第2章 3.圆周运动的实例分析
圆周运动的实例分析
物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0
L
R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反
圆周运动的实例分析
圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
2020高中物理第二章第3节圆周运动的实例分析1火车、汽车拐弯的动力学问题学案
火车、汽车拐弯的动力学问题一、考点突破:二、重难点提示:重点:1. 掌握火车、汽车拐弯时的向心力来源;2. 会用圆周运动的规律解决实际问题。
难点:能从供需关系理解拐弯减速的原理。
一、火车转弯问题1. 火车在水平路基上的转弯(1)此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。
(2)外轨对轮缘的弹力提供向心力。
(3)由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。
2. 实际弯道处的情况:外轨略高于内轨道(1)对火车进行受力分析:火车受铁轨支持力N的方向不再是竖直向上,而是斜向弯道的内侧,同时还有重力G。
(2)支持力与重力的合力水平指向内侧圆心,成为使火车转弯所需的向心力。
【规律总结】转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G和支持力N来提供,这样外轨就不受轮缘的挤压了。
3. 限定速度v分析:火车转弯时需要的向心力由火车重力和轨道对它的支持力的合力提供。
F 合=mgtan α=rv m 2①由于轨道平面和水平面的夹角很小,可以近似地认为 tan α≈sin α=h/d ② ②代入①得:mg dh=r v m 2d rgh v思考:在转弯处:(1)若列车行驶的速率等于规定速度,则两侧轨道是否受车轮对它的侧向压力。
(2)若列车行驶的速率大于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
(3)若列车行驶的速率小于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
二、汽车转弯中的动力学问题1. 水平路面上的转弯问题:摩擦力充当向心力 umg=mv 2/r 。
由于摩擦力较小,故要求的速度较小,否则就会出现离心现象,发生侧滑,出现危险。
2. 实际的弯道都是外高内底,以限定速度转弯,受力如图。
Mgtanθ=Mv2/r v=θtanrg当v >θtanrg,侧向下摩擦力的水平分力补充不足的合外力;v <θtanrg,侧向上摩擦力的水平分力抵消部分过剩的合外力;v =θtanrg,沿斜面方向的摩擦力为零,重力和支持力的合力提供向心力。
山东省实验高中2020人教版物理第二章匀速圆周运动3圆周运动的实例分析55
得F1=16 N
(2)v=4 m/s>v0,杆对小球有拉力 由牛顿第二定律:mg+F2=vm2
L
得:F2=44 N
答案:(1)16 N,支持力 (2)44 N,拉力
【定向训练】 1.(多选)(2019·江苏高考)如图所示,摩天 轮悬挂的座舱在竖直平面内做匀速圆周运 动。座舱的质量为m,运动半径为R,角速度 大小为ω,重力加速度为g,则座舱 ( )
为零,则此时重物对电动机向上的作用力大小等于电动
机的重力,即F1=Mg。 根据牛顿第三定律,此时电动机对重物的作用力向下,大
小为:F′1=F1=Mg
①
对重物:F′1+mg=mω2R ②
由①②得ω= m M③g
mR
(2)当重物转到最低点时,电动机对地面的压力最大,对 重物有:F2-mg=mω2R ④ 对电动机,设它所受支持力为FN,FN=F′2+Mg,F′2=F2
(1)当v=1 m/s时。 (2)当v=4 m/s时。
【审题关键】
序号 ①
②
信息提取 杆的弹力可以向上也可以向下
小球的重力和杆的弹力的合力指向圆 心的分量提供向心力
【解析】杆对小球没有作用力时
v0= gL m5/s≈2.24 m/s (1)v=1 m/s<v0,杆对小球有支持力, 由牛顿第二定律:mg-F1=mv2
二 竖直面内的圆周运动 任务1 轻绳模型中物体在最高点时受力的特点
【思考·讨论】 水流星是一项中国传统民间杂技艺术,杂技演员用一根 绳子兜着两个碗,里面倒上水,迅速地旋转着做各种精 彩表演,即使碗底朝上,碗里的水也不会洒出来。这是 为什么? (模型建构)
提示:当碗底朝上时,水的重力全部用来提供做圆周运 动所需要的向心力。
高中物理难点之三--圆周运动的实例分析
难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得: s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
圆周运动实例分析(圆锥摆类问题)
整理得: 由几何关系有:
③
④
《课时跟踪检测》P77
(8)
(多选)如图,一根细线下端拴一个金属小球P,细 线的上端固定在金属块Q上,Q放在带小孔的水平桌面 上。小球在某一水平面内做匀速圆周运动(圆锥摆)。 现使小球在一个更高一些的水平面上做匀速圆周运动 (图上未画出),两次金属块Q都保持在桌面上静止。 则后一种情况与原来相比较,下面的判断中正确的是 ( ) A.小球P运动的周期变大 B.小球P运动的线速度变大 C.小球P运动的角速度变大 D.Q受到桌面的支持力变大
1.火车在水平弯道转弯
N
●
2.倾斜弯道转弯
N
051201铁路弯道内外轨高度差.asf
F
G
●
●
h
L
G
θ
01
问题:火车水平轨道转弯
向心力来源? 动力学方程? ①
问题:
当火车转弯速度: ①火车运动轨迹的圆心 ① v > v0 时 是 0 2点? (1 )内外轨道高度差 h ② v < v0 时 ②车轮刚好与内外轨道没 2 / gr h = L v 0 有挤压时,向心力来源?火 车的速度v0=?
