-3,n=0C.m=1,n=0D.m=3,n=011.(2020广西柳州二中高一上月考)已知函数f(x)是定义在R 上的奇函数,当x ∈(-∞,0)时,f(x)=2x 3+x 2,则f(2)=( ) A.20 B.12 C.-20 D.-1212.(2020广东珠海高一上期末学业质量检测,)已知函数f(x)为R 上的奇函数,且在(-∞,0)上是增函数, f(5)=0,则xf(x)>0的解集是 .13.已知y=f(x)是奇函数,当x<0时,f(x)=x 2+ax,且f(3)=6,则a 的值为 .14.(2020广东湛江一中高一上期中)已知f(x),g(x)分别是定义在R 上的偶函数和奇函数,且f(x)-g(x)=x 3+x 2+1,则f(1)+g(1)= . 15.(2019天津南开高一上期末)已知f(x)是定义在R 上的偶函数,当x ≥0时, f(x)=x 2-2x.(1)求函数f(x)的解析式,并画出函数f(x)的图象;(2)根据图象写出f(x)的单调区间和值域.能力提升练题组一函数奇偶性的概念及其图象特征1.()已知y=f(x)是偶函数,其图象与x轴有4个交点,则方程f(x)=0的所有实数根之和是()A.4B.2C.1D.02.(多选)()若f(x)为R上的奇函数,则下列四个说法正确的是()A.f(x)+f(-x)=0B.f(x)-f(-x)=2f(x)C.f(x)·f(-x)<0D.f(x)=-1f(-x)3.()f(x)是定义在R上的奇函数,其在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.题组二函数奇偶性的判定4.(2020黑龙江哈三中高一上第一次阶段性验收,)下列函数是偶函数的是()A.f(x)=x3-1x B.f(x)=√1-x2|x-2|-2C.f(x)=(x-1)√1+x1-xD.f(x)=|2x+5|+|2x-5|5.()已知F(x)=(x3-2x)f(x),且f(x)是定义在R上的奇函数,f(x)不恒等于零,则F(x)为()A.奇函数B.偶函数C.奇函数或偶函数D.非奇非偶函数6.()已知f(x+y)=f(x)+f(y)对任意实数x,y都成立,则函数f(x)是()A.奇函数B.偶函数C.既是奇函数,也是偶函数D.既不是奇函数,也不是偶函数7.(多选)()设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.|f(x)|g(x)是奇函数B.f(x)|g(x)|是奇函数C.f(x)+|g(x)|是偶函数D.|f(x)|+g(x)是偶函数题组三函数奇偶性的综合运用8.(2020河北承德一中高一上月考,)若偶函数f(x)在(-∞,-1]上单调递增,则()A.f(-32)<f(-1)<f(2)B.f(-1)<f(-32)<f(2)C.f(2)<f(-1)<f(-32)D.f(2)<f(-32)<f(-1)9.(2020黑龙江大庆实验中学高一上月考,)函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-1)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,2]D.[1,3]10.(2020河南郑州高一上期末,)已知定义在R上的奇函数f(x)满足f(x+4)=f(x)恒成立,且f(1)=1,则f(3)+f(4)+f(5)的值为(深度解析)A.-1B.1C.2D.011.(2020江西临川一中高一上月考,)已知函数f(x)与g(x)分别是定义域上的奇函数与偶函数,且f(x)+g(x)=x2-1x+1-2,则f(2)=()A.-23B.73C.-3D.11312.(2019四川成都高一上期末调研,)已知f(x)是定义在R 上的奇函数,且当x ≥0时, f(x)={-x,0≤x ≤1,-1,1<x <2,x -3,x ≥2.若对任意的x ∈R,不等式f(x)>f(x-√2a)恒成立,则实数a 的取值范围是 . 13.(2019天津河西高一上期末,)(1)若奇函数f(x)是定义在R 上的增函数,求不等式f(2x-1)+f(3)<0的解集;(2)若f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是增函数,求不等式f(2x-1)-f(-3)<0的解集.14.(2020安徽师大附中高一上月考,)已知函数f(x)=ax+b1+x 2是定义在(-1,1)上的奇函数,且f (12)=25.(1)求函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数; (3)解关于实数t 的不等式f(t-1)+f(t)<0.15.(2020山东菏泽高一上期末联考,)已知函数f(x)=x 2+2a-3x是奇函数.(1)求函数f(x)的解析式;(2)若函数f(x)在(0,√p)上单调递增,试求p的最大值.16.()设函数f(x)=x2-2|x-a|+3,x∈R.(1)王鹏同学认为,无论a取何值,f(x)都不可能是奇函数.你同意他的观点吗?请说明你的理由;(2)若f(x)是偶函数,求a的值;(3)在(2)的情况下,画出y=f(x)的图象并指出其单调递增区间.深度解析答案全解全析基础过关练1.A因为该奇函数的定义域为{-1,2,a,b},且奇函数的定义域关于原点对称,所以a与b中一个等于1,一个等于-2,所以a+b=1+(-2)=-1,故选A.2.B∵f(x)为奇函数,∴f(-a)=-f(a),∴点(-a,-f(a))在函数y=f(x)的图象上.3.B选项A中的图象关于原点或y轴均不对称,故排除;选项C、D中的图象所示的函数的定义域不关于原点对称,不具有奇偶性,故排除;选项B中的图象关于y轴对称,其表示的函数是偶函数.故选B.(答案不唯一)4.答案1x,答案不唯一.解析举出x=0不在定义域内的奇函数即可,如f(x)=1x5.解析(1)由奇函数的性质可作出它在y轴右侧的图象,如图①所示,易知f(3)=-2.(2)由偶函数的性质可作出它在y轴右侧的图象,如图②所示,易知f(1)>f(3).6.B∵x∈(-a,a),其定义域关于原点对称,且F(-x)=f(-x)+f(x)=F(x),∴F(x)是偶函数.7.A选项A中,函数y=|x|为偶函数,且在区间(0,1)上为增函数,故A符合题意;选项B中,函数y=3-x为非奇非偶函数,且在区间(0,1)上为减函数,故B不符合题意;选项C中,函数y=1为奇函数,且在区间(0,1)上为减x函数,故C不符合题意;选项D中,函数y=-x2+4为偶函数,在区间(0,1)上为减函数,故D不符合题意.8.B作出函数f(x)的图象,如图所示,可以看出该图象关于原点对称,故f(x)为奇函数.9.解析(1)依题意得x2-1≥0,且1-x2≥0,即x=±1,因此函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0.∵f(-x)=-f(x),f(-x)=f(x),∴f(x)既是奇函数又是偶函数.(2)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.(3)易得函数f(x)的定义域是D=(-∞,0)∪(0,+∞),关于原点对称.任取x∈D,当x>0时,-x<0,∴f(-x)=(-x)[1-(-x)]=-x(1+x)=-f(x);当x<0时,-x>0,∴f(-x)=-x(1-x)=-f(x),∴f(x)为奇函数.10.B由f(x)=mx2+nx+2m+n是偶函数,得n=0.又函数的定义域为[m+1,-2n+2],所以m+1=2n-2,则m=-3.11.B由题意得f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.12.答案(-∞,-5)∪(5,+∞)解析∵f(x)为R上的奇函数,∴f(0)=0.∵f(x)在(-∞,0)上是增函数,f(5)=0,∴f(x)在(0,+∞)上是增函数,f(-5)=0.可大致用图象表示:∵xf(x)>0等价于x与f(x)同号,且均不为0,∴结合图象知解集是(-∞,-5)∪(5,+∞).13.答案5解析因为f(x)是奇函数,所以f(-3)=-f(3)=-6,所以(-3)2+a×(-3)=-6,解得a=5.14.答案1解析由题意可得f(1)+g(1)=f(-1)-g(-1)=(-1)3+(-1)2+1=1.15.解析(1)∵x≥0时,f(x)=x2-2x,∴当x<0时,-x>0,∴f(-x)=x2+2x,∴f(-x)=f(x)=x 2+2x. 故函数f(x)的解析式为 f(x)={x 2-2x,x ≥0,x 2+2x,x <0,函数f(x)的图象如图所示.(2)由(1)中函数的图象可知,函数f(x)的单调递增区间为[-1,0],[1,+∞);单调递减区间为(-∞,-1],[0,1].函数f(x)的值域为[-1,+∞).能力提升练1.D 因为y=f(x)是偶函数,所以y=f(x)的图象关于y 轴对称,所以f(x)=0的所有实数根之和为0.2.AB ∵f(x)在R 上为奇函数,∴f(-x)=-f(x),∴f(x)+f(-x)=f(x)-f(x)=0,故A 正确; f(x)-f(-x)=f(x)+f(x)=2f(x),故B 正确;当x=0时,f(x)·f(-x)=0,故C 不正确;当x=0时,f(x)f(-x)的分母为0,无意义,故D 不正确.3.解析 (1)根据奇函数的图象关于原点对称,可得f(x)的图象如图所示.(2)xf(x)>0即图象上点的横坐标与纵坐标同号,且均不为0.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).4.D 在选项A 中,f(x)=x 3-1x(x ≠0), f(-x)=-x 3+1x,f(-x)=-f(x),是奇函数;在选项B 中,f(x)=√1-x 2|x -2|-2=√1-x 2-x(-1≤x ≤1,x ≠0),f(-x)=√1-x 2x, f(-x)=-f(x),是奇函数;在选项C 中,f(x)=(x-1)·√1+x 1-x(-1≤x<1),是非奇非偶函数;在选项D中,f(x)=|2x+5|+|2x-5|(x ∈R), f(-x)=|-2x+5|+|-2x-5|=|2x+5|+|2x-5|, f(x)=f(-x),是偶函数,故选D.5.B 依题意得F(x)的定义域为R,且F(-x)=(-x 3+2x)f(-x)=(x 3-2x)f(x)=F(x),所以F(x)为偶函数,故选B. 6.A 令x=y=0,得f(0)=f(0)+f(0), 所以f(0)=0.又因为f(x-x)=f(x)+f(-x)=0,所以f(-x)=-f(x),所以f(x)是奇函数,故选A. 7.BD A 中,令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|·g(x)=h(x),∴A 中函数是偶函数,A 错误;B 中,令h(x)=f(x)|g(x)|,则h(-x)=f(-x)·|g(-x)|=-f(x)|g(x)|=-h(x),∴B 中函数是奇函数,B 正确;C 中,由f(x)是奇函数,可得f(-x)=-f(x),由g(x)是偶函数,可得g(-x)=g(x),由f(-x)+|g(-x)|=-f(x)+|g(x)|知C 错误;D 中,由|f(-x)|+g(-x)=|-f(x)|+g(x)=|f(x)|+g(x),知D 正确.故选BD.8.D 由f(x)是偶函数且在(-∞,-1]上单调递增,得f(x)在[1,+∞)上单调递减, f (-32)=f (32),f(-1)=f(1),又因为2>32>1,所以f(2)<f (32)<f(1),即f(2)<f (-32)<f(-1),故选D. 9.C 因为f(x)为奇函数,且f(1)=-1,所以f(-1)=1, 所以-1≤f(x-1)≤1等价于f(1)≤f(x-1)≤f(-1).由函数f(x)在(-∞,+∞)上单调递减,可得-1≤x-1≤1,解得0≤x ≤2. 故选C.10.D ∵f(x)是R 上的奇函数, f(1)=1, ∴f(-1)=-f(1)=-1, f(0)=0.依题意得f(3)=f(-1+4)=-f(1)=-1,f(4)=f(0+4)=f(0)=0,f(5)=f(1+4)=f(1)=1. 因此, f(3)+f(4)+f(5)=-1+0+1=0,故选D.陷阱提示 在有关奇函数f(x)的求值问题中,要注意当f(x)在x=0处有意义时, f(0)=0这个特殊情况,否则可能会出现已知条件不足,导致问题解决不了的情况. 11.A ∵f(x)+g(x)=x 2-1x+1-2①,∴f(-x)+g(-x)=(-x)2-1-x+1-2=x 2-1-x+1-2,又∵函数f(x)与g(x)分别是定义域上的奇函数与偶函数, ∴f(-x)=-f(x),g(-x)=g(x), ∴f(-x)+g(-x)=-f(x)+g(x)=x 2-1-x+1-2②, 联立①②消去g(x),得f(x)=-12x+2+1-2x+2,∴f(2)=-12×2+2+1-2×2+2=-23.故选A.12.答案 (3√2,+∞)解析 由已知条件画出函数f(x)的图象(图中实线部分),若对任意的x ∈R,不等式 f(x)>f(x-√2a)恒成立,则函数f(x)的图象始终在函数f(x-√2a)的图象的上方.当a<0时,将函数f(x)的图象向左平移,不能满足题意,故a>0,将函数f(x)图象向右平移时的临界情况是当D 点与B 点重合,且临界情况不满足题意,由图可知,向右平移的√2a 个单位长度应大于6,即√2a>6,解得a>3√2,故答案为(3√2,+∞).13.解析 (1)由题知f(x)为奇函数,且在R 上是增函数,则f(2x-1)+f(3)<0⇒f(2x-1)<-f(3)⇒f(2x-1)<f(-3)⇒2x-1<-3,解得x<-1,即不等式的解集为(-∞,-1).(2)由题知f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是增函数, 则f(2x-1)-f(-3)<0⇒f(2x-1)<f(3)⇒f(|2x-1|)<f(3)⇒|2x-1|<3,解得-1<x<2, 即不等式的解集为(-1,2). 14.解析 (1)因为函数f(x)=ax+b 1+x 2是定义在(-1,1)上的奇函数,所以f(0)=0,得b=0. 又知f (12)=25,所以12a 1+14=25,解得a=1,所以f(x)=x1+x 2.(2)证明:∀x 1,x 2∈(-1,1),且x 1<x 2,则f(x 2)-f(x 1)=x 21+x 22-x 11+x 12=(x 2-x 1)(1-x 1x 2)(1+x 12)(1+x 22),由于-1<x 1<x 2<1,所以-1<x 1x 2<1,即1-x 1x 2>0, 所以(x 2-x 1)(1-x 1x 2)(1+x 12)(1+x 22)>0,即f(x 2)-f(x 1)>0,所以f(x)在(-1,1)上是增函数.(3)因为f(x)是奇函数, 所以f(-x)=-f(x),所以f(t-1)+f(t)<0等价于f(t-1)<-f(t)=f(-t),即f(t-1)<f(-t), 又由(2)知f(x)在(-1,1)上是增函数,所以{-1<t -1<1,-1<-t <1,t -1<-t,解得0<t<12,即原不等式的解集为{t |0<t <12}.15.解析 (1)因为函数f(x)=x 2+2a -3x是奇函数,所以f(x)=-f(-x),即x 2+2a -3x=-x 2+2a+3x,化简得a=0, 所以f(x)=x 2+2-3x.(2)f(x)=x 2+2-3x =-13(x 2+2x)=-13·(x +2x ),任取x 1,x 2∈(0,+∞)且x 1≠x 2,则Δf(x)Δx=f(x 2)-f(x 1)x 2-x 1=-13(x 2+2x 2)-[-13(x 1+2x 1)]x 2-x 1=-13(x 2-x 1+2x 2-2x 1)x 2-x 1=-13·(x 2-x 1)(1-2x 1x 2)x 2-x 1=-13·x 1x 2-2x 1x 2.因为x 1,x 2∈(0,+∞),所以x 1x 2>0. 当x 1,x 2∈(0,√2]时,x 1x 2-2<0,从而Δf(x)Δx>0;当x 1,x 2∈[√2,+∞)时,x 1x 2-2>0,从而Δf(x)Δx<0.因此f(x)在(0,√2]上是增函数, f(x)在[√2,+∞)上是减函数.由题知f(x)在(0,√p]上单调递增,所以√p的最大值为√2,即p的最大值为2.16.解析(1)我同意王鹏同学的观点.理由如下:假设f(x)是奇函数,则由f(a)=a2+3,f(-a)=a2-4|a|+3,可得f(a)+f(-a)=0,即a2-2|a|+3=0,显然a2-2|a|+3=0无解,∴f(x)不可能是奇函数.(2)若f(x)为偶函数,则有f(a)=f(-a),即a2+3=a2-4|a|+3,解得a=0.经验证,此时f(x)=x2-2|x|+3是偶函数.(3)由(2)知f(x)=x2-2|x|+3,其图象如图所示,由图可得,其单调递增区间是(-1,0)和(1,+∞).解题模板利用奇偶性确定函数解析式中参数的值时,选择题、填空题中可用特殊值法简化运算;解答题中要结合定义写出完整的解题过程,若用特殊值法得到参数的值仍需要进一步证明.。
函数的单调性和奇偶性 例题和练习 高中数学 高考
函数的单调性和奇偶性经典例题透析类型一、函数的单调性的证明1.证明函数上的单调性.证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0则∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0∴上递减.总结升华:[1]证明函数单调性要求使用定义;[2]如何比较两个量的大小?(作差)[3]如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】用定义证明函数上是减函数.思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.证明:设x1,x2是区间上的任意实数,且x1<x2,则∵0<x1<x2≤1 ∴x1-x2<0,0<x1x2<1∵0<x1x2<1故,即f(x1)-f(x2)>0∴x1<x2时有f(x1)>f(x2)上是减函数.总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞).总结升华:[1]数形结合利用图象判断函数单调区间;[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].思路点拨:(1)可应用函数的单调性;(2)数形结合.解:(1)2个单位,再上移2个单位得到,如图1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.,第二问即是利用单调性求函数值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7.类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6)(7)思路点拨:根据函数的奇偶性的定义进行判断.解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9. 设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a 的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.难点:x1·x2-1的符号的确定,如何分段.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.学习成果测评基础达标一、选择题1.下面说法正确的选项( )A.函数的单调区间就是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是( )A.B.C.D.3.已知函数为偶函数,则的值是( )A. B. C. D.4.若偶函数在上是增函数,则下列关系式中成立的是( )A.B.C.D.5.如果奇函数在区间上是增函数且最大值为,那么在区间上是( )A.增函数且最小值是B.增函数且最大值是C.减函数且最大值是D.减函数且最小值是6.设是定义在上的一个函数,则函数,在上一定是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数.7.下列函数中,在区间上是增函数的是( )A.B.C.D.8.函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上是减函数,则( )A. f(3)+f(4)>0B. f(-3)-f(2)<0C. f(-2)+f(-5)<0D. f(4)-f(-1)>0二、填空题1.设奇函数的定义域为,若当时,的图象如右图,则不等式的解是____________.2.函数的值域是____________.3.已知,则函数的值域是____________.4.若函数是偶函数,则的递减区间是____________.5.函数在R上为奇函数,且,则当,____________.三、解答题1.判断一次函数反比例函数,二次函数的单调性.2.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围.3.利用函数的单调性求函数的值域;4.已知函数.①当时,求函数的最大值和最小值;②求实数的取值范围,使在区间上是单调函数.能力提升一、选择题1.下列判断正确的是( )A.函数是奇函数B.函数是偶函数C.函数是非奇非偶函数D.函数既是奇函数又是偶函数2.若函数在上是单调函数,则的取值范围是( )A.B.C.D.3.函数的值域为( )A.B.C.D.4.已知函数在区间上是减函数,则实数的取值范围是( )A.B.C.D.5.下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若函数与轴没有交点,则且;(3)的递增区间为;(4) 和表示相等函数.其中正确命题的个数是( )A.B.C.D.6.定义在R上的偶函数,满足,且在区间上为递增,则( )A.B.C.D.二、填空题1.函数的单调递减区间是____________________.2.已知定义在上的奇函数,当时,,那么时,______.3.若函数在上是奇函数,则的解析式为________.4.奇函数在区间上是增函数,在区间上的最大值为8,最小值为-1,则__________.5.若函数在上是减函数,则的取值范围为__________.三、解答题1.判断下列函数的奇偶性(1)(2)2.已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数.3.设函数与的定义域是且,是偶函数,是奇函数,且,求和的解析式.4.设为实数,函数,.(1)讨论的奇偶性;(2)求的最小值.综合探究1.已知函数,,则的奇偶性依次为( )A.偶函数,奇函数B.奇函数,偶函数C.偶函数,偶函数D.奇函数,奇函数2.若是偶函数,其定义域为,且在上是减函数,则的大小关系是( )A.>B.<C.D.3.已知,那么=_____.4.若在区间上是增函数,则的取值范围是________.5.已知函数的定义域是,且满足,,如果对于,都有,(1)求;(2)解不等式.6.当时,求函数的最小值.7.已知在区间内有一最大值,求的值.8.已知函数的最大值不大于,又当,求的值.答案与解析基础达标一、选择题1.C.2.B.3.B. 奇次项系数为4.D.5.A. 奇函数关于原点对称,左右两边有相同的单调性6.A.7.A. 在上递减,在上递减,在上递减8.D.二、填空题1.. 奇函数关于原点对称,补足左边的图象2.. 是的增函数,当时,3.. 该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大4..5..三、解答题1.解:当,在是增函数,当,在是减函数;当,在是减函数,当,在是增函数;当,在是减函数,在是增函数,当,在是增函数,在是减函数.2.解:,则,3.解:,显然是的增函数,,4.解:对称轴∴(2)对称轴当或时,在上单调∴或.能力提升一、选择题1.C. 选项A中的而有意义,非关于原点对称,选项B中的而有意义,非关于原点对称,选项D中的函数仅为偶函数;2.C. 对称轴,则,或,得,或3.B. ,是的减函数,当4.A. 对称轴5.A. (1)反例;(2)不一定,开口向下也可;(3)画出图象可知,递增区间有和;(4)对应法则不同6.A.二、填空题1.. 画出图象2. . 设,则,,∵∴,3. .∵∴即4. . 在区间上也为递增函数,即5. . .三、解答题1.解:(1)定义域为,则,∵∴为奇函数.(2)∵且∴既是奇函数又是偶函数.2.证明:(1)设,则,而∴∴函数是上的减函数;(2)由得即,而∴,即函数是奇函数.3.解:∵是偶函数,是奇函数,∴,且而,得,即,∴,.4.解:(1)当时,为偶函数,当时,为非奇非偶函数;(2)当时,当时,,当时,不存在;当时,当时,,当时,.综合探究1.D. ,画出的图象可观察到它关于原点对称或当时,,则当时,,则2.C. ,3.. ,4.. 设则,而,则5.解:(1)令,则(2),则.6.解:对称轴当,即时,是的递增区间,;当,即时,是的递减区间,;当,即时,.7.解:对称轴,当即时,是的递减区间,则,得或,而,即;当即时,是的递增区间,则,得或,而,即不存在;当即时,则,即;∴或. 8.解:,对称轴,当时,是的递减区间,而,即与矛盾,即不存在;当时,对称轴,而,且即,而,即∴.。
高中函数奇偶性练习题
高中函数奇偶性练习题高中函数奇偶性练习题函数是数学中的重要概念,它描述了数值之间的关系。
而在高中数学中,函数的奇偶性是一个重要的性质,它可以帮助我们更好地理解函数的行为和特点。
本文将通过一些练习题来探讨高中函数的奇偶性。
1. 练习题一:判断函数的奇偶性考虑函数f(x) = x^3 + 2x^2 - 3x,我们需要判断它的奇偶性。
首先,我们来看函数f(-x)的表达式:f(-x) = (-x)^3 + 2(-x)^2 - 3(-x) = -x^3 +2x^2 + 3x。
现在,我们来比较f(x)和f(-x)的表达式。
通过比较我们可以发现,f(x)和f(-x)的表达式中,只有最后一项的符号不同。
根据奇偶性的定义,如果一个函数满足f(x) = f(-x),那么它是一个偶函数;如果一个函数满足f(x) = -f(-x),那么它是一个奇函数。
根据上述比较,我们可以得出结论:函数f(x)是一个奇函数,因为f(x) = -f(-x)。
2. 练习题二:利用奇偶性求解方程现在考虑一个方程:f(x) = 0。
我们可以利用函数的奇偶性来求解这个方程。
假设函数f(x)是一个奇函数,那么对于任意的x,如果f(x) = 0,那么必然有f(-x) = 0。
