散流器送风计算方法
送风距离计算
第10章 室内气流分布10.1 对室内气流分布的要求与评价10.1.1 概述空气分布又称为气流组织.室内气流组织设计的任务就是合理的组织室内空气的流动与分布,使室内工作区空气的温度、湿度、速度和洁净度能更好的满足工艺要求及人们舒适感的要求。
空调房间内的气流分布与送风口的型式、数量和位置,回风口的位置,送风参数,风口尺寸,空间的几何尺寸及污染源的位置和性质有关。
下面介绍对气流分布的主要要求和常用评价指标。
10。
1.2 对温度梯度的要求在空调或通风房间内,送入与房间温度不同的空气,以及房间内有热源存在,在垂直方向通常有温度差异,即存在温度梯度。
在舒适的范围内,按照ISO7730标准,在工作区内的地面上方1.1m 和0。
1m 之间的温差不应大于3℃(这实质上考虑了坐着工作情况);美国ASHRAE55—92标准建议1.8m 和0.1m 之间的温差不大于3℃(这是考虑人站立工作情况).10。
1.3 工作区的风速工作区的风速也是影响热舒适的一个重要因素。
在温度较高的场所通常可以用提高风速来改善热舒适环境。
但大风速通常令人厌烦。
试验表明,风速〈0。
5m/s 时,人没有太明显的感觉。
我国规范规定:舒适性空调冬季室内风速≯0。
2m/s ,夏季≯0。
3m/s 。
工艺性空调冬季室内风速≯0.3m/s ,夏季宜采用0。
2-0。
5m/s 。
10。
1.4 吹风感和气流分布性能指标吹风感是由于空气温度和风速(房间的湿度和辐射温度假定不变)引起人体的局部地方有冷感,从而导致不舒适的感觉。
1.有效吹风温度EDT美国ASHRAE 用有效吹风温度EDT (Effective Draft Temperature )来判断是否有吹风感,定义为)15.0(8.7)(EDT ---=x m x t t ν (10-1)式中 t x ,t m ——室内某地点的温度和室内平均温度,℃; v x —-室内某地点的风速,m/s 。
对于办公室,当EDT=-1。
气流组织的计算
气流组织的计算
气流组织的计算
散流器的计算
以典型房间为例,空调房间为4.5m x 4.5m ,净高4.5m ;单台风机盘管机组送风量为s m G /188.03=,送风口采用方形散流器,回风口采用单层百叶风口,安装在房间吊顶上,共布置一个散流器即可1)初选散流器
选用颈部尺寸为200mm x 200mm 的方形散流器,颈部面积为2
04.0m ,则颈部风速 s m v /7.404
.0188.00== 散流器实际出风口面积约为2036.0%90m S A == 散流器出口实际风速s m v s /2.59
.07.4==
2)计算射流末端速度为s m /5.0的射程 m x v A Kv x x
s 842.202
/1=-= x ——自散流器中心为起点的射流水平距离
x v ——在x 处的最大风速
0x ——平送射流原点与散流器中心的距离,多锥面散流器取0.07m
s v ——散流器出口风速
A ——散流器有效面积
K ——送风口常数,多锥面散流器为1.4,盘式散流器为1.1
3)计算室内平均速度
s m H L x v m /215.0)
4/(381.02/122=+= L ——散流器服务器边长
H ——房间净高
x ——射程。
空调系统散流器的选择及水力计算 - 副本
空调系统散流器的选择及水力计算(2012.5.22)一、散流器的选择1.风速:(1)散流器出口风速:2——5m/s(一般选用中间值3m/s);(2)回风口风速:小于等于4 m/s,如距人较近小于等于3m/s;居住建筑小于等于2m/s.2.选型布置步骤:(1)依据已知房间送风量,将质量流量转变为体积流量;(2)计算房间平面面积(各房间单独计算)F;(3)出口风速选3m/s;(4)送风口尺寸选择时不要选的过大(防止水力计算后风管尺寸小于散流器尺寸),尺寸一般选择:1)中小型空间400mm*400mm以下;2)大型空间可适当放大,但也不宜过大。
(5)送风形式多采用顶送顶回(即送风口与回风口都在房间顶部);(6)根据房间面积F、选型样本中散流器选择参数(风速、面积、扩散半径)初选散流器的大小和个数;(7)依据坚定送风口风速(3m/s),房间送风量(体积流量)综合第(6)步确定散流器的大小和个数以及布置位置;(8)校核第(6)(7)步,使选择结果接近或一致,否则应重新选择;(9)根据已选的散流器尺寸、数量,反向校核散流器出口风速,处于2——5m/s 之间即可,否则应重新选择。
3.回风口数量和尺寸主要依据速度限制和回风量进行选择,选择时应避免与送风口短路。
4.附:散流器样本部分内容。
二、空调系统风管水力计算1.假定流速法:(50——60dB )(1)主风管空气流速:6——8 m/s ;(2)支风管空气流速:3——5 m/s ;(3)风口出风速度:2——5 m/s 。
2.步骤:(各管段分别编号计算)(1)假定流速v(2)根据已知的质量流量转变为体积流量;(3)计算风管所需断面积:(假定速度)体积流量v V f )(= (4)依据f 值选择风管尺寸,为'f b a =⨯,要求'f f ≈;(5)根据假定流速和流量查水力计算表,可得风管具体尺寸、单位长度阻力损失及相应流速,确定'f (实际风管断面积)后,反算''f V v =(实际流速)并校核。
风量风速计算方法
一、室内风管风速选择表1、低速风管系统的推荐和最大的流速m/s2、低速风管系统的最大允许速m/s二、室内风口风速选择表1、送风口风速2、以噪音标准控制的允许送风流速m/s3、推荐的送风口流速m/s4、送风口之最大允许流速m/s5、回风口风速6、回风格栅的推荐流速m/s7、百叶窗的推荐流速m/s8、逗留区流速与人体感觉的关系三、通风系统设计一般原则:(1)人不经常停留的地方;(2)房间的边和角;(3)有利于气流的组织2、标准型号风盘所接散流器的尺寸表-办公室风机盘管接风管的风速:通常为1.5~2.0 m/s,不能大于2.5 m/s,否则会将冷凝水带出来.3、散流器布置散流器平送时,宜按对称布置或者梅花形布置,散流器中心与侧墙的距离不宜小于1000mm;圆形或方形散流器布置时,其相应送风范围(面积)的长宽不宜大于1:1.5,送风水平射程与垂直射程()平顶至工作区上边界的距离)的比值,宜保持在0.5~1.5之间.实际上这要看装饰要求而定,如250×250的散流器,间距一般在3.5米左右,320×320米在4.2米左右.