N A.h 越高,摩托车对侧壁 的压力将越大 B.h 越高,摩托车做圆周 G 运动的向心力将越大 C.h 越高,摩托车做圆周运动的周期将越小 D.h 越高,摩托车做圆周运动的线速度将越大
-----圆锥摆模型 建立物理模型:
P31 图2-3-2 旋转秋千 L
θ
y
T
h
●
x O
G
动力学方程:
现象观察:?
2.3圆周运动实例分析(竖直面)
F⊥ O
F
一、汽车过拱形桥
例1:设汽车质量为m,以速度v通过桥面半径为R的拱桥, 求拱桥受到的压力是多大?
FN
a
FN
G
a
失重 G
超重
变式: 如果把拱桥变成凹桥,汽车以相同速度过桥,求 桥受到的压力是多大?
发散思维:汽车有无可能做这样的运动?
二、绳连物
例:一根长为L的绳子连一个小球绕其一端在竖直 一根长为 的绳子连一个小球绕其一端在竖直 平面内做圆周运动,在最高点速度为v时 平面内做圆周运动,在最高点速度为 时,求绳对 小球的拉力大小。 小球的拉力大小。
O
圆周运动实例分析( 2.3 圆周运动实例分析(2)
——竖直面内的匀速圆周运动 竖直面内的匀速圆周运动
知识回顾
1.物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时
合外力总是指向圆心
2.物体做变速圆周运动时,合外力一定指向圆心 物体做变速圆周运动时, 物体做变速圆周运动时 吗? v 不一定。如图, 不一定。如图, F
三、杆连物
例:一根长为L的杆子连一个小球绕其一端在竖直 一根长为 的杆子连一个小球绕其一端在竖直 平面内做圆周运动,要使小球完成圆周运动, 平面内做圆周运动,要使小球完成圆周运动,试 分析杆对小球的作用力的情况。 分析杆对小球的作用力的情况。
O
1.过最高点的最小速度: 1.过最高点的最小速度: 过最高点的最小速度
0
.