这是因为如果f(x) = 0,那么根据奇函数的定义,我们有f(x) = -f(-x),所以-f(-x) = 0,即f(-x) = 0。
同样地,如果函数f(x)是一个偶函数,那么对于任意的x,如果f(x) = 0,那么必然有f(-x) = 0。
通过利用奇偶性,我们可以将一个方程的解空间缩小一半。
例如,如果我们发现函数f(x)是一个奇函数,并且我们找到了一个x的解x1,那么我们知道-f(x1)也是一个解。
因此,我们只需要找到方程f(x) = 0的正解,然后通过奇偶性来得到其他解。
3. 练习题三:利用奇偶性求导在微积分中,我们经常需要对函数进行求导。
而函数的奇偶性也可以帮助我们求导。
高中数学:函数的单调性、奇偶性、最值问题练习及答案
高中数学:函数的单调性、奇偶性、最值问题练习及答案1.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且不等式>0对任意两个不相等的正实数x1,x2都成立,则下列不等式中,正确的是()A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)2.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则()A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定3.已知函数f(x)是奇函数,且在(-∞,+∞)上为增函数,若x,y满足等式f(2x2-4x)+f(y)=0,则4x+y的最大值是()A.10B.-6C.8D.94.已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个说法:①若a>0,则不等式f(f (x))>x对一切x∈R成立;②若a<0,则必存在实数x0使不等式f(f(x0))>x0成立;③方程f(f(x))=x一定没有实数根;④若a+b+c=0,则不等式f(f(x))<x对一切x∈R成立.其中说法正确的个数是()A.1B.2C.3D.45.区间[a,b]和[-b,-a]关于原点对称.(1)若f(x)为奇函数,且在[a,b]上有最大值M,则f(x)在[-b,-a]上有最________值________. (2)若f(x)为奇函数,f(x)+2在[a,b]上有最大值M,则f(x)+2在[-b,-a]上有最________值________.6.设定义在(-1,1)上的奇函数f(x)在[0,1)上单调递增,且有f(1-m)+f<0,求实数m的取值范围.7.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.(1)求函数f(x)在R上的解析式;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.8.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)求证:f(x)是R上的增函数.9.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)-f()<2.10.定义在(0,+∞)上的函数f(x)满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0. (1)求f(1)的值;(2)求证f=f(m)-f(n);(3)求证f(x)在(0,+∞)上是增函数;(4)若f(2)=1,解不等式f(x+2)-f(2x)>2;(5)比较f的大小.11.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.(1)试判断f(x)的奇偶性;(2)若f(8)=4,求f(-)的值.12.已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(x·y)=xf(y)+yf(x). (1)求f(0),f(1)的值;(2)判断函数f(x)的奇偶性,并证明你的结论.13.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若对任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.14.设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x-)<f(x-);(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.15.已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m,n∈[-1,1]有>0. (1)判断函数的单调性(不要求证明);(2)解不等式f<f(1-x);(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.16.已知函数f(x)=x-.(1)判断函数f(x)的奇偶性,并加以证明;(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,求a的取值范围.17.已知函数f(x)=x2+2.(1)求函数f(x)的定义域和值域;(2)判断函数f(x)的奇偶性和单调性;(3)求函数f(x)在区间(-1,2]上的最大值和最小值.18.已知函数f(x)=ax2+bx+1(a,b均为实数),x∈R,F(x)=(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)是否大于零,并说明理由.19.已知函数f(x)=-(常数a>0).(1)设m·n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n,且f(x)的定义域和值域都是[m,n],求n-m的最大值.20.已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)若a=-2,求函数f(x)的解析式;(2)若函数f(x)为R上的单调减函数,①求a的取值范围;②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.21.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.22.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有>0成立. (1)判断f(x)在[-1,1]上的单调性;(2)解不等式f(x+)<f();(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.答案1.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且不等式>0对任意两个不相等的正实数x1,x2都成立,则下列不等式中,正确的是()A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)【答案】C【解析】设0<x1<x2,则x1-x2<0,由>0,得f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上也是增函数,∴由-3>-5,可得f(-3)>f(-5).2.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则()A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定【答案】A【解析】∵x1<0,x1+x2>0,∴x2>-x1>0,又f(x)在(0,+∞)上是减函数,∴f(x2)<f(-x1),∵f(x)是偶函数,∴f(-x2)=f(x2)<f(-x1).3.已知函数f(x)是奇函数,且在(-∞,+∞)上为增函数,若x,y满足等式f(2x2-4x)+f(y)=0,则4x+y的最大值是()A.10B.-6C.8D.9【答案】C【解析】∵奇函数f(x)在(-∞,+∞)上是增函数,∴f(2x2-4x)=-f(y)=f(-y),∴2x2-4x=-y,∴4x+y=4x-2x2+4x=-2(x-2)2+8≤8,故选C.4.已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个说法:①若a>0,则不等式f(f (x))>x对一切x∈R成立;②若a<0,则必存在实数x0使不等式f(f(x0))>x0成立;③方程f(f(x))=x一定没有实数根;④若a+b+c=0,则不等式f(f(x))<x对一切x∈R成立.其中说法正确的个数是()A.1B.2C.3D.4【答案】C【解析】∵方程f(x)=x无实根,∴f(x)-x>0或f(x)-x<0.∵a>0,∴f(x)-x>0对一切x∈R成立,∴f(x)>x,用f(x)代替x,∴f(f(x))>f(x)>x,∴说法①正确;同理若a<0,则有f(f(x))<x,∴说法②错误;说法③正确;∵a+b+c=0,∴f(1)-1<0,∴必然归为a<0,有f(f(x))<x,∴说法④正确.故选C.填空5.区间[a,b]和[-b,-a]关于原点对称.(1)若f(x)为奇函数,且在[a,b]上有最大值M,则f(x)在[-b,-a]上有最________值________. (2)若f(x)为奇函数,f(x)+2在[a,b]上有最大值M,则f(x)+2在[-b,-a]上有最________值________.【答案】(1)小-M(2)小-M+4【解析】(1)设x∈[-b,-a],则-x∈[a,b],∴f(-x)≤M且存在x0∈[a,b],使f(x0)=M.∵f(x)为奇函数,∴-f(x)≤M,f(x)≥-M,且存在-x0∈[-b,-a],使f(-x0)=-M.∴f(x)在[-b,-a]上有最小值-M.(2)由(1)知,f(x)在[a,b]上有最大值M-2时,f(x)在[-b,-a]上有最小值-M+2.∴f(x)+2在[-b,-a]上有最小值-M+4.解答6.设定义在(-1,1)上的奇函数f(x)在[0,1)上单调递增,且有f(1-m)+f<0,求实数m的取值范围.【答案】由于函数f(x)的定义域为(-1,1),则有解得0<m<.又f(1-m)+f<0,所以f(1-m)<-f.而函数f(x)为奇函数,则有f(1-m)<f.因为函数f(x)是奇函数,且在[0,1)上单调递增,所以函数f(x)在定义域(-1,1)上单调递增,则有1-m<2m-,解得m>,故实数m的取值范围为.7.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.(1)求函数f(x)在R上的解析式;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.【答案】(1)设x<0,则-x>0,f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x).于是当x<0时f(x)=x2+2x,又因为f(x)为奇函数,所以f(0)=0,所以f(x)=(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].8.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)求证:f(x)是R上的增函数.【答案】(1)令a=b=0,则f(0)=[f(0)]2,∵f(0)≠0,∴f(0)=1.(2)令a=x,b=-x,则f(0)=f(x)f(-x),∴f(-x)=.由已知当x>0时,f(x)>1>0,则当x<0时,-x>0,f(-x)>0,∴f(-x)=>0,又当x=0时,f(0)=1>0,∴对任意x∈R,f(x)>0.(3)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0,∴=((x 2)·f(-x1)=f(x2-x1)>1,∴f(x2)>f(x1),∴f(x)在R上是增函数.9.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)-f()<2.【答案】(1)在f()=f(x)-f(y)中,令x=y=1,则有f(1)=f(1)-f(1),∴f(1)=0.(2)∵f(6)=1,∴f(x+3)-f()<2=f(6)+f(6),∴f(3x+9)-f(6)<f(6).即f()<f(6).∵f(x)是定义在(0,+∞)上的增函数,∴解得-3<x<9,即不等式的解集为(-3,9).10.定义在(0,+∞)上的函数f(x)满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0. (1)求f(1)的值;(2)求证f=f(m)-f(n);(3)求证f(x)在(0,+∞)上是增函数;(4)若f(2)=1,解不等式f(x+2)-f(2x)>2;(5)比较f与的大小.【答案】(1)令m=n=1,由条件得f(1)=f(1)+f(1),∴f(1)=0.(2)f(m)=f(·n)=f()+f(n),即f()=f(m)-f(n).(3)任取x1,x2∈(0,+∞),且x1<x2,则>1.由(2)得f(x2)-f(x1)=f()>0,即f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(4)由于f(2)=1,∴2=f(2)+f(2)=f(4),∴f(x+2)-f(2x)>2⇒f(x+2)>f(2x)+f(4)⇒f(x+2)>f(8x).又f(x)在(0,+∞)上为增函数,∴解得0<x<.故不等式f(x+2)-f(2x)>2的解集为{x|0<x<}.(5)∵f(mn)=f(m)+f(n),∴=f(mn),f()=[f()+f()]=f[()2],∵()2-mn=()2≥0,∴()2≥mn(当且仅当m=n时取等号),又f(x)在(0,+∞)上是增函数,∴f[()2]≥f(mn).∴f()≥11.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.(1)试判断f(x)的奇偶性;(2)若f(8)=4,求f(-)的值.【答案】(1)在f(x+y)=f(x)+f(y)中,令x=y=0,得f(0+0)=f(0)+f(0),∴f(0)=0.再令y=-x,得f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0,∴f(-x)=-f(x),故f (x)为奇函数.(2)令y=x,由条件f(x+y)=f(x)+f(y),得f(2x)=2f(x).由此可得f(8)=2·f(4)=2·2f(2)=2·2·2f(1)=24·f=4,∴f=,∴f=-f=-.12.已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(x·y)=xf(y)+yf(x). (1)求f(0),f(1)的值;(2)判断函数f(x)的奇偶性,并证明你的结论.【答案】(1)∵f(x·y)=xf(y)+yf(x),令x=y=0,得f(0)=0+0=0,即f(0)=0.令x=y=1,得f(1)=1·f(1)+1·f(1),∴f(1)=0.(2)∵f(1)=f[(-1)·(-1)]=(-1)f(-1)+(-1)f(-1)=0,∴f(-1)=0.对任意的x∈R,f(-x)=f[(-1)·x]=(-1)f(x)+xf(-1)=-f(x),∴f(x)是奇函数.13.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若对任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.【答案】(1)取x=y=0,则f(0+0)=2f(0),∴f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),∴f(-x)=-f(x)对任意x∈R恒成立,∴f(x)为奇函数.(2)任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,∴f(x2)<-f(-x1).又f(x)为奇函数,∴f(x1)>f(x2),∴f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,∴对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),∵f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,∴f(-3)=-f(3)=6,f(x)在[-3,3]上的值域为[-6,6].(4)f(x)为奇函数,整理原式得f(ax2)+f(-2x)<f(x)+f(-2),则f(ax2-2x)<f(x-2),∵f(x)在(-∞,+∞)上是减函数,∴ax2-2x>x-2,当a=0时,-2x>x-2在R上不是恒成立,与题意矛盾;当a>0时,ax2-2x-x+2>0,要使不等式恒成立,则Δ=9-8a<0,即a>;当a<0时,ax2-3x+2>0在R上不是恒成立,不合题意.综上所述,a的取值范围为(,+∞).14.设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x-)<f(x-);(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围. 【答案】(1)任取-1≤x 1<x2≤1,则f(x2)-f(x1)=f(x2)+f(-x1)=·(x2-x1)>0,∴f(x2)>f(x1),∴f(x)在[-1,1]上是增函数.∵a,b∈[-1,1],且a>b,∴f(a)>f(b).(2)∵f(x)是[-1,1]上的增函数,∴由不等式f(x-)<f(x-)得解得∴-≤x≤,∴原不等式的解集是{x|-≤x≤}.(3)设函数g(x),h(x)的定义域分别是P和Q,则P={x|-1≤x-c≤1}={x|c-1≤x≤c+1},Q={x|-1≤x-c2≤1}={x|c2-1≤x≤c2+1}于是P∩Q=∅的条件是c-1>c2+1(无解),或c+1<c2-1,即c2-c-2>0,解得c>2或c<-1.故c的取值范围是{c|c>2或c<-1}.15.已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m,n∈[-1,1]有>0. (1)判断函数的单调性(不要求证明);(2)解不等式f<f(1-x);(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.【答案】(1)函数f(x)在区间[-1,1]上是增函数.(2)由(1)知函数f(x)在区间[-1,1]上是增函数,由f<f(1-x),得解得0≤x<.所以不等式f<f(1-x)的解集为.(3)因为函数f(x)在区间[-1,1]上是增函数,且f(1)=1,要使得对于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,只需对任意的a∈[-1,1],-2at+2≥1恒成立.令y=-2at+1,此时y可以看作a的一次函数,且在a∈[-1,1]时,y≥0恒成立.因此只需解得-≤t≤,所以实数t的取值范围为.16.已知函数f(x)=x-.(1)判断函数f(x)的奇偶性,并加以证明;(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,求a的取值范围. 【答案】(1)函数f(x)=x-是奇函数,∵函数f(x)=x-的定义域为(-∞,0)∪(0,+∞),在x轴上关于原点对称,且f(-x)=-x-=-(x-)=-f(x),∴函数f(x)=x-是奇函数.(2)证明设任意实数x1,x2∈[1,+∞),且x1<x2,则f(x1)-f(x2)=(x1-)-(x2-)=,∵1≤x1<x2,∴x1-x2<0,x1x2>0,x1x2+1>0,∴<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数f(x)在区间[1,+∞)上为增函数.(3)∵[2,a]⊆[1,+∞),∴函数f(x)在区间[2,a]上也为增函数.∴f(x)max=f(a)=a-,f(x)min=f(2)=,若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,则a-+≥-,∴a≥4,∴a的取值范围是[4,+∞).17.已知函数f(x)=x2+2.(1)求函数f(x)的定义域和值域;(2)判断函数f(x)的奇偶性和单调性;(3)求函数f(x)在区间(-1,2]上的最大值和最小值.【答案】(1)定义域为R,值域为{y|y≥2}.(2)因为f(x)定义域关于原点对称,且f(-x)=f(x),所以f(x)为偶函数;在区间(0,+∞)上单调递增,在区间(-∞,0]上单调递减.(3)f(x)的对称轴为x=0,f(x)min=f(0)=2,f(-1)=3,f(2)=6,所以f(x)max=6.18.已知函数f(x)=ax2+bx+1(a,b均为实数),x∈R,F(x)=(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)是否大于零,并说明理由. 【答案】(1)∵若f(-1)=0,∴a-b+1=0,①又∵函数f(x)的值域为[0,+∞),∴a≠0.由y=a(x+)2+,知=0,即4a-b2=0.②解①②,得a=1,b=2.∴f(x)=x2+2x+1=(x+1)2.∴F(x)=(2)由(1)得g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=(x+)2+1-. 又∵当x∈[-2,2]时,g(x)=f(x)-kx是单调函数.∴≤-2或≥2,即k≤-2或k≥6,故实数k的取值范围为(-∞,-2]∪[6,+∞).(3)大于零,理由如下:∵f(x)为偶函数,∴f(x)=ax2+1,∴F(x)=不妨设m>n,则n<0.由m+n>0,得m>-n>0,∴|m|>|-n|,又a>0,∴F(m)+F(n)=f(m)-f(n)=(am2+1)-(an2+1)=a(m2-n2)>0,∴F(m)+F(n)大于零.19.已知函数f(x)=-(常数a>0).(1)设m·n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n,且f(x)的定义域和值域都是[m,n],求n-m的最大值.【答案】(1)证略;(2)因为f(x)在[m,n]上单调递增,f(x)的定义域、值域都是[m,n]⇔f(m)=m,f(n)=n,即m,n是方程f(x)=x的两个根,即方程-=x有两个正根.整理得a2x2-(2a2+a)x+1=0,所以n-m==,令=t(t>0),n-m==,所以当t=时,n-m最大值为.20.已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)若a=-2,求函数f(x)的解析式;(2)若函数f(x)为R上的单调减函数,①求a的取值范围;②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.【答案】(1)当x<0时,-x>0,又∵f(x)为奇函数,且a=-2,∴当x<0时,f(x)=-f(-x)=x2-2x,∴f(x)=(2)①当a≤0时,对称轴x=≤0,∴f(x)=-x2+ax在[0,+∞)上单调递减,由于奇函数在关于原点对称的区间上单调性相同,∴f(x)在(-∞,0)上单调递减,又在(-∞,0)上f(x)>0,在(0,+∞)上f(x)<0,∴当a≤0时,f(x)为R上的单调减函数.当a>0时,f(x)在上单调递增,在上单调递减,不合题意.∴函数f(x)为单调减函数时,a的取值范围为a≤0.②∵f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),又∵f(x)是奇函数,∴f(m-1)<f(-t-m2),又∵f(x)为R上的单调减函数,∴m-1>-t-m2恒成立,∴t>-m2-m+1=-2+对任意实数m恒成立,∴t>.即t的取值范围是.21.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围. 【答案】(1)由已知,得函数f(x)图象的对称轴为直线x=1,可设f(x)=a(x-1)2+1,由f(0)=3,得a=2,故f(x)=2x2-4x+3.(2)要使函数f(x)在区间[3a,a+1]上不单调,则3a<1<a+1,解得0<a<.(3)由已知y=f(x)的图象恒在y=2x+2m+1的图象上方,得2x2-4x+3>2x+2m+1恒成立,化简得x2-3x+1-m>0恒成立,其中-1≤x≤1.设g(x)=x2-3x+1-m,则只要g(x)min>0即可,而g(x)min =g(1)=-1-m,由-1-m>0,得m<-1.22.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有>0成立.(1)判断f(x)在[-1,1]上的单调性;(2)解不等式f(x+)<f();(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围. 【答案】(1)任取x1,x2∈[-1,1],且x1<x2,则-x2∈[-1,1].∵f(x)为奇函数,∴f(x 1)-f(x2)=f(x1)+f(-x2)=·(x1-x2).由已知得>0,又x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,1]上单调递增.(2)∵f(x)在[-1,1]上单调递增,∴结合不等式的性质及二次函数的图象,得-≤x<-1.故原不等式的解集为{x|-≤x<-1}.(3)∵f(1)=1,且f(x)在[-1,1]上单调递增,∴在[-1,1]上,f(x)≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.设g(a)=-2m·a+m2,①若m=0,则g(a)=0≥0,对a∈[-1,1]恒成立.②若m≠0,则g(a)为关于a的一次函数,若g(a)≥0对a∈[-1,1]恒成立,必须有g(-1)≥0,且g(1)≥0,即结合相应各函数图象,得m≤-2或m≥2.综上所述,实数m的取值范围是(-∞,-2]∪{0}∪[2,+∞).。
高中数学《函数的单调性与奇偶性》针对练习及答案
