离散数学证明题

合集下载

离散数学样卷十二套(含答案)

离散数学样卷十二套(含答案)

一、证明下列各题1、 (10分)证明蕴涵式:()P P Q Q ∧→⇒2、(10分)证明:,1111f g f g -⇒-I 为函数为函数。

5、 3、(10分)给定代数结构,N ⨯和{}0,1,⨯,其中N 是自然数集合,⨯是数的乘法。

设{}:0,1f N →,定义为:12,,()0k n n k N f n ⎧=∈=⎨⎩否则试证}01N ⨯≅⨯,,,。

4、(10分)给定代数结构,R *,其中R 是实数集合,对R 中任意元a 和b ,*定义如下:a b a b a b *=++⨯ 试证明:,R *是独异点。

二、求下列各题的解:1、试求下列公式的主析取范式和主合取范式(15分):()()P Q P Q ⌝∨⌝→⌝€2、(15分){}010*********R =设,,,,,,,,,,,,试求(1)、R R *,(2)、{}1R ↑,(3)、{}11R -↑,(4)、{}1R ⎡⎤⎣⎦,(5)、{}11R -⎡⎤⎣⎦3、(15分给定无向图,G V E =,如图,试求: F E DCA B(1) 从A 到D 的所有基本链; (2) 从A 到D 的所有简单链;(3) 长度分别是最小和最大的简单圈; (4) 长度分别是最小和最大的基本圈; (5) 从A 到D 的距离。

4、(15分)给定二部图12,,G E V =,如图 9v 8v 7v 6v 1V1v 2v 3v 4v 5v 2V 试求1V 到2V 的最大匹配一、证明下列各题1、 (10分)证明蕴涵式:()P Q P P Q →⇒→∧2、(10分)证明:()()()A B C A B A C ⨯-=⨯-⨯3、(10分)给定群,G ,则,G 为Abel 群⇔222()()(,())∀∀∈→=a b a b G a b a b4、(10分)给定代数结构,S *,其中S 中元为实数有序对,*定义为 ,,,2a b c d a c b d bd *=+++,试证,S *是可交换独异点。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

离散数学高概率考试题

离散数学高概率考试题

(2)(高概)证明若S为集合X上的二元关系:a)S是传递的,当且仅当(S∘S)⊆S证明:证明:必要性使得任取序偶<a,b>∈S∘S,则存在c∈X,使得<a,c>∈S∧<c,b>∈S,因为S传递,故传递,故<a,b>∈S,即S∘S⊆S.充分性对任意序偶<a,b>∈S∧<b,c>∈S,有<a,c>∈S∘S,<a,c>∈S,S S传递. 因为S∘S⊆S,故有<a,c>∈S,(3)(中难)(中难) 设S为X上的关系,证明若S是自反的和传递的,则S∘S=S。

⊆S; ; 证明: S传递ÛS∘S⊆S以下只需证明S⊆S∘S. "<x,y>ÎS, 因为S自反,有<x,x>ÎS, 由关系合成运算的定义,有<x,y>ÎS∘S,即S⊆S∘S。

本命题的逆不真,举反例如下:仅传递而不自反。

空关系j满足j∘j=j, 但j仅传递而不自反。

(6)(中概低难)设R为集合X上的二元关系,R在X上反传递⇔∀x∀y∀z(x∈X∧y∈X∧z∈X∧xRy∧yRz→x Rz) 当且仅当(R∘R)∩R=φ。

证明:证明:必要性必要性使得任取序偶<a,b>∈R∘R,则存在c∈X,使得<a,c>∈R∧<c,b>∈R,因为R反传递,故反传递,故<a,b>∉R,即R∘R中任何序偶都不属于R,因此(R∘R)∩R=φ. 充分性充分性对R 中任意序偶aRc∧cRb,有<a,b>∈R∘R, 因为(R (R∘R)∩R=φ,∘R)∩R=φ,故<a,b>∉R , 因此,R 反传递. (8)(中概中上难度)设R,S,T 为集合X 上的关系,证明上的关系,证明R∘(S∪T)=R∘S∪R∘T证明:a)任取序偶<a,b>∈R∘(S∪T), 则存在c∈X,使得使得<a,c>∈R 且<c,b>∈S∪T, 若<c,b>∈S,则<a,b>∈R∘S, 若<c,b>∈T,则<a,b>∈R∘T,故<a,b>∈R∘S∪R∘T,即R∘(S∪T)⊆R∘S∪R∘T. b)任取序偶<a,b>∈R∘S∪R∘T,则有<a,b>∈R∘S 或<a,b>∈R∘T, 若<a,b>∈R∘S,则存在c∈X,使得使得 <a,c>∈R 且<c,b>∈S,若<a,b>∈R∘T,则存在d∈X,使得使得 <a,d>∈R 且<d,b>∈T,总之,总之,存在y∈X,使得<y,b>∈S∪T 且<a,y>∈R, 故<a,b>∈R∘(S∪T),即R∘(S∪T)⊇R∘S∪R∘T R∘(S∪T)⊇R∘S∪R∘T. . 综合a)和b),有R∘(S∪T)=R∘S∪R∘T. 3-8 (2)算闭包。