2.过最高点的速度为 2.过最高点的速度为 gL ,杆对小 0 . 球的作用力为 3.过最高点的速度小于 3.过最高点的速度小于 小球的作用力为 支持力 4.过最高点的速度大于 4.过最高点的速度大于 小球的作用力为 拉力
物理沪科版2学案:2.3 圆周运动的案例分析含解析
2。
3 圆周运动的案例分析直平面内的圆周运动。
一、分析游乐场中的圆周运动 1.受力分析(1)过山车在轨道顶部时要受到重力和轨道对车的弹力作用,这两个力的合力提供过山车做圆周运动的向心力。
(2)当过山车恰好经过轨道顶部时,弹力为零,此时重力提供向心力。
2.临界速度(1)过山车恰好通过轨道顶部时的速度称为临界速度,记作v 临界,v临界=错误!。
(2)当过山车通过轨道最高点的速度v ≥错误!时,过山车就不会脱离轨道;当v >错误!时,过山车对轨道还会产生压力作用。
(3)当过山车通过轨道最高点的速度v <错误!时,过山车就会脱离轨道,不能完成圆周运动. 预习交流1“水流星"是我国传统的杂技节目,演员们把盛有水的容器用绳子拉住在空中如流星般快速舞动,同时表演高难度的动作,容器中的水居然一滴也不掉下来。
“水流星"的运动快慢与绳上的拉力的大小有什么关系?如果绳上的拉力渐渐减小,将会发生什么现象?答案:“水流星”转得越快,绳上的拉力就越大。
若绳上的拉力减小,有可能使水流出来。
二、研究运动物体转弯时的向心力1.自行车转弯时要向转弯处的内侧倾斜,由地面对车的作用力与重力的合力作为转弯所需要的向心力。
2.汽车在水平路面上转弯时由地面的摩擦力提供向心力。
3.火车转弯时的向心力由重力和铁轨对火车的支持力的合力提供,其向心力方向沿水平方向。
预习交流2飞行中的鸟和飞机要改变方向转弯时,鸟的身体或飞机的机身要倾斜,如图所示,这是为什么?答案:鸟或飞机转弯时需要向心力,只有当鸟身或飞机的机身倾斜时,它们所受空气对它们的作用力和重力的合力才能提供它们转弯需要的向心力。
一、竖直面内的圆周运动实例分析1.汽车过拱形桥桥顶时,可认为是圆周运动模型,那么汽车过拱形桥顶时动力学特点有哪些?答案:汽车在桥顶受到重力和支持力作用,如图所示,向心力由两者的合力提供.(1)动力学方程: 由牛顿第二定律2=N v G F m R-解得22=N v v F G m mg m R R=--。
圆周运动实例分析
圆周运动实例分析圆周运动是一种物体绕固定轴旋转的运动方式,它在日常生活和科学研究中有着广泛的应用。
下面将以多种实例来分析圆周运动。
实例一:地球公转地球绕着太阳公转是一个经典的圆周运动实例。
地球绕着太阳运动的轨道近似为一个椭圆,但是由于地球到太阳的距离相对较远,可以近似为一个圆周运动。
地球与太阳之间的重力提供了地球公转的向心力,使得地球保持在固定的轨道上。
这个圆周运动的周期为一年,即将地球绕公转一周所需要的时间。
实例二:卫星绕地球运动人造卫星绕地球运动也是一个常见的圆周运动实例。
卫星在地球轨道上运行时,地球的引力提供了卫星运动所需的向心力,使得卫星保持在圆周轨道上。
卫星的圆周运动速度称为轨道速度,是卫星绕地球一周所需的时间和轨道的半径所决定的。
实例三:风车旋转风车旋转也可以看作是一种圆周运动。
当风吹来时,风叶会受到风的力推动,从而开始转动。
风叶的运动轨迹是一个近似于圆周的曲线。
旋转的轴心是固定的,风向则决定了旋转的方向。
风车的旋转速度取决于风的强度和风叶的设计。
实例四:车轮滚动车轮的滚动也可以看作是一种圆周运动。
当车轮开始滚动时,轮胎与地面之间的摩擦力提供了一个向心力,使得车轮保持在一条直线上。
我们可以观察到车轮的外侧速度较大,而内侧速度较小,这是因为车轮在滚动过程中,中心处的点相对于半径较大的外侧点要走更长的路程。
实例五:转盘游乐设备转盘游乐设备也是一个典型的圆周运动实例。
当转盘开始旋转时,内侧的座椅相对于外侧的座椅要经历一个更小的半径,因此内侧的座椅速度较小,而外侧的座椅速度较大。
这种圆周运动会给乘坐者带来旋转的感觉,增加乘坐的刺激性。
总的来说,圆周运动在日常生活和科学研究中非常常见,上述实例仅仅是其中的几个例子。
人们通过对圆周运动的观察和研究,不仅可以深化对运动规律的理解,还可以为工程设计和科学实验提供有价值的参考。
高一教科版物理二第二章第3节圆周运动的实例分析2汽车过桥(过山车)中动力学问题(讲义)含答案
一、考点突破:二、重难点提示:重点:掌握汽车过桥向心力的来源.点:从难供需关系理解过桥时的最大限速。
汽车过桥的动力学问题1。
拱形桥汽车过拱形桥受力如图,重力和支持力合力充当向心力,由向心力公式r v mFG21=-则rv mG F 21-=。