四、风管、风口分类1、风管分类1)按风管材料A、镀锌钢板风管:常用在空调送、回风管道(优点:使用寿命较长,摩擦阻力小,制作快速方便,可工厂预制也可现场临时制作;缺点:受加工设备限制,厚度不宜超过1.2mm)B、普通钢板风管:常用在厨房炉具排油烟以及防油烟风道上(要求2mm上只能采用普通钢板焊接而成,对焊接技术有一定要求)C、无机玻璃钢风管:常用于消防防排烟系统(优点:具有耐腐蚀、使用寿命长,强度较高的优点,造价与钢板风管基本相同;缺点:质量不稳定,某些厂商生产的材料质量比较差,强度和耐火性达不到要求,现场维修较困难)D、硅酸盐板风管:常用排烟管道(优点与无机玻璃钢板相类似,显著特点是防火性能较好;缺点:综合造价较高)E、复合保温板风管:常用有:上海万博(铝箔聚氨酯)、湖南中野(酚醛树脂)、北京百夏(BBS)、铝箔玻璃绵保温风管等F、软风管:常用有铝箔型软管、铝制波纹型半软管、波纤管(在工程上具有施工简单、灵活方便等特点,但其风管阻力比较大,且对施工管理要求比较高)G、其他风管:土建、砖茄、布风管等2)按风管作用分:送风、回风、排风、新风管等3)按风管内风速分:低速、高速风2、风口分类:1)按风口材料分:铝合金风口、铸钢风口、塑料风口、木制风口等2)按风口形状及功能分:A、百叶风口:门铰式百叶风口、单层百叶、双层百叶、防雨百叶等B、散流器:方形散流器、矩形散流器、圆形散流器、圆盘散流器、三面吹型散流器、线槽型散流器等C、旋流风口:具有送出旋转达射流,诱导比大,风俗衰减快等特点D、球型喷口:送风距离大,适合送风距离较大的地方,如各种大厅、展厅及大型装配车间等E、其他风口:球形排风口、栅格形风口、装饰板风口等五、风管、风口设计流程流程一:风系统的划分→流程二:系统风量计算→流程三:确定送风方式→流程四:确定风管布置→流程五:计算风管尺寸→流程六:风口设计选型→流程七:阻力平衡计算机气流组织校核流程一:风系统的划分一个完整的风系统至少应包括:送风段、送风口、回风口、回风段、设备装置根据空调房间的功能、类型、空间等情况进行空调系统划分:分几个系统?每个系统在扫描区域?………在水系统中的大面积区域,一般设有机房,则个根据机房情况进行系统划分,而对于多联机系统来说,内机风量有限,且型号比较固定,根据已有型号进行合理的系统划分即可流程二:系统风量计算送风量计算的依据:空调房间的送风量G通常按照夏季最大的室内冷负荷,由下公式计算确定:公式:G = 3600Q q/ρ(h n-h s) = 3600Q x/ρc(t n-t s) (m³/h)Q q、Q x —室内总全冷负荷和总显冷负荷(KW)H n —室内空气焓值(KJ/Kg)H s —送风焓值(KJ/Kg)t n —室内温度(℃)t s —送风温度(℃)c —空气定压比热[KJ/(Kg. ℃)] ,可取1.01 KJ/(Kg. ℃)ρ—空气密度(Kg/m³),在标准大气压下,空气稳定20℃时,取1.2 Kg/m³根据空调房间的区域面积确定风口个数,根据送风距离选择中或高静压的机型,从而主管及各支管的风量就已经确定.流程三:确定送风方式根据房间功能及装修要求等情况去顶送风方式:侧送侧回、侧送上回、侧送下回、上送上会、上上送下回流程四:确定风管布置根据房间面积、层高及装修要求等情况确定风管的布置:主管走向、支管布置、送/回风管位置流程五:计算风管尺寸采用嘉定流速计算风管截面积,确定风管尺寸1、公式:S=G/3600V确定主风管及各分支管截面积S —风管截面积(㎡)G —风管内风量(m³/h)V —风管内风速(m/h),一般做设计时候,空调送风主管风速不宜大于6 m/h,支管风速不宜大于3 m/h,具体风速可参照下表:2、根据风管截面积参照风管常规尺寸表选择合适的风管尺寸:圆形常用规格(mm):Φ100、Φ120、Φ140、Φ160、Φ180、Φ200、Φ220、Φ250、Φ280、Φ320、Φ360、Φ400、Φ450、、Φ500、、Φ560、、Φ630、、Φ700、、Φ800、、Φ900、、Φ1000、、Φ1120、、Φ1250、Φ1400、Φ1600、、Φ1800、、Φ2000矩形常用规格(mm):120×120、160×120、200×120、250×120、160×160、200×160、250×160、320×160、200×200、250×200、320×200、400×200、500×200、250×250、320×250、400×250、500×250、630×250、320×320、400×320、500×320、630×320、800×320、1000×320、400×400、500×400、630×400、800×400、1000×400、1250×400、500×500、630×500、800×500、1000×500、1250×500、1600×500、630×630、800×630、1000×630、1250×630、1600×630、800×800、1000×800、1250×800、1600×800、2000×800、1000×1000、1250×1000、1600×1000、2000×1000、1600×1250、2000×1250流程六:风口设计选型1、根据房间功能及气流组织选择合适的风口类型A、在离吊顶高度为2~4米的顶部送风中选择什么样的风口比较合适:双层百叶、圆形(方形)散流器、单层百叶、旋流风口B、在一般的侧送风的系统中选择什么样的风口比较合适:双层百叶、单层百叶C、在空间比较大的展厅、体育馆、多功能厅、大堂等一般选择什么样的风口比较合适:双层百叶、圆形(方形)散流器、单层百叶、旋流风口、球形喷口各种不同的风口的特点和使用范围◇双层百叶风口:1调节式百叶送风口、2可直接与风机盘管配套使用、3用于集中空调系统的末端,调节叶角度,可得到相应送风距离和扩散角、4前排叶片平行于短边为A型,叶片平行于长边为B型◇单层百叶风口:1可用于回风系统、2调节式百叶风口、3可以配过滤器和多叶对开调节阀叶片平行于短边为A型,叶片平行于长边为B型◇侧壁格栅风口:1可用做回风和新风口、2装在墙壁上比较美观,看不见后面的东西、3作为新风口时,后面加铝板网或过滤网、4不注明时,叶片平行于长边◇可开式风口:1适用于做回风口、2还可兼做检修口、3此风口不宜做的太大,但B尺寸也不宜≤170mm、4此风口也称铰链式风口◇矩形(方形)散流器:1气流型式为贴附型(平送型)、2适用于底层吊顶送风系统、3按送风距离确定颈部的风速、4中间叶片芯为可拆卸,便于安装,调试、5送风加调节阀,回风可加过滤器、6天花板开洞尺寸为颈尺寸加75mm,即为(A+75)×(B+75)◇三面吹散流器:1气流型式为贴附型(平送型)、2适用于顶棚的靠墙一侧或局部送风、3中间叶片芯为可拆卸,便于安装,调试◇条形直片式散流器:1突了线性设计特点、2用于室内和环形分布的送,回风、3可根据装饰要求做各种造型、4风口后面可配黑色铝板网,可看不见里面,起遮挡作用、5多个风口并接使用,并缝处有插接板◇条缝活叶型风口:1有其独特设计、2可根据装饰要求做各种造型、3每一组槽内存两个可调叶片,可调制气旋方向和大小、4可根据要求做多组,但不宜做的太宽,最多不得超过十组◇自垂百叶式风口:1用于正压的空调房间的启动排气、2用于新风口处和排风口处、3靠风口百叶自然下垂,隔绝室内外空气交换,当室内气压大于室外时,气流将百叶吹开而向外排气室外空气又不能流入室内、4本风口有单向止回作用、5订货时需说明吹出的方向,即A型或B型◇地送风固定百叶风口:1此风口型材刚性好,并斜向送风、2此风口有单向(A)和双向(B)型两种形式、3此风口用于地面送回风,所以不宜做的过大◇遮光百叶风口:1此风口用于暗室通风且遮光、2可用于门上或墙上、3此风口不宜做的过大◇弧形风口:1可用于吊顶安装时的侧弯弧形亦可为侧面安装的内弯随向弧形、2最好根据工地现场弧形板弯制、3弯曲半径不宜做得过小,R>1.5米为宜◇网式回风口:1结构简单、2可用室外和室内自然通风、3中间用瓦楞铝板网做为通风过滤材料◇可拆卸式风口:1此风口后可配过滤网、2可以方便拆装、3可做检查门使用◇风口多叶对开调节阀:1其调节方案是摘下风口的中心叶片在用螺刀调节中心螺杆◇圆形散流器:1用于冷暖送风,常安装在顶棚上、2吹