离散数学习题集(十五套) - 答案

离散数学习题集(十五套) - 答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有()个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

《离散数学》试题含答案

《离散数学》试题含答案

《离散数学》试题含答案⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全⼆叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1?R2 =________________________,R2?R1 =____________________________, R12=________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B =__________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学证明题(精选篇)

离散数学证明题(精选篇)

离散数学证明题离散数学证明题离散数学证明题离散数学证明题:链为分配格证明设a,b均是链A的元素,因为链中任意两个元素均可比较,即有a≤b或a≤b,如果a≤b,则a,b的最大下界是a,最小上界是b,如果b≤a,则a,b的最大下界是b,最小上界是a,故链一定是格,下面证明分配律成立即可,对A中任意元素a,b,分下面两种情况讨论:⑴b≤a或≤a⑵a≤b且a≤如果是第⑴种情况,则a∪(b∩)=a=(a∪b)∩(a∪)如果是第⑵种情况,则a∪(b∩)=b∩=(a∪b)∩(a∪)无论那种情况分配律均成立,故A是分配格.一.线性插值(一插值)已知函数f(x)在区间xk ,xk+1 ]的端点上的函数值yk =f(xk ), yk+1 = f(xk+1 ),求一个一函数y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其几何意义是已知平面上两点(xk ,yk ),(xk+1 ,yk+1 ),求一条直线过该已知两点。

1. 插值函数和插值基函数由直线的点斜式公式可知:把此式按照 yk 和yk+1 写成两项:记并称它们为一插值基函数。

该基函数的特点如下表:从而P1 (x) = yk lk (x) + yk+1 lk+1 (x)此形式称之为拉格朗日型插值多项式。

其中, 插值基函数与yk 、yk+1 无关,而由插值结点xk 、xk+1 所决定。

一插值多项式是插值基函数的线性组合, 相应的组合系数是该点的函数值yk 、yk+1 .例1: 已知lg10=1,lg=1.3010, 利用插值一多项式求lg12的近似值。

解: f(x)=lgx,f(10)=1,f()=1.3010, 设x0 =10 ,x1 = ,y0 =1 ,y1 =1.3010则插值基函数为:于是, 拉格朗日型一插值多项式为:故 :即lg12 由lg10 和lg 两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792).二.二插值多项式已知函数y=f(x)在点xk-1 ,xk ,xk+1 上的函数值yk-1 =f(xk-1 ),yk =f(xk ), yk+1 =f(xk+1 ), 求一个数不超过二的多项式P2 (x), 使其满足,P2 (xk-1 )=yk-1 , P2 (xk )=yk , P2 (xk+1 )=yk+1 .其几何意义为:已知平面上的三个点(xk-1 ,yk-1 ),(xk ,yk ),(xk+1 ,yk+1 ),求一个二抛物线, 使得该抛物线经过这三点。