汽车对桥的压力与桥对汽车的支持力是一对作用力和反作用力,故压力F 1′=F 1=G-m 。
规律:①支持力F N 小于重力G.②v 越大,则压力越小,当v=gr 时,压力=0. ③v=gr 是汽车过拱形桥的最大速度。
2. 凹形桥设桥的半径为r ,汽车的质量为m ,车速为v,支持力为F N .由向心力公式可得:rv m mg F N 2=-所以rv m mg F N 2+=。
规律:①支持力F N 大于重力G②v 越大,则压力越大,故过凹形桥时要限速,否则会发生爆胎危险。
思考:从超失重角度怎样理解汽车过桥时压力和重力的关系?例题1 如图所示,在质量为的电动机上,装有质量为的偏心轮,偏心轮的重心距转轴的距离为r。
当偏心轮重心在转轴M m O 'O正上方时,电动机对地面的压力刚好为零。
求电动机转动的角速度ω。
思路分析:偏心轮重心在转轴正上方时,电动机对地面的压力刚好为零,则此时偏心轮对电动机向上的作用力大小等于电动机的重力,即: ①根据牛顿第三定律,此时轴对偏心轮的作用力向下,大小为,其向心力为:②由①②得电动机转动的角速度为:。
答案:例题2 一质量为1600 kg 的汽车行驶到一座半径为40m 的圆弧形拱桥顶端时,汽车运动速度为10m/s ,g=10m/s 2。
求:(1)此时汽车的向心加速度大小; (2)此时汽车对桥面压力的大小;(3)若要安全通过桥面,汽车在最高点的最大速度。
思路分析:(1)a=v 2/r=2。
5m/s 2(2)支持力F N ,mg-F N =ma , F N =12000N 由牛顿第三定律,压力F N ′=12000N(3)mg=mv m 2/r v m =20m/s答案:(1)2.5m/s 2 (2)12000N (3)v m =20m/s知识脉络:F Mg =F Mg '=注:汽车过拱形桥失重速度过大有飞起的危险,过凹形桥超重速度过大有爆胎的危险。
2.3圆周运动的实例分析+教学设计-2024-2025学年高一下学期物理教科版(2019)必修第二册
《圆周运动的实例分析》教学设计一、教材依据本节课是教科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。
二、设计思路(一)、指导思想①突出科学的探究性和物理学科的趣味性;②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。
(二)、设计理念本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。
引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。
所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境,引导学生分析现象,归纳总结出实验结论。
(三)教材分析本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。
本节通过对汽车、火车等交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。
在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。
三、教学目标1.通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。
2.将生活实例转换为物理模型进行分析研究。
3.通过探究性物理学习活动,使学生获得成功的愉悦,培养学生对参与物理学习活动的兴趣,提高学习的自信心。
4.通过对日常生活、生产中圆周运动现象的解释,敢于坚持真理、勇于应用科学知识探究生活中的物理学问题。
四、教学重点理解向心力不是一种特殊的力,同时学会分析实际的向心力来源。
五、教学难点能用向心力公式解决有关圆周运动的实际问题,其中包括分析汽车过拱桥、火车拐弯等问题。
圆周运动实例分析的全面分析
圆周运动实例分析的全面分析圆周运动指的是物体沿着一条固定半径的圆周路径进行运动。
在物理学中,圆周运动是一种常见的运动形式,涉及到转速、角度、力的作用等多个因素。
下面我们将以钟摆和行星绕太阳的运动为例,对圆周运动的全面分析进行说明。
一、钟摆的圆周运动钟摆是一种简单的圆周运动示例,其中重物连接到一个固定点,并通过绳子或杆支撑。
钟摆的运动是一个反复来回摆动的运动,具体分析如下:1.转速:钟摆的转速指的是摆动的快慢程度,可以通过摆动的周期来衡量。