出气流呈贴附(平送)型、3可以供给较大的风量、4可于圆形对开调节阀配套使用◇圆盘式散流器:1用于冷暖送风,常安装在顶棚上、2出口风速大,射程远、3气流特性属于散流下送型、4能以较小的风量供应较大的地面面积、5可与圆形对开调节阀配套使用◇小圆形散流器:1用于冷暖送风安装在顶棚上、2气流特性属于下送型、3此风口造型别致,小巧玲珑、4用于顶棚较低的较小房间送风,其中Φ126. Φ205叶片密度大,其余规格叶片单边间距为25mm◇圆形斜叶片散流器:1适用于在外墙上作新风口、2适用于墙上做回风口、3叶片倾斜24´◇圆环形叶片散流器:1送风距离远、2适用于较高的顶棚、3造型新颖美观◇球形风口:1是一种喷口型送风口,风口流速高、2可以在顶角为35°的圆锥形空间内随意转动调节,按指定方向送风、3适用于高大屋顶高速送风或局部供冷的场合◇球形排气罩:1可安装于室内墙壁的排气罩、2适用于厨房、厕所的排气、3其外观美观◇防水百叶风口:1其叶片设计成特殊形状、2只有防雨溅入内部的功能,一般安装在外墙上做新风口、3风口后面可以加铝板网,以防鸟或虫进入◇可开式单层百叶风口:1回风口可开与送风口单双百叶相对应装饰效果好、2便于安装,清洗过滤网、3适宜宽度120-200之间◇可开式方形散流器:1回风口与送风方型散流器相对应适合于大厅等宽大的客厅房间装饰,使造型风格上得到完美的统一、2便于安装,清洗过滤网、3可加工成方型和矩形两个规格的可开型矩形散流器◇外墙口风:1此风口安装在外墙上,即通风又防雨水流入、2用一种装饰型材粘贴在外框四周、3外框于叶片较一般通风风口型材刚性好,因而可以做成较大尺寸、4风口后面可以装拼接式过滤器◇文丘里式(变风量)喷口:1风口出口段采用特形曲线,使之喷射距离更远、2喷口内一般调节芯可以轴向移动、3可以调节出风而积达到射程,风量的控制,适用于大型厅展,以达到侧向吹出距离远,并扩展其流向下扩展◇带灯箱,静压箱的条缝送风口2、根据风量确定风口尺寸(假定流速法)风口的风速选择卡参考下表1、计算最不利环路的压力损失并校核各支管阻力平衡1)简单计算最不利环路的压力损失A、摩擦压力损失值:Pm为0.8~1.5Pa/mB、P=Pm×L×(1+K)L为风管总长度弯头三通多时,K=3~5弯头三通少时,K=1~22)校核各支管阻力平衡,如分支管比较多时,需在各分支管上装风量调节阀2、室内气流组织校核校核各空调风系统的气流组织是否出现短路校核室内空气循环是否合理,避免空调四区的出现校核新风系统与排风系统是否合理风口的距离是否合理风量风管计算方法风管:风管尺寸=风量/风速风量=房间面积*房间高*换气次数例:风量40000m³/h,风速9m/s,得风管尺寸=40000m³/h除以9m/s除以3600s=1.23㎡=1.5m*0.82风管尺寸:1500×800mm,而根据矩形常用规格只有:1600×800 mm风速需要根据噪音要求调整的通风工程以假定流速法为例,其计算步骤和方法如下:1、绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量段长度一般按两管件间中心线长度计算,不扣除管件(如三通、弯头)本身的长度2、确定合理的空气流速风管内的空气流速对通风、空调系统的经济性有较大的影响.流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加.对除尘系统会增加设备和管道的磨损,对空调系统会增加噪声.流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大.对除尘系统流速过低会使粉尘沉积赌塞管道.因此,必须通过全面的技术经济比较选定合理的流速.根据经验总结,风管内的空气流速可按表6-2-1、表6-2-2及表6-2-3确定.除尘器后风管内的流速可对比表6-2-3中的数值适当减小.表6-2-2 空调系统低速风管内的空气流速3、据各风管的风量和选择的流速,按式(6-2-1)计算各管段的断面尺寸,并计算摩擦阻力和局部阻力.定风管断面尺寸时,应采用规范统一规定的通风管道规格,以利于工业化工制作.风管断面尺寸确定后,应按管内实际流速计算阻力.阻力计算应从最不利环路(即阻力最大的环路)开始.袋式除尘器和静电除尘器后风管内的风量应把漏风量和反吹风量计入.在正常运行条件下,除尘器的漏风率应不大于5%.4、并联管路的阻力平衡调节了保证各种、排风点达到预期的风量,两并联支管的阻力必须保持平衡.对一般的通风系统,两支管的阻力差应不超过15%,除尘系统应不超过10%.若超过上述规定,可采用下述方法调节其阻力平衡.(1)调整支管管径这种方法是通过改变支管管径改变支管的阻力,达到阻力平衡.调整后的管径按下式计算:(6-2-2)式中D´—调整后的管径mmD —原设计的管径mm△P —原设计的支管阻力Pa△P´—要求达到的支管阻力Pa应当指出,采用本方法时,不宜改变三通的支管直径,可在三通支管上先增设一节渐扩(缩)管,以免引起三通局部阻力的变化(2)增大风量当两支管的阻力相差不大时,例如在20%以内,可不改变支管管径,将阻力小的那段支管的流量适当加大,达到阻力平衡.增大后的风量按下式计算:(6-2-3式中L´—调整后的支管风量m³/hL —原设计的支管风量m³/h采用本方法会引起后面干管内的流量相应增大,阻力也随之增大;同时风机的风量和风压也会相应增大(3)阀门调节通过改变阀门开度,调节管道阻力,从理论上讲是一种最简单易行的方法.必须指出,对一个多支管的通风空调系统进行实际调试,是一项复杂的技术工作.必须进行反复的调整、测试才能完成,达到预期的流量分配.5、计算系统的总阻力。
暖通规范中关于各类常见风管风速、风口风速、水管流速的规定
暖通规范中关于各类常见风速的规定一、各类风口风速规定1、采暖风口1.1、采用热风采暖系统时,应遵守下列规定:送风口的送风速度V(m/s),应根据送风口的高度、型式及布置经过计算确定,当送风口位于房间上部时,送风速度宜取:V= 5~15m/s;当送风口位于离地不高处时,送风速度宜取:V =0.3m/s~0.7m/s;回风口的回风速度,宜取:V=0.3m/s。
来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.71.2、热风幕的送风速度:公共建筑的外门,风速不宜大于6 m/s,高大外门不应大于25m/s。
来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.152、送排回风口2.1、进风、排风口风速(m/s)注:风口风速应按实际有效面积计算,一般百叶风口的遮挡率取50%。
来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.1.4.82.2、自然通风系统的进排风口风速宜按下表采用:来源GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.42.3、机械通风的进排风口风速宜按下表采用:来源:GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.52.4、厨房排风系统的风管风速不宜小于8m/s,且不宜大于10m/s;排风罩接风管的喉部风速应取4~5m/s。