32784离散数学(2)-1复习题

32784离散数学(2)-1复习题

离散数学(2)-1复习题一、证明题1.利用真值表证明公式(Q→P)∧(¬P∧Q) 为矛盾式。

解令β=(Q→P)∧(¬P∧Q),公式β的真值表如表所示。

公式β的真值表因为公式β的真值表的最后一列全为0,所以该公式为矛盾式。

2. 证明整数集I上的模m同余关系R={<x,y>|x≡y(mod m)}是等价关系。

其中,x≡y(mod m)的含义是x-y可以被m整除。

证明:1)∀x∈I,因为(x-x)/m=0,所以x≡x(mod m),即xRx。

2)∀x,y∈I,若xRy,则x≡y(mod m),即(x-y)/m=k∈I,所以(y - x)/m=-k∈I,所以y≡x(mod m),即yRx。

3)∀x,y,z∈I,若xRy,yRz,则(x-y)/m=u∈I,(y-z)/m=v∈I,于是(x-z)/m=(x-y+y-z)/m=u+v ∈I,因此xRz。

3.利用真值表证明⌝(P∨Q)与⌝P∧⌝Q这两个命题公式是等值的。

解:要判断⌝(P∨Q)与⌝P∧⌝Q这两个命题公式是否等值,即用真值表法判断⌝(P∨Q)与⌝ P∧ ⌝Q 是否为重言式,此等价式的真值表如表所示。

从表1.10可知⌝(P∨Q)↔(⌝P∧⌝Q)是重言式,因而⌝(P∨Q)与⌝P∧⌝Q等值。

4. <G,*>是个群,u∈G,定义G中的运算“∆”为a∆b=a*u-1*b,对任意a,b∈G,求证:<G, ∆>也是个群。

证明:1)∀a,b∈G,a∆b=a*u-1*b∈G,运算是封闭的。

2)∀a,b,c∈G,(a∆b)∆c=(a*u-1*b)*u-1*c=a*u-1*(b*u-1*c)=a∆(b∆c),运算是可结合的。

3)∀a∈G,设E为∆的单位元,则a∆E=a*u-1*E=a,得E=u,存在单位元。

4)∀a∈G,a∆x=a*u-1*x=E,x=u*a-1*u,则x∆a=u*a-1*u*u-1*a=u=E,每个元素都有逆元。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学试题带答案(三)

离散数学试题带答案(三)

离散数学试题带答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)} , R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

离散数学题集

离散数学题集

一、填空题(共20分)1.若A-B=A, 则A B= .2.若关系R具有自反性,当且仅当在关系矩阵中,主对角线上元素;若关系只具有对称性,当且仅当关系矩阵是 .3.设 f : N→N, 且令A={0,1}, B={2}, 那么有f(A) = ; f(B) = .4.A={1,2}, 则EA={<1,1>,<1,2>,<2,1>,<2,2>}IA={<1,1>,<2,2>}5.已知图G有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G至少有多少个顶点 .二、单项选择题(选择一个正确答案的代号,填入括号中。