第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+2.下列函数中,是奇函数且在()0,∞+上为增函数的是( )A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-4.下列函数是偶函数且在(0,+∞)是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( )A .2x x -B .2x x --C .2x x -+D .2x x +15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( ) A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A.5()(2f f f π⎛⎫>> ⎪⎝⎭B.5(()2f f f π⎛⎫>> ⎪⎝⎭C.5(()2f f f π⎛⎫>> ⎪⎝⎭D.5()(2f f f π⎛⎫>> ⎪⎝⎭23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤129.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭30.已知(32)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( ) A .1 B .-1 C .13D .232.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .1- B .13C .0D .333.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-234.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .235.若函数()(21)()xf x x x a =+-为奇函数,则a =( )A .12 B .23C .34D .1第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+【答案】B 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断 【详解】对于A ,因为()()cos()cos ()f x x x x x f x -=--=-=-,所以cos y x x =是奇函数,但不单调,所以A 错误;对于B ,因为()66(66)()x x x x f x f x ---=-=--=-,所以66x x y -=-是奇函数,因为6x y =是增函数,6x y -=是减函数,所以66x x y -=-是增函数,所以B 正确;对于C ,因为22()()33()f x x x f x -=-+=+=,所以23y x =+是偶函数,所以C 错误; 对于D ,因为()()()11f x x x x x f x f x -=--+=-+≠-≠,所以1y x x =+是非奇非偶函数,所以D 错误. 故选:B2.下列函数中,是奇函数且在()0,∞+上为增函数的是( ) A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+【答案】A 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断即可 【详解】对于A ,定义域为{}0x x ≠,因为()()11f x f x x x-=-==--,所以函数是奇函数,任取12,(0,)x x ∈+∞,且12x x <,则2121211211()()x xf x f x x x x x --=-+=,因为12,(0,)x x ∈+∞,且12x x <,所以21()()0f x f x ->,即21()()f x f x >,所以()f x 在()0,∞+上为增函数,所以A 正确,对于B ,因为定义域为{}0x x ≥,所以函数()f x 为非奇非偶函数,所以B 错误, 对于C ,因为定义域为R ,因为()()f x x x f x -=-==,所以()f x 为偶函数,所以C 错误,对于D ,因为定义域为R ,因为()()3311()()f x x x f x f x -=-+=-+≠≠-,所以函数()f x 为非奇非偶函数,所以D 错误, 故选:A3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-【答案】D 【解析】对于基本初等函数,直接判断其奇偶性和单调性. 【详解】选项A: sin y x =-为偶函数,故A 错误; 选项B: cos 2y x =为偶函数,故B 错误;选项C: tan y x =为奇函数但是在,22k k ππππ⎛⎫-++ ⎪⎝⎭上单增,故C 错误;选项D: 3y x =-既是奇函数又是R 上单调递减. 故选:D4.下列函数是偶函数且在(0,是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【分析】根据指数函数、二次函数、幂函数的性质进行判断即可. 【详解】因为指数函数不具有奇偶性,所以排除A 、D ,因为幂函数12y x =的定义域为非负实数集,不关于原点对称,所以不具有奇偶性,故排除, 二次函数2yx 图象关于纵轴对称,所以该二次函数是偶函数,它又在(0,+∞)单调递增, 故选:B5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-【答案】C 【解析】利用奇函数的定义和减函数的定义,再结合基本函数的性质求解即可 【详解】解:对于A ,D ,由指数函数和对数函数的性质可知其为非奇非偶函数,所以A ,D 不符合题意,对于B ,由反比例函数的性质可知,其为奇函数,在(,0)-∞和(0,)+∞上为减函数,所以不符合题意,对于C ,由于33()2()2()f x x x f x -=--==-,所以3()2f x x =-为奇函数,任取12,x x R ∈,且12x x <,则120x x -<332121()()2(2)f x f x x x -=---33122()x x =- 221211222()()x x x x x x =-++222121232()[()]024x x x x x =-++< 所以21()()f x f x <,所以3()2f x x =-为R 上的减函数,所以C 符合题意, 故选:C针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B 【解析】 【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【详解】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B 7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数【答案】C 【解析】 【分析】分离常数,作出函数图象,观察即可得出结果. 【详解】1111()1111111x x x f x xxxxx,函数的定义域为(,1)(1,)-∞⋃+∞, 其图象如下:由图象可得函数在(,1)-∞和(1,)+∞上是增函数. 故选:C8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数【答案】A 【解析】配方得二次函数的对称轴,然后判断. 【详解】2()(1)2f x x =--+,对称轴为1x =,二次项系数为10-<,因此()f x 在(,1]-∞上递增,在[1,)+∞上递减, 故选:A .9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,【答案】C 【解析】根据解析式,先求出函数的定义域;再令22t x x =-+,结合二次函数单调性,以及. 【详解】因为22172024x x x ⎛⎫-+=-+> ⎪⎝⎭显然恒成立,所以函数()f x =R ;令22t x x =-+,则22t x x =-+是开口向上的二次函数,且对称轴为12x =,所以22t x x =-+在12⎛⎤-∞ ⎥⎝⎦,上单调递减,在12⎡⎫+∞⎪⎢⎣⎭,上单调递增; 根据复合函数单调性的判定方法可得,()f x 12⎡⎫+∞⎪⎢⎣⎭,. 故选:C. 【点睛】本题主要考查求根式型复合函数的单调区间,属于基础题型.10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用复合函数的单调性求解即可. 【详解】由题得函数的定义域为{|12}x x -≤≤,设函数u u 在1]2[-1,单调递增,在1[2]2,单调递减, 因为函数1()2uv =在定义域上单调递减,所以函数12y ⎛= ⎪⎝⎭1[2]2,单调递增. 故选D 【点睛】和分析推理能力.针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+【答案】D 【解析】 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x ---=,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x ---=,又由()f x 为奇函数,则()()21x f x f x -=-=-+-, 故选:D12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -【答案】A 【解析】设0x <,则0x ->,可得()23f x x -=--,利用偶函数的定义()()f x f x -=即可求解. 【详解】设0x <,则0x ->, 所以()23f x x -=--,又()f x 为偶函数,所以()()f x f x -=, 所以()()230f x x x =--<. 故选:A.13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x【答案】C 【解析】 【分析】直接利用代入法求函数解析式. 【详解】当0x >时,0x -<,所以()()2f x x f x -=+=-,所以()2f x x =--. 故选:C .14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( ) A .2x x - B .2x x -- C .2x x -+ D .2x x +【答案】D 【解析】 【分析】利用奇函数的等式()()f x f x -=-求解.【详解】因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-,x ∈R .当0x >时,0x -<,()()()()22f x f x x x x x ⎡⎤=--=----=+⎣⎦. 故选:D.15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-【答案】A 【解析】根据奇函数的定义求函数值. 【详解】 ∵()f x 是奇函数,∵()()ln 1f e f e e -=-=-=-. 故选:A .针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】首先判断出函数为偶函数,再判断出函数的单调性,根据单调性可得21x x -<,解绝对值不等式即可求解. 【详解】||()x f x e =,则()()xxf x ee f x --===,函数为偶函数,当0x ≥时,()x f x e =,所以函数在[)0,+∞单调递增, 所以函数在(),0-∞上单调递减, 若(21)()f x f x -<,则21x x -<,即23410x x -+<,解得113x <<,所以不等式的解集为1,13⎛⎫ ⎪⎝⎭.故选:A17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞【答案】A 【解析】由函数y =f (x )在R 上单调递增,将2(1)(1)f m f m +<-+可化为211m m +<-+,解不等式可得答案 【详解】解:因为函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+, 所以211m m +<-+,解得10m -<<, 故选:A18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >【答案】A 【解析】由偶函数的性质将不等式(1)(2)f a f -<转化为(1)(2)f a f -<,再由其在[0,)+∞是单调增函数,可得12a -<,从而可求出a 的取值范围 【详解】解:因为()f x 是定义在实数集R 上的偶函数,且(1)(2)f a f -<, 所以(1)(2)f a f -<,因为函数()f x 在区间[0,)+∞是单调增函数, 所以12a -<,解得13a -<<, 故选:A19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( )A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-【答案】A 【解析】根据单调性可得29m m >+,解出即可. 【详解】解:∵()y f x =在R 上为增函数,且(2)(9)f m f m >+, ∵29m m >+,解得9m >, 故选:A . 【点睛】本题主要考查根据函数的单调性解不等式,属于基础题. 20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先判断()f x 的单调性和奇偶性,由此化简不等式313(log )(log )2(1)f a f a f +≤,并求得a 的取值范围. 【详解】()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.当0x >时,21()ln(1)1f x x x =+-+,2ln(1)y x =+和11y x=-+在()0,∞+上递增,所以()f x 在()0,∞+上递增,而()f x 是偶函数,故()f x 在(),0-∞上递减.依题意313(log )(log )2(1)f a f a f +≤,即33(log )(log )2(1)f a f a f +-≤,即332(log )2(1)(log )(1)f a f f a f ≤⇔≤,所以331log 11log 133a a a ≤⇔-≤≤⇔≤≤,所以a 的取值范围是1,33⎡⎤⎢⎥⎣⎦故选:D 【点睛】本小题主要考查解函数不等式,属于基础题.针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【解析】 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【详解】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误;C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确;D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A .5()(2f f f π⎛⎫>> ⎪⎝⎭B .5(()2f f f π⎛⎫>> ⎪⎝⎭C .5(()2f f f π⎛⎫>> ⎪⎝⎭D .5()(2f f f π⎛⎫>> ⎪⎝⎭【答案】C 【解析】根据偶函数的性质可得(f f =,由函数的单调性可得函数值的大小关系. 【详解】根据偶函数的性质可知,(f f =当[)0,x ∈+∞时,()f x 是减函数,因为5π2<,所以5()2f f f π⎛⎫>> ⎪⎝⎭故选:C. 【点睛】思路点睛:在比较函数值大小的题目中,主要根据函数的单调性进行判断.当自变量不在同一单调区间时,可以结合偶函数的性质将自变量x 转化为同一单调区间,再进行判断即可.23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-【答案】A 【解析】由(1)(1)f f -=,结合单调性得出()()1(2)3f f f ->>. 【详解】因为函数()f x 是偶函数,所以(1)(1)f f -= 又()f x 在区间[0,3]上单调递减,且123<< 所以(1)(2)(3)f f f ∴>>,即()()1(2)3f f f ->> 故选:A24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-【答案】A 【解析】首先判断出函数的单调性,再根据函数为偶函数即可求解. 【详解】对任意的()1212,(,0]x x x x ∈-∞≠,()()()21210x x f x f x -->⎡⎤⎣⎦,所以函数在(,0]-∞上为增函数,又因为函数()f x 在R 上的偶函数,所以函数在[)0,+∞上为减函数,且()()f n f n -=, 因为11n n n -<<+,所以(1)()(1)f n f n f n ->>+. 所以(1)()(1)f n f n f n ->->+. 故选:A25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<-【答案】B 【解析】由偶函数的性质将自变量转化到[)0+∞,上,再由函数在[)0+∞,上是减函数可比较大小 【详解】解:因为()f x 是定义在R 上的偶函数, 所以(2)(2)f f -=,因为()f x 在[)0+∞,上是减函数,且321>>, 所以(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<, 故选:B 【点睛】此题考查利用函数的奇偶性和单调性比较大小,属于基础题针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+是R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-【答案】A 【解析】函数()()12f x a x b =-+是R 上的增函数,则120a ->,可得答案. 【详解】函数()()12f x a x b =-+是R 上的增函数,则120a ->,即12a < 故选:A27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】直接由抛物线的对称轴和区间端点比较大小即可. 【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =- 函数221y x mx =++在[2,)+∞单调递增,则2m -≤,解得2m ≥-. 故选:A.28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤1【答案】C 【解析】利用用一次函数的单调性得到210a -<,再由二次不等式的解法,即可得解. 【详解】函数()()212f x a x =-+为R 上的减函数,则210a -<, 解得11a -<<; 故选:C.29.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭【答案】C 【解析】由2121()()0f x f x x x ->-可得函数()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,从而可求出a 的取值范围 【详解】解:因为()f x 对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,所以()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,解得513a <≤,所以a 的取值范围为51,3⎛⎤⎥⎝⎦,故选:C 30.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1 B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】根据题设条件可以得到()f x 为R 上的减函数,根据各自范围上为减函数以及分段点处的高低可得实数a 的取值范围. 【详解】因为任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,所以对任意的12x x <,总有()()12f x f x >即()f x 为R 上的减函数,所以01320720a a a <<⎧⎪-<⎨⎪-≥⎩,故2273a ≤<,故选D.【点睛】分段函数是单调函数,不仅要求各范围上的函数的单调性一致,而且要求分段点也具有相应的高低分布,我们往往容易忽视后者.针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( )A .1B .-1C .13 D .2【答案】C【解析】【分析】若()y f x =,由奇偶性的性质有()()f x f x =-即可求参数a .【详解】若()y f x =,则()f x 23(13)x a x a =+--为偶函数,∵()()f x f x =-,即223(13)3()(13)()x a x a x a x a +--=-+---,∵2(13)0a x -=恒成立,可得13a =.故选:C32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .1-B .13 C .0 D .3【答案】B【解析】【分析】根据()f x 的奇偶性求得,a b ,从而求得a b +.【详解】由于()f x 是偶函数,所以0b =,且111233a a a a b -=-⇒=⇒+=.故选:B33.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-2【答案】B【解析】【分析】利用函数为奇函数可得()()f x f x -=-,代入即可求解.【详解】取0x >,则0x -<,因为函数为奇函数,则()()f x f x -=-,即()()()222x m x x x -+-=--+, 整理可得2mx x -=-,即2m =.故选:B34.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .2【答案】C【解析】【分析】 根据奇函数的性质()00f =求解即可【详解】∵()f x 为R 上的奇函数,∵()00f =得a =1.验证满足题意.故选:C35.若函数()(21)()x f x x x a =+-为奇函数,则a =( ) A .12B .23C .34D .1 【答案】A【解析】【分析】根据奇函数性质取1和-1分别代入,函数值和为0,即可求得.【详解】 ∵()(21)()x f x x x a =+-为奇函数,∵(1)(1)0f f -+=,得12a =. 故选:A.。
高考第7课函数的奇偶性