来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.2.102.5、侧送和散流器平送的出口风速采用2m/s~5m/s。
孔板下送风的出口风速,从理论上讲可以采用较高的数值。
因为在一定条件下,出口风速较高时,要求稳压层内的静压也较高,这会使送风较均匀;同时,由于送风速度衰减快,对人员活动区的风速影响较小。
但当稳压层内的静压过高时,会使漏风量增加,并产生一定的噪声。
一般采用3m/s"'_'5m/s 为宜。
送风量计算公式
送风量计算公式摘要:一、引言二、送风量的定义和作用三、送风量计算公式及解析1.送风量的基本计算公式2.送风量的影响因素3.送风量计算公式的应用实例四、送风量计算公式在实际工程中的应用五、总结正文:送风量计算公式是在暖通空调、通风系统设计中经常用到的工具,它能够帮助我们准确地计算出系统中需要的风量,以确保空气流通、舒适度的需求得到满足。
送风量是指通风系统在单位时间内向室内送入的风量,通常用单位时间内的立方米数(m/h)来表示。
送风量的大小直接影响到室内空气质量、温度、湿度等参数,因此在设计通风系统时,合理地确定送风量是非常重要的。
送风量的计算公式为:Q = A × v其中,Q 表示送风量,A 表示送风口或进风口的面积,v 表示风速。
在实际应用中,影响送风量的因素有很多,如送风口或进风口的形状、大小、位置、风速等。
为了更准确地计算送风量,设计人员需要根据具体情况对这些因素进行综合考虑。
以一个简单的例子来说明送风量计算公式的应用。
假设一个房间的长、宽、高分别为10m、8m 和3m,室内需要保持的温度为25℃,我们可以通过如下步骤计算出所需的送风量:1.计算房间的体积:V = 10 × 8 × 3 = 240 m2.根据室内外温差(例如5℃)和房间的表面积(S = 2 × (10 × 3 + 8 ×3)) 计算房间的热量需求:Q = U × S × ΔT = 1.2 × 240 × 5 = 1440 kcal/h3.根据房间的热量需求和通风系统的热交换效率(例如0.75)计算所需的送风量:Q" = Q / η = 1440 / 0.75 = 1920 m/h因此,这个房间至少需要1920 m/h 的送风量才能保持舒适的室内环境。
通过以上分析,我们可以看到,送风量计算公式在实际工程中发挥着重要作用。
完整版散流器送风计算方法
11.1.2散流器送风计算B× (见空调工程P378)外沿尺寸A方形散流器的规格用颈部尺寸W×H表示,50) (H+50)×+(H+106),顶棚上预留洞尺寸C×D=(W(W=+106)× 1、散流器送风气流组织设计计算内容6m/s 2~5m/s最大不超过(1)送风口的喉部风速Vd取 (2) 射流速度衰减方程及室内平均风速FKVx?xo?Vox m以散流器中心为起点的射流水平距离(射程)式中:X-m/s 在X处的最大风速Vx--m/sVo散流器出口风速0.07m 自散流器中心算起到射流外观原点的距离, 多层锥面散流器为Xo-2m F-散流器的有效流通面积%按901.1盘式散流器为K-系数:多层锥面散流器为1.4处的0.5m/s若要求射流末端速度为0.5m/s,则射程为散流器中心到风速为距离根据式8-6,则:KvoFKvoF?Xo=射程X=-Xo= X0.5Vx式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为1.4盘式散流器为1.1-散流器出口风速Vom/s2 m%按90散流器的有效流通面积F-0.07m , 自散流器中心算起到射流外观原点的距离多层锥面散流器为Xo-0.5 m/s处的最大风速一般为在Vx-X6m/s最大不超过5m/s~2一般取Vd散流器的喉部风速=rL3810.(m/s)Vm室内平均风速122)(L/4?H28-2例 (见空调工程P401)散流器服务区边长式中:L-(m) 注:(m)房间净空高H-rr-r-因此即为射程 L射流射程与边长L之比L,射程%, 送热风时减少20当送冷风时, 室内平均风速取值增加20%其轴心温差衰减可近似地取轴心温差:对于散流器平送, (3)VxVx?tx to???tx?VdVd?to-tx射流末端温度衰减值△℃0.5 m/sX处的最大风速一般为Vx-在-to送风温差℃△m/sVd-散流器的喉部风速见空调工程P401)2、散流器送风气流设计步骤(方形散流器的送风面积的长宽比布置散流器一般按对称布置或梅花形布置,(1)、散流器中心线和墙体距离一般不小于1m1:1.5不宜大于就可以计算出单个方形散流器的送风,(2)、由空调区的总送风量和散流器的个数根据散,~5m/s)计算出所需散流器喉部面积量,假定散流器的颈部风速(如取 2 选择散流器规格流器喉部面积,校核射流的射程是否满足要求,中心处设(8-7)(1)的射程,根据下式(3)、校核%置的散流器的射程应为散流器中心到房间或区域边缘距离的75 ,校核是否满足要求,根据式8-8计算室内平均风速(4)校核室内平均风速=rL.3810Vm(m/s)室内平均风速122)(L/4?H2式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r-r-r L即为射程,因此之比 L射程射流射程与边长L校核是否满足空调区温度,计算轴心温差衰减(8-9)校核轴心温差衰减根据式(5).波动范围要求总送风已知一层大厅舒适性空调区的尺寸为-------L=13.8m,B=13.6m,H=3.5m,3m q/s量=1.389v tn=,to=19送风温度24进行气流分布设计工作区温度采用散流器平送,℃,,℃解:沿宽度方向划分等分, ,布置散流器将空调区进行划分沿长度方向划分为3(1)散流每个区域为一个散流器的服务区, ,则空调区被划分成9个小区域,为3等分 n=9个器的数量则单个散流器所需的喉为3m/s,选用方型散流器, 假定散流器的颈部风速Vd(2)q v/Vd n,部面积为计算如下2mq 20)=0.067)/(3m×v/Vd n=4(总送风量 240mm的方型散流器,则喉部实际风速为选用喉部尺寸为4,散流器实际出口面积约为喉部面积的Vd=85%m/s=3.068m/s,36036?.10?0.则散流器的有效流通面积3.068Vd=Vo=m/s=3.609m/s 散流器实际出口风速为%0.8585)计算射程(32FKvo36.8531.4?.609?%?0070?.-Xo==射程m=3.353m X 5.0Vx式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为1.4盘式散流器为1.1-散流器出口风速Vom/s2 m%按85散流器的有效流通面积F-0.07m , 自散流器中心算起到射流外观原点的距离多层锥面散流器为Xo- 处的最大风速在Vx-X6m/s最大不超过5m/s~2一般取Vd散流器的喉部风速散流器的射程应为散流器中心到, 散流器中心到边缘距离2.3m,根据要求1.883m。
气流组织计算
ρ
空气密度: 1.2kg/m³c
空气定压比热容: 1.01kJ/(kg·
Ls
房间总送风量:
1.62m³/s L
房间长度:W
房间宽度:H
房间净高:
x0平送射流原点与散流器中心的距离:K
送风口常数:
设计步骤:① 按照房间(或分区)的尺寸布置散流
器,计算每个散流器的送风量。