共14分)1.下面关于集合的表示中,正确的是( ).A.φ=0 B.φ∈{φ}C.φ∈φ D.φ∈{a,b}2.设R1,R2是集合A={1,2,3,4}上的两个关系,其中R1={(1,1),(2,2),(2,3),(4,4)},R2={(1,1),(2,2),(2,3),(3,2),(4,4)},则R2是R1的( )闭包.A.自反 B.反对称C.对称 D.以上都不是3.设半序集(A,≤)上关系只的哈斯图如下图所示,若A的子集B={2,3,4,5},则元素6为B的( ).A.下界 B.上界C.最小上界 aa D. 最大下界4.函数f : R→R, f(x)= -x2+2x-1是( )A.单射的 B.双射的C.满射的 D.以上都不对5.非平凡的无向树至少有( )片树叶.A.1B. 2C.3D.4三、计算题(共50分)1.求下列公式的前束范式:1)∃xF(x)→∀xG(x)2)∀xF(x)∃⌝∧yG(y)2.求⌝(p→q)⌝∨r 的主析取范式与主合取范式3.设偏序集<A,≼>如下图所示,求A 的极小元、最小元、极大元、最大元. 设B={ b, c, d }, 求B 的下界、上界、下确界、上确界.4.设 f : R →R, g : R →R2)(323)(2+=⎩⎨⎧<-≥=x x g x x x x f求 f ∘g, g ∘f. 如果 f 和 g 存在反函数, 求出它们的反函数 四、证明题1)证明 A ⊕B=A ⋃B-A ⋂B. 2)证明下列等值式:⌝ ∃x(M(x)∧F(x)) ⇔ ∀x(M(x)→ ⌝F(x))答 案一、填空题1.φ2.全为1 对称矩阵3.f(A)=f({0,1}) = { f(0), f(1) }={ 0, 2 }f(B) = { f(2) } = { 1 }4.EA={<1,1>,<1,2>,<2,1>,<2,2>}IA={<1,1>,<2,2>}5.8二、单项选择题1.B 2.C 3.B 4.D 5.B 三、计算题1.解:1) ⇔⌝∃xF(x)∨∀xG(x)⇔∀x⌝F(x)∨∀xG(x)⇔∀x⌝F(x)∨∀yG(y)⇔∀x(⌝F(x)∨∀yG(y))⇔∀x∀y (⌝F(x) ∨G(y))2) ∀xF(x)∃⌝∧yG(y)⇔∀xF(x)∧∀y⌝G(y)⇔∀x(F(x)∧∀y⌝G(y))⇔∀x∀y(F(x)⌝∧G(y))2.解:解 (1) ⌝(p→q)⌝∨r ⇔ (p⌝∧q)⌝∨rp⌝∧q ⇔ (p⌝∧q)∧1⇔ (p⌝∧q)∧(⌝r∨r)⇔ (p⌝∧q⌝∧r)∨(p⌝∧q∧r)⇔ m4∨m5⌝r ⇔ (⌝p∨p)∧(⌝q∨q)⌝∧r⇔ (⌝p⌝∧q⌝∧r)∨(⌝p∧q⌝∧r)∨(p⌝∧q⌝∧r)∨(p∧q⌝∧r)⇔ m0∨ m2∨ m4∨ m6 得⌝(p→q)⌝∨r ⇔ m0∨ m2∨ m4 ∨m5 ∨ m6可记作⇔∑(0,2,4,5,6)(2) ⌝(p→q)⌝∨r ⇔ (p⌝∨r)∧(⌝q⌝∨r)p⌝∨r ⇔ p∨0⌝∨r⇔ p∨(q⌝∧q)⌝∨r⇔ (p∨q⌝∨r)∧(p⌝∨q⌝∨r)⇔ M1∧M3⌝q⌝∨r ⇔ (p⌝∧p)⌝∨q⌝∨r⇔ (p⌝∨q⌝∨r)∧(⌝p⌝∨q⌝∨r)⇔ M3∧M7得⌝(p→q)⌝∨r ⇔ M1∧M3∧M7可记作⇔∏(1,3,7)3.解:极小元:a, b, c, g;极大元:a , f , h ; 没有最小元与最大元.B 的下界和最大下界都不存在,上界有d 和f , 最小上界为 d .4.解:⎩⎨⎧<-≥+=⎩⎨⎧<≥+=→→121)2()(332)(RR :RR :22x x x x g f x x x x f g g f f g f : R →R 不存在反函数;g : R →R 的反函数是g -1: R →R, g -1(x)=x -2四、证明题1) 证 A ⊕B=(A ⋂~B)⋃(~A ⋂B)=(A ⋃~A)⋂(A ⋃B)⋂(~B ⋃~A)⋂(~B ⋃B) =(A ⋃B)⋂(~B ⋃~A) =(A ⋃B)⋂~(A ⋂B) =A ⋃B-A ⋂B2) 证 左边 ⇔ ∀x ⌝(M(x)∧F(x))⇔ ∀x(⌝M(x)∨⌝F(x)) ⇔ ∀x(M(x)→ ⌝F(x))离散数学试卷一.选择题1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设集合A={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( ) (A) 1∈A (B) {1,2, 3}⊆A (C) {{4,5}}⊂A (D) ∅∈A3.设R 1,R 2是集合A ={1,2,3,4}上的两个关系,其中R 1={(1,1),(2,2),(2,3),(4,4)},R 2={(1,1),(2,2),(2,3),(3,2),(4,4)},则R 2是R 1的( )闭包. A .自反 B .反对称 C .对称 D .以上都不是4.设S 1={1,2,…,8,9},S 2={2,4,6,8},S 3={1,3,5,7,9},S 4={3,4,5},S 5={3,5}.确定在以下条件下X 可能与S 1,…, S 5中哪个集合相等。

离散数学期末考试试题(有几套带答案)

离散数学期末考试试题(有几套带答案)