高中数学学习材料 (灿若寒星 精心整理制作)第7课 函数的奇偶性【自主学习】第7课 函数的奇偶性(本课时对应学生用书第 页)自主学习 回归教材1.(必修1P43练习6改编)函数f (x )=42-1(-1)x x x 是 函数.(填“奇”、“偶”或“非奇非偶”) 【答案】奇【解析】由题知定义域{x|x ∈R ,且x ≠0,x ≠±1}关于原点对称,且f (-x )=-f (x ),所以f (x )为奇函数.2.(必修1P94习题28改编)设f (x )是定义在R 上的奇函数,且当x>0时,f (x )=2x -3,则f (-2)= .【答案】-1【解析】f(-2)=-f(2)=-1.3.(必修1P55习题8改编)若函数f(x)=(x+a)(x-4)为偶函数,则实数a=.【答案】4【解析】因为函数f(x)=(x+a)(x-4)为偶函数,所以f(-x)=f(x),由f(x)=(x+a)(x-4)=x2+(a-4)x-4a,得x2-(a-4)x-4a=x2+(a-4)x-4a,即a-4=0,a=4.4.(必修1P43习题4改编)已知函数f(x)=4x2+bx+3a+b是偶函数,其定义域为[a-6,2a],则点(a,b)的坐标为.【答案】(2,0)【解析】因为f(x)为偶函数且定义域为[a-6,2a],所以-(-6)2ba a=⎧⎨=⎩,,即2ba=⎧⎨=⎩,,故点(a,b)的坐标为(2,0).5.(必修1P111复习题17改编)若函数f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,f(1)=2,则不等式f(lg x)>2的解集为.【答案】110⎛⎫⎪⎝⎭,∪(10,+∞)【解析】因为f(x)为偶函数,所以由f(lg x)>2⇔f(|lg x|)>2=f(1),又因为f(x)在[0,+∞)上是增函数,所以|lg x|>1,所以0<x<110或x>10,故不等式f(lg x)>2的解集为110⎛⎫⎪⎝⎭,∪(10,+∞).1.奇、偶函数的定义对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)+f(x)=0),则称f(x)为奇函数;对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)(或f(-x)-f(x)=0),则称f(x)为偶函数.2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(3)若奇函数的定义域包含0,则f(0)=0.(4)定义在(-∞,+∞)上的任意函数f(x)都可以唯一表示成一个奇函数与一个偶函数之和.【要点导学】要点导学各个击破函数奇偶性的判定例1判断下列各函数的奇偶性.(1)f (x )=32--1x x x ;(2)f (x )=2-1x +21-x ;(3)f (x )=|x+2|-|x-2|;(4)f (x )=220-0.x x x x x x ⎧+<⎨>⎩,,,【思维引导】先求定义域,看定义域是否关于原点对称,在定义域下,解析式带绝对值符号的,要利用绝对值的意义判断f (-x )与f (x )的关系,分段函数应分情况判断.【解答】(1)定义域是{x|x ≠1},不关于原点对称, 所以f (x )是非奇非偶函数. (2)定义域是{-1,1},f (x )=0, 所以f (x )既是奇函数又是偶函数.(3)定义域是R ,f (-x )=|-x+2|-|-x-2|=-(|x+2|-|x-2|)=-f (x ), 所以f (x )是奇函数. (4)当x<0时,-x>0, 则f (-x )=(-x )2-(-x )=x 2+x=f (x ); 当x>0时,-x<0,则f (-x )=(-x )2+(-x )=x 2-x=f (x ).综上所述,对任意的x ∈(-∞,0)∪(0,+∞),都有f (-x )=f (x ),所以f (x )为偶函数. 【精要点评】利用定义判断函数奇偶性的步骤: (1)首先确定函数的定义域,并判断其是否关于原点对称. (2)确定f (-x )与f (x )的关系.(3)作出相应结论:若f (-x )=f (x )或f (-x )-f (x )=0,则f (x )是偶函数;若f (-x )=-f (x )或f (-x )+f (x )=0,则f (x )是奇函数.变式 求证:函数f (x )=x112-12x ⎛⎫+ ⎪⎝⎭+a (其中a 为常数)为偶函数. 【解答】易知此函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.因为f (-x )=-x -112-12x ⎛⎫+ ⎪⎝⎭+a=x 212-12x x ⎛⎫- ⎪⎝⎭+a=x 2-111-2-12x x ⎛⎫+ ⎪⎝⎭+a=x112-12x ⎛⎫+ ⎪⎝⎭+a=f (x ), 所以f (x )=x112-12x ⎛⎫+ ⎪⎝⎭+a 为偶函数. 【精要点评】函数奇偶性的证明与函数奇偶性的判断的区别在于我们已经知道函数具有奇偶性,从而有了解决问题的方向,只是在对式子的变形上可能要下一定的功夫,特别是对于抽象函数我们还是要牢牢抓住奇偶性的定义找到解决问题的突破口.函数奇偶性的应用例2 (1)已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x-x 4,则当x ∈(0,+∞)时,f (x )= .(2)(2014·湖南卷改编)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)= ,g (1)= .【思维引导】(1)要求f (x )在(0,+∞)上的表达式,由于已知f (x )在(-∞,0)上的表达式,因此解答本题可先设x ∈(0,+∞),然后将它转化到已知解析式的区间(-∞,0)上,最后利用函数的奇偶性定义即可得出结论.(2)先利用函数的奇偶性,确定f (x )和g (x )的解析式,然后代值计算.【答案】 (1)-x-x 4 (2)2 -1【解析】(1)当x ∈(0,+∞)时,有-x ∈(-∞,0),注意到函数f (x )是定义在(-∞,+∞)上的偶函数,于是有f (x )=f (-x )=-x-(-x )4=-x-x 4.(2)由题意得f (-x )-g (-x )=-x 3+x 2+1, 因为f (x )是偶函数,g (x )是奇函数,所以f(x)+g(x)=-x3+x2+1,联结f(x)-g(x)=x3+x2+1,解得f(x)=x2+1,g(x)=-x3,所以f(1)=2,g(1)=-1.【精要点评】(1)解决本题第(1)问的关键是利用偶函数的关系式f(-x)=f(x)成立,但要注意求给定哪个区间的解析式就设这个区间上的变量x,然后把x转化为-x(另一个已知区间上的解析式中的变量),通过适当的推导,求出所求区间上的解析式.(2)本题第(2)问也可以直接用赋值法解决,即赋值x=±1,然后利用奇偶性化归为关于f(1)和g(1)的方程组,进行求解.变式(1)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=.(2)已知f(x)=223pxx q++是奇函数,且f(2)=53,那么p=,q=.【答案】(1)-3(2)20【解析】(1)因为f(x)是定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=-1,故当x≥0时,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(2+2×1-1)=-3.(2)因为f(x)是奇函数,所以f(-x)+f(x)=0,即22-3pxx q+++223pxx q++=0,得q=0.又由f(2)=53,得426p+=53,解得p=2.函数奇偶性与单调性的综合应用微课2 ● 问题提出奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.抽象函数中的不等式问题,核心是去掉抽象函数中的符号“f ”,除了画出草图利用数形结合思想求解外,本质是利用奇偶性和单调性.那么,求解此类问题的解题模板是怎样的?● 典型示例例3 已知函数f (x )是定义在R 上的单调函数,且对任意的实数a ∈R ,f (-a )+f (a )=0恒成立,若f (-3)=2.(1)试判断函数f (x )在R 上的单调性,并说明理由;(2)解关于x 的不等式:f-m x x ⎛⎫ ⎪⎝⎭+f (m )<0,其中m ∈R 且m>0. 【思维导图】【规范解答】(1)函数f (x )为R 上的减函数.理由如下:由题知f (x )是R 上的奇函数,所以f (0)=0,又因为f (x )是R 上的单调函数, 由f (-3)=2,f (0)<f (-3),知f (x )为R 上的减函数.(2)由f -m x x ⎛⎫ ⎪⎝⎭+f (m )<0,得f-m x x ⎛⎫⎪⎝⎭<-f (m )=f (-m ),结合(1)得-m x x >-m ,整理得(1-)-m x mx <0.当m>1时,不等式的解集为|01-m x x x m ⎧⎫><⎨⎬⎩⎭或; 当m=1时,不等式的解集为{x|x>0};当0<m<1时,不等式的解集为|01-m x x m ⎧⎫<<⎨⎬⎩⎭. 【精要点评】利用函数的单调性解函数不等式要特别注意必须考虑函数的定义域,进而结合函数单调性去求不等式的解集.● 总结归纳奇函数在对称的两个区间上具有相同的单调性,偶函数在对称区间上具有相反的单调性,因此,若函数具有奇偶性,研究单调性、最值或作图象等问题时,只需在非负值范围内研究即可,在负值范围内由对称性可得.● 题组强化1.(2014·江苏压题卷)若奇函数f (x )在(0,+∞)上单调递减,且f (2)=0,则不等式3(-)-2()5f x f x x ≤0的解集为 .(第1题)【答案】[-2,0)∪(0,2]【解析】根据已知条件可画出f (x )的草图如图所示.不等式3(-)-2()5f x f x x ≤0⇔()f x x ≥0,即0()0x f x >⎧⎨≥⎩,或0()0.x f x <⎧⎨≤⎩,由图可知不等式的解集为[-2,0)∪(0,2].2.(2015·全国卷)设函数f (x )=ln(1+|x|)-211x +,则使得f (x )>f (2x-1)成立的x 的取值范围是 .【答案】113⎛⎫⎪⎝⎭,【解析】由f (x )=ln(1+|x|)-211x +可知f (x )是偶函数,且在[0,+∞)是增函数,所以f (x )>f (2x-1)⇔f (|x|)>f (|2x-1|)⇔|x|>|2x-1|⇔13<x<1.3.已知偶函数f (x )在[0,+∞)上是增函数,如果f (ax+1)≤f (x-2)在x ∈112⎡⎤⎢⎥⎣⎦,上恒成立,求实数a 的取值范围.【解答】由于f (x )为偶函数,且在[0,+∞)上为增函数,则在(-∞,0]上为减函数. 由f (ax+1)≤f (x-2),知|ax+1|≤|x-2|.又x ∈112⎡⎤⎢⎥⎣⎦,,故|x-2|=2-x ,即x-2≤ax+1≤2-x. 故x-3≤ax ≤1-x ,1-3x ≤a ≤1x -1在112⎡⎤⎢⎥⎣⎦,上恒成立.由于min 1-1x ⎛⎫ ⎪⎝⎭=0,max 31-x ⎛⎫ ⎪⎝⎭=-2,故-2≤a ≤0, 即实数a 的取值范围为[-2,0].4.已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x-3)+f (x 2-3)<0,求x 的取值范围.【解答】由题知2-3-33-3-33xx<<⎧⎨<<⎩,,解得06-6006xx x<<⎧⎪⎨<<<<⎪⎩,或,故0<x<6.因为f(x)是奇函数,所以f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,所以x-3>3-x2,即x2+x-6>0,解得x>2或x<-3.综上,2<x<6,即x的取值范围是{x|2<x<6}.1.(2015·北京卷改编)已知下列函数:①y=x2sin x;②y=x2cos x;③y=|ln x|;④y=2-x.其中为偶函数的是.(填序号)【答案】②【解析】根据奇偶性的定义知①为奇函数,②为偶函数,③的定义域为(0,+∞),故③不具有奇偶性,④既不是奇函数,也不是偶函数.2.(2015·南通模拟)已知函数f(x)=·2-221xxa a++(x∈R)是奇函数,那么实数a=.【答案】1【解析】因为f(x)=·2-221xxa a++(x∈R)是奇函数,因此f(0)=0,解得a=1.3.(2016·苏州期中)已知定义在R上的奇函数f(x),当x>0时,f(x)=2x-x2,则f(-1)+f(0)+f(3)=.【答案】-2【解析】由题意知,f(0)=0,f(-1)=-f(1),又因为当x>0时,f(x)=2x-x2,所以f(-1)+f(0)+f(3)=-f(1)+0+f(3)=-21+12+23-32=-2.4.(2015·天津卷)已知定义在R上的函数f(x)=2|x-m|-1 (m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为. 【答案】c<a<b【解析】因为函数f(x)=2|x-m|-1为偶函数,所以m=0,即f(x)=2|x|-1,所以a=f(log0.53)=f21log3⎛⎫⎪⎝⎭=21log32-1=2log32-1=3-1=2,b=f(log25)=2log52-1=4,c=f(2m)=f(0)=20-1=0.所以c<a<b.5.已知函数f(x)是定义在R上的奇函数,且在[0,+∞)上为增函数,若f(1-a)+f(-2a)<0,求实数a的取值范围.【解答】因为f(x)是定义在R上的奇函数,且在[0,+∞)上为增函数,所以f(x)在R上为增函数.又f(1-a)+f(-2a)<0,所以f(1-a)<-f(-2a)=f(2a).所以1-a<2a,即a>1 3.所以实数a的取值范围为13∞⎛⎫+⎪⎝⎭,.【融会贯通】融会贯通能力提升已知函数f(x)的定义域D={x|x≠0},且满足对于任意的x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并给出证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.【思维引导】【规范解答】(1)令x1=x2=1,得f(1×1)=f(1)+f(1),解得f(1)=0.……………………………………………………………2分(2)f(x)为偶函数.证明如下:…………………………………………………………………4分令x1=x2=-1,得f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),所以f(-x)=f(x),所以f(x)为偶函数.…………………………7分(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3.…………………………………………………………………………9分将f(3x+1)+f(2x-6)≤3,变形为f[(3x+1)(2x-6)]≤f(64).(*)因为f(x)为偶函数,所以f(-x)=f(x)=f(|x|).所以不等式(*)等价于f [|(3x+1)(2x-6)|]≤f (64).………………11分又因为f (x )在(0,+∞)上是增函数,所以|(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0,解得-73≤x<-13或-13<x<3或3<x ≤5. 所以x的取值范围是711---335333x x x x ⎧⎫≤<<<<≤⎨⎬⎩⎭或或.………………………………14分【精要点评】抽象函数的奇偶性就是要判断-x 对应的函数值与x 对应的函数值之间的关系,从而得到函数图象关于原点或y 轴对称.在利用单调性解决抽象不等式时,不仅要注意单调性的应用,还要注意定义域的限制,以保证转化的等价性.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第13~14页.【检测与评估】第7课 函数的奇偶性一、 填空题1.(2015·湖南卷改编)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )的奇偶性是 .2.(2015·全国卷)若函数f (x )=x ln(x +2a x +)为偶函数,则实数a = .3.(2015·淮安中学)已知函数f (x )=a ln(21x ++x )+bx 3+x 2,其中a ,b 为常数,f (1)=3,则f (-1)= .4.已知a 为常数,函数f (x )=x 2-4x +3.若f (x +a )为偶函数,则a = .5.(2014·福建三明)设f (x )是定义在R 上以3为周期的奇函数,且f (1)>1,f (2 015)=2-31a a +,则实数a 的取值范围是 .6.已知g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=30()0.x x g x x ⎧≤⎨>⎩,,,若f (2-x 2)>f (x ),则实数x 的取值范围是 .7.(2015·启东联考)若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有f (x )+f (-x )=0;(2)对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有1212()-()-f x f x x x <0,则称函数f (x )为“理想函数”.给出下列四个函数中:①f (x )=1x ;②f (x )=x 2;③f (x )=2-121xx +;④f (x )=22-00x x x x ⎧≥⎨<⎩,,,,能被称为“理想函数”的有 .(填序号)8.(2014·南京、盐城一模)若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.如果实数t 满足f (ln t )+f 1ln t ⎛⎫⎪⎝⎭≤2f (1),那么t 的取值范围是 .二、 解答题9.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ). (1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围.10.已知f (x )是定义在R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求函数f (x )的解析式.11.设函数f (x )的定义域为D ,若存在非零实数l 使得对于任意的x ∈M(M ⊆D),有x +l ∈D ,且f (x +l )≥f (x ),则称f (x )为M 上的l 高调函数.(1)如果定义域为[-1,+∞)的函数f (x )=x 2为[-1,+∞)上的m 高调函数,求实数m 的取值范围;(2)如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x -a 2|-a 2,且f (x )为R 上的4高调函数,求实数a 的取值范围.三、 选做题(不要求解题过程,直接给出最终结果)12.已知定义域为R 的函数f (x )=1-222x x b +++是奇函数. (1)求实数b 的值; (2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.【检测与评估答案】第7课 函数的奇偶性1.奇函数 【解析】显然,f (x )的定义域为(-1,1),关于原点对称.又因为f (-x )=ln(1-x )-ln(1+x )=-f (x ),所以f (x )为奇函数.2.1 【解析】由题知y=ln(x+2a x +)是奇函数,所以ln(x+2a x +)+ln(-x+2a x +)=ln(a+x 2-x 2)=ln a=0,解得a=1.3.-1 【解析】已知函数f (x )=a ln(21x ++x )+bx 3+x 2,所以f (x )+f (-x )=2x 2,由f (1)=3,得f (-1)=-1.4. 2 【解析】f (x+a )=(x+a )2-4(x+a )+3=x 2+(2a-4)x+a 2-4a+3.因为f (x+a )为偶函数,所以a=2.5.2-13⎛⎫ ⎪⎝⎭, 【解析】因为f (2 015)=f (2)=f (-1)=-f (1)<-1,所以2-31a a +<-1,解得-1<a<23.6. (-2,1) 【解析】设x>0,则-x<0.因为当x<0时,g (x )=-ln(1-x ),所以g (-x )=-ln(1+x ).又因为g (x )是奇函数,所以g (x )=ln(1+x )(x>0),所以f (x )=30ln(1)0x x x x ⎧≤⎨+>⎩,,,,其图象如图所示.由图象知,函数f (x )在R 上是增函数.因为f (2-x 2)>f (x ),所以2-x 2>x ,即-2<x<1.(第6题)7.④【解析】依题意,性质(1)反映函数f(x)在定义域上为奇函数,性质(2)反映函数f(x)在定义域上为单调减函数.①f(x)=1x为定义域上的奇函数,但不是定义域上的单调减函数,其单调减区间为(-∞,0),(0,+∞),故排除①;②f(x)=x2为定义域上的偶函数,排除②;③f(x)=2-121xx+,定义域为R,由于y=2x+1在R上为增函数,故函数f(x)为R上的增函数,排除③;④根据f(x)=22-0x xx x⎧≥⎨<⎩,,,的图象,显然此函数为奇函数,且在定义域上为减函数,故④为理想函数.8.1ee⎡⎤⎢⎥⎣⎦,【解析】f(ln t)+f1lnt⎛⎫⎪⎝⎭=f(ln t)+f(-ln t)=2f(ln t),于是f(ln t)+f1lnt⎛⎫⎪⎝⎭≤2f(1)⇔f(ln t)≤f(1)⇔|ln t|≤1⇔-1≤ln t≤1⇔1e≤t≤e.9.(1) 当a=0时,f(x)=x2,对任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),所以f(x)为偶函数.当a≠0时,f(x)=x2+ax(x≠0,常数a∈R),若x=±1,则f(-1)+f(1)=2≠0,所以f(-1)≠-f(1),f(-1)≠f(1).所以函数f(x)既不是奇函数也不是偶函数. 综上所述,当a=0时,f(x)为偶函数;当a≠0时,f(x)为非奇非偶函数.(2) 设2≤x1<x2,f(x1)-f(x2)=21x+1ax-22x-2ax=1212-x xx x[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立.因为x1-x2<0,x1x2>4,即a<x1x2(x1+x2)恒成立.又因为x1+x2>4,所以x1x2(x1+x2)>16,所以实数a的取值范围是(-∞,16].10. 因为f (x )是R 上的奇函数, 可得f (0)=-f (0),所以f (0)=0.当x>0时,-x<0,由已知得f (-x )=x lg(2+x ),所以-f (x )=x lg(2+x ),即f (x )=-x lg(2+x )(x>0).所以f (x )=-lg(2-)0-lg(2)0.x x x x x x <⎧⎨+≥⎩,,, 即f (x )=-x lg(2+|x|)(x ∈R ).11. (1) f (x )=x 2(x ≥-1)的图象如图(1)所示,图(1)图(2)(第11题)要使f (-1+m )≥f (-1),只要m ≥2, 此时恒有f (x+m )≥f (x ),所以实数m 的取值范围为[2,+∞).(2) 由f (x )为奇函数及x ≥0时的解析式知f (x )的图象如图(2)所示. 因为f (3a 2)=a 2=f (-a 2),由f (-a 2+4)≥f (-a 2)=a 2=f (3a 2),得-a 2+4≥3a 2,从而a 2≤1. 又当a 2≤1时,恒有f (x+4)≥f (x ). 所以实数a 的取值范围为[-1,1].12.(1) 因为f (x )是奇函数,所以f (0)=0,即-122b +=0,解得b=1.(2) 由(1)知f (x )=11-222x x ++=-12+121x+,设x 1<x 2,则f (x 1)-f (x 2)=1121x +-2121x +=21122-2(21)(21)x x x x ++.因为函数y=2x 在R 上是增函数,且x 1<x 2,所以22x-12x>0, 又(12x+1)(22x+1)>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以f (x )在定义域R 上为减函数.(3) 因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k-2t 2).由(2)知f (x )为减函数,所以t 2-2t>k-2t 2,即对一切t ∈R 有3t 2-2t-k>0,从而判别式Δ=4+12k<0,解得k<-13,所以实数k 的取值范围是1-.-3∞⎛⎫ ⎪⎝⎭.。
高中数学必修一函数的性质奇偶性精选习题测试(打印版)
VIP 免费 欢迎下载(X )在(— a, — 5]上的单调性,并用定义给予证明.15.设函数y = f (x ) (R 且x z 0)对任意非零实数 X 1、X 2满足f 求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x )= ax 2+ bx + c 为偶函数, (x) x 为奇函数, 奇函数的条件.2a ], • a — 1 = 2a ,「. a =丄.故选 A .33.解析: 由 x >0 时,f (x )= x — 2x , f (x )为奇函数,••当 x v 0 时,f (x )=— f ( — x )=—( x + 2x ) =2X (X —2) (X 畠 0),—x — 2x = x (— x — 2). • f(x)=丿即 f (x )= x (|x | — 2)答案:D 4.解析:f (x )、x(—X-2)(x£0),53+ 8= x + ax + bx 为奇函数,f (— 2)+ 8 = 18,二 f (2)+ 8=— 18,二 f (2)=— 26.答案:A 5.解析:此 题直接证明较烦,可用等价形式f (— x )+ f (x )= 0.答案:B 6 .解析:「(X )、g (x )为奇函数,•f(x) - 2二a (x) bg(x)为奇函数.又f (X )在(0,+a )上有最大值 5, • f (X )— 2有最大值3.二 f (X ) — 2在(—a, 0)上有最小值—3, • f ( X )在(—a, 0)上有最小值—1.答案:C7.答案:奇函数8 .答案:0 解析:因为函数 y =( m- 1) x 2+ 2mx+ 3 为偶函数,• f (— x )= f (x ),即(m- 1) ( — x ) 2+ 2m (— x )2 1 + 3= (m- 1)x + 2m )+ 3,整理,得m= 0.9.解析:由f(x)是偶函数,g(x)是奇函数,可得f(x) - g(x) =_ x _ 1奇偶性 2 3 21.已知函数 f (x )= ax + bx + c (a z 0)是偶函数,那么 g (x )= ax + bx + cx ( D.非奇非偶函数 a — 1, 2a ],贝卩( A 奇函数 B.偶函数 C.既奇又偶函数22.已知函数f (x )= ax + bx + 3a + b 是偶函数,且其定义域为]A a , b = 0 3 (x )是定义在 y = x (x — 2) 5 3B. a =— 1, b = 0C. a = 1, b = 0D. a = 3, b = 0 3. 已知f A . 4. 已知f R 上的奇函数,当 x > 0时, B . y = x (| x | — 1) A — 26 (x )= x + ax + bx — 8,且 f (— 2)= 10, C.— 10 5.函数 f (x)- B .— 18 1 x 2 x - 1 曰 2是( .1 X 2 X 1 B .奇函数 f (x ) = x 2— 2x , y = 1 x | f (2)等于 10 C. 那么 D. 则f (x )在R 上的表达式是( )(x — 2) D. y = x (| x |— 2) ( )C.非奇非偶函数 既是奇函数又是偶函数 A 偶函数 6.若(x) , g ( X )都是奇函数,f (x) = • bg(x) 2 在(0,+a)上有最大值 5,则 f ( X )在(— a, 0) 上有( ) A .最小值—5 一 X —2—2 一" f 的奇偶性为— 心-X 2若y =( m-1) x 2+ 2m 灶3是偶函数,则B.最大值—5C.最小值—1D. D.最大值—3 7. 8. 9. 函数f (x)= (填奇函数或偶函数) m = 已知f (x )是偶函数,g (x )是奇函数, 10. 已知函数f (x )为偶函数,且其图象与 11. 设定义在[—2, 2]上的偶函数 值范围. 12. 已知函数f (x )满足f (x + y ) 是偶函数. 13. 已知函数f (x )是奇函数,且当 14. f (x )是定义在(— a,— 1 若 f(x) g(xp X - 1 x 轴有四个交点,则方程 f ( X ) 在区间[0, 2]上单调递减,若 (x )的解析式为=0的所有实根之和为 ____________ .f (1 — m ) v f (m )求实数m 的取+ f (x — y )= 2f (x ) • f (y ) (R 疗 R),且 f (0)M0,试证 f(x )x > 0时,f ( x )= x 3+ 2x 2— 1,求f (x )在R 上的表达式. 5::5,+^)上的奇函数,且(x )在]5,+^)上单调递减,试判断 f(X i • X 2)= f ( x i )+ f ( X 2),g (x ) = ax 3 + bx 2+ cx = f (x ) •:(x)满足答案:A 2.解析:由f (x )= ax 2+ bx + 3a + b 为偶函数,得 b = 0.又定义域为[a — 1,联立f(x) g(x)二£&)=丄(」1) J .答案:f(x) J 10 .答案:0 2x — 1 —x — 1 x -1 x - 111.答案:m 芝1 12.证明:令x = y = 0,有f ( 0)+ f (0)= 2f (0) • f (0),又f (0)z 0,「.可证f (0) 2。
高中数学精品论文:函数奇偶性大练习36例
为 4 ,则 f x 在 1, 0 上有( )
D. 2
x
C. 1
10.已知函数 f x 是偶函数,定义域为 R, g x f x 2 ,若 g log 2 7 3 ,则
g log 2
A. 4
1 ( 7
B. 4
) C.