周期定义为钟摆从一个极端位置运动到另一个极端位置所需的时间。
转速与摆动的周期成反比,即转速越大,周期越短。
2.角度:钟摆的运动可以通过摆角来描述,摆角是摆锤与竖直方向的夹角。
在理想情况下,钟摆的摆角保持不变。
当摆角小于摆锤所能达到的最大角度时,钟摆会产生稳定的圆周运动。
3.力的作用:钟摆的圆周运动由重力产生的恢复力驱动。
当钟摆从最高点开始运动时,它受到重力的作用而加速下降。
在达到最底点后,重力会使钟摆发生反向运动,并且带有一定缓冲,然后又开始往返。
这是一个周期性的过程,重力提供了必要的力来维持钟摆的圆周运动。
二、行星绕太阳的圆周运动行星绕太阳的运动是一个更加复杂的圆周运动示例,涉及到引力、转动力矩等因素。
具体分析如下:1.引力:行星绕太阳的圆周运动是由太阳的引力驱动的。
根据开普勒定律,行星和太阳之间的引力使行星沿椭圆形轨道运动。
当行星沿着椭圆的一条较短的轴运动时,其速度较快;而当行星沿着较长轴运动时,速度较慢。
2.动量守恒:根据角动量守恒定律,行星绕太阳的圆周运动可以通过转动力矩来描述。
行星的角动量保持不变,因此在运动过程中,行星围绕太阳的速度和轨道半径成反比。
当行星靠近太阳时,速度增加,而当行星离太阳较远时,速度减小。
3.公转周期:行星围绕太阳的圆周运动的周期称为行星的公转周期。
公转周期与行星到太阳的距离有关,根据开普勒第三定律,公转周期的平方与行星到太阳的平均距离的立方成正比。
教科版物理必修2 第二章 第3节 圆周运动的实例分析1 火车、汽车拐弯的动力学问题(讲义)
教科版物理必修2 第二章第3节圆周运动的实例分析 1 火车、汽车拐弯的动力学问题(讲义)(1)对火车进行受力分析:火车受铁轨支持力N 的方向不再是竖直向上,而是斜向弯道的内侧,同时还有重力G 。
(2)支持力与重力的合力水平指向内侧圆心,成为使火车转弯所需的向心力。
【规律总结】转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G 和支持力N 来提供,这样外轨就不受轮缘的挤压了。
3. 限定速度v分析:火车转弯时需要的向心力由火车重力和轨道对它的支持力的合力提供。
F 合=mgtanα=r vm 2① 由于轨道平面和水平面的夹角很小,可以近似地认为tanα≈sinα=h/d ②②代入①得:mg d h =r vm 2思考:在转弯处:(1)若列车行驶的速率等于规定速度,则两侧轨道是否受车轮对它的侧向压力。
(2)若列车行驶的速率大于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
(3)若列车行驶的速率小于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
二、汽车转弯中的动力学问题1. 水平路面上的转弯问题:摩擦力充当向心力umg=mv2/r。
由于摩擦力较小,故要求的速度较小,否则就会出现离心现象,发生侧滑,出现危险。
2. 实际的弯道都是外高内底,以限定速度转弯,受力如图。
Mgtanθ=Mv2/r v=θtanrg,侧向下摩擦力的水平分力补充当v >θtanrg不足的合外力;,侧向上摩擦力的水平分力抵消部v <θtanrg分过剩的合外力;,沿斜面方向的摩擦力为零,重力v =θrgtan和支持力的合力提供向心力。
例题1在用高级沥青铺设的高速公路上,汽车的最大速度为108 km/h。
汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.4倍。
(g取10 m/s2)(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速公路上设计了圆弧拱桥,要使汽车能够安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?思路分析:(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供。
高中物理 第二章 匀速圆周运动 第3节 圆周运动的实例分析教学案
第3节圆周运动的实例分析1.汽车通过拱形桥的运动可看做竖直平面内的圆周运动,在拱形桥的最高点,汽车对桥的压力小于汽车的重力。
2.旋转秋千、火车转弯、鸟或飞机盘旋均可看做在水平面上的匀速圆周运动,其竖直方向合力为零,水平方向合力提供向心力。
3.当合外力提供的向心力消失或不足时,物体将沿圆周运动的切线方向飞出或远离圆心而去的运动叫做离心运动。