离散数学试题(A 卷及答案)一、证明题(10分)1)(⌝P ∧(⌝Q ∧R))∨(Q ∧R)∨(P ∧R)⇔R证明: 左端⇔(⌝P ∧⌝Q ∧R)∨((Q ∨P)∧R)⇔((⌝P ∧⌝Q)∧R))∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∧R)∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∨(Q ∨P))∧R ⇔(⌝(P ∨Q)∨(P ∨Q))∧R ⇔T ∧R(置换)⇔R2)∃x(A(x)→B(x))⇔ ∀xA(x)→∃xB(x)证明 :∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x ⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x) 二、求命题公式(P ∨(Q ∧R))→(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))→(P ∧Q ∧R)⇔⌝(P ∨(Q ∧R))∨(P ∧Q ∧R))⇔(⌝P ∧(⌝Q ∨⌝R))∨(P ∧Q ∧R) ⇔(⌝P ∧⌝Q)∨(⌝P ∧⌝R))∨(P ∧Q ∧R)⇔(⌝P ∧⌝Q ∧R)∨(⌝P ∧⌝Q ∧⌝R)∨(⌝P ∧Q ∧⌝R))∨(⌝P ∧⌝Q ∧⌝R))∨(P ∧Q ∧R) ⇔m0∨m1∨m2∨m7 ⇔M3∨M4∨M5∨M6三、推理证明题(10分)1) C ∨D, (C ∨D)→ ⌝E, ⌝E →(A ∧⌝B), (A ∧⌝B)→(R ∨S)⇒R ∨S证明:(1) (C ∨D)→⌝E(2) ⌝E →(A ∧⌝B)(3) (C ∨D)→(A ∧⌝B) (4) (A ∧⌝B)→(R ∨S) (5) (C ∨D)→(R ∨S)(6) C ∨D(7) R ∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) (2)P(a)(3)∀x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)∃x(P(x)∧R(x)) (11)Q(y)∧∃x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。

离散证明题

离散证明题

离散数学证明题专项训练——09软件2班 金信冬1. 设<G ,*>是群,具有幺元e ,如果对G 的任意元素a ,都有 a²=e, 则<G ,*>是交换群证明:由条件e a =2,所以1-=a a ,则对任意的a ,b ,11-*-=*b a b a另外,由e b a =*2)(,得e b a b a b a =***=*)()(2)(,两边同时左乘以1-a ,右乘以1-b ,利用结合律,得11-*-=*b a a b 所以a b b a *=*,<G ,*>是交换群2.试证明:R S Q P S R Q P →⇒∧∨⌝∧→→)())(( 证明(1) SCP 规则 (2) ⌝S ∨PP(3) P(1),(2)析取三段论(4) P →(Q →R) P (5)Q →R (3),(4)假言推理 (6)QP(7)R(5),(6)假言推理3.设 A,B 为两个集合,证明 A —B=A 当且仅当A ∩B= ø证明:A —B=AA ∩~B=A =>A ∩~B ∩B=A ∩B=>A∩B= øA∩B= ø=>(A∩B)∪~B=~B=>A∪~B=~B=>A∩(A∪~B)=A∩~B=>A∪(A∩~B)=A-B=>A=A-B4. 设R,S都是非空集合A上的二元关系,且他们是对称的,证明:RoS具有对称性当且仅当 RoS=SoR.证明:1)必要性对于任意<x,y>∈RoS<=><y.x>RoS<=>存在z(<y,z>∈S ∧<z,x>∈R)<=>存在z(<z,y>∈S ∧<x,z>∈R)<=><x,y>∈SoR所以RoS=SoR.2)充分性对于任意<x,y>∈RoS<=> <x,y>∈SoR<=>存在z(<x,z>∈R ∧<z,y>∈S)<=>存在z(<y,z>∈S ∧<z,x>∈R)<=><y,x>∈RoS所以:RoS具有对称性。

离散数学试题及答案解析

离散数学试题及答案解析

________________________,R2R1 =____________________________,
R12
=________________________.
10. 设有限集 A, B,|A| = m, |B| = n, 则| |(AB)| = _____________________________.
合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
P(2, 2) P(2, 3) P(3, 2) P(3, 3)
0
0
1
1
(2) xy P (y, x).
5. 设集合 A={1, 2, 4, 6, 8, 12},R 为 A 上整除关系。
第 2 页 共 18 页
是( ).
(A)恒真的 (B)恒假的 (C)可满足的 (D)前束范式.
8 设命题公式 G=(PQ),H=P(QP),则 G 与 H 的关系是( )。
(A)GH (B)HG (C)G=H (D)以上都不是.
9 设 A, B 为集合,当( )时 A-B=B.
(A)A=B
(B)AB
=_________________________;A-B= _____________________ .
7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________.