27 7
D.
27 7
x
11.设 f x 为定义在 R 上的奇函数,当 x 0 时, f x 2 2 x 2017 a(a 为常 数) ,则 f 1 ( A. 3 B. 1 C. 3 ) D. 1
f x cos x x ,给出下列结论:
① f x 是偶函数; ② f x 是周期函数,且最小值周期为 ; ③ f x 的单调递减区间为 k , k 1 k Z ; ④ f x 的值域为 cos1,1 . 其中正确的个数为( A. 0 B. 1 C. 2 ) D. 3
8. 若函数 f x lg 10 x 1 ax 是偶函数, g x
4x b 是奇函数, 则ab 的 2x
值是( 1 A. 2
)
B. 1 C.
1 2
D. -1
9.已知函数 f x lg A. 1 B. 0
1 4 xBiblioteka 2 2 x 1 ,则 f 3 f 3 ( )
1
(4) 若函数 y f x 存在反函数 y f A. 1 个 B. 2 个 C. 3 个
x ,且函数 y f x f 1 x 有零点,
则函数 y f x x 也有零点.其中正确的命题共有
高中数学必修1函数单调性和奇偶性专项练习(含答案)
高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。
证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。
因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。
因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。
因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。
高一函数奇偶性练习题
高一函数奇偶性练习题高一函数奇偶性练习题函数是高中数学中的一个重要概念,而函数的奇偶性则是函数性质中的一个重要方面。
在高一阶段,我们需要掌握函数的奇偶性质,并能够灵活运用到各种题目中。
本文将通过一些练习题来帮助我们更好地理解和掌握高一函数奇偶性。
1. 给定函数 f(x) = x^3 + 2x,判断该函数的奇偶性。
要判断一个函数的奇偶性,我们需要观察函数的表达式中的变量的次数。
对于这个函数,我们可以看到 x 的次数为奇数,而常数项 2x 的次数为偶数。
根据奇数次幂和偶数次幂的性质,我们知道奇数次幂的函数关于原点对称,而偶数次幂的函数关于 y 轴对称。
因此,该函数既不是奇函数也不是偶函数。
2. 对于函数 f(x) = x^4 - 3x^2,判断该函数的奇偶性。
同样地,我们观察函数表达式中的变量的次数。
对于这个函数,我们可以看到x 的次数为偶数,而常数项为 0。
根据偶数次幂的函数关于 y 轴对称的性质,我们可以得出该函数是一个偶函数。
3. 给定函数 f(x) = x^5 + x^3 - x,判断该函数的奇偶性。
观察函数表达式中的变量的次数,我们可以看到 x 的次数为奇数,而常数项为0。
根据奇数次幂的函数关于原点对称的性质,我们可以得出该函数是一个奇函数。
通过以上的练习题,我们可以总结出一些判断函数奇偶性的规律。
当函数表达式中的变量次数为偶数时,函数是一个偶函数;当函数表达式中的变量次数为奇数时,函数是一个奇函数。
当函数表达式中的变量次数为 0 时,函数既不是奇函数也不是偶函数。
除了通过观察函数表达式中的变量次数来判断函数的奇偶性外,我们还可以通过函数图像来进行判断。
对于奇函数,它的图像关于原点对称,即在第一象限的部分图像与第三象限的部分图像关于原点对称;对于偶函数,它的图像关于y 轴对称,即在第一象限的部分图像与第二象限的部分图像关于 y 轴对称。
通过练习题和图像的观察,我们可以更加深入地理解函数的奇偶性。
高中数学必修一练习题函数含详细答案
✍✍✍高中数学必修一练习题(三)函数班号姓名✍✍奇偶性1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是() A.f(x)=x B.f(x)=|x| C.f(x)=-x2D.f(x)=1 x2.函数f(x)=x2+x的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为() A.5 B.10 C.8 D.不确定4.(2011·潍坊高一检测)已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)<f(-1),则下列不等式一定成立的是() A.f(-1)<f(3) B.f(2)<f(3) C.f(-3)<f(5)D.f(0)>f(1)5.函数y=ax2+bx+c为偶函数的条件是________.6.函数f(x)=x3+ax,若f(1)=3,则f(-1)的值为________.7.已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.8.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.✍✍函数的最大(小)值1.函数y=1x2在区间[12,2]上的最大值是()A. 14B.-1 C.4 D.-42.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9B .9(1-a )C .9-aD .9-a 23.函数f (x )=⎩⎨⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元D .120.25万元5.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为_____.6.(2011·合肥高一检测)函数y =-x 2-4x +1在区间[a ,b ](b >a >-2)上的最大值为4,最小值为-4,则a =__________,b =________.7.画出函数f (x )=⎩⎨⎧-2x ,x ∈(-∞,0)x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数最小值.8.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.✍✍指数与指数幂的运算1.下列等式一定成立的是( ) A .a 13·a 32=a B .a12-·a 12=0 C .(a 3)2=a 9D .a 12÷a 13=a 162.4a -2+(a -4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43.(112)0-(1-0.5-2)÷(278)23 的值为( )A .-13B. 13C. 43D. 734.设a 12-a12-=m ,则a 2+1a=( )A .m 2-2B .2-m 2C .m 2+2D .m 25.计算:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=________.6.若102x =25,则10-x 等于________.7.根据条件进行计算:已知x =12,y =13,求x +y x -y -x -y x +y 的值.8.计算或化简下列各式: (1)[(0.02723)-1.5]13+[810.25-(-32)0.6-0.02×(110)-2]12;(2)(a 23·b -1)12-·a12-·b136a ·b 5.幂函数1.幂函数y =x n 的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的( ) A .一点B .两点C .三点D .四点2.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12B .y =x4C .y =x -2D .y =x 133.如图,函数y =x 23的图象是( ) 4.幂函数f (x )=x α满足x >1时f (x )>1,则α满足的条件是( )A .α>1B .0<α<1C .α>0D .α>0且α≠15.函数y=(2m-1)x2m是一个幂函数,则m的值是________.6.下列六个函数①y=x 53,②y=x34,③y=x-13,④y=x23,⑤y=x-2,⑥y=x2中,定义域为R的函数有________(填序号).7.比较下列各组数的大小:(1)352-和3.152-;(2)-878-和-(19)78;(3)(-23)23-和(-π6)23-.8.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求该函数的解析式.参考答案函数的奇偶性1.选C f(x)=|x|及f(x)=-x2为偶函数,而f(x)=|x|在(0,+∞)上单调递增,故选C.2.选D函数的定义域为[0,+∞),不关于原点对称,∴f(x)为非奇非偶函数.3.选B f(4)+f(-4)=2f(4)=10.4.选D函数f(x)在[-5,5]上是偶函数,因此f(x)=f(-x),于是f(-3)=f(3),f(-1)=f(1),则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数f(x)在[0,5]上是减函数,观察四个选项,并注意到f(x)=f(-x),易得只有D正确.5.解析:根据偶函数的性质,得ax2+bx+c=a·(-x)2+b(-x)+c,∴b =0.答案:b=06.解析:∵f(-x)=-f(x),∴f(x)为奇函数,∴f(-1)=-f(1)=-3. 答案:-37.解:∵f(x)是定义在(-1,1)上的奇函数,∴f(0)=0,即b1+02=0,∴b =0, 又f (12)=12a 1+14=25,∴a =1,∴f (x )=x 1+x 2. 8.解:由f(x)在R 上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a 2+a +1=2(a +14)2+78>0,2a 2-2a +3=2(a -12)2+52>0,且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23.函数的最大(小)值1.C2.选A f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9.3.选A f(x)在[-1,2]上单调递增,∴最大值为f(2)=10,最小值为f(-1)=6.4.选C 设公司在甲地销售x 辆,则在乙地销售15-x 辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-(x -192)2+30+1924,∴当x =9或10时,L 最大为120万元.5.解析:设f(x)=ax +b ,易知a≠0. 当a>0时,f(x)单调递增,则有⎩⎨⎧f (2)=3f (-1)=1,∴⎩⎨⎧2a +b =3-a +b =1,即⎩⎪⎨⎪⎧a =23b =53,∴f (x )=23x +53;当a <0时,f (x )单调递减,则有⎩⎨⎧f (2)=1,f (-1)=3,∴⎩⎨⎧2a +b =1-a +b =3,即⎩⎪⎨⎪⎧a =-23b =73, ∴f (x )=-23x +73. 综上,y =f (x )的解析式为f (x )=23x +53或f (x )=-23x+73. 答案:f (x )=23x +53或f (x )=-23x +736.解析:∵y =-(x +2)2+5,∴函数图象对称轴是x =-2. 故在[-2,+∞)上是减函数.又∵b >a >-2,∴y =-x 2-4x +1在[a ,b ]上单调递减.∴f (a )=4,f (b )=-4.由f (a )=4,得-a 2-4a +1=4,∴a 2+4a +3=0,即(a +1)(a +3)=0.∴a =-1或a =-3(舍去),∴a =-1. 由f (b )=-4,得-b 2-4b +1=-4,b =1或b =-5(舍去),∴b =1. 答案:-1 1 7.解:f(x)的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.8.解:(1)当a =-1时,f(x)=x2-2x +2=(x -1)2+1,x ∈[-5,5],当x =1时,有f (x )min =1,当x =-5时,有f (x )max =37.(2)∵函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a ,f (x )在区间[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≥5或a ≤-5.✍✍指数与指数幂的运算1.选D a 13·a 32=a 1332+=a 116;a 12-·a 12=a0=1;(a3)2=a6;a 12÷a 13=a1123-=a 16,故D 正确.2.选B 要使原式有意义,应满足⎩⎨⎧a -2≥0a -4≠0,得a≥2且a≠4.3.选D 原式=1-(1-4)÷3(278)2=1+3×49=73. 4.选C 将a 12-a 12-=m 平方得(a 12-a 12-)2=m2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2?a 2+1a=m 2+2.5.解析:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=1+122×⎝ ⎛⎭⎪⎫9412=1+14×32=118. 答案:1186.解析:由102x =25得:(10x)2=25,∴10x 是25的平方根.由于10x>0,∴10x=5,∴10-x=110x =15. 答案:157.解:∵x +y x -y -x -y x +y=(x +y )2x -y -(x -y )2x -y =4xyx -y ,把x =12,y =13代入得,原式=412×1312-13=4 6.8.解:(1)原式=(310)3×23×(-32)×13+(8114+3235-2100×100)12=103+912=193. (2)原式=a 13-·b 12·a12-·b13a 16·b56=a111326---·b115236+-=1a. 幂函数1.选A 当n≥0时,一定过(1,1)点,当n<0时,也一定过(1,1)点. 2.选B y =x 12不是偶函数;y =x -2不过(0,0);y =x 13是奇函数. 3.选D 幂函数y =x 23是偶函数,图象关于y 轴对称.4.选C 因为x>1时x α>1=1α,所以y =x α单调递增,故α>0. 5.解析:令2m -1=1得m =1,该函数为y =x. 答案:16.解析:函数①④⑥的定义域为R ,函数②定义域为[0,+∞),③⑤的定义域为{x|x≠0}. 答案:①④⑥ 7.解:(1)函数y =x52-在(0,+∞)上为减函数,因为3<3.1,所以352->3.152-.(2)-878-=-(18)78,函数y =x 78在(0,+∞)上为增函数,因为18>19,则(18)78>(19)78, 从而-8-78<-(19)78.(3)(-23)23-=(23)23-,(-π6)23-=(π6)23-,函数y =x 23-在(0,+∞)上为减函数,因为23>π6,所以(23)23-<(π6)23-,即(-23)23-<(-π6)23-.8.解:∵函数在(0,+∞)上递减,∴3m -9<0,解得m<3.又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. 即幂函数y =x 3m -9的解析式为y =x -6.。
高中数学奇偶性训练题(带答案)
高中数学奇偶性训练题(带答案)高中数学奇偶性训练题(带答案)1.下列命题中,真命题是()A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在(-3,0)上为减函数D.函数y=ax2+c(ac0)是偶函数,且在(0,2)上为增函数解析:选C.选项A中,y=1x在定义域内不具有单调性;B 中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac0)在(0,2)上为减函数,故选C.2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为() A.10 B.-10C.-15 D.15解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.2f(-6)+f(-3)=-2f(6)-f(3)=-28+1=-15.3.f(x)=x3+1x的图象关于()A.原点对称 B.y轴对称C.y=x对称 D.y=-x对称解析:选A.x0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.解析:∵f(x)是[3-a,5]上的奇函数,区间[3-a,5]关于原点对称,3-a=-5,a=8.答案:81.函数f(x)=x的奇偶性为()A.奇函数 B.偶函数C.既是奇函数又是偶函数 D.非奇非偶函数解析:选D.定义域为{x|x0},不关于原点对称.2.下列函数为偶函数的是()A.f(x)=|x|+x B.f(x)=x2+1xC.f(x)=x2+x D.f(x)=|x|x2解析:选D.只有D符合偶函数定义.3.设f(x)是R上的任意函数,则下列叙述正确的是() A.f(x)f(-x)是奇函数B.f(x)|f(-x)|是奇函数C.f(x)-f(-x)是偶函数D.f(x)+f(-x)是偶函数解析:选D.设F(x)=f(x)f(-x)则F(-x)=F(x)为偶函数.设G(x)=f(x)|f(-x)|,则G(-x)=f(-x)|f(x)|.G(x)与G(-x)关系不定.设M(x)=f(x)-f(-x),M(-x)=f(-x)-f(x)=-M(x)为奇函数.设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).N(x)为偶函数.4.已知函数f(x)=ax2+bx+c(a0)是偶函数,那么g(x)=ax3+bx2+cx()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-xf(-x)=-xf(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.5.奇函数y=f(x)(xR)的图象必过点()A.(a,f(-a)) B.(-a,f(a))C.(-a,-f(a)) D.(a,f(1a))解析:选C.∵f(x)是奇函数,f(-a)=-f(a),即自变量取-a时,函数值为-f(a),故图象必过点(-a,-f(a)).6.f(x)为偶函数,且当x0时,f(x)2,则当x0时()A.f(x) B.f(x)2C.f(x)-2 D.f(x)R解析:选B.可画f(x)的大致图象易知当x0时,有f(x)2.故选B.7.若函数f(x)=(x+1)(x-a)为偶函数,则a=________. 解析:f(x)=x2+(1-a)x-a为偶函数,1-a=0,a=1.答案:18.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(xR)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.答案:③④9.①f(x)=x2(x2+2);②f(x)=x|x|;③f(x)=3x+x;④f(x)=1-x2x.以上函数中的奇函数是________.解析:(1)∵xR,-xR,又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),f(x)为偶函数.(2)∵xR,-xR,又∵f(-x)=-x|-x|=-x|x|=-f(x),f(x)为奇函数.(3)∵定义域为[0,+),不关于原点对称,f(x)为非奇非偶函数.(4)f(x)的定义域为[-1,0)(0,1]即有-11且x0,则-11且-x0,又∵f(-x)=1--x2-x=-1-x2x=-f(x).f(x)为奇函数.答案:②④10.判断下列函数的奇偶性:(1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+xx<0-x2+x x>0.解:(1)由1+x1-x0,得定义域为[-1,1),关于原点不对称,f(x)为非奇非偶函数.(2)当x<0时,-x>0,则f(-x)=-(-x)2-x=-(-x2+x)=-f(x),当x>0时,-x<0,则f(-x)=(-x)2-x=-(-x2+x)=-f(x),综上所述,对任意的x(-,0)(0,+),都有f(-x)=-f(x),f(x)为奇函数.11.判断函数f(x)=1-x2|x+2|-2的奇偶性.解:由1-x20得-11.由|x+2|-20得x0且x-4.定义域为[-1,0)(0,1],关于原点对称.∵x[-1,0)(0,1]时,x+2>0,f(x)=1-x2|x+2|-2=1-x2x,f(-x)=1--x2-x=-1-x2x=-f(x),f(x)=1-x2|x+2|-2是奇函数.12.若函数f(x)的定义域是R,且对任意x,yR,都有f(x +y)=f(x)+f(y)成立.试判断f(x)的奇偶性.解:在f(x+y)=f(x)+f(y)中,令x=y=0,得f(0+0)=f(0)+f(0),f(0)=0.再令y=-x,则f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0,f(-x)=-f(x),故f(x)为奇函数.。
高中数学必修1函数奇偶性---习题课
o
X轴
故这个函数为奇函数。
【指点迷津】如果一个函数的图像较容易画出,
那么就可以利用图像法来判断函数奇偶性; 如果函数图象关于原点(y轴)对称, 则为奇函数(偶函数)。
x 2 2 x 4, x 0 ( 2) f ( x ) 2 x 2 x 4, x 0
f ( x) f ( x)
来判断,
f ( x) f ( x) 0 来进行判断,fBiblioteka ( x) 1 判断。 f (x)
1 x f ( x) ( x 1) 1 x
f ( x) 1 x 2 x 2 1
返回目录
方法二 图像法判断奇偶性
x 1, x 0 (1) f(x) 0, x 0 x 1, x 0 【思维启迪】这是个分段函数,利用定义法难以判断函数 奇偶性,因为这个函数的图像很容易可以画出,因此利用 奇偶函数的图形特征来判断。 解:由函数的解析式作出函数图像为:
函数奇偶性的判断
进入
1.奇函数图像特征是图象 关于原点对称
奇函数数量特征是 f(-x)= -f(x) 2.偶函数图形特征是图像 关于y轴对称
偶函数数量特征是 f(-x)=f(x)
注意:奇偶函数的定义域特点是 关于原点对称。
方法一 定义法判断奇偶性
(1) f ( x) x 1 1 x
【思维启迪】在判断奇偶性之前,先对函数定义域进行判断, 是否关于原点对称。
x 1 0 解:由 得 1 x 0
x 1