一、汽车过拱形桥汽车过凸桥汽车过凹桥受力分析牛顿第二定律mg-N=mv2RN-mg=mv2R牛顿第三定律F压=N=mg-mv2RF压=N=mg+mv2R讨论v增大,F压减小;当v增大到gR时,v增大,F压增大“旋转秋千”运动可简化为圆锥摆模型,如图231所示。
图2311.向心力来源物体做匀速圆周运动的向心力由物体所受的重力和悬线对它的拉力的合力提供。
2.动力学关系mg tan_α=mω2r,又r=l sin_α,则ω=gl cos α,周期T=2π l cos αg,所以cos α=gω2l,由此可知,α角度与角速度ω和绳长l有关,在绳长l确定的情况下,角速度ω越大,α越大。
三、火车转弯1.运动特点火车转弯时实际是在做圆周运动,因而具有向心加速度,由于其质量巨大,所以需要很大的向心力。
2.向心力来源在修筑铁路时,要根据弯道的半径和规定的行驶速度,适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力G和支持力N的合力提供。
如图232所示。
图232四、离心运动1.定义物体沿圆周运动的切线方向飞出或远离圆心而去的运动。
2.原因合外力提供的向心力消失或不足。
3.应用(1)离心机械:利用离心运动的机械。
(2)应用:洗衣机的脱水筒;科研生产中的离心机。
1.自主思考——判一判(1)汽车行驶至凸形桥顶时,对桥面的压力等于车的重力。
(×)(2)汽车过凹形桥底部时,对桥面的压力一定大于车的重力。
高一教科版物理必修二讲义及练习:第二章 第3节 圆周运动的实例分析1 火车、汽车拐弯的动力学问题
(答题时间:30分钟)1. 摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,如图所示。
当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时,车厢又恢复原状,就像玩具“不倒翁”一样。
假设有一超高速列车在水平面内行驶,以360 km/h 的速度拐弯,拐弯半径为1 km ,则质量为50 kg 的乘客在拐弯过程中所受到的火车给他的作用力为(g 取10 m/s 2)( )A. 0B. 500 NC. 1000 ND. 500 N22. 铁路转弯处的弯道半径r 是由地形决定的,弯道处要求外轨比内轨高,其内、外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关。
下列说法正确的是( )A. 速率v 一定时,r 越大,要求h 越大B. 速率v 一定时,r 越小,要求h 越大C. 半径r 一定时,v 越小,要求h 越大D. 半径r 一定时,v 越大,要求h 越大3. 一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,下图为雪橇受到的牵引力F 及摩擦力F 1的示意图(O 为圆心),其中正确的是( )4. 火车转弯时,火车的车轮恰好与铁轨间没有侧压力。
若将此时火车的速度适当增大一些,则该过程中( )A. 外轨对轮缘的侧压力减小B. 外轨对轮缘的侧压力增大C. 铁轨对火车的支承力增大D. 铁轨对火车的支承力不变5. 冰面对溜冰运动员的最大静摩擦力为运动员重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,其安全速度的最大值是( )A. B. C. D. gR k kgR kgR kgR 26. 如图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两个小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两个小孩刚好还未发生滑动时,某一时刻两个小孩突然松手,则两个小孩的运动情况是( )A. 两小孩均沿切线方向滑出后落入水中B. 两小孩均沿半径方向滑出后落入水中C. 两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中D. 甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中7. 火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时()A. 对外轨产生向外的挤压作用B. 对内轨产生向外的挤压作用C. 对外轨产生向内的挤压作用D. 对内轨产生向内的挤压作用8. 如图所示,是从一辆在水平公路上行驶着的汽车后方拍摄的汽车后轮照片。