《离散数学》复习练习题带答案(六)

《离散数学》复习练习题带答案(六)

离散数学试题带答案四、证明题1. 设<G ,*>是群,具有幺元e ,如果对G 的任意元素a ,都有 a²=e, 则<G ,*>是交换群2. 形式证明q s p r s r q p ⇒∧⌝→∨→,,3. 证明:P →(Q →R)⇔P ∧Q →R.4.试证明:R S Q P S R Q P →⇒∧∨⌝∧→→)())(( 5.试证明:Q R R Q Q P ⌝⇒⌝∧∨⌝∧⌝∧⌝)()( 6. 证明:)()(x xB x xA ∀→∃⇒))()((x B x A x →∀7.设G 是图,无回路,但若外加任意一条边于G 后,就形成一回路. 试证明G 必为树. 8. 设B 是任意集合,试验证(P(B),⊕)是群. P(B)是集合B 的幂集,⊕是集合的对称差运算, 9.给定代数系统(G,+,*), 二元运算见表一,表二.表一 表二证明(G ,+,*)是域.10. 证明如果非空集合A 上的二元关系R 和S 是偏序关系,则S R ⋂也是A 上的偏序关系. 11.试证A -(B -C)=(A -B)⋃(A ⋂C)12.设非空集合A ,验证(A A P ,~,,,),(∅⋂⋃)是布尔代数,13. 试证明属于关系不满足传递性,即对于任意的集合A,B,C 若A ∈B 且B ∈C 不一定有 A ∈C14.设 A,B 为两个集合,证明 A —B=A 当且仅当A ∩B= ø15. 设R,S 都是非空集合A 上的二元关系,且他们是对称的,证明:RoS 具有对称性当且仅当 RoS=SoR.16. 已知g :A->B,f :B->C1) 已知fog 是单射的且g 是满射的,证明f 是单射的 2) 已知fog 是满射的且f 是单射的,证明g 是满射的 17.设A 是传递集,证明A+也是传递集。

18.设G 是n 阶无向简单图,其直径为d(G)=2, ο(G)=n-2,证明G 的边数m ≥2n-4 19.V=<S,*>是可交换半群,若a,b ∈S 是V 中得幂等元,证明a*b 也是V 中的幂等元20.设 L 是格,证明对于任意a,b,c,d ∈L 有:( a ∧b)∨(c ∧d)≤(a ∨c)∧(b ∨d)五、计算题1. 无向树T 有2个2度顶点,1个3度顶点,3个4度顶点,其他的都是树叶,问T 中有多少片树叶?2. 设公式()()x Q x P → ,其中P(x):x>2,Q(x):x=0,F 是永假式,个体域是{1,2},求公式A(x)的真值 3. 设集合X={1,2,3, 4},X 中的关系为F={<1,1>,<1,2>,<1,4>,<2,1>,<2,2>,<3,3>,<4,1>,<4,4>} 写出F 的关系矩阵及其关系图,F 有哪些性质?4. (1) n(n ≥1)阶无向完全图与有向完全图各有多少条边?为什么? (2)完全二部图K m n ,中共有多少条边?为什么?(3) 每个顶点的度都为k 的无向图称为k 正则图,问:n 阶k 正则图中共有多少条边?为什么?5. 设集合L={a ,b},在L 中规定 + 和·如下:a+a=a ,a+b=b+a=b ,b+b=b a ·a=a ,a ·b=b ·a=a ,b ·b=b问<L ,+,·>能构成代数系统吗?若可以,写出该代数系统的运算表。

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、填空题1 设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; (B)=__________________________ .2. 设有限集合A, |A| = n, 则| (A×A)| = __________________________.3. 设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=(P Q)∧R,则G的主析取范式是_________________________________________________________________________________________.6 设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A B=_________________________; A B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________,_______________________________.8. 设命题公式G=(P (Q R)),则使公式G为真的解释有__________________________,_____________________________,__________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1 R2 = ________________________,R2 R1 =____________________________, R12 =________________________.(A) -10. 设有限集A, B,|A| = m, |B| = n, 则| | (A B)| =_____________________________. 11 设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x R}, B = {x | 0≤x 2, x R},则A-B =__________________________ , B-A = __________________________ , A∩B =__________________________ , .13. 设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设一阶逻辑公式G = xP(x) xQ(x),则G的前束范式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式xR(x)→ xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。