1 故函数的定义域为: , 关于原点不对称
所以该函数为非奇非偶函数。
方法一 定义法判断奇偶性
定义法判断奇偶性【指点迷津】
① 判断函数奇偶性分两步:一是定义域是否关于原点对 称;二是判断f(-x)与f(x)的关系. ②在定义法中,我们可以根据 也可以利用求和 或者根据求商
期末复习:题型热搜卷2 函数奇偶性的应用-【新教材】人教A版(2019)高中数学必修第一册
专题二 函数的奇偶性的应用【题型1】 利用奇偶性求参数的值1、若函数()()213f x kx k x =+-+是偶函数,则k 等于____.2、已知2()f x ax bx =+是定义在[1a -,2]a 上的偶函数,那么a b +的值是()A .13-B .13C .12-D .123、已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值可以是( )A.2B.23C.4D.64、已知函数2()21xx b f x -=+为定义是区间[-2a ,3a -1]上的奇函数,则a +b=_____.【题型2】 利用奇偶性求函数的值5、如图,给出奇函数()y f x =的局部图象,则()()21f f -+-的值为( )A .2-B .2C .1D .06、已知函数2()221x f x x -=++,若()2f m =,则()(f m -= ) A .2 B .0 C .2- D .4-7、已知函数331()5f x ax bx x=+--,且(2)2f -=,那么f (2)等于( )A .12-B .2C .18-D .108、设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________.9、已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A.-3B.-1C.1D.3【题型3】 利用奇偶性求函数解析式10、已知定义在R 上的奇函数分()f x ,当0x >时,2()2f x x x =-+(1)求函数()f x 在R 上的解析式;(2)写出()f x 单调区间(不必证明)11、设定义在[-2,2]上的奇函数f (x )=x 5+x 3+b . (1)求b 值;(2)若f (x )在[0,2]上单调递增,且f (m )+f (m -1)>0,求实数m 的取值范围.【题型4】 利用奇偶性求函数的最值或值域12、已知函数f (x )=mx 2+nx +3m +n 是偶函数,且其定义域为[m -1,2m ].(1)求m ,n 的值;(2)求函数f (x )在其定义域上的最大值.13、已知二次函数()()21f x x ax a R =-++∈(1)若函数()f x 为偶函数,求a 的值(2)若函数()f x 在区间[]1,1-上的最大值为()g a ,求()g a 的最小值14、已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()2f x x x =--. (1)求当0x >时,函数()f x 的解析式;(2)作出函数()f x 的图象,并写出函数()f x 的增区间(不需要证明); (3)若函数()(),([2,4])1f xg x x x x =+∈-,求函数()g x 的最小值.答案解析1、【答案】1【解析】由于函数()()213f x kx k x =+-+是偶函数,所以()()f x f x =-即()()221313kx k x kx k x +-+=--+,所以()210k x -=恒成立,所以1k =.2、【解析】解:依题意得:()()f x f x -=,0b ∴=,又12a a -=-,13a ∴=, 13a b ∴+=.故选:B . 3、【答案】A【解析】因为函数f (x )的定义域为(3-2a ,a +1),所以在函数f (x +1)中,3-2a <x +1<a +1,则函数f (x +1)的定义域为(2-2a ,a ),又因为f (x +1)为偶函数,所以2-2a =-a ,a =2,故选A. 4、【答案】2.【解析】因为函数()221xx b f x -=+为定义是区间[-2a ,3a -1]上的奇函数,所以-2a +3a -1=0,所以a =1.又()002100212b b f --===+,所以b =1.故a +b =2. 5、【答案】A【解析】由图知()()131,322f f ==, 又()f x 为奇函数,所以()()()()21212f f f f -+-=--=-.故选A.6、【解析】解:根据题意,222()222112xx xf x x x ----=-=-++,则222222()()222211212x xx x xf x f x x x ----+-=++-==-+++,则有()()2f m f m +-=-,又由()2f m =,则()4f m -=-; 故选:D .7、【解答】解:令331()g x ax bx x=+-, 则()()g x g x -=-是奇函数,(2)(2)52f g -=--=,故(2)7g -=,g (2)7=-,故f (2)g =(2)512-=-, 故选:A . 8、【答案】【解析】∵f (x )是定义在R 上的奇函数, ∴f (0)=0.又f (x )关于直线x =对称,∴f =f .①在①式中,当x =时,f (0)=f (1)=0.在①式中,以+x 代替x ,得f (-x )=f (1+x ).∴f (2)=f (1+1)=f (-1)=-f (1)=0,f (3)=f (1+2)=f (-2)=-f (2)=0,同理, f (4)=f (5)=0.∴f (1)+f (2)+f (3)+f (4)+f (5)=0.9、【答案】C【解析】分别令x =1和x =-1可得f (1)-g (1)=3和f (-1)-g (-1)=1,因为函数f (x ),g (x )分别是定义在R 上的偶函数和奇函数,所以f (-1)=f (1),g (-1)=-g (1),即f (-1)-g (-1)=1⇒f (1)+g (1)=1,则⇒⇒f (1)+g (1)=1,故选C.10、【解答】解(Ⅰ)根据题意,设0x <,则0x ->,22()()2()2f x x x x x -=--+-=--, 又()f x 为奇函数,所以()()f x f x -=-. 于是0x <时,2()2f x x x =+,又由()f x 为R 上的奇函数,则(0)0f =,则222,(0)()0,(0)2,(0)x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩;(Ⅱ)由(Ⅰ)可得:222,(0)()0,(0)2,(0)x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩;可知()f x 在[1-,1]上单调递增,在(,1)-∞-、(1,)+∞上单调递减.11、[解] (1)因为函数f (x )是定义在[-2,2]上的奇函数,所以f (0)=0,解得b =0.(2)因为函数f (x )在[0,2]上是增函数,又因为f (x )是奇函数,所以f (x )在[-2,2]上是单调递增的,因为f (m )+f (m -1)>0, 所以f (m -1)>-f (m )=f (-m ), 所以m -1>-m ,①又需要不等式f (m )+f (m -1)>0在函数f (x )定义域范围内有意义.所以⎩⎪⎨⎪⎧-2≤m ≤2,-2≤m -1≤2② 解①②得12<m ≤2,所以m 的取值范围为⎝⎛⎦⎤12,2. 12、【答案】(1)∵函数f (x )=mx 2+nx +3m +n 是偶函数, ∴函数的定义域关于原点对称, 又∵函数f (x )的定义域为[m -1,2m ].∴m -1+2m =0,解得m =,又由f (-x )=mx 2-nx +3m +n =f (x )=mx 2+nx +3m +n , 可得n =0.(2)由(1)得函数的解析式为f (x )=x 2+1,定义域为[-,].其图象是开口向上,且以y 轴为对称轴的抛物线,当x =±时,f (x )取最大值.13、【详解】(1)因为()f x 是偶函数,所以()()f x f x -=,即2211x ax x ax --+=-++,0ax =恒成立,所以0a =;(2)222()1()124a a f x x ax x =-++=--++, 当12a≤-,即2a ≤-时,()(1)g a f a =-=-, 当112a -<<,即22a -<<时,2()()124a a g a f ==+, 当12a≥,即2a ≥时,()(1)g a f a ==, 综上,2,2()1,224,2a a a g a a a a -≤-⎧⎪⎪=+-<<⎨⎪≥⎪⎩. 从而2a ≤-时,()2g a ≥,2a ≥时,()2g a ≥,22a -<<时,min ()(0)1g a g ==.所以()g a 的最小值为1.14、【详解】(Ⅰ)设0x >,则0x -<,由当0x ≤时,2()2f x x x =--,则()22f x x x -=-+,又因为()f x 是定义在R 上的奇函数,,则()()22f x f x x x -=-=-+,所以()22f x x x =-,综上所述,()222,02,0x x x f x x x x ⎧->=⎨--≤⎩. (Ⅱ)函数()f x 的图象如下:由图像可知:增区间为(],1-∞-和[)1,+∞.(Ⅲ)由(Ⅰ)可得当[2,4]x ∈,22()223()111f x x x x xg x x x x x x --=+=+=--- ()12111x x =--+-,所以函数在[]2,4单调递增,所以()2min 22322221g ⨯-⨯==-。
高中数学必修一《函数的奇偶性练习题》
函数的奇偶性练习题1.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y =-x 3,x ∈R B .y =sin2x ,x ∈RC .y =2x ,x ∈RD .y =-⎝⎛⎭⎫13x ,x ∈R2.函数f (x )=a 2x -1ax (a >0,a ≠1)的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .34. 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝⎛⎭⎫-134=( ) A.32 B .-32 C.12 D .-126. 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27. 若函数f (x )=|x -2|+a 4-x 2的图象关于原点对称,则f a2=( )A.33 B .-33C .1D .-1 8.已知定义在R 上的奇函数f (x )是一个减函数,若x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,则f (x 1)+f (x 2)+f (x 3)的值( )A .大于0B .小于0C .等于0D .以上都有可能9. 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10. 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1.11. 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m -2x 且f (4)=72.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.1. 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( ) A .y =|x | B .y =sin xC .y =e x +e -x D .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( )A .奇函数B .偶函数C .非奇非偶函数D .不能确定奇偶性4. 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.能力提升5. 设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.] 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.命题p :∀x ∈R ,3x >x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( ) A .p ∨q 真 B .p ∧q 真 C .綈p 真 D .綈q 假 9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________. 10. 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.设定义在[-2,2]上的奇函数f (x )在[0,2]上单调递减,若f (3-m )≤f (2m 2),则实数m 的取值范围是________.12.(13分)已知函数f (x )=lg 1+x1-x.(1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ;(2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.1.A [解析] y =sin2x 在R 上不单调,y =-13x 不是奇函数,y =2x 为增函数,所以B ,C ,D 均错.故选A.2.A [解析] 因为f (-x )=a -x -1a-x =-(a x -a -x )=-f (x ),所以f (x )是奇函数,其图象关于原点对称.故选A.3.A [解析] 依题意当x >0时,f (x )=-f (-x )=-(2x 2+x ),所以f (1)=-3.故选A. 4.3 [解析] 考查函数的奇偶性和转化思想,解此题的关键是利用y =f (x )为奇函数. 已知函数y =f (x )为奇函数,由已知得g (1)=f (1)+2=1, ∴f (1)=-1,则f (-1)=-f (1)=1,所以g (-1)=f (-1)+2=1+2=3. 【能力提升】5.A [解析] 依题意f -134=f -54=f 34=32.故选A.6.A [解析] 由f (x +2)=-f (x )得f (x +4)=-f (x +2)=f (x ),根据f (x )为R 上的奇函数,得f (0)=0,所以f (3)=f (-1)=-f (1)=-1,f (4)=f (0)=0,所以f (3)-f (4)=-1.故选A.7.A [解析] 函数f (x )定义域为{x |-2<x <2},依题意函数f (x )为奇函数,所以f (0)=0,得a =-2,所以f a 2=f (-1)=|-1-2|-24-1=33.故选A.8.A [解析] 由x 1+x 2<0,得x 1<-x 2. 又f (x )为减函数,所以f (x 1)>f (-x 2),又f (x )为R 上的奇函数,所以f (x 1)>-f (x 2). 所以f (x 1)+f (x 2)>0.同理f (x 2)+f (x 3)>0,f (x 1)+f (x 3)>0, 所以f (x 1)+f (x 2)+f (x 3)>0.故选A.9.1.5 [解析] 由f (x +1)+f (x )=3得f (x )+f (x -1)=3,两式相减得f (x +1)=f (x -1),所以f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数,所以f (-2 005.5)=f (-1.5)=f (-2+0.5)=f (0.5)=1.5.10.①②③ [解析] 因为函数f (x )是定义在R 上的奇函数,所以①正确,由f (-x )+f (x )=0,可推得选项②,③正确,④中,要求f (-x )≠0,故④错误.11.(-1-3,+∞) [解析] 由函数f (x )是奇函数,所以当x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x =-f (x )=x 2-ax ,所以a =-2.当x <0时,f (x )>a 即-x 2-2x >-2⇒x 2+2x -2<0,解得-1-3<x <0;当x ≥0时,f (x )>-2恒成立.综上,满足f (x )>a 的x 的取值范围是(-1-3,+∞).12.解:(1)因为f (4)=72,所以4m -24=72,所以m =1.(2)因为f (x )的定义域为{x |x ≠0},又f (-x )=-x -2-x=-x -2x =-f (x ),所以f (x )是奇函数.(3)设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-x 2-2x 2=(x 1-x 2)1+2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上为单调递增函数.(或用求导数的方法) 【难点突破】13.解:(1)因为f (x )是定义域为R 的奇函数,所以f (0)=0, 即-1+b 2+a =0,所以b =1.所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,所以a =2.(2)方法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1.易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (-2t 2+k ). 因f (x )是减函数,所以t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13.方法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0,即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0. 整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.课时作业(六)B【基础热身】1.B [解析] 由题中选项可知,y =|x |,y =e x +e -x 为偶函数,排除A ,C ;而y =-x 3在R 上递减,故选B.2.B [解析] 因为函数f (x )=ax 2+bx 在[a -1,2a ]上为偶函数,所以b =0,且a -1+2a =0,即b =0,a =13.所以a +b =13.3.A [解析] 若x <0,则-x >0,所以f (-x )=(-x )2-(-x )+1=x 2+x +1=-f (x ).若x >0,则-x <0,所以f (-x )=-(-x )2-(-x )-1=-x 2+x -1=-f (x ).所以f (x )为奇函数.4.32[解析] 函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=32.【能力提升】5.D [解析] 因为f (x )为奇函数,所以x >0时,f (x )=-f (-x )=-2-x ,即g (x )=-2-x ,所以g (3)=-2-3=-18.故选D.6.D [解析] 因为x 1<0,x 2>0,|x 1|<|x 2|,所以0<-x 1<x 2.又f (x )是(0,+∞)上的增函数,所以f (-x 1)<f (x 2).又f (x )为定义在R 上的偶函数,所以f (x 1)<f (x 2),所以f (x 1)-f (x 2)<0.选D.7.A [解析] 由已知f (x )是偶函数且是周期为2的周期函数,则f (-2 012)=f (2 012)=f (0)=log 21=0,f (2 011)=f (1)=log 22=1,所以f (-2 012)+f (2 011)=0+1=1,故选择A.8.A [解析] 命题p 是真命题.对于命题q ,函数y =f (x -1)为奇函数,将其图象向左平移1个单位,得到函数y =f (x )的图象,该图象的对称中心为(-1,0),而得不到对称中心为(1,0),所以命题q 为假命题,所以p ∨q 是真命题.故选A.9.-15[解析] 因为f (x +2)f (x )=1,所以f (x +4)f (x +2)=1,于是有f (x +4)=f (x ),所以f (x )是以4为周期的周期函数,f (-5)=f (-1)=1f (-1+2)=1f (1)=-15.10.-9 [解析] 由f (a )=a 3cos a +1=11得a 3cos a =10, 所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.11.{1} [解析] 因为f (x )是定义在[-2,2]上的奇函数,且在[0,2]上单调递减,所以f (x )在[-2,2]上单调递减,所以f (3-m )≤f (2m 2)等价于⎩⎪⎨⎪⎧-2≤3-m ≤2,-2≤2m 2≤2,3-m ≥2m 2⇔⎩⎪⎨⎪⎧1≤m ≤5,-1≤m ≤1,-32≤m ≤1,即m =1,所以m 的取值范围是{1}.12.解:函数的定义域为{x |-1<x <1}=(-1,1).(1)证明:∀a ,b ∈(-1,1),f (a )+f (b )=lg 1+a 1-a +lg 1+b 1-b =lg (1+a )(1+b )(1-a )(1-b ),f a +b 1+ab =lg 1+a +b 1+ab 1-a +b 1+ab=lg 1+ab +a +b 1+ab -a -b =lg (1+a )(1+b )(1-a )(1-b ), 所以f (a )+f (b )=f a +b1+ab.(2)∀x ∈(-1,1),f (-x )+f (x )=lg 1-x 1+x +lg 1+x 1-x =lg (1-x )(1+x )(1+x )(1-x )=lg1=0,即f (-x )=-f (x ),所以f (x )是奇函数. 【难点突破】13.解:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0. (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), 所以f (-x )=f (x ),所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3, 又f (3x +1)+f (2x -6)≤3, 即f ((3x +1)(2x -6))≤f (64).(*) 方法一:因为f (x )为偶函数, 所以f (|(3x +1)(2x -6)|)≤f (64). 又f (x )在(0,+∞)上是增函数, 所以0<|(3x +1)(2x -6)|≤64.解上式,得3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为x ⎪⎪-73≤x <-13或-13<x <3或3<x ≤5. 方法二:因为f (x )在(0,+∞)上是增函数, 所以(*)等价于不等式组⎩⎪⎨⎪⎧(3x +1)(2x -6)>0,(3x +1)(2x -6)≤64或⎩⎪⎨⎪⎧(3x +1)(2x -6)<0,-(3x +1)(2x -6)≤64, ⎩⎨⎧x >3或x <-13,-73≤x ≤5或⎩⎪⎨⎪⎧-13<x <3,x ∈R .所以3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为 x⎪⎪⎪ )-73≤x <-13或-13<x <3或3<x ≤5.。