散流器个数n:每个散流器的送风量
l s:729m³/h 0.20
m³/s
② 初选散流器。
选用散流器颈部尺寸:
方(矩形)形:
圆形:
颈部面积:颈部风速υ0= 3.81m/s
散流器实际出口面积A=0.05㎡散流器出口风速υs = 4.242.52m
0.22m/s
式中,L——散流器服务区边长:多层锥面散流器取0.07m。
④ 计算工作区平均风速。
多层锥面散流器为1.4,盘③ 计算射程,即散流器中心到风速为υx=按表1选择适当的散流器颈部风速υ0,层高较低或要求噪声低时,应选低风速;层高较高选定散流器规格。
散流器的具体选择可参看有关样本。
散流器平送气流组织计算
左右选取风口。
散流器实际出口面
夏季不大于
工作区风速要求,冬季不大于
室内平均风速:
送冷风时,υm=0.27m/s
送热风时,υm=0.18m/s
.07m。
.4,盘式散流器为1.1。
高较高或噪声控制要求不高时,可选用高风速;选定风速后,进一步织计算
取其平均值。
出口面积与颈部面积的比值:
υm满足工作区风速要求,设计合理!υm满足工作区风速要求,设计合理!。
(完整版)散流器送风计算方法
11.1.2散流器送风计算方形散流器的规格用颈部尺寸W ×H 表示, (见空调工程P378)外沿尺寸A ×B =(W +106)×(H +106),顶棚上预留洞尺寸C ×D =(W +50)×(H +50) 1、散流器送风气流组织设计计算内容(1)送风口的喉部风速Vd 取2~5m/s 最大不超过6m/s (2) 射流速度衰减方程及室内平均风速xox F K Vo Vx += 式中:X-以散流器中心为起点的射流水平距离(射程)mVx-在X 处的最大风速m/s Vo -散流器出口风速m/sXo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m F-散流器的有效流通面积m 2按90%K-系数:多层锥面散流器为1.4盘式散流器为1.1若要求射流末端速度为0.5m/s,则射程为散流器中心到风速为0.5m/s 处的距离根据式8-6,则: 射程X =VxF Kvo -Xo= X =Xo FKvo -5.0 式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为1.4盘式散流器为1.1 Vo -散流器出口风速m/sF-散流器的有效流通面积m 2按90%Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速一般为0.5 m/s散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s室内平均风速Vm=2122)4/(381.0H L rL +(m/s)式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r L -射程 r-射流射程与边长L 之比,因此r L 即为射程当送冷风时, 室内平均风速取值增加20%, 送热风时减少20% (3)轴心温差:对于散流器平送,其轴心温差衰减可近似地取Vd Vx to tx ≈∆∆ to VdVxtx ∆≈∆△tx -射流末端温度衰减值℃Vx-在X 处的最大风速一般为0.5 m/s△to -送风温差℃Vd-散流器的喉部风速m/s2、散流器送风气流设计步骤(见空调工程P401)(1)、布置散流器一般按对称布置或梅花形布置,方形散流器的送风面积的长宽比不宜大于1:1.5散流器中心线和墙体距离一般不小于1m(2)、由空调区的总送风量和散流器的个数,就可以计算出单个方形散流器的送风量,假定散流器的颈部风速(如取2~5m/s)计算出所需散流器喉部面积,根据散流器喉部面积,选择散流器规格(3)、校核(1)的射程,根据下式(8-7)校核射流的射程是否满足要求,中心处设置的散流器的射程应为散流器中心到房间或区域边缘距离的75% (4)校核室内平均风速,根据式8-8计算室内平均风速,校核是否满足要求 室内平均风速Vm=2122)4/(381.0H L rL +(m/s)式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r L -射程 r-射流射程与边长L 之比,因此r L 即为射程(5)校核轴心温差衰减根据式(8-9)计算轴心温差衰减,校核是否满足空调区温度波动范围要求-------已知一层大厅舒适性空调区的尺寸为L=13. 8m,B=13.6m,H=3.5m,总送风量q v =1.389m 3/s,送风温度to=19℃,工作区温度tn=24℃,采用散流器平送,进行气流分布设计解:(1)布置 散流器将空调区进行划分,沿长度方向划分为3等分, 沿宽度方向划分为3等分,则空调区被划分成9个小区域,每个区域为一个散流器的服务区, 散流器的数量n=9个(2)选用方型散流器, 假定散流器的颈部风速Vd 为3m/s,则单个散流器所需的喉部面积为q v/Vd n,计算如下q v/Vd n=4(总送风量)/(3m ×20)=0.067m 2选用喉部尺寸为240mm 的方型散流器,则喉部实际风速为 Vd=36.036.0104⨯⨯m/s=3.068m/s, 散流器实际出口面积约为喉部面积的85%,则散流器的有效流通面积 散流器实际出口风速为Vo=%Vd 85=85.0068.3m/s=3.609m/s (3)计算射程射程X =VxFKvo -Xo=07.05.036.0%85609.34.12-⨯⨯⨯m=3.353m 式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为1.4盘式散流器为1.1 Vo -散流器出口风速m/sF-散流器的有效流通面积m 2按85%Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s散流器中心到边缘距离 2.3m,根据要求, 散流器的射程应为散流器中心到房间或区域边缘距离的75%,所需的最小射程为:2.3m ×0.75=1.725m 。
散流器进流系数计算公式
散流器进流系数计算公式在流体力学中,散流器是一种用于将流体分散成多个流道的装置。
它通常用于工业生产中的化工、制药等领域,以及环境工程中的废水处理等方面。
在设计和使用散流器时,进流系数是一个十分重要的参数,它可以帮助工程师和研究人员更好地理解和控制流体在散流器内的分布情况。
本文将介绍散流器进流系数的计算公式及其应用。
散流器进流系数的定义。
散流器进流系数(Inlet Dispersal Coefficient)是指流体进入散流器后,由于散流器的设计和结构特点,流体在散流器内部的分布情况与进入时的分布情况之间的关系。
它可以用来描述流体在散流器内的扩散程度,以及流体在散流器内的分布均匀度。
进流系数的数值越接近1,表示流体在散流器内的分布越均匀,扩散程度越小;反之则表示流体的分布越不均匀,扩散程度越大。
散流器进流系数的计算公式。
散流器进流系数通常可以通过实验测定或数值模拟来获得,但在实际工程中,为了更方便地进行设计和分析,工程师和研究人员通常会使用一些经验公式来估算散流器的进流系数。
其中,比较常用的计算公式包括以下几种:1. 代表性长度法(Representative Length Method)。