离散数学答案-第四章习题解答.doc

离散数学答案-第四章习题解答.doc

习题四1.用归结法证明:(1)\= p^q^r(2)p T r , q — r# pvqir(3)p W 匕(p T q)v(p f r)(4)p /\q r |= (/? ^ r) v(t? r)(5)p v v r , p t r A q v『⑹(〃T q) T O T 厂)f= p T (q T r)解(1)首先将p I q , p I f , 7p T q八门化为合取范式。

p T q o —\p 7 q , p T r o —yp v r ,—>(# T q /\ 厂)u> -1(-1/? v(q A /*)) u> /? /\ (—v -i厂)给出子句集\rpy q’rpy l ”,p,->^rv—»r}的反驳如下。

①rpy q②~yp v r③p④-it?v—«r⑤q由①和③⑥r由②和③⑦由④和⑤⑧口由⑥和⑦因此,p — q , p T r b p I q z⑵将p T r, q T厂7p v q —厂)化为合取范式。

/? T 厂O -1〃\/儿q t ro-yq 7 丫、-i( p v q r) <=> (p v q) /\—^r 给111子句集{ v r, v r, p v ty, -.r}的反驳如下:—p v r②->q v r③p y q④—if⑤q 7 T rti①和③⑥r由②和⑤⑦□由④和⑥因此,p—> r, q T r 匕p v q T r。

⑶首先将p t qy r, -•((/?^^)v(p^r))化为合取范式。

p T q \z 厂 o -yp v <7 v r ,T q) \/ (p —> r)) o -i((-ip v^) v (-i/? v r))<=> p A —yq A -ir给出子句集\rp7 q\/ F ,p, -yq , 的反驳如下。

—7 q7 丫 Prq—>rq7 丫由①和② r由③和⑤ □由④和⑥①②③④⑤⑥⑦因此,p T qvr \= (j?->(7)v(/?^r)(4)首先将 p /\qf r, -i((pr) v ((? -> r))化为合取范式。

《离散数学》试题及答案

《离散数学》试题及答案

一、填空题1设集合A,B,其中A={1,2,3},B= {1,2}, 则A — B={3} ;ρ(A)—ρ(B)={3},{1,3},{2,3},{1,2,3}} 。

2. 设有限集合A, |A| = n, 则|ρ(A×A)|= .3.设集合A = {a,b}, B = {1,2},则从A到B的所有映射是α1= {(a,1),(b,1)},α2= {(a,2),(b,2)},α3= {(a,1),(b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3,α4 。

4。

已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5。

设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合,A= {1,2,4},B = {3,4}, 则从A⋂B={4} ;A⋃B={1,2,3,4};A-B={1,2}.7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性。

8。

设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1,0, 0), (1,0, 1),(1,1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)},R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)}, R2•R1 = {(2,4),(3,3),(4,2)}_R12 ={(2,2),(3,3)。

10. 设有限集A,B,|A| = m,|B| = n, 则| |ρ(A⨯B)| = 。

11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1,x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = —1<=x〈0 , B—A = {x | 1 < x < 2,x∈R} ,A∩B ={x |0≤x≤1, x∈R}, .13.设集合A={2,3,4, 5,6},R是A上的整除关系,则R以集合形式(列举法)记为{(2,2),(2, 4),(2,6),(3,3),(3, 6),(4,4),(5,5),(6, 6)}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学证明题离散数学证明题:链为分配格
证明设a,b均是链A的元素,因为链中任意两个元素均可比较,即有a≤b或a≤b,如果a ≤b,则a,b的最大下界是a,最小上界是b,如果b≤a,则a,b的最大下界是b,最小上界是a,故链一定是格,下面证明分配律成立即可,对A中任意元素a,b,c分下面两种情况讨论:
⑴b≤a或c≤a
⑵a≤b且a≤c
如果是第⑴种情况,则a∪(b∩c)=a=(a∪b)∩(a∪c)
如果是第⑵种情况,则a∪(b∩c)=b∩c=(a∪b)∩(a∪c)
无论那种情况分配律均成立,故A是分配格.
一.线性插值(一次插值)
已知函数f(x)在区间[xk ,xk+1 ]的端点上的函数值yk =f(xk ), yk+1 = f(xk+1 ),求一个一次函数y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其几何意义是已知平面上两点(xk ,yk ),(xk+1 ,yk+1 ),求一条直线过该已知两点。

1. 插值函数和插值基函数
由直线的点斜式公式可知:
把此式按照 yk 和yk+1 写成两项:

并称它们为一次插值基函数。

该基函数的特点如下表:
从而
P1 (x) = yk lk (x) + yk+1 lk+1 (x)
此形式称之为拉格朗日型插值多项式。

其中, 插值基函数与yk 、yk+1 无关,而由插值结点xk 、xk+1 所决定。

一次插值多项式是插值基函数的线性组合, 相应的组合系数是该点的函数值yk 、yk+1 .
例1: 已知lg10=1,lg20=1.3010, 利用插值一次多项式求lg12的近似值。

解: f(x)=lgx,f(10)=1,f(20)=1.3010, 设
x0 =10 ,x1 =20 ,y0 =1 ,y1 =1.3010
则插值基函数为:
于是, 拉格朗日型一次插值多项式为:
故 :
即lg12 由lg10 和lg20 两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792).
二.二次插值多项式
已知函数y=f(x)在点xk-1 ,xk ,xk+1 上的函数值yk-1 =f(xk-1 ),yk =f(xk ), yk+1 =f(xk+1 ), 求一个次数不超过二次的多项式P2 (x), 使其满足,
P2 (xk-1 )=yk-1 , P2 (xk )=yk , P2 (xk+1 )=yk+1 .
其几何意义为:已知平面上的三个点
(xk-1 ,yk-1 ),(xk ,yk ),(xk+1 ,yk+1 ),
求一个二次抛物线, 使得该抛物线经过这三点。

1.插值基本多项式
有三个插值结点xk-1 ,xk ,xk+1 构造三个插值基本多项式,要求满足:
(1) 基本多项式为二次多项式; (2) 它们的函数值满足下表:
因为lk-1 (xk )= 0,lk-1 (xk+1 )=0, 故有因子(x-xk )(x-xk+1 ), 而其已经是一个二次多项式, 仅相差一个常数倍, 可设
lk-1 (x)=a(x-xk )(x-xk+1 ),
又因为
lk-1 (xk-1 )=1 ==&gt; a(xk-1 -xk )(xk-1 -xk+1 )=1

从而
同理得
基本二次多项式见右上图(点击按钮“显示Li”)。

2. 拉格朗日型二次插值多项式
由前述, 拉格朗日型二次插值多项式:
P2 (x)=yk-1 lk-1 (x)+yk lk (x)+yk+1 lk+1 (x),P2 (x)
是三个二次插值多项式的线性组合,因而其是次数不超过二次的多项式,且满足:
P2 (xi )=yi , (i=k-1,k,k+1) 。

例2 已知:
xi 10 15 20
yi=lgxi 1 1.1761 1.3010
利用此三值的二次插值多项式求lg12的近似值。

解:设x0 =10,x1 =15,x2 =20,则:
故:
所以
7利用三个点进行抛物插值得到lg12的值,与精确值lg12=1.0792相比,具有3位有效数字,精度提高了。

三、拉格朗日型n次插值多项式
已知函数y=f(x)在n+1个不同的点x0 ,x1 ,…,x2 上的函数值分别为
y0 ,y1 ,…,yn ,求一个次数不超过n的多项式Pn (x),使其满足:
Pn (xi )=yi , (i=0,1,…,n),
即n+1个不同的点可以唯一决定一个n次多项式。

1. 插值基函数
过n+1个不同的点分别决定n+1个n次插值基函数
l0 (x),l1 (x),…,ln (X)
每个插值基本多项式li (x)满足:
(1) li (x)是n次多项式;
(2) li (xi )=1,而在其它n个li (xk )=0 ,(k≠i)。

由于li (xk )=0 ,(k≠i), 故有因子:
(x-x0 )…(x-xi-1 )(x-xi+1 )…(x-xn )
因其已经是n次多项式,故而仅相差一个常数因子。

令:
li (x)=a(x-x0 )…(x-xi-1 )(x-xi+1 )…(x-xn )
由li (xi )=1,可以定出a, 进而得到:
2. n次拉格朗日型插值多项式Pn (x)
Pn (x)是n+1个n次插值基本多项式l0 (x),l1 (x),…,ln (X)的线性组合,相应的组合系数是y0 ,y1 ,…,yn 。

即:
Pn (x)=y0 l0 (x)+y1 l1 (x)+…+yn ln (x) ,
从而Pn (x)是一个次数不超过n的多项式,且满足
Pn (xi )=yi , (i=0,1,2,…,n).
例3 求过点(2,0),(4,3),(6,5),(8,4),(10,1)的拉格朗日型插值多项式。

解用4次插值多项式对5个点插值。

相关文档
最新文档