高中数学函数的奇偶性与单调性练习试题
函数的奇偶性与单调性一.选择题1.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)2.已知f(x)为R上的减函数,则满足f()>f(1)的实数x的取值范围是()A.(﹣∞,2) B.(2,+∞)C.(﹣∞,1)∪(1,2) D.(﹣∞,1)∪(2,+∞)3.若函数y=f(x)+cosx在[﹣]上单调递减,则f(x)可以是()A.1 B.﹣sinx C.cosx D.sinx4.已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ) B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ) D.f(sinα)<f(cosβ)5.已知函数f(x)=x在[0,1)上的最大值为m,在(1,2]上的最小值为n,则m+n=()A.﹣2 B.﹣1 C.1 D.22≥﹣1,则函数f(x)=4x﹣2x+1﹣3的最小值为()6.若xlog5A.﹣4 B.﹣3 C.﹣1 D.0二.填空题7.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx﹣ax(a>),当x ∈(﹣2,0)时,f(x)的最小值为1,则a的值等于.8.设f(x)是R上的奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则x•f(x)<0的解集是.9.奇函数f(x)的定义域为(﹣5,5),若x∈[0,5)时,f(x)的图象如图所示,则不等式f(x)<0的解集为.10.设f(x)的定义域为D,f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,f(x)在[a,b]上的值域为[a,b].如果f(x)=为闭函数,那么k的取值范围是.11.如果对定义在R上的函数f(x),以任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数:①y=﹣x3+x+1;②y=3x﹣2(sin x﹣cos x);③y=e x+1;④f(x)=以上函数是“H函数”的所有序号为.12.已知函数f(x)=在区间(﹣∞,a]上单调递减,在(a,+∞)上单调递增,则实数a的取值范围是.13.13.若函数f(x)=|e x+|在[0,1]上单调递减,则实数a的取值范围是.14.已知函数为减函数,则a的取值范围是.15.设奇函数f(x)在[﹣1,1]上是增函数,f(﹣1)=﹣1.若函数f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,则当a∈[﹣1,1]时,t的取值范围是.三.解答题16.对于函数,定义.已知偶函数g(x)的定义域为(﹣∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2018(x).(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.17.已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时f(x)=﹣x2+bx+c,若f(1)=f(3),f(2)=2.(1)求b,c的值;(2)求f(x)在x<0时的表达式.18.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log(1﹣x).(1)求f(0),f(1);(2)求函数f(x)的解析式.19.已知函数f(x)=kx+log(9x+1)(k∈R)是偶函数.9(1)求k的值;(a•3x﹣a)的图象与f(x)的图象有且只有一个公(2)若函数g(x)=log9共点,求a的取值范围.20.已知函数f(x)=e x﹣e﹣x(x∈R,e=2.71828…)(Ⅰ)求证:函数f(x)为奇函数;(Ⅱ)t为实数,且f(x﹣t)+f(x2﹣t2)≥0对一切实数x都成立,求t的值.21.已知定义在实数集上的奇函数f(x),当x∈(0,1)时,f(x)=.(1)求函数f(x)在(﹣1,1)上的解析式;(2)判断函数f(x)在(0,1)上的单调性并加以证明;(3)当λ取何值时,方程f(x)=λ在上(﹣1,1)有实数解?22.已知函数是奇函数.(1)求a的值;(2)判断函数f(x)的单调性,并用定义证明;(3)求函数的值域.23.已知定义在R上的函数f(x)=2x﹣a•2﹣x为奇函数.(1)求a的值,并判断f(x)的单调性(不用给证明);(2)t为实数,且f(x﹣t)+f(x2﹣t2)≥0对一切实数x都成立,求t的值.24.如果奇函数f(x)是定义域(﹣1,1)上的减函数,且f(1﹣m)+f(1﹣m2)<0,求实数m的取值范围.25.已知定义在[﹣3,3]上的函数y=f(x)是增函数.(1)若f(m+1)>f(2m﹣1),求m的取值范围;(2)若函数f(x)是奇函数,且f(2)=1,解不等式f(x+1)+1>0.26.设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x﹣2•3x)+f(2•9x﹣k)>0对任意x∈[0,+∞)恒成立,求实数k的取值范围.27.已知定义域为R的单调函数f(x)是奇函数,当x>0时,f(x)=﹣2x (Ⅰ)求f(﹣1)的值;(Ⅱ)求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k 的取值范围.28.已知函数.(1)判断函数f(x)的奇偶性,并给出证明;(2)解不等式:f(x2+x+3)+f(﹣2x2+4x﹣7)>0;(3)若函数g(x)=lnx﹣(x﹣1)在(1,+∞)上单调递减,比较f(2)+f (4)+…+f(2n)与2n(n∈N*)的大小关系,并说明理由.29.已知函数f(x)=的定义域上的奇函数,且f(2)=﹣,函数g(x)是R上的增函数,g(1)=1且对任意x,y∈R,总有g(x+y)=g(x)+g(y)(Ⅰ)求函数f(x)的解析式(Ⅱ)判断函数f(x)在(1,+∞)上的单调性,并加以证明(Ⅲ)若g(2a)>g(a﹣1)+2,求实数a的取值范围.(1﹣x).30.己知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=21og2(1)求函数f(x)及g(x)的解析式;(2)用函数单调性的定义证明:函数g(x)在(0,1)上是减函数;(3)若关于x的方程f(2x)=m有解,求实数m的取值范围.函数的奇偶性与单调性参考答案与试题解析一.选择题(共6小题)1.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.2.已知f(x)为R上的减函数,则满足f()>f(1)的实数x的取值范围是()A.(﹣∞,2) B.(2,+∞)C.(﹣∞,1)∪(1,2)D.(﹣∞,1)∪(2,+∞)【分析】由f(x)为R上的减函数便可根据条件得出,这样解该不等式即可得出实数x的取值范围.【解答】解:∵f(x)为R上的减函数;∴由得:;解得x<1,或x>2;∴x的取值范围是(﹣∞,1)∪(2,+∞).故选D.【点评】考查减函数的定义,根据减函数定义解不等式的方法,以及分式不等式的解法.3.若函数y=f(x)+cosx在[﹣]上单调递减,则f(x)可以是()A.1 B.﹣sinx C.cosx D.sinx【分析】显然y=cosx在上没有单调性,从而说明y=1+cosx和y=2cosx在[]上没有单调性,即说明选项A,C错误.而f(x)=﹣siinx 时,可以得到y=,可换元令=t,,可以说明在[]上单调递减,从而得出选项B正确,同样的方法说明选项D错误.【解答】解:A.若f(x)=1,则y=1+cosx,显然cosx在[]上没有单调性;∴y=1+cosx在[]上没有单调性,即该选项错误;B.若f(x)=﹣sinx,则y=﹣sinx+cosx=﹣sin();令,,则:sint在上单调递增;∴y=在上单调递减;∴y=﹣sinx+cosx在[]上单调递减,即该选项正确;C同A,可说明C选项错误,D同B可说明D选项错误.故选B.【点评】考查正、余弦函数的单调性,根据图象判断函数单调性的方法,要熟悉正余弦函数的图象,以及换元法判断函数单调性.4.已知奇函数f(x)在[﹣1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)【分析】由“奇函数y=f(x)在[﹣1,0]上为单调递减函数”可知f(x)在[0,1]上为单调递减函数,再由“α、β为锐角三角形的两内角”可得到α+β>,转化为>α>﹣β>0,两边再取正弦,可得1>sinα>sin(﹣β)=cosβ>0,由函数的单调性可得结论.【解答】解:∵奇函数y=f(x)在[﹣1,0]上为单调递减函数∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ),故选:D.【点评】题主要考查奇偶性和单调性的综合运用,还考查了三角函数的单调性.属中档题.5.已知函数f(x)=x在[0,1)上的最大值为m,在(1,2]上的最小值为n,则m+n=()A.﹣2 B.﹣1 C.1 D.2【分析】通过变形可知f(x)=1++sinπx,进而可知当x∈[0,1)时,函数g(x)=+sinπx满足g(2﹣x)=﹣g(x),由此可知在区间[0,1)∪(1,2]上,函数f(x)关于点(1,1)中心对称,利用对称性即得结论.【解答】解:f(x)=x=1++sinπx,记g(x)=+sinπx,则当x∈[0,1)时,g(2﹣x)=+sinπ(2﹣x)=﹣sinπx,即在区间[0,1)∪(1,2]上,函数f(x)关于点(1,1)中心对称,∴m+n=2,故选:D.【点评】本题考查函数的最值及其几何意义,考查函数的奇偶性,考查运算求解能力,注意解题方法的积累,属于中档题.6.(2017•广西一模)若xlog52≥﹣1,则函数f(x)=4x﹣2x+1﹣3的最小值为()A.﹣4 B.﹣3 C.﹣1 D.0【分析】由条件求得x≥﹣log25,令t=2x(t≥),即有y=t2﹣2t﹣3,由二次函数的最值求法,即可得到最小值.【解答】解:xlog52≥﹣1,即为x≥﹣log25,2x≥,令t=2x(t≥),即有y=t2﹣2t﹣3=(t﹣1)2﹣4,当t=1≥,即x=0时,取得最小值﹣4.故选:A.【点评】本题考查可化为二次函数的最值的求法,注意运用换元法和指数函数的单调性,考查运算能力,属于中档题.二.填空题(共9小题)7.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx﹣ax(a>),当x ∈(﹣2,0)时,f(x)的最小值为1,则a的值等于 1 .【分析】根据函数的奇偶性,确定f(x)在(0,2)上的最大值为﹣1,求导函数,确定函数的单调性,求出最值,即可求得a的值.【解答】解:∵f(x)是奇函数,x∈(﹣2,0)时,f(x)的最小值为1,∴f(x)在(0,2)上的最大值为﹣1,当x∈(0,2)时,f′(x)=﹣a,令f′(x)=0得x=,又a>,∴0<<2,令f′(x)>0,则x<,∴f(x)在(0,)上递增;令f′(x)<0,则x>,=f()=ln﹣a•=﹣1,∴ln=0,∴f(x)在(,2)上递减,∴f(x)max得a=1.故答案为:1.【点评】本题考查函数单调性与奇偶性的结合,考查导数知识的运用,考查学生的计算能力,属于中档题.8.设f(x)是R上的奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则x•f(x)<0的解集是(﹣3,0)∪(0,3).【分析】由x•f(x)<0对x>0或x<0进行讨论,把不等式x•f(x)<0转化为f(x)>0或f(x)<0的问题解决,根据f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,把函数值不等式转化为自变量不等式,求得结果.【解答】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f(x)也是增函数,又∵f(﹣3)=0,∴f(3)=0∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;∴x•f(x)<0的解集是(﹣3,0)∪(0,3)故答案为:(﹣3,0)∪(0,3).【点评】考查函数的奇偶性和单调性解不等式,体现了分类讨论的思想方法,属基础题.9.(2017•陕西校级模拟)奇函数f(x)的定义域为(﹣5,5),若x∈[0,5)时,f(x)的图象如图所示,则不等式f(x)<0的解集为(﹣2,0)∪(2,5).【分析】由奇函数的图象关于原点对称便可得出f(x)在(﹣5,0]上的图象,这样根据f(x)在(﹣5,5)上的图象便可得出f(x)<0的解集.【解答】解:根据奇函数的图象关于原点对称得出f(x)在(﹣5,0]上的图象如下所示:∴f(x)<0的解集为(﹣2,0)∪(2,5).故答案为:(﹣2,0)∪(2,5).【点评】考查奇函数的概念,奇函数图象的对称性,由函数图象解不等式f(x)<0的方法.10.设f(x)的定义域为D,f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,f(x)在[a,b]上的值域为[a,b].如果f(x)=为闭函数,那么k的取值范围是.【分析】函数f(x)=是[,+∞)上的增函数,因此若函数f(x)=为闭函数,则可得函数y=f(x)的图象与直线y=x相交于点(a,a)和(b,b).因此方程k=x﹣在[,+∞)上有两个不相等的实数根a、b.最后采用换元法,讨论二次函数的单调性,可得f(x)=为闭函数时,实数k的取值范围是:.【解答】解:∵k是常数,函数y=是定义在[,+∞)上的增函数,∴函数f(x)=是[,+∞)上的增函数,因此,若函数f(x)=为闭函数,则存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].可得函数y=f(x)的图象与直线y=x相交于点(a,a)和(b,b)(如图所示)∴,可得方程k=x﹣在[,+∞)上有两个不相等的实数根a、b令t=,得x=,设函数F(x)═x﹣=g(t),(t≥0)即g(t)=t2﹣t﹣,在t∈[0,1]时,g(t)为减函数﹣1≤g(t)≤;在t∈[1,+∞)时,g(t)为增函数g(t)≥﹣1;∴当时,有两个不相等的t值使g(t)=k成立,相应地有两个不相等的实数根a、b满足方程k=x﹣,当f(x)=为闭函数时,实数k的取值范围是:.故答案为:【点评】本题以含有根式的函数为例,探求函数为闭函数时参数k的取值范围,着重考查了函数的单调性、换元法讨论二次函数等知识点,属于中档题.11.如果对定义在R上的函数f(x),以任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数:①y=﹣x3+x+1;②y=3x﹣2(sin x﹣cos x);③y=e x+1;④f(x)=以上函数是“H函数”的所有序号为②③.【分析】不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1﹣x2)[f(x1)﹣f(x2)]>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.【解答】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]>0恒成立,即函数f(x)是定义在R上的增函数.对于①y=﹣x3+x+1;y′=﹣3x2+1,则函数在定义域上不单调;对于②y=3x﹣2(sinx﹣cosx);y′=3﹣2(cosx+sinx)=3﹣2sin(x+)>0,函数单调递增,满足条件;对于③y=e x+1为增函数,满足条件;④f(x)=,当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件.综上满足“H函数”的函数为②③,故答案为:②③.【点评】本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.12.已知函数f(x)=在区间(﹣∞,a]上单调递减,在(a,+∞)上单调递增,则实数a的取值范围是[﹣1,0] .【分析】根据二次函数的性质以及对数函数的性质求出a的范围即可.【解答】解:由y=x2在(﹣∞,0)递减,故a≤0,由x+1>0,解得:x>﹣1,故a≥﹣1,故答案为:[﹣1,0].【点评】本题考查了二次函数以及对数函数的性质,考查函数的单调性问题,是一道基础题.13.若函数f(x)=|e x+|在[0,1]上单调递减,则实数a的取值范围是(﹣∞,﹣e2]∪[e2,+∞).【分析】可看出,为去掉绝对值号,需讨论a:(1)a>0时,得出,求导数,根据题意f′(x)≤0在x∈[0,1]上恒成立,从而得到a≥e2x在x∈[0,1]上恒成立,从而得出a≥e2;(2)a=0时,显然不满足题意;(3)a<0时,可看出函数在R上单调递增,而由可解得,从而得出f(x)在上单调递减,从而便可得出,这又可求出一个a的范围,以上a的范围求并集便是实数a的取值范围.【解答】解:(1)当a>0时,,;∵f(x)在[0,1]上单调递减;∴x∈[0,1]时,f′(x)≤0恒成立;即x∈[0,1]时,a≥e2x恒成立;y=e2x在[0,1]上的最大值为e2;∴a≥e2;(2)当a=0时,f(x)=e x,在[0,1]上单调递增,不满足[0,1]上单调递减;∴a≠0;(3)当a<0时,在R上单调递增;令得,;∴f(x)在上为减函数,在上为增函数;又f(x)在[0,1]上为减函数;∴;∴a≤﹣e2;∴综上得,实数a的取值范围为(﹣∞,﹣e2]∪[e2,+∞).故答案为:(﹣∞,﹣e2]∪[e2,+∞).【点评】本题考查指数函数的值域,函数单调性和函数导数符号的关系,考查增函数和减函数的定义、反比例函数的单调性、以及对数的运算性质.14.已知函数为减函数,则a的取值范围是(0,] .【分析】由题意可知,y=a x递减,y=(a﹣3)x+4a递减,且a0≥(a﹣3)×0+4a,由此可得关于a的不等式组,解出即可.【解答】解:因为函数f(x)为减函数,所以y=a x递减,y=(a﹣3)x+4a递减,且a0≥(a﹣3)×0+4a,所以,解得0<a,故答案为:(0,].【点评】本题考查函数单调性的性质,考查学生分析解决问题的能力,属中档题.15.设奇函数f(x)在[﹣1,1]上是增函数,f(﹣1)=﹣1.若函数f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,则当a∈[﹣1,1]时,t的取值范围是t≤﹣2或t=0或t≥2 .【分析】有f(﹣1)=﹣1得f(1)=1,f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,只需要比较f(x)的最大值与t2﹣2at+1即可.【解答】解:若函数f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,由已知易得f(x)的最大值是1,∴1≤t2﹣2at+1⇔2at﹣t2≤0,设g(a)=2at﹣t2(﹣1≤a≤1),欲使2at﹣t2≤0恒成立,则⇔t≥2或t=0或t≤﹣2.答案:t≤﹣2或t=0或t≥2【点评】本题把函数的奇偶性,单调性与最值放在一起综合考查,是道函数方面的好题.三.解答题(共15小题)16.对于函数,定义.已知偶函数g(x)的定义域为(﹣∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2018(x).(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.【分析】(1)根据函数关系进行求解即可.(2)根据函数奇偶性的性质,结合函数的值域关系进行求解即可.【解答】解:(1)因为,故对任意的n∈N•,有f3n+i (x)=fi(x)(i=2,3,4),于是;..由g(x)为偶函数,..…(6分)(2)由于y=g(x)的定义域为(﹣∞,0)∪(0,+∞),又a<b,mb<ma,可知a与b同号,且m<0;进而g(x)在[a,b]递减,且a <b<0.…(8分)函数y=g(x)的图象,如图所示.由题意,有…(10分)故a,b是方程的两个不相等的负实数根,即方程mx2﹣x﹣1=0在(﹣∞,0)上有两个不相等的实根,于是…(12分)综合上述,得:实数m的取值范围为.…(14分)注:若采用数形结合,得出直线y=mx与曲线有两个不同交点,并进行求解也可.【点评】本题主要考查函数解析式的求解以及函数奇偶性的应用,考查学生的运算和推理能力.17.已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时f(x)=﹣x2+bx+c,若f(1)=f(3),f(2)=2.(1)求b,c的值;(2)求f(x)在x<0时的表达式.【分析】(1)根据f(1)=f(3)得函数图象关于直线x=2对称,结合抛物线对称轴的公式列式得到b的值,再由f(2)=2列式,解出c的值.(2)当x<0时,﹣x是正数,代入题中正数范围内的表达式得到f(﹣x)的式子,再结合f(x)是奇函数,取相反数即可得到f(x)在x<0时的表达式.【解答】解:(1)∵f(1)=f(3),∴函数图象的对称轴x==2,得b=4又∵f(2)=﹣4+4×2+c=2,∴c=﹣2(2)由(1)得当x>0时f(x)=﹣x2+4x+2,当x<0时,f(﹣x)=﹣(﹣x)2+4(﹣x)+2=﹣x2﹣4x+2,∵f(x)是奇函数,∴当x<0时,f(x)=﹣f(﹣x)=x2+4x﹣2.【点评】本题给出二次函数的对应值,求函数表达式,并且在函数为奇函数的情况下求x<0时的表达式.着重考查了函数奇偶性的性质和函数解析式的求解及常用方法,属于基础题.18.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log(1﹣x).(1)求f(0),f(1);(2)求函数f(x)的解析式.【分析】(1)利用函数的奇偶性的性质,求解函数值即可.(2)利用函数的奇偶性以及已知条件真假求解函数的解析式即可.【解答】解:(1)f(x)是定义在R上的偶函数,且x≤0时,f(x)=log(1﹣x).f(0)=0,f(1)=f(﹣1)=log(1+1)=﹣1.