教科版高中物理必修二第二章第3节圆周运动的实例分析2汽车过桥(过山车)中动力学问题同步练习(含解析)
(答题时间:30分钟)1. 质量为m 的汽车,额定功率为P ,与水平地面间的摩擦数为μ,以额定功率匀速前进一段时间后驶过一圆弧形半径为R 的凹桥,汽车在凹桥最低点的速度与匀速行驶时相同,则汽车对桥面的压力N 的大小为( )A. N=mgB. 2()m P N R mgμ=C. 21[()]P N m g R mg μ=+D.21[()]P N m g R mg μ=- 2. 当汽车行驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应( ) A. 以尽可能小的速度通过桥顶 B. 增大速度通过桥顶 C. 使通过桥顶的向心加速度尽可能小 D. 和通过桥顶的速度无关3. 在云南省某些地方到现在还要依靠滑铁索过江,若把这滑铁索过江简化成如图所示的模型,铁索的两个固定点A 、B 在同一水平面内,AB 间的距离为L=80m ,绳索的最低点离AB 间的垂直距离为H=8m ,若把绳索看做是圆弧,已知一质量m=52kg 的人借助滑轮(滑轮质量不计)滑到最低点的速度为10m/s ,那么( )A. 人在整个绳索上运动可看成是匀速圆周运动B. 可求得绳索的圆弧半径为100mC. 人在滑到最低点时,滑轮对绳索的压力为570ND. 在滑到最低点时人处于失重状态4. 乘坐游乐园的翻滚过山车时,质量为m 的人随车一起在竖直平面内旋转,下列说法正确..的是( ) A. 车的加速度方向时刻在变化,但总是指向圆心B. 人在最高点时对座位仍可能产生压力,但是速度可以为零C. 车的线速度方向时刻在变化,但总在圆周切线方向上D. 人在最低点时对座位的压力大于mg5. 如图所示,过山车的轨道可视为竖直平面内半径为R 的圆轨道。
质量为m 的游客随过山车一起运动,当游客以速度v 经过圆轨道的最高点时( )A. 处于超重状态B. 向心加速度方向竖直向下C. 速度vD. 座位对游客的作用力为2 v mR6. 如图,m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮,已知皮带轮半径为r,传送带与皮带轮之间不打滑,则要使小物体被水平抛出,A轮转动()A. B.C. D. 周期越小越好,最大值为2T=7. 如图所示,拱桥的外半径为40m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
识
学
点
业
一
分
层
测
评
知 识
3.圆周运动的实例分析
点
二
重
点
知 识 点
强 化 卷
三
上一页
返回首页
下一页
学习目标 1.知道向心力可以由一个力或几个力 的合力提供,会分析具体问题中的向 心力来源.(难点) 2.能用匀速圆周运动规律分析、处理 生产和生活中的实例.(重点、难点) 3.了解什么是离心运动,知道物体做 离心运动的条件.
得:ω=
g lcos α
周期 T=2ωπ=_2_π____l_c_og_s_α_.
上一页
返回首页
下一页
[再判断] 1.汽车驶过凸形桥最高点时,对桥的压力可能等于零.(√) 2.汽车驶过凹形桥低点时,对桥的压力一定大于重力.(√) 3.体重越大的人坐在秋千上旋转时,缆绳与中心轴的夹角越小.(×)
上一页
上一页
图 2-3-4
返回首页
下一页
由牛顿第二定律得:G-FN=mvr2,则 FN=G-mvr2. 汽车对桥的压力与桥对汽车的支持力是一对相互作用力,即 FN′=FN=G -mvr2,因此,汽车对桥的压力小于重力,而且车速越大,压力越小. ①当 0≤v< gr时,0<FN≤G. ②当 v= gr时,FN=0,汽车做平抛运动飞离桥面,发生危险.
上一页
图 2-3-5
返回首页
下一页
在最高点时: ①v= gr时,拉力或压力为零. ②v> gr时,物体受向下的拉力或压力,并且随速度的增大而增大. ③v< gr时,物体不能达到最高点.(实际上球未到最高点就脱离了轨道)
上一页
返回首页
下一页
(2)轻杆模型 如图 2-3-6 所示,在细轻杆上固定的小球或在管形轨道内运动的小球,由于 杆和管能对小球产生向上的支持力,所以小球能在竖直平面内做圆周运动的条 件是在最高点的速度大于或等于零,即杆类模型中小球在最高点的临界速度为 v 临=0.
上一页
图 2-3-6
返回首页
下一页
在最高点时: ①v=0 时, 小球受向上的支持力 N=mg. ②0<v< gr时,小球受向上的支持力且随速度的增大而减小. ③v= gr时,小球只受重力. ④v> gr时,小球受向下的拉力或压力,并且随速度的增大而增大.
