近世代数期末考试试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集(
c
)是子群。
A 、{}a
B 、{}e a ,
C 、{}3,a e
D 、{}
3
,,a a e
2、下面的代数系统(G ,*)中,( D )不是群
A 、G 为整数集合,*为加法
B 、G 为偶数集合,*为加法
C 、G 为有理数集合,*为加法
D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b|
4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、1
2σ
B 、1σ2σ
C 、2
2
σ
D 、2σ1σ
5、任意一个具有2个或以上元的半群,它( A )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群
二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----变换群------同构。
2、一个有单位元的无零因子-交换环----称为整环。
3、已知群G 中的元素a 的阶等于50,则4
a 的阶等于----25--。 4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。
6、若映射ϕ既是单射又是满射,则称ϕ为----双射-------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得
010=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---右单位元------。
9、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G 对于乘法封闭;结合律成立、-----消去律成立----。
10、一个环R 对于加法来作成一个循环群,则P 是--交换环--------。 三、解答题(本大题共3小题,每小题10分,共30分)
1、设集合A={1,2,3}G 是A 上的置换群,H 是G 的子群,H={I,(1 2)},写出H 的所有陪集。
2、设E 是所有偶数做成的集合,“∙”是数的乘法,则“∙”是E 中的运算,(E ,∙)是一个代数系统,问(E ,∙)是不是群,为什么?
3、a=493, b=391, 求(a,b), [a,b] 和p, q 。
四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、若
近世代数模拟试题三
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1、6阶有限群的任何子群一定不是()。
A、2阶
B、3 阶
C、4 阶
D、 6 阶
2、设G是群,G有()个元素,则不能肯定G是交换群。
A、4个
B、5个
C、6个
D、7个
3、有限布尔代数的元素的个数一定等于()。
A、偶数
B、奇数
C、4的倍数
D、2的正整数次幂
4、下列哪个偏序集构成有界格()
A、(N,≤)
B、(Z,≥)
C、({2,3,4,6,12},|(整除关系))
D、 (P(A),⊆)
5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()
A、(1),(123),(132)
B、12),(13),(23)
C、(1),(123)
D、S3中的所有元素
二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
2、如果f是A与A间的一一映射,a是A的一个元,则
()[]=-a f f 1----------。
3、区间[1,2]上的运算},{min b a b a = 的单位元是-------。
4、可换群G 中|a|=6,|x|=8,则|ax|=——————————。
5、环Z 8的零因子有 -----------------------。
6、一个子群H 的右、左陪集的个数----------。
7、从同构的观点,每个群只能同构于他/它自己的---------。 8、无零因子环R 中所有非零元的共同的加法阶数称为R 的-----------。
9、设群G 中元素a 的阶为m ,如果e a n
=,那么m 与n 存在整除关系为
--------。
三、解答题(本大题共3小题,每小题10分,共30分)
1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?
2、S 1,S 2是A 的子环,则S 1∩S 2也是子环。S 1+S 2也是子环吗?
3、设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ。
1.求στ和στ-1;
2.确定置换στ和στ-1
的奇偶性。
四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)
1、一个除环R 只有两个理想就是零理想和单位理想。
2、M 为含幺半群,证明b =a -1的充分必要条件是aba =a 和ab 2a =e 。