(2)f(x)是定义在R上的偶函数,且x≤0时,f(x)=log(1﹣x).x>0时,f(x)=f(﹣x)=log(1+x).可得:f(x)=.【点评】本题考查函数的性质,函数值以及函数的解析式的求法,考查计算能力.19.已知函数f(x)=kx+log9(9x+1)(k∈R)是偶函数.(1)求k的值;(2)若函数g(x)=log(a•3x﹣a)的图象与f(x)的图象有且只有一个公9共点,求a的取值范围.【分析】(1)根据函数奇偶性的性质建立方程进行求解.(2)根据函数g(x)和f(x)图象的交点个数进行讨论求解.(9﹣x+1)【解答】解:(1)∵f(x)是偶函数,∴由f(﹣x)=f(x)得﹣kx+log9=kx+log(9x+1),9整理得;(2)由题意知,方程只有一解,即有且只有一个实根,令t=3x,则t∈(0,+∞),从而方程有且只有一个正实根t,当a﹣1=0时,(舍去),当a﹣1≠0时,若判别式△=0,即+4a﹣4=0,即4a2+9a﹣9=0得a=﹣3或a=,当a=时,t<0,不满足条件.舍去,若△>0,则t1t2<0,得,则a>1,从而所求a的范围是{﹣3}∪(1,+∞).【点评】本题主要考查函数奇偶性的应用以及函数图象的应用,利用分类讨论的数学思想是解决本题的关键.考查学生的运算能力.20.已知函数f(x)=e x﹣e﹣x(x∈R,e=2.71828…)(Ⅰ)求证:函数f(x)为奇函数;(Ⅱ)t为实数,且f(x﹣t)+f(x2﹣t2)≥0对一切实数x都成立,求t的值.【分析】(Ⅰ)求得f(x)的定义域,计算f(﹣x)与f(x)的关系,即可得证;(Ⅱ)f(x﹣t)+f(x2﹣t2)≥0,即为f(x2﹣t2)≥﹣f(x﹣t)=f(t﹣x),判断f(x)在R上递增,去掉f,运用参数分离,求得右边二次函数的最小值,计算即可得到所求值.【解答】解:(Ⅰ)证明:f(x)的定义域为R,f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),即有函数f(x)为奇函数;(Ⅱ)f(x﹣t)+f(x2﹣t2)≥0,即为f(x2﹣t2)≥﹣f(x﹣t)=f(t﹣x),由f(x)=e x﹣e﹣x在R上为增函数,可得x2﹣t2≥t﹣x,即有t2+t≤x+x2,由x+x2=(x+)2﹣,可得t2+t≤﹣,即有(t+)2≤0,但(t+)2≥0,则t=﹣.【点评】本题考查函数的奇偶性的判断和运用:解不等式,考查恒成立问题的解法,注意运用函数的性质和参数分离,以及二次函数的最值的求法,考查运算能力,属于中档题.21.已知定义在实数集上的奇函数f(x),当x∈(0,1)时,f(x)=.(1)求函数f(x)在(﹣1,1)上的解析式;(2)判断函数f(x)在(0,1)上的单调性并加以证明;(3)当λ取何值时,方程f(x)=λ在上(﹣1,1)有实数解?【分析】(1)利用函数奇偶性的性质进行转化求解即可.(2)根据函数单调性的定义,利用定义法进行证明.(3)根据函数奇偶性和单调性的关系求出函数在(﹣1,1)上的值域即可得到结论.【解答】解:(1)∵函数f(x)是奇函数,∴f(0)=0,当x∈(﹣1,0)时,﹣x∈(0,1),则f(﹣x)===﹣f(x),则f(x)=﹣.x∈(﹣1,0),故函数f(x)在(﹣1,1)上的解析式为f(x)=;(2)设0<x1<x2<1,则f(x1)﹣f(x2)=﹣=,∵0<x1<x2<1,∴>2,﹣2>0,则f(x1)﹣f(x2)>0,即f(x1)>f(x2),即函数f(x)在(0,1)上的单调递减;(3)∵f(x)在(0,1)上的单调递减,∴当0<x<1时,f(1)<f(x)<f(0),即<f(x)<,∵f(x)是奇函数,∴当﹣1<x<0时,﹣<f(x)<﹣,∵f(0)=0,∴在(﹣1,1)上函数f(x)的取值范围是(,)∪(﹣,﹣)∪{0},则若方程f(x)=λ在上(﹣1,1)有实数解,则λ∈(,)∪(﹣,﹣)∪{0}.【点评】本题主要考查函数奇偶性的应用以及函数单调性和值域的判断和应用,利用定义法以及函数单调性和值域之间的关系是解决本题的关键.22.()已知函数是奇函数.(1)求a的值;(2)判断函数f(x)的单调性,并用定义证明;(3)求函数的值域.【分析】(1)根据函数f(x)为定义域为R的奇函数,则f(0)=0,代入解析式可求出a的值;(2)由(1)知,所以f(x)为增函数,任取x1<x2∈R,然后判定f(x1)﹣f(x2)的符号,根据函数单调性的定义即可判定;(3)令,求出2x,根据2x的范围可求出y的范围,从而求出函数的值域.【解答】解:(1)f(x)的定义域为R,且为奇函数,∴f(0)=0,∴a=1(2)由(1)知,所以f(x)为增函数证明:任取x1<x2∈Rf(x1)﹣f(x2)=1﹣﹣1+=∵x1<x2∈R∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)为R上的增函数.(3)令则而2x>0∴∴﹣1<y<1所以函数f(x)的值域为(﹣1,1)【点评】本题主要考查了函数的奇偶性,以及函数的单调性和函数的值域,属于中档题.23.已知定义在R上的函数f(x)=2x﹣a•2﹣x为奇函数.(1)求a的值,并判断f(x)的单调性(不用给证明);(2)t为实数,且f(x﹣t)+f(x2﹣t2)≥0对一切实数x都成立,求t的值.【分析】(1)根据奇函数的性质:f(0)=0,列出方程求出a,利用指数函数的单调性判断f(x)的单调性;(2)由奇函数f(x)的单调性转化不等式,由二次函数的恒成立列出不等式求出t的值.【解答】解:(1)∵f(x)=2x﹣a•2﹣x为奇函数,∴f(0)=0,则1﹣a=0,解得a=1,即f(x)=2x﹣2﹣x=2x﹣,∵函数y=2x、y=﹣在定义域上是增函数,∴f(x)=2x﹣在R上单调递增;(2))∵f(x)是奇函数,且在R上是增函数,∴f(x﹣t)+f(x2﹣t2)≥0化为:f(x2﹣t2)≥﹣f(x﹣t)=f(﹣x+t),∴x2﹣t2≥﹣x+t,则x2+x﹣t2﹣t≥0对一切实数x恒成立,∴△=12﹣4×1×(﹣t2﹣t)≤0,则(2t+1)2≤0,解得t=,∴t的值是.【点评】本题考查函数单调性与奇偶性综合应用,以及二次函数的性质,考查转化思想,属于中档题.24.如果奇函数f(x)是定义域(﹣1,1)上的减函数,且f(1﹣m)+f(1﹣m2)<0,求实数m的取值范围.【分析】根据定义域先建立两个不等关系式,再结合函数的单调性和奇偶性建立关系式,解之即可.【解答】解:因为函数f(x)的定义域是(﹣1,1)所以有﹣1<1﹣m<1 ①﹣1<1﹣m2<1 ②又f(x)是奇函数,所以f(1﹣m)+f(1﹣m2)<0可变为f(1﹣m)>f(m2﹣1)又f(x)在(﹣1,1)内是减函数,所以1﹣m<m2﹣1 ③由①、②、③得.【点评】本题主要考查了函数单调性与奇偶性的应用,以及不等式的求解,属于中档题.25.已知定义在[﹣3,3]上的函数y=f(x)是增函数.(1)若f(m+1)>f(2m﹣1),求m的取值范围;(2)若函数f(x)是奇函数,且f(2)=1,解不等式f(x+1)+1>0.【分析】(1)由题意可得,,由此解不等式组求得m的范围.(2)由题意可得f(x+1)>f(﹣2),所以,即可得出结论.【解答】解:由题意可得,,求得﹣1≤m<2,即m的范围是[﹣1,2).(2)∵函数f(x)是奇函数,且f(2)=1,∴f(﹣2)=﹣f(2)=﹣1,∵f(x+1)+1>0,∴f(x+1)>﹣1,∴f(x+1)>f(﹣2),∴,∴﹣3<x≤2.∴不等式的解集为{x|﹣3<x≤2}.【点评】本题主要考查函数的单调性的应用,考查学生分析解决问题的能力,正确转化是关键,属于中档题.26.设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x﹣2•3x)+f(2•9x﹣k)>0对任意x∈[0,+∞)恒成立,求实数k的取值范围.【分析】(1)由a>b,得,所以f(a)+f(﹣b)>0,由f(x)是定义在R上的奇函数,能得到f(a)>f(b).(2)由f(x)在R上是单调递增函数,利用奇偶性、单调性可把f(9x﹣2•3x)+f(2•9x﹣k)>0中的符号“f”去掉,分离出参数k后转化为函数最值即可解决.【解答】解:(1)∵对任意a,b,当a+b≠0,都有.∴,∵a>b,∴a﹣b>0,∴f(a)+f(﹣b)>0,∵f(x)是定义在R上的奇函数,∴f(﹣b)=﹣f(b),∴f(a)﹣f(b)>0,∴f(a)>f(b);(2)由(1)知f(x)在R上是单调递增函数,又f(9x﹣2•3x)+f(2•9x﹣k)>0,得f(9x﹣2•3x)>﹣f(2•9x﹣k)=f (k﹣2•9x),故9x﹣2•3x>k﹣2•9x,即k<3•9x﹣2•3x,令t=3x,则t≥1,所以k<3t2﹣2t,而3t2﹣2t=3﹣在[1,+∞)上递增,所以3t2﹣2t≥3﹣2=1,所以k<1,即所求实数k的范围为k<1.【点评】本题考查解函数恒成立问题的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易出错.解题时要认真审题,注意转化思想的灵活运用.27.已知定义域为R的单调函数f(x)是奇函数,当x>0时,f(x)=﹣2x (Ⅰ)求f(﹣1)的值;(Ⅱ)求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k 的取值范围.【分析】(I)根据题意得,f(﹣1)=﹣f(1),结合当x>0时,f(x)=﹣2x 即可求出f(﹣1);(II)由定义域为R的函数f(x)是奇函数,知f(0)=0.当x<0时,f(﹣x)=﹣2﹣x,由函数f(x)是奇函数,知f(x)=+2﹣x,由此能求出f(x)的解析式.(III)由f(1)=﹣<f(0)=0且f(x)在R上单调,知f(x)在R上单调递减,由f(t2﹣2t)+f(2t2﹣k)<0,得f(t2﹣2t)<﹣f(2t2﹣k),再由根的差别式能求出实数k的取值范围.【解答】解:(I)f(﹣1)=﹣f(1)=﹣(﹣2)=;(II)∵定义域为R的函数f(x)是奇函数,∴f(0)=0,当x<0时,﹣x>0,f(﹣x)=﹣﹣2﹣x,又∵函数f(x)是奇函数,∴f(﹣x)=﹣f(x),∴f(x)=+2﹣x,综上所述f(x)=.(III)∵f(1)=﹣<f(0)=0,且f(x)在R上单调,∴f(x)在R上单调递减,由f(t2﹣2t)+f(2t2﹣k)<0,得f(t2﹣2t)<﹣f(2t2﹣k),∵f(x)是奇函数,∴f(t2﹣2t)<f(k﹣2t2),又∵f(x)是减函数,∴t2﹣2t>k﹣2t2即3t2﹣2t﹣k>0对任意t∈R恒成立,∴△=4+12k<0得k<﹣,即为所求.【点评】本题考查函数的恒成立问题,解题时要认真审题,仔细解答,注意合理地进行等价转化,同时注意函数性质的灵活运用.28.已知函数.(1)判断函数f(x)的奇偶性,并给出证明;(2)解不等式:f(x2+x+3)+f(﹣2x2+4x﹣7)>0;(3)若函数g(x)=lnx﹣(x﹣1)在(1,+∞)上单调递减,比较f(2)+f (4)+…+f(2n)与2n(n∈N*)的大小关系,并说明理由.【分析】(1)根据函数奇偶性的定义进行判断即可.(2)根据函数奇偶性和单调性的关系将不等式进行转化即可.(3)根据函数单调性的性质结合对数函数的运算法则进行求解即可.【解答】解:(1)函数f(x)为奇函数.…1分证明如下:由,解得x<﹣1或x>1,所以函数的定义域为(﹣∞,﹣1)∪(1,+∞)…2分对任意的x∈(﹣∞,﹣1)∪(1,+∞),有,所以函数f(x)为奇函数.…4分(2)任取x1,x2∈(1,+∞),且x1<x2,则==,…5分因为 x2>x1>1,所以 x1•x2+x2﹣x1﹣1>x1•x2﹣(x2﹣x1)﹣1>0,所以,所以 f(x1)﹣f(x2)>0,所以f(x1)>f(x2),所以函数y=f(x)在(1,+∞)单调递减;…7分由f(x2+x+3)+f(﹣2x2+4x﹣7)>0得:f(x2+x+3)>﹣f(﹣2x2+4x﹣7),即f(x2+x+3)>f(2x2﹣4x+7),又,2x2﹣4x+7=2(x﹣1)2+5>1,所以 x2+x+3<2x2﹣4x+7,…9分解得:x<1或x>4,所以原不等式的解集为:(﹣∞,1)∪(4,+∞).…10分(3)f(2)+f(4)+…+f(2n)<2n(n∈N*).理由如下:…11分因为,所以 f(2)+f(4)+…+f(2n)﹣2n=ln(2n+1)﹣2n=ln(2n+1)﹣[(2n+1)﹣1],…13分又 g(x)=lnx﹣(x﹣1)在(1,+∞)上单调递减,所以当x>1时,g(x)<g(1)=0,所以 g(2n+1)<0,…15分即 ln(2n+1)﹣[(2n+1)﹣1]<0,故 f(2)+f(4)+…+f(2n)<2n(n∈N*).…16分【点评】本题主要考查函数奇偶性的判断,以及不等式的求解,结合对数的运算法则是解决本题的关键.29.已知函数f(x)=的定义域上的奇函数,且f(2)=﹣,函数g(x)是R上的增函数,g(1)=1且对任意x,y∈R,总有g(x+y)=g(x)+g(y)(Ⅰ)求函数f(x)的解析式(Ⅱ)判断函数f(x)在(1,+∞)上的单调性,并加以证明(Ⅲ)若g(2a)>g(a﹣1)+2,求实数a的取值范围.【分析】(Ⅰ)由题意可得f(﹣x)=﹣f(x),可得n,利用f(2)=﹣,求出m,即可求函数f(x)的解析式(Ⅱ)利用导数判断证明判断函数f(x)在(1,+∞)上的单调性;(Ⅲ)确定g(x)为奇函数,g(2)=g(1)+g(1)=2,g(2a)>g(a﹣1)+2,化为g(2a)>g(a+1),利用函数g(x)是R上的增函数,可得不等式,解不等式即可得到a的范围.【解答】解:(Ⅰ)由定义域为R的函数f(x)=是奇函数,可得=﹣,即n+3x=﹣n+3x,解得n=0,∵f(2)=﹣,∴=﹣,∴m=2,∴f(x)=;(Ⅱ)函数f(x)在(1,+∞)上单调递减.∵f(x)==﹣(x+),∴f′(x)=﹣,∵x>1,∴f′(x)<0,∴函数f(x)在(1,+∞)上单调递减;(Ⅲ)令x=y=0,得g(0)=0,令y=﹣x,可得g(0)=g(x)+g(﹣x),∴g(﹣x)=﹣g(x),∴g(x)为奇函数,∵g(1)=1,∴g(2)=g(1)+g(1)=2,∵g(2a)>g(a﹣1)+2,∴g(2a)>g(a+1),∵函数g(x)是R上的增函数,∴2a>a+1,∴a>1.【点评】本题考查函数的奇偶性和单调性的判断及应用:解不等式,考查二次不等式恒成立问题的解法,考查运算能力,属于中档题和易错题.30.己知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=21og(1﹣x).2(1)求函数f(x)及g(x)的解析式;(2)用函数单调性的定义证明:函数g(x)在(0,1)上是减函数;(3)若关于x的方程f(2x)=m有解,求实数m的取值范围.(1+x),【分析】(1)根据f(x),g(x)的奇偶性便有﹣f(x)+g(x)=2log2联立f(x)+g(x)=2log(1﹣x)便可解出f(x)=,g(x)=;2(2)根据减函数的定义,设任意的x1,x2∈(0,1),且x1<x2,然后作差,可以得出,根据对数函数的单调性便可得出g(x1)>g(x2),从而得出g(x)在(0,1)上单调递减;(3)求出,根据1﹣2x>0便可得出1+2x的范围,从而得出﹣1+的范围,根据对数函数的单调性便可得出f(2x)的范围,从而便可得出m的取值范围.【解答】解:(1)根据题意:f(﹣x)+g(﹣x)=2log2(1+x);∴﹣f(x)+g(x)=2log2(1+x),联立f(x)+g(x)=2log2(1﹣x)得:f(x)=log2(1﹣x)﹣log2(1+x)=,g(x)=log2(1+x)+log2(1﹣x)=;即;(2)设x1,x2∈(0,1),且x1<x2,则:;∵0<x1<x2<1;∴;∴;∴;∴g(x1)>g(x2);∴g(x)在(0,1)上是减函数;(3);∵1﹣2x>0;∴0<2x<1;∴;∴;∴f(2x)<0;∴m<0;∴m的取值范围为(﹣∞,0).【点评】考查奇函数、偶函数的定义,对数的运算,以及减函数的定义,根据减函数的定义证明一个函数为减函数的方法和过程,作差的方法比较g(x1),g(x2),对数函数的单调性,分离常数法的运用.。
高中数学必修一练习题(5)函数(含详细答案)
高中数学必修一练习题(5)函数(含详细答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修一练习题(5)函数(含详细答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修一练习题(5)函数(含详细答案)的全部内容。
➢•高中数学必修一练习(五)函数班号姓名þþ对数函数及其性质的应用1.已知y=(错误!)x的反函数为y=f(x),若f(x0)=-错误!,则x0=()A.-2 B.-1 C.2 D.错误!2.下列四个数中最大的是()A.(ln2)2 B.ln(ln2) C.ln错误! D.ln23.已知函数f(x)=2log错误!x的值域为[-1,1],则函数f(x)的定义域是()A.[-1,1]B.[错误!,错误!] C.[错误!,3] D.[-3,错误!] 4.若log a-1(2x-1)〉log a-1(x-1),则有()A.a〉1,x〉0 B.a〉1,x〉1 C.a>2,x>0 D.a>2,x>15.函数y=log错误!(1-2x)的单调递增区间为________.6.函数f(x)=log a x(0<a〈1)在区间[3,5]上的最大值比最小值大1,则a=________.7.已知集合A={x|2≤x≤π},定义在集合A上的函数y=log a x的最大值比最小值大1,求a的值.8.已知函数f(x)=lg|x|. (1)判断函数f(x)的奇偶性;(2)画出函数f(x)的草图;(3)求函数f(x)的单调递减区间,并加以证明.BB方程的根与函数的零点1.函数f(x)=log5(x-1)的零点是()A.0 B.1 C.2 D.32.若函数f(x)=ax+b只有一个零点2,那么函数g(x)=bx2-ax的零点是()高中数学必修一练习题(5)函数(含详细答案)A.0,2 B.0,-错误!C.0,错误! D.2,错误!3.对于函数f(x)=x2+mx+n,若f(a)>0,f(b)〉0,则函数f(x)在区间(a,b)内()A.一定有零点B.一定没有零点 C.可能有两个零点 D.至少有一个零点4.根据表格中的数据,可以判断方程e x-x-2=0必有一个根在区间()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(2)
一、选择题:(每小题4,共40分)
1. 下列哪组中的两个函数是同一函数 ( )
A .2()y x =与y x =
B 。
33()y x =与y x =
C .2y x =与2()y x =
D 。
33
y x =与2
x y x = 2. 若()1x f x x
=-,则(3)f -等于 ( ) (A)32- (B)34
- (C)34 (D)32± 3. 函数f(x)=2-x +(x-4)0的定义域为 ( )
A . {x|x>2,x ≠4}
B 。
{x|x ≥2,或x ≠4}
C 。
[)
()2,44,+∞ D 。
[)2,+∞ 4.函数y=x 2-1的值域是 ( )
A . (-∞,-1)
B 。
[)1,-+∞
C 。
[-1,0]
D 。
R
5. 函数f(x)=x|x|+x 3是 ( )
A . 偶函数
B 。
奇函数
C 。
非奇非偶函数
D 。
既奇又偶函数
6.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上 ( )
A .必是增函数
B 。
必是减函数
C .是增函数或是减函数
D 。
无法确定增减性 7.函数x x
x x f +=)(的图象是 ( )
8. .函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是 ( )
A.[)3,-+∞
B.(],3-∞-
C.(-∞,5)
D.[)3,+∞
9、设偶函数f(x)的定义域为R ,当x [0,)∈+∞时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是
A B C D
( )
A 。
f(π)>f(-3)>f(-2)
B 。
f(π)>f(-2)>f(-3)
C .f(π)<f(-3)<f(-2)
D 。
f(π)<f(-2)<f(-3)
10.有以下四个对应:(1)A=(0,+∞),B=R,对应法则f:求算术平方根;(2) A=(0,+∞),B=R,
对应法则:求平方根;(3)A=N,B={-1,1},对应法则:x →(-1)x (4)A={平面α内的圆},
B={平面α内的三角形},对应法则:作圆内接三角形。
其中映射的个数是 ( )
A . 0
B 。
1
C 。
2
D 。
3
二、填空题:请把答案填在题中横线上(每小题5分,共20分).
11.函数f (x )的定义域为[a ,b ],且b >-a >0,则F (x )= f (x)-f (-x)的定义域是 .
12.若函数 f (x )=(k -2)x 2+(k-1)x +3是偶函数,则f (x )的递减区间是 .
13.函数y=(x-1)2-2,0≤x ≤2的最大值是 ,最小值是 .
14.设奇函数f(x)的定义域为[−5,5].若当x ∈[0,5]时,f (x )的图象如右图,
则不等式f (x )<0的解集是 .
三、解答题:(共40分).
15.已知,a b 为常数,若22
()43,()1024,f x x x f ax b x x =+++=++
则求b a -5的值。
16. (12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ),并写出它的定义域.
17.对于函数f(x)=x 2-2|x|,
(1)判断其奇偶性,并指出图象的对称性;
(2)画此函数的图象,并指出其单调区间。
(10分)
18.已知函数21)(x
b ax x f ++=是定义在()1,1-上的奇函数,且52)21(=f (1) 确定函数)(x f 的解析式
(2) 用定义证明)(x f 在()1,1-上是增函数
(3) 解不等式0)()1(<+-t f t f
一、选择题:BACBBDABAC
二、填空题:
11. [a ,-a ]; 12. ()0,+∞; 13. -1, -2; 14. ()
()2,02,5- 三、解答题:
15. 2
16.解:AB=2x , CD =πx ,于是AD=221x x π--, 因此,y =2x · 2
21x x π--+22x π, 即y =-lx x ++224
π. 由⎪⎩
⎪⎨⎧>-->022102x x x π,得0<x <,21+π
函数的定义域为(0,2
1+π). 17.(1)偶函数;(2)增区间:()()1,0,1,-+∞;减区间:()(),1,0,1.-∞-
18.(1)()21x f x x =
+;(2)略;(3)10,2⎛⎫ ⎪⎝⎭。