代表性长度法是一种基于散流器的几何形状和流体流动特性来估算进流系数的方法。
其计算公式如下:Cd = 0.5 + 0.2(L/D)。
其中,Cd表示散流器的进流系数,L表示散流器的代表性长度,D表示散流器的直径或特征尺寸。
代表性长度通常可以根据散流器的具体形状和设计参数来确定,例如对于圆柱形散流器,代表性长度可以取为散流器的直径。
2. 离心力法(Centrifugal Force Method)。
离心力法是一种基于流体在散流器内受到的离心力作用来估算进流系数的方法。
其计算公式如下:Cd = 1 0.05(Vc/V)。
其中,Cd表示散流器的进流系数,Vc表示散流器内流体受到的最大离心力,V表示流体的流速。
离心力可以根据流体在散流器内的流动状态和散流器的设计参数来计算,通常可以通过数值模拟或实验测定来获得。
散流器送风计算方法
11.1.2散流器送风计算方形散流器的规格用颈部尺寸W ×H 表示, (见空调工程P378)外沿尺寸A ×B =(W +106)×(H +106),顶棚上预留洞尺寸C ×D =(W +50)×(H +50) 1、散流器送风气流组织设计计算内容(1)送风口的喉部风速Vd 取2~5m/s 最大不超过6m/s (2) 射流速度衰减方程及室内平均风速xox F K Vo Vx += 式中:X-以散流器中心为起点的射流水平距离(射程)mVx-在X 处的最大风速m/s Vo -散流器出口风速m/sXo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m F-散流器的有效流通面积m 2按90% K-系数:多层锥面散流器为盘式散流器为若要求射流末端速度为s,则射程为散流器中心到风速为s 处的距离根据式8-6,则: 射程X =VxF Kvo -Xo= X =Xo FKvo -5.0 式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为盘式散流器为 Vo -散流器出口风速m/sF-散流器的有效流通面积m 2按90%Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速一般为0.5 m/s散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s室内平均风速Vm=2122)4/(381.0H L rL +(m/s)式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r L -射程 r-射流射程与边长L 之比,因此r L 即为射程当送冷风时, 室内平均风速取值增加20%, 送热风时减少20% (3)轴心温差:对于散流器平送,其轴心温差衰减可近似地取Vd Vx to tx ≈∆∆ to VdVxtx ∆≈∆△tx -射流末端温度衰减值℃Vx-在X 处的最大风速一般为0.5 m/s△to -送风温差℃Vd-散流器的喉部风速m/s2、散流器送风气流设计步骤(见空调工程P401)(1)、布置散流器一般按对称布置或梅花形布置,方形散流器的送风面积的长宽比不宜大于1:散流器中心线和墙体距离一般不小于1m(2)、由空调区的总送风量和散流器的个数,就可以计算出单个方形散流器的送风量,假定散流器的颈部风速(如取2~5m/s)计算出所需散流器喉部面积,根据散流器喉部面积,选择散流器规格(3)、校核(1)的射程,根据下式(8-7)校核射流的射程是否满足要求,中心处设置的散流器的射程应为散流器中心到房间或区域边缘距离的75% (4)校核室内平均风速,根据式8-8计算室内平均风速,校核是否满足要求 室内平均风速Vm=2122)4/(381.0H L rL +(m/s)式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r L -射程 r-射流射程与边长L 之比,因此r L 即为射程(5)校核轴心温差衰减根据式(8-9)计算轴心温差衰减,校核是否满足空调区温度波动范围要求-------已知一层大厅舒适性空调区的尺寸为L=13. 8m,B=,H=,总送风量q v =s,送风温度to=19℃,工作区温度tn=24℃,采用散流器平送,进行气流分布设计解:(1)布置 散流器将空调区进行划分,沿长度方向划分为3等分, 沿宽度方向划分为3等分,则空调区被划分成9个小区域,每个区域为一个散流器的服务区, 散流器的数量n=9个(2)选用方型散流器, 假定散流器的颈部风速Vd 为3m/s,则单个散流器所需的喉部面积为q v/Vd n,计算如下q v/Vd n=4(总送风量)/(3m ×20)=0.067m 2选用喉部尺寸为240mm 的方型散流器,则喉部实际风速为 Vd=36.036.0104⨯⨯m/s=3.068m/s, 散流器实际出口面积约为喉部面积的85%,则散流器的有效流通面积 散流器实际出口风速为Vo=%Vd 85=85.0068.3m/s=s (3)计算射程射程X =VxF Kvo -Xo=07.05.036.0%85609.34.12-⨯⨯⨯m= 式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为盘式散流器为 Vo -散流器出口风速m/sF-散流器的有效流通面积m 2按85%Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s散流器中心到边缘距离,根据要求, 散流器的射程应为散流器中心到房间或区域边缘距离的75%,所需的最小射程为:×=。
对方形散流器送风口的数值描述方法及应用
(11 黑龙江科技学院 ,黑龙江 哈尔滨 150027 ;21 哈尔滨工业大学 ,黑龙江 哈尔滨 150008)
摘 要 :在对室内空气流动进行数值模拟的过程中 ,对送风口的描述是影响模拟效果的重要因素之 一. 已有的风口模型相对于具体设备而言缺乏针对性 ,且不便于实际操作 ,不适应工程模拟的需要. 为 了寻求一种简便易行的描述方法 ,以工程中常用的方形散流器为研究对象 ,从其结构入手进行分析 , 得到流速分布曲线及计算式 ,进而提出新的描述方法. 模拟过程中采用控制容积法离散方程 ,将流速 定义在控制面上 ,并引入时间项作为松弛因子. 通过模拟具体问题 ,预测出散流器出口附近的流速分 布 ,并与实测结果比较 ,验证了描述方法的可靠性和可行性. 最后应用模拟结果对传统的散流器设置 方式提出改进意见. 关键词 :CFD ;数值模拟 ;方形散流器 ;风口模型 ;气流组织 中图分类号 :TU834. 5 文献标识码 :A 文章编号 :1672 - 0946 (2004) 02 - 0162 - 05
图 1 散流器结构及流速分布图
对图 1 (a) 中从 A 、B 之间断面流下的空气而
言 ,进口断面的面积为 B1 、B2 、B3 、B4 所围面积与 A1 、A2 、A3 、A4 所围面积之差 , 出口断面的面积为
C1 、C2 、C3 、C4 所围面积与 D1 、D2 、D3 、D4 所围面
积之差 ,则
所示) ,送风口采用 240 mm ×240 mm(颈部尺寸) 方 形散流器 (带翻边) ,回风口采用 300 mm ×200 mm 百叶风口 ,风量 01065 m3/ s.