上一页
返回首页
下一页
1.如图 2-3-7 所示为模拟过山车的实验装置,小球从左侧的最高点释放后 能够通过竖直圆轨道而到达右侧.若竖直圆轨道的半径为 R,要使小球能顺利通 过竖直圆轨道,则小球通过竖直圆轨道的最高点时的角速度最小为( )
【提示】 轻绳上的小球最小速度不能为零. 轻杆上的小球最小速度可以为零. 探讨 2:小球经过最高点时,与绳(或杆)之间的作用力可以为零吗? 【提示】 小球轻过最高点时与绳或杆的作用力可以为零.
上一页
返回首页
下一页
[核心点击] 1.汽车过桥问题的分析 (1)汽车过凸形桥:汽车在桥上运动,经过最高点时,汽车的重力 与桥对汽车支持力的合力提供向心力.如图 2-3-4 甲所示.
返回首页
下一页
[后思考] 1.公路在通过小型水库泄洪闸的下游时常常要修建凹形桥,也叫“过水路 面”,如图 2-3-2,汽车在凹形桥上通过时,汽车的向心力由什么力提供?汽车 对桥的压力是否等于重力?
图 2-3-2
上一页
返回首页
下一页
【提示】 汽车的向心力由支持力和重力的合力提供,即 Fn=FN-mg,汽 车对桥的压力大于重力.
上一页
返回首页
下一页
(2)汽车过凹形桥. 如图乙所示,汽车经过凹形桥面最低点时,受竖直向下的重力和竖直向上 的支持力,两个力的合力提供向心力,则 FN-G=mvr2,故 FN=G+mvr2.由牛顿 第三定律得:汽车对凹形桥面的压力 FN′=G+mvr2,大于汽车的重力.
上一页
返回首页
下一页
2.竖直平面内圆周运动的两种模型 (1)轻绳模型 如图 2-3-5 所示,轻绳系的小球或在轨道内侧运动的小球,在最高点时的临 界状态为只受重力,由 mg=mvr2,得 v= gr.即绳类模型中小球在最高点的临界 速度为 v 临= gr.
上一页
返回首页
下一页
2.“旋转秋千” (1)物理模型:细线下面悬挂一个钢球,用手带动钢球使它在某个水平面内 做_匀__速__圆__周__运__动__形成一个圆锥摆,如图 2-3-1 所示.
图 2-3-1
上一页
返回首页
下一页
(2)向心力的来源:由重力和悬线拉力的合__力__提供.
由 F 合=mgtan α=mω2r,r=lsin α.
A.A 点,B 点 C.B 点,A 点
图 2-3-8 B.B 点,C 点 D.D 点,C 点
上一页
返回首页
下一页
【解析】 战车在 B 点时由 FN-mg=mvR2知 FN=mg+mvR2,则 FN>mg,故 对路面的压力最大,在 C 和 A 点时由 mg-FN=mvR2知 FN=mg-mvR2,则 FN<mg 且 RC>RA,故 FNC>FNA,故在 A 点对路面压力最小,故选 C.
知识脉络
上一页
返回首页
下一页
汽 车 过 拱 形 桥和 “旋 转 秋 千”
[先填空] 1.汽车过拱形桥 (1)最高点受力情况 汽 ((23))车动 对经力 桥拱学 面形方 压桥程 力顶: :点__N__m′时__g__=-,____mN竖__=g__直-__m__方m__vR__2vR向._2 . 受到重__力__和_支__持__力_作用.
2.旋转秋千的缆绳与中心轴的夹角由哪些因素决定? 【提示】 由绳长和角速度两个因素决定,与人的体重无关.
上一页
返回首页
下一页
[合作探讨] 小球分别在轻绳(如图 2-3-3 甲)和轻杆(如图 2-3-3 乙)的一端绕另一端在竖
直平面内运动,请思考:
上பைடு நூலகம்页
图 2-3-3
返回首页
下一页
探讨 1:小球要在竖直平面内完成圆周运动,经过最高点时的最小速度可以 为零吗?
【导学号:22852040】
上一页
图 2-3-7
返回首页
下一页
A. gR
B.2 gR
g C. R
R D. g
【解析】 小球能通过竖直圆轨道的最高点的临界条件为重力提供向心力,
即 mg=mω2R,解得 ω= Rg,选项 C 正确.
【答案】 C
上一页
返回首页
下一页
2.如图 2-3-8 所示,在某次军事演习中,一辆战车以恒定的速度在起伏不 平的路面上行进,则战车对路面的压力最大和最小的位置分别是( )