2 对方形散流器送风口的描述方法
现以 300 mm ×300 mm(颈部断面尺寸) 方形散 流器为例 ,具体说明描述方法. 实际模拟中采用控 制容积法离散方程 ,运用交错网格 ,并将速度定义 在控制面上[3 ,4 ] .
暖通规范中关于各类常见风管风速、风口风速、水管流速的规定
暖通规范中关于各类常见风速得规定一、各类风口风速规定1、采暖风口1、1、采用热风采暖系统时,应遵守下列规定:送风口得送风速度V(m/s),应根据送风口得高度、型式及布置经过计算确定,当送风口位于房间上部时,送风速度宜取:V= 5~15m/s;当送风口位于离地不高处时,送风速度宜取:V =0、3m/s~0、7m/s;回风口得回风速度,宜取:V=0、3m/s。
来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2、8、71、2、热风幕得送风速度:公共建筑得外门,风速不宜大于6 m/s,高大外门不应大于25m/s。
来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2、8、152、送排回风口2、1、进风、排风口风速(m/s)注:风口风速应按实际有效面积计算,一般百叶风口得遮挡率取50%。
来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4、1、4、82、2、自然通风系统得进排风口风速宜按下表采用:来源GB50736-2012《民用建筑供暖通风与空气调节设计规范》6、6、42、3、机械通风得进排风口风速宜按下表采用:来源:GB50736-2012《民用建筑供暖通风与空气调节设计规范》6、6、52、4、厨房排风系统得风管风速不宜小于8m/s,且不宜大于10m/s;排风罩接风管得喉部风速应取4~5m/s。
来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4、2、102、5、侧送与散流器平送得出口风速采用2m/s~5m/s。
孔板下送风得出口风速,从理论上讲可以采用较高得数值。
因为在一定条件下,出口风速较高时,要求稳压层内得静压也较高,这会使送风较均匀;同时,由于送风速度衰减快,对人员活动区得风速影响较小。
但当稳压层内得静压过高时,会使漏风量增加,并产生一定得噪声。
一般采用3m/s"'_'5m/s 为宜。
散流器安装算量
散流器安装算量
散流器用于空调或洁净房间的平顶上的下送风,可根据房间的功能对风口调节成平送和下送两种气流流型(即贴附气流和垂直气流)。
散流器采用插入风管的方法安装,插人风管后从扩散圈的孔口处旋紧安装螺钉,然后再将内扩散圈组挂在颈管架上。
挂装的位置有两个,挂在h挡送风呈下送气流;挂在下挡送风呈水平贴附气流。
散流器的材质有钢制、铝合金及不锈钢等。
散流器的表面处理与其他风口相同。
散流器的外形及尺寸,其扩散半径、垂直到达距离分别为风速衰减到0.5m/s、0.25m/s位置的参数。
垂直到达距离在吹出气流温度差10度时,表中所列的参数变化为±25%。
空调或通风的送风口,顾名思义,就是让出风口出风方向方成多向流动,一般用在大厅等大面积地方的送风口设置,以便新风分布均匀。
散流器气流为贴附(平送型)型适用于吊顶送风系统,风口一般是平面的,顶送风一般采用方形散流器,散流器底面贴在天花板上。
室内机下方吊顶上留有检修口,便于对室内机电气接线进行检修和更换。
开关或者温控器,控制出风口内部电子风阀的开关,调节送风量大小,实现不同用途,房间的调温效果。
安装散流器的步骤,安装前应检查风口机械性能。
风口的活动零件,要求动作自如、阻尼均匀,无卡死和松动。
导流片可调或可拆卸的产品,要求调节拆卸方便、可靠,定位后无松动现象;风口外表装饰面应平整、扩散环分布应匀称、颜色应一致、无明显的划伤和压痕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1.2散流器送风计算+=(W P378)外沿尺寸A×B×方形散流器的规格用颈部尺寸WH表示, (见空调工程50) +(W+50)×(H(H106)×+106),顶棚上预留洞
尺寸C×D=、散流器送风气流组织设计计算内容16m/s 最大不超过取2~
5m/s(1)送风口的喉部风速Vd 射流速度衰减方程及室内平均风速(2)
m
以散流器中心为起点的射流水平距离(射程)式中:X-m/s Vx-在X处的最大风
速-m/s
散流器出口风速Vo0.07m Xo-自散流器中心算起到射流外观原点的距离, 多层锥
面散流器为2m 90F-散流器的有效流通面积%按1.1
1.4盘式散流器为K-系数:多层锥面散流器为处的距离根则射程为散流器中心到风速为0.5m/s若要求射流末端速度为0.5m/s, 则:据式8-6,FFKvoKvoXo?=
射程X=-Xo= X 5.Vx0m
以散流器中心为起点的射流水平距离(射程)式中:X-1.1 1.4系数:多层锥面散流器为盘式散流器为K--m/s
散流器出口风速Vo2 m%按90散流器的有效流通面积F-0.07m , Xo-自散流器
中心算起到射流外观原点的距离多层锥面散流器为0.5 m/s
在X处的最大风速一般为Vx-6m/s 5m/s最大不超过散流器的喉部风速Vd一般取2~=rL.3810(m/s)Vm室内平均风速122)(L/H4?28-2例P401)见空调工程 (注:(m) 散流器服务区边长L-式中:
(m)
房间净空高H-rr-r-因此即为射程 L射流射程与边长L之比L,射程%, 送热风时减少20当送冷风时, 室内平均风速取值增加20%其轴心温差衰减可近似地取 (3)轴心温差:对于散流器平送,-tx射流末端温度衰减值△℃0.5 m/s 处的最大风速一般为在XVx--to送风温差℃△m/s
散流器的喉部风速Vd- P401)(见空调工程2、散流器送风气流设计步骤方形散流器的送风面积的长宽比不宜,(1)、布置散流器一般按对称布置或梅花形布置散流器中心线和墙体距离一般不小于1m大于1:1.5,,就可以计算出单个方形散流器的送风量(2)、由空调区的总送风量和散流器的个数根据散流器喉部面计算出所需散流器喉部面积,2~5m/s)如取假定散流器的颈部风速( ,选择散流器规格
积校核射流的射程是否满足要求,中心处设置的的射程,根据下式(8-7)(3)、校核(1) %散流器的射程应为散流器中心到房间或区域边缘距离的75 校核是否
满足要求8-8计算室内平均风速,(4)校核室内平均风速,根据式
=rL3810.Vm(m/s)室内平均风速122)H4?/(L2式中:L-散流器服务区边长(m) 注:(见空调工程P401)例8-2H-房间净空高(m)
r-r-r L即为射程因此 L射流射程与边长之比,L射程(5)校核轴心温差衰
减根据式(8-9)计算轴心温差衰减,校核是否满足空调区温度波动范围要求
-------已知一层大厅舒适性空调区的尺寸为L=13. 8m,B=13.6m,H=3.5m,总送风量3m q/s
=1.389v,to=tn=24 送风温度19进行气流分布设计,采用散流器平送,℃工作区温度,℃.解:等, 沿宽度方向划分为3 散流器将空调区进行划分,沿长度方向划分为3等分(1)布置散流器的数量每个区域为一个散流器的服务区, 9分,则空调区被划分成个小区域, n=9个则单个散流器所需的喉部面为3m/s,(2)选用方型散流器,
假定散流器的颈部风速Vd q v/Vd n,积为计算如下2mq v/Vd n=4(总送风量)/(3m ×20)=0.067 的方型散流器选用喉部尺寸为240mm,则喉部实际风速为4
m/s=3.068m/s, 散流器实际出口面积约为喉部面积的85%Vd=,
3636?0..10?0则散流器的有效流通面积068.3Vd m/s=3.609m/s =散流器实际出口风速为Vo=%85.085)计算射程(32FKvo361.4?0.?85%?3.609070.?-Xo==射程m=3.353m X50.Vx m
以散流器中心为起点的射流水平距离(射程)式中:X-1.1 盘式散流器为系数:多层锥面散流器为1.4K--m/s
Vo散流器出口风速2m%F-散流器的有效流通面积85按0.07m 多层锥面散流器为Xo-自散流器中心算起到射流外观原点的距离,
处的最大风速Vx-在X6m/s
~25m/s最大不超过散流器的喉部风速Vd一般取散流器的射程应为散流器中心到房间或2.3m,根据要求, 散流器中心到边缘距离因1.725m,0.75=1.725m×。
1.883m>,区域边缘距离的75%所需的最小射程为:2.3m 此射程满足要求 (4)
计算室内平均风速=rL.3810(m/s)室内平均风速Vm122)(L?/4H2.
8-2P401)例(m) 注: (见空调工程式中:L-散流器服务区边长(m)
H-房间净空高r-r-r L之比,L因此射程即为射程射流射程与边长L%2020%, 送热风时减少当送冷风时, 室内平均风速取值增加
=3533..381?0m/s=0.349 m/s室内平均风速Vm122)76.8/4?2.(42夏季工况送冷风,则室内平均风速为0.349 m/s×1.2=0.419 m/s, 满足空调夏季室内风速0.2-0.5 m/s的要求
(5)校核轴心温差衰减
Vx0.5×5 =totx???℃=0.75℃ 3.353Vd满足舒适性空调温度波动范围±1
按负荷计算各房间风量,确定风口数量及尺寸。
送风选择四面吹方形散流器。
回风选择单层百叶回风口。
送风散流器吼部风速取3~3.5m/s,回风百叶风口风速取4~5m/s。
卫生间不回风。
按房间大小及形状布置风口(见图纸)。
按各房间
=-o q h注Q/h m m式中 q-送风量(kg/s) m Q-总冷负荷 (kW)(见制冷空调原理及应用P218)
h-室内设计温度的焓值 m o-送风温度的焓值h
送风量=1.207Kw(冷负荷)/10.05kJ/kg焓差=0.12(kg/s)
3/h)。
口型指吼部尺寸。
432kg/h(360m
冷库工程设计与施工说明
一、设计依据
1.《通风空调工程施工质量验收规范》(GB50243-2002)
2.《采暖通风与空气调节设计规范》(GB 50019━2003)
二、工程概况.
1.该工程为阴凉库设计,库体面积为354m2,容积977 m3。
2.设计内容包括:冷负荷计算,阴凉库平面设计,设备选型。
3.室内设计参数:
室内空调设计温度:22℃
室内空调设计湿度:45%-65%
二.制冷系统设计:
(1)该工程采用2台70kw水冷柜式空调系统供冷。
(2)冷却塔采用60吨逆流式钢冷却塔。
(3)室内新风由单独排气扇负责。
四、通风和空调净化系统的制作安装
1.所有空调及通风系统风管采用优质镀锌钢板制作。
2.风管采用单咬口或转角咬口,接缝处涂密封胶,法兰螺钉孔和铆钉孔的间距不大于100mm,法兰四角应设螺钉孔,铆钉和螺钉等应采用镀锌制品,壁厚大于或等于1.50mm厚的薄钢板风管采用焊接连接。
3.法兰垫片采用橡胶板或闭孔海绵橡胶板,厚度为5mm,宽度同法兰,不得突入风管内部,垫片应擦洗干净,并用粘接剂帖在法兰上,楔形接头。
4.软接管材料采用光面人造革,软橡胶板或涂胶帆布,光面朝里,凡未注明长度者一律按150mm制作。
5.风管调节制作应安装在便于操作的位置,保温风管上的调节阀应采用保温型。
6.风管支吊架:水平风管吊架采用d8圆钢,最大间距3m,支承角钢与该段风管法兰角钢同规格,垂直风管支架采用与该段风管电缆角钢同规格的支承角钢,最大间距3.6m,且每根立管的固定件不少于2个,风管支吊架制作详见国家标准图集T616。
7.保温风管支吊架与风管接触处应垫以坚实的隔热材料,如木块等,垫块的厚度应与保温层相同。
8.刷漆:所有系统风管内外壁不刷油,在咬口和铆钉等镀锌铁皮脱落处刷防腐漆一道;所有支吊架刷红丹防锈漆一道,灰色调和漆两道。
厚复保温板18mm保温:送风管及管件均应保温,保温材料采用9.
10.空调箱冷凝水排水管设U形水封。
11.空调器(机组)的基础应按供货商要求制作,其高度不宜小于100mm,其余尺寸应与空调器的外形尺寸一致。
12.空调系统投入使用前需作各风口风量的调整,使各室风量符合风量分配的要求,调整后的阀门不能随